首页 >> 新闻公告
MATLAB R2017b已更新到正版化软件网站
2017-10-30

MATLAB R2017b已于近日发布,已更新到正版化网站(http://zbh.ustc.edu.cn),欢迎大家使用。

MATLAB R2017b包括 MATLAB 和 Simulink 的若干新功能、六款新产品以及对其他 86 款产品的更新和修复补丁。此发行版还添加了新的重要的深度学习功能,可简化工程师、研究人员及其他领域专家设计、训练和部署模型的方式。

R2017b 中的具体深度学习特性、产品和功能包括:

  • ŸNeural Network Toolbox 增加了对复杂架构的支持,包括有向无环图 (DAG) 和长短期记忆 (LSTM) 网络,并提供对 GoogLeNet 等流行的预训练模型的访问。
  • Computer Vision System Toolbox 中的 Image Labeler 应用现在提供一种方便和交互的方式来标记一系列图像中的地面实况数据。除对象检测工作流程外,该工具箱现在还利用深度学习支持语义分割,对图像中的像素区域进行分类,以及评估和可视化分割结果。
  • 新产品 GPU Coder 可自动将深度学习模型转换为 NVIDIA GPU 的 CUDA 代码。内部基准测试显示,在部署阶段为深度学习模型产生的代码,比 TensorFlow 的性能提高 7 倍,比 Caffe2 的性能提高 4.5 倍。

MATLAB深度学习:为自动驾驶的工作流程提供语义分割

注:使用 TitanXP GPU 和 Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz 对 AlexNet 的推理性能执行了内部基准测试。使用的软件版本是 MATLAB(R2017b)、TensorFlow(1.2.0) 和 Caffe2(0.8.1)。每个软件的 GPU 加速版本用于基准测试。所有测试均在 Windows 10 上运行。

与 R2017a 推出的功能相结合,可以使用预训练模型进行迁移学习,包括卷积神经网络 (CNN) 模型(AlexNet、VGG-16 和 VGG-19)以及来自 Caffe 的模型(包括 Caffe Model Zoo)。可以从头开始开发模型,包括使用 CNN 进行图像分类、对象检测、回归等。

其他系列更新:

除深度学习外,R2017b 还包括其他关键领域的一系列更新,包括:

  • 使用 MATLAB 进行数据分析:一款新 Text Analytics Toolbox 产品、可扩展数据存储、用于机器学习的更多大数据绘图和算法,以及 Microsoft Azure Blob 存储支持
  • Ÿ使用 Simulink 进行实时软件建模:对用于软件环境的调度效果进行建模并实现可插入式组件
  • 使用 Simulink 进行验证和确认:用于需求建模、测试覆盖率分析和合规性检查的新工具

详细内容,请查看MATLAB R2017b概述: https://cn.mathworks.com/products/new_products/latest_features.html

Copyright 2009 中国科学技术大学超级计算中心 All Rights Reserved