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Preface

The Fortran 90 Handbook is a definitive and comprehensive guide to Fortran 90
and its use. Fortran 90, the latest standard version of Fortran, has many
excellent new features that will assist the programmer in writing efficient,
portable, and maintainable programs. The Fortran 90 Handbook is an informal
description of Fortran 90, developed to provide not only a readable
explanation of features, but also some rationale for the inclusion of features
and their use. In addition, “models” give the reader better insight as to why
things are done as they are in the language.

This handbook is intended for anyone who wants a comprehensive survey of
Fortran 90, including those familiar with programming language concepts but
unfamiliar with Fortran. Experienced Fortran 77 programmers will be able to

use this volume to assimilate quickly those features in Fortran 90 that are not

in Fortran 77 (Fortran 90 is a superset of Fortran 77).

Chapter 0 provides a brief overview of several of the most important features
that are new in Fortran 90. Chapters 1-14 correspond to Sections 1-14 in the
standard. (The standard is the complete official description of the language,
but it is written in a legally airtight, formal style without tutorial material and
can be difficult to understand in places.) The handbook and the standard can
be examined in parallel for insights into the Fortran language. This makes it
feasible to use this handbook to “decipher” the standard, and this is an ideal
use of this book.

Although the handbook is written for use in conjunction with the standard, it
is also designed as a practical stand-alone description of Fortran 90. In the
interest of readability, a few of the more obscure aspects of the standard may



not be treated rigorously; any such cases should not impact the usefulness of
this handbook in describing Fortran 90. On the other hand, in places where the
standard is not completely clear, a reasonable interpretation is often given,
together with ways to implement and program that will avoid potential
problems due to misinterpretation of the standard. Of course, if information is
being sought to understand a fine point of compiler implementation, settle a
bet, resolve a court case, or determine the answer to a Fortran trivia question,
the standard itself should be considered the final authority.

The syntactic features of the language are described completely in the
appendices, and these can serve as continual concise references for Fortran 90.

Other Sources of Information

Other parts of the book can be used to help find information.

® Each of the intrinsic functions is described in detail in Appendix A,
although a general discussion of the intrinsic functions is included in
Chapter 13.

® The complete syntax of Fortran 90 may be found in Appendix B. The syntax
rules are numbered exactly as they are in the Fortran standard. There is a
cross reference that lists, for each nonterminal syntactic term, the number of
the rule in which it is defined, and all rules in which it is referenced.

* Appendix C contains a listing of the obsolescent features.

® The index is unusually comprehensive.

® There is an index of examples, giving the location of program examples that
illustrate the use of many Fortran 90 features.

For an informal and tutorial approach to learning Fortran 90, the book,
Programmers Guide to Fortran 90, Second Edition, by Brainerd, Goldberg, and
Adams (Unicomp, Albuquerque, NM, 1993) is more appropriate.

Style of the Programming Examples

In order to illustrate many features of the language and as many uses of these
features as possible, no single particular style has been used when writing the
examples. In many cases, the style illustrated is not necessarily one that the
authors recommend.
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Sneak Preview 0

This is Chapter 0. Fortran programmers, particularly old-timers, are
accustomed to starting at 1. Prior to Fortran 77, a DO loop had to be executed
at least once, and array subscripts started with one. Even though these
restrictions were eliminated in Fortran 77, arrays had to have at least one
element. In Fortran 90, the programmer can create strings of length zero and
arrays of size zero. So this Chapter 0 will help Fortran 90 programmers get
accustomed to other possibilities for the number 0. Seriously, though, the main
reason for starting with Chapter 0 is that the remaining chapters of this book
correspond with the fourteen chapters of the Fortran standard and are
numbered 1-14 as they are in the standard. Chapter 0 provides the opportunity
for a brief introduction to some of the exciting new features of Fortran 90.

The pie chart on the opposing page illustrates how Fortran 90 is made up of
Fortran 77 plus several new features. The relative sizes of the slices are
determined from the detailed syntax rules in Appendix B—each pie slice is
roughly proportional to the number of syntax rules describing that part of
Fortran 90. Thus the pie gives one measure of the relative complexity of the
different parts of Fortran 90. It only indicates structural (syntactic) complexity,
however, and should not be taken as an indication of conceptual (semantic)
complexity; structural and conceptual complexity may or may not be related. It
also should not be taken as an indication of implementation effort (which also
may or may not be related). In fact, the cost pattern of implementation may be
somewhat machine-architecture dependent or dependent upon the particular
design strategy. Although this measure is crude, it shows clearly that the
majority of statements in Fortran 90 are already familiar to Fortran 77
programmers.
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Fortran 77

Despite these caveats, the structure of a language is an important part of
learning it and using it; therefore, the pie chart provides useful information
about Fortran 90. The main purpose of this sneak preview is to provide a brief
introduction to each new feature slice of the Fortran pie. Just a glance at the
names of the new features should be enough to convince anyone that they will
become very important to Fortran programmers.

Fortran always has been considered the premier language in scientific and
engineering fields requiring numeric computations. The new features of
Fortran 90 continue to enhance Fortran for these applications and also to
extend the language in significant ways to other areas now very important in
scientific and engineering programming. This chapter is a sneak preview of
some of these features, illustrating briefly why it will be important to master
and use these facilities.

One of the most important features of Fortran 90 is that it contains all of the
features of Fortran 77. There are four relatively obscure things that are
processor dependent in Fortran 77, but completely specified in Fortran 90;
these are described in Section 1.5. If a program uses one of these features and it
was done differently on a particular implementation than the way chosen for
Fortran 90, this program could behave differently under Fortran 90. Otherwise,
all standard-conforming Fortran 77 programs should run using a Fortran 90
compiler and produce equivalent results.

Source Form and Names

In Fortran 90 there is a new source form for which particular positions have no
special meaning, names may have up to 31 characters and use the underscore
character, blanks have significance in some circumstances, a semicolon may be
used to separate multiple statements on one line, and comments may occur on
any line following an exclamation (!). The old source form is still available and
most of these new features are also available when using the old source form.
SWAP_INTEGERS is a simple example of a subroutine written using the new
source form.

Fortran 90 Handbook
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Control Structures

Numeric Processing

SUBROUTINE SWAP_INTEGERS (ARG_A, ARG_B)
INTEGER, INTENT (INOUT) :: ARG_A, ARG_B
INTEGER :: TEMP ! New form of declaration
TEMP = ARG_A; ARG_A = ARG_B; ARG _B = TEMP

END

If the above code were written so that each line began in position 7 or beyond,
it would also be acceptable as old source form.

Control structures have not been neglected; Fortran now has a complete suite
of modern control structures. A CASE construct has been added. The DO
construct has been improved significantly and now may utilize the CYCLE and
EXIT statements. In addition, the DO construct can have a WHILE control
clause, an iterative control clause, or no control clause. The DO, IF, and CASE
constructs may have construct names to help identify the constructs, which is
especially useful when constructs are nested. The following example illustrates
a CASE construct and a DO construct that contains an IF construct and an EXIT
statement.

SEARCH_LOOP: D | = 1, TABLE_SIZE
IF (ITEM == TABLE (I)) THEN
LOCATION = |
EXIT SEARCH_LOOP
END IF
END DO SEARCH_LOOP

SELECT CASE (COLOR (LOCATION))
CASE ("RED")
STOP
CASE ("YELLOW")
PRINT *, "Look out!"
CALL CAUTION
CASE ("GREEN")
CALL GO
END SELECT

One of the most difficult aspects of porting Fortran programs is the
specification of numeric precision. Fortran 90 contains new features that allow
the programmer to specify precision in a more portable manner and to inquire

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener
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about properties of the precision used by a processor. It is possible to declare
that real variables R1 and R2 have at least 10 decimal digits and a range
extending to at least 1030 by using the declaration

REAL (SELECTED_REAL_KIND (10, 30)) :: R1, R2

The values of R1 and R2 may be represented using single precision on some
machines and double precision on others.

The actual precision and range of any real variables can be determined using
intrinsic functions provided for this purpose. Other intrinsic functions allow
the programmer to manipulate the components of a real value in a portable
manner. For example, the intrinsic function SPACING can be used to determine
the convergence of an iterative process.

CONVERGE = ( ABS (X0 - X) < 2 * SPACING (X) )

It is also possible to indicate a minimum required range of an integer value in
a declaration, as illustrated by the following example.

INTEGER (SELECTED_INT_KIND (5)) :: I1, I2

In this case, the Fortran system must select an integer representation (if one is
available) that allows the integer variables |1 and 12 to have all integer values
between —10° and 10°; if the programmer limits values assigned to 11 and 12 to
this range, portability is guaranteed.

Many Fortran programs process arrays of data. These programs usually are full
of DO loops that process array elements one at a time. In fact, the more natural
way to think of the process is that it performs some operation on the whole
array. Allowing the programmer to manipulate arrays of data in this manner is
perhaps the single most important enhancement in Fortran 90. This reflects not
only the benefit of expressing array computations in a more natural manner,
but also the development of computers having array processing hardware to
achieve high processing speeds.

In Fortran 90 it is possible to treat a whole array as a single object. For
example, suppose A, B, and C are 10 x 10 arrays of real values. For each
element of B, the statement

A=2*B+C

Fortran 90 Handbook
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Pointers

doubles its value, adds it to the corresponding element of C, and places the
result in the corresponding element of A.

Parts of an array may be referenced. For example,
PRINT *, A (3, :), B (;, 1:99:2)

prints the third row of the array A and the odd-numbered columns of B. A
section of an array may be given another name with the use of a pointer, but
that is another story.

There is a rich set of new intrinsic functions to process arrays. Users may
define array-valued functions, and arrays may be allocated dynamically. This
last feature alone will be a tremendous aid to programmers who have had to
jump through hoops and often use nonstandard (and nonportable) features in
an attempt to manage storage allocation. One use of dynamic allocation is
illustrated by a simple example in which an array’s size is determined as the
program is executing.

REAL, ALLOCATABLE :: A (;)
READ * N
ALLOCATE (A (N,N))

There are many other new features designed to assist in array processing, such
as the WHERE construct and the use of arrays with pointers.

The pointer features of Fortran 90 permit data to be accessed and processed
dynamically.

REAL, POINTER : A (.)

READ *, N

ALLOCATE (A (N,N))
Note that, except for the replacement of the keyword “ALLOCATABLE” with
the keyword “POINTER?”, this example is identical to the previous one in the
section on arrays. Everything that can be done with allocatable arrays can also
be done with pointers, but allocatable arrays can be used in simple situations
where pointer concepts are not required. Any object may have the pointer
attribute; it is not limited to arrays.
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In addition, the effect of assignment can be achieved without the movement of
data; and dynamic structures, such as linked lists and trees, can be created and
processed.

In most cases, a pointer may be thought of as an alias to some data object. For
example, a pointer may “point to” or “alias” a row of an array, a simple
variable, a component of a structure, or an entire data structure.

REAL, TARGET : A (100,100)
REAL, POINTER :: ITH_ROW (:), CORNERS (.:), INNER (.

ITH_ ROW => A (I, 2)
CORNERS => A (1:100:99, 1:100:99)
INNER => A (2:99, 2:99)

In Fortran 90, pointers may point only to objects having the target attribute.
This is to allow all optimization techniques in those cases that do not involve
pointers.

In the past, scientific and engineering programs typically involved large
amounts of computation; if there were a large amount of data, it usually was
organized in very simple ways. However, contemporary applications often
process large and complex data structures, both numeric and nonnumeric.
Fortran 90 provides the programmer with better tools to deal with such data by
including data structures in the language. Unlike an array, the components of a
Fortran 90 data structure do not have to be of the same data type. Data
structures are introduced into a program with a type definition, such as the
following:

TYPE EMPLOYEE
I An employee’s name may have up to 20 characters.
CHARACTER (LEN = 20) - NAME
I A social security number (SSN) has nine digits.
INTEGER (SELECTED_INT_KIND (9)) : SSN
I SALARY may be up to $1M and is kept to the penny.
REAL (SELECTED_REAL_KIND (8, 6)) :: SALARY

END TYPE EMPLOYEE

Variables declared to be type EMPLOYEE have three components, NAME,
SSN, and SALARY, each of a different data type. In the following example
LARRY, MOE, and CURLY are structures of type EMPLOYEE.

Fortran 90 Handbook
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TYPE (EMPLOYEE) : LARRY, MOE, CURLY

An entire structure can be referenced by using its name, such as MOE.
Individual components can be manipulated as follows:

MOE % SSN = 123456789

User-Defined Types and Operators

Procedures

Programmers may extend the Fortran 90 built-in facilities in two ways. New
data types may be built from the intrinsic types, and the programmer may
extend the built-in operators, such as + and //, to other data types. In
addition, new operators may be defined for any data types. These facilities
allow the programmer to define abstract data types and facilitate the utilization
of the object-oriented programming paradigm in Fortran. For example, it is
possible to define a new type called MATRIX and extend the operator (to
mean matrix multiplication between two variables declared to be type
MATRIX.

TYPE (MATRIX) :: M1, M2, M3

M3 = M1 * M2
For this example, it is assumed that the type MATRIX has been defined as the
type EMPLOYEE was defined in the example in "Data Structures" in this
chapter. The form of each defined type must be a structure; in this case, it
could be a structure with one component—a two-dimensional array of reals,
for example, or it could be some sort of linked structure representing a sparse

matrix. The operation (D representing matrix multiplication is defined by a
function with an operator interface.

There are several new features in Fortran 90 that facilitate the use of
procedures. Functions can extend existing operators and define new ones.
Subroutines are used to redefine assignment for user-defined types, if desired.
Procedure arguments may be made optional and keywords may be used when
calling procedures, allowing them to be listed in any order. Default values may
be specified for missing optional arguments.

SUBROUTINE CONCERT (LOCATION, TIME, BAND, BACKUP)
INTEGER, OPTIONAL :: LOCATION, TIME, BAND, BACKUP

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



With this declaration any of the following could be used to call the subroutine:

CALL CONCERT (1, 2, 3, 4)
CALL CONCERT (1, BACKUP=4)
CALL CONCERT (TIME=2, LOCATION=1)

A procedure interface block is used to describe the characteristics of an
external procedure and its arguments, give a procedure a generic name, define
a new operator or extend an old one, or define a new form of assignment.

Procedure interface blocks are necessary in some cases to allow the correct
procedure call to be generated; their use also will permit the compiler to check
that procedure calls are correct, particularly to check that argument types
match. This provides the capability to guarantee the integrity of a procedure
call and to guard against errors.

The programmer may define generic procedures in Fortran 90. Here are the
subprograms and the interface blocks that create a generic function
CUBE_ROOT that will find the cube root of either a real or double precision
value.

INTERFACE CUBE_ROOT

FUNCTION S_CUBE_ROOT(X)
REAL :: S_CUBE_ROOT
REAL, INTENT(IN) :: X

END FUNCTION S_CUBE_ROOT

FUNCTION D_CUBE_ROOT(X)
DOUBLE PRECISION, INTENT(IN) 1 X
DOUBLE PRECISION :: D_CUBE_ROOT
END FUNCTION D_CUBE_ROOT
END INTERFACE
FUNCTION S_CUBE_ROOT(X)
REAL, INTENT(IN) = X
REAL : S_CUBE_ROOT
S_CUBE_ROOT = ...

END FUNCTION S_CUBE_ROOT

Fortran 90 Handbook
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FUNCTION D_CUBE_ROOT(X)
DOUBLE PRECISION, INTENT(IN) :: X
DOUBLE PRECISION :: D_CUBE_ROOT

D_CUBE_ROOT = ...

END FUNCTION D_CUBE_ROOT
Fortran 90 also has recursion.

RECURSIVE SUBROUTINE QUICK_SORT (NUMBERS, START, END)

NEW_STAR = . . .
NEW EN = . . .
IF (START <= END - 10) THEN
CALL QUICK_SORT (NUMBERS, NEW_START, NEW_END)

ELSE
CALL SMALL_SORT (NUMBERS, NEW_START, NEW_END)

END IF

Modules can declare global data. This use of modules provides more power
and is much less error-prone than the use of common blocks. Modules also
may be used to collect related items, such as data, procedures, and procedure
interfaces. A module can make a type definition widely accessible, an
important functionality not provided by common blocks. To access the
information in a module from another program unit, a USE statement is
provided. The following simple example illustrates the use of a module to
replace a common block.

MODULE T_FORD
REAL, DIMENSION (100,100) :: A, B, C
INTEGER :: 11, 12

END MODULE T_FORD

SUBROUTINE SOUP

USE T_FORD
A=0
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SUBROUTINE NUTS
USE T_FORD
B=0

Packaging with a module can be used to hide information. Objects can be kept
inaccessible outside the module with a PRIVATE declaration. This provides
some protection against inadvertent misuse or corruption, thereby improving
program reliability. Packaging also can make the logical structure of a program
more apparent by hiding complex details at lower levels. Programs are
therefore easier to comprehend and less costly to maintain.

It is possible to place in a module the definitions needed to define the type
MATRIX and its operations discussed in "User-Defined Types and Operators"
in this chapter. The representation of the matrices—using arrays for dense
matrices or linked lists for sparse matrices—can be hidden from the user so
that the implementation can be modified without requiring changes in
programs that use the module. Similarly, it is possible to hide the method used
to implement operations such as matrix multiplication.

There are some additional input/output features, such as additional clauses for
the OPEN and INQUIRE statements and namelist formatting. Perhaps the most
significant input/output feature is nonadvancing or “stream” character-
oriented input/Zoutput. For example, nonadvancing input/output makes it
easier to write a program that counts the number of characters in a file.

PROGRAM CHAR_COUNT
USE I0_PARAMETERS, ONLY : END_OF_RECORD, END_OF_FILE
INTEGER :: 10S, COUNT = 0
CHARACTER :: C
DO
READ (*, "(A)", ADVANCE = "NO", IOSTAT = IOS) C
IF (I0S == END_OF_RECORD) CYCLE
IF (I0S == END_OF_FILE) EXIT
COUNT = COUNT + 1
END DO
PRINT *, "The file contains ", COUNT, " characters."
END PROGRAM CHAR_COUNT
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Language Architecture

Everyone recognizes that there are features of Fortran (and other programming
languages, too) that do not represent good programming practice. Modern
features of the language may be used to achieve the same functionality more
effectively. On the other hand, economics dictate that a language evolve slowly.
There is a tremendous investment in Fortran programs; it must be possible to
continue to run these programs, even as they are being revised and updated
using more modern programming techniques. There is also a large investment
in training programmers and perfecting their skill at Fortran programming.
Ideally, it should be possible for a programmer to learn new features of
Fortran 90 as they are needed and at a comfortable pace.

It is expected that most revisions of a programming language standard will
include new features. One of the most significant, and perhaps controversial,
concepts in Fortran 90 involves the attempt to identify features that are
obsolescent and that should be phased out over time. The evolutionary scheme
incorporated into Fortran 90 uses the concepts of incremental and
decremental features. The decremental features are listed in Appendix C.

It is straightforward to recognize the incremental features. They are the new
features added since the previous standard, Fortran 77. The handling of the
decremental features is more complicated and controversial. In the Fortran 90
standard, there is an attempt to identify those features that should not be in the
language, except for the fact that they were there in previous versions.
Identifying these features in the standard gives notice to the programmer that
they might be removed from the next version of the standard. Therefore, the
programmer should avoid using these features when revising old programs or
creating new ones. For each of the features indicated as decremental in
Fortran 90, there was already a better equivalent facility in Fortran 77,
although some of the features have even better replacements in Fortran 90.

If a feature is removed from the next standard, there is the possibility that it
might get removed from some implementations; however, it is expected that
obsolescent features will exist in most implementations for many generations
in order to meet requirements for processing older programs that use them.

11
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1.1 History

Introduction 1

For a programming language, Fortran has been around a long time. It was one
of the first widely used “high-level” languages, as well as the first
programming language to be standardized. It is still the premier language for
scientific and engineering computing applications.

The purpose of this handbook is to describe the latest version of this language,
Fortran 90. This chapter gives some history of the development and
standardization of Fortran and describes the notation used to specify the
syntax of Fortran 90.

1.1.1 Initial Development of Fortran

In 1954 a project was begun under the leadership of John Backus at IBM to
develop an “automatic programming” system that would convert programs
written in a mathematical notation to machine instructions for the IBM 704
computer. Many were skeptical that the project would be successful because, at
the time, it was felt that computer memories were so small and expensive and
execution time so valuable that it was necessary for the program produced by
the compiler to be almost as efficient as that produced by a good assembly
language programmer.

13
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This project produced the first Fortran compiler, which was delivered to a
customer in 1957. It was a great success by any reasonable criterion. The
efficiency of the code generated by the compiler surprised even some of its
authors. A more important achievement, but one that took longer to realize,
was that programmers could express their computations in a much more
natural way. This increased productivity and permitted the programmer to
write a program that could be maintained and enhanced much more easily
than an assembly language program.

About one year after the introduction of the first Fortran compiler, IBM
introduced Fortran Il. One of the most important changes in Fortran Il was the
addition of subroutines that could be compiled independently. Thus, Fortran
changed substantially even during its first year; it has been changing
continually ever since.

1.1.2 Standardization

By the early 1960s, many computer vendors had implemented a Fortran
compiler. They all included special features not found in the original IBM
compiler. These features usually were included to meet needs and requests of
the users and thus provide an inducement for the customer to buy computer
systems from the vendor providing the best compiler. Because the language
was very young, a special added feature could be tested to see if it was a good
long-term addition to the language. Unfortunately, the profusion of dialects of
Fortran prevented programs written for one computer from being transported
to a different computer system.

At about this time, the American Standards Association (ASA), later to become
the American National Standards Institute (ANSI), began a project of
standardizing many aspects of data processing. Someone had the daring idea
of standardizing programming languages. A committee was formed to develop
a standard for Fortran under the auspices of the Business Equipment
Manufacturers Association (BEMA), later to become the Computer and
Business Equipment Manufacturers Association (CBEMA). This standard was
adopted in 1966; after the adoption of Fortran 77, it became known as

Fortran 66 to distinguish the two versions.

The language continued to develop after 1966, along with general knowledge
in the areas of programming, language design, and computer design. Work on
a revision of Fortran 66 was completed in 1977 (hence the name Fortran 77)
and officially published in 1978. The most significant features introduced in
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this version were the character data type, the IF-THEN-ELSE construct, and
many new input/output facilities, such as direct access files and the OPEN
statement. Except for the character data type, most of these features had been
implemented in many compilers or preprocessors. During this revision,
Hollerith data was removed because the character data type is a far superior
facility. Although this idea of removing features did not seem very
controversial when Fortran 77 was introduced, it proved to be controversial
later—so much so that no Fortran 77 features have been removed in Fortran 90.

As soon as the technical development of Fortran 77 was completed, ANSI X3J3
and International Standards Organization (ISO) WGS5 turned their attention to
the next revision, which is now called Fortran 90 and is the subject of this book.

The work on Fortran 90 began so soon after the adoption of Fortran 77 because,
contrary to the pronouncements of some that “Fortran is dead”, the huge
volume of public comments on the proposed standard indicated that there was
a tremendous interest in the further development of the language. In fact,
many of the public comments on Fortran 77 contained suggestions that have
been adopted in Fortran 90.

Fortran is still the most widely used programming language for scientific and
engineering applications, and the new standard version, Fortran 90, should
continue this tradition.

1.2 Why a New Standard?

There are several reasons why Fortran or any other programming language
needs to change over a period of years. Computing technology and
programming methodology are evolving at a very rapid pace. Thus, the most
obvious reason that programming languages must evolve is that, to be
effective, a programmer must have a language that incorporates this new
methodology. We now know how to incorporate certain features into a
language better than we did ten, twenty, or thirty years ago. A good example is
provided by control structures. In the 1970s a lot of effort was put into
determining the best possible set of control structures that a language should
have; this was done mainly from the point of view of providing facilities that
encourage good program design and ease of program maintenance. In this
area, Fortran’s early lack of modern design was actually a benefit, because a
very good set of control structures has been added to Fortran 90 without
severely impacting the few older control mechanisms already in Fortran 77.
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Another area in which both an awareness of the problem and the concomitant
technology to cope with it have advanced is that of portability. As the cost of
software maintenance increases and a wider variety of computing systems
become available, it is increasingly important to be able to port Fortran
programs from one system to another. The main purpose of a standard is to
permit portability of programs; in spite of this, several features of each
standard Fortran have been nonportable. Each time the standard is revised,
features are added to enhance portability and replace features that do not port
easily. Perhaps the most obvious example of this in Fortran 77 concerns
numeric precision. The precision of real and double precision values varies
greatly from one computer system to the next; when moving from a machine
with many digits precision for reals to one with a smaller number of digits, it is
often necessary to change many declarations from REAL to DOUBLE
PRECISION. This problem was partially addressed in Fortran 77 by adding
generic intrinsic functions so that function references in the program could
remain unchanged; in Fortran 90 numeric quantities can be given a kind
parameter that allows a programmer to specify numeric precision requirements
in a portable way.

Another reason to change a programming language is that implementation
techniques improve over time. Language features that required special
implementation techniques, such as stack or heap storage management, were
avoided because of their implementation cost and the possibility of reducing
execution efficiency. Experience with these features in other languages over a
long period of time has removed them from the category of features that are
difficult to implement efficiently.

Advances in computer architecture also have an effect on language design.
Increases in speed and decreases in the cost of hardware mitigate some
concerns about efficiency. With decreases in computing costs have come
increases in personnel costs. The economics of these trends indicate that there
should be more features in a language that increase programmer productivity,
even if they involve some decrease in machine efficiency.

Another important aspect of computer hardware that affects language design
involves the changes in architecture that open up entirely new techniques for
solving problems. Probably the most important recent development of this sort
in the world of scientific and engineering computing is the use of synchronous
parallel processing, or vector processing. Some of the fastest machines now
available have this sort of architecture. For many algorithms to execute
efficiently on these machines, the computations that can be vectorized or
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performed in parallel must be recognized either by the programmer or by
software. There has been a lot of improvement in the ability of software to
detect parallelism in old Fortran programs, but there are still many cases where
it is necessary for the programmer to indicate these situations. Also, many
algorithms involve parallel computations and these are expressed most
naturally in a language like Fortran 90 that has special provisions, such as the
new array processing facilities.

1.3 Why Not Use Another Language?

Many have suggested that we simply abandon Fortran and move on to a more
modern language. They cite the peculiarities of the language present since its
origins in the 1950s and the lack of features found in other programming
languages. However, there are several reasons not to do this.

There is nothing that can be done about a few of the Fortran features. They
always have been there and a change would cause an incompatibility with the
previous standard and existing code. Some of the truly obsolescent features
have been identified in the Fortran 90 standard and are candidates for removal
from the next version of the standard. No new Fortran program need ever use
these older peculiar features; Fortran 90 provides better ways of accomplishing
the same thing.

Even if nothing were ever removed from standard Fortran, there are three
compelling reasons not to switch to another programming language. The first
and most important reason is that, although many programming languages
have features superior to Fortran in various ways, it is by no means obvious
that any language is sufficiently better than Fortran to justify making the
switch. In fact, the ways many things are done in Fortran are now recognized
as being superior to that of many other programming languages. One example
involves the methods used to create and access global data. For a few years,
the Algol/Pascal method involving block structure was considered superior,
but now computer scientists think the Fortran model, particularly with the
Fortran 90 module feature, is better.

The second reason is that there is a huge investment in Fortran programs. A
switch to another programming language would mean rewriting many
programs at great expense.
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The third reason is a little more subtle: switching to another programming
language would involve retraining a lot of programmers. This would have a
particularly severe impact on those scientists and engineers who do not
consider themselves primarily programmers, but just use Fortran to solve their
problems. However, it is possible for a Fortran programmer to learn the new
features of Fortran 90 gradually, picking features to master when the effort is
justified by the improved problem-solving tools that are made available.

For these reasons, Fortran may well be the programming language of choice
for scientists and engineers for many years.

1.4 Development of Fortran 90

18

During the period that the public reviewed the proposed Fortran 77 standard,
many comments were received that contained good ideas. Some, like the IF
construct, were adopted, but others would have required too much
developmental work to enable them to be incorporated into the standard at
that time. The quality and quantity of these proposed changes and the general
interest in Fortran exhibited by the large number of comments indicated that
there should be another revision of the standard.

Work on Fortran 90 began just as soon as the technical work on Fortran 77 was
completed. Detailed proposals were put aside temporarily while the committee
responsible for the standardization attempted to get a better idea of the overall
requirements needed in a programming language used for scientific and
engineering problem solving in the 1990s. To accomplish this, existing Fortran
implementations were studied, features of other programming languages were
examined carefully, and surveys were taken to determine the users’ own
perceptions of their needs in such a language.

During the years from 1978 to 1981, the committee heard many tutorials about
general features thought desirable to be included in Fortran 90. These were
presented by both members of the committee and outside experts. Between
1979 and 1985, most of the technical changes were presented as detailed
proposals and were discussed and voted on by the committee.

Much of the technical work was in place by 1985. The last few years of the
committee’s work primarily involved polishing these proposals and creating a
document that reflected the technical proposals developed and passed by the
committee. The proposed standard was presented for public review and
comment in the fall of 1987. Public comments were then reviewed and changes
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made as a result of these comments. The technical work was finished in 1990,
and the language became known as “Fortran 90”. It took until 1991 for it to
become an official international standard (ISO/IEC 1539 : 1991) and it took
until 1992 to become a U. S. national standard (ANSI X3.198-1992).

1.5 Fortran 77 Compatibility

Because of the large investment in existing software written in Fortran, the
Fortran standards committee decided to include the entire previous standard
(Fortran 77) in Fortran 90. Even though the standard describes a category
called “deleted” features, there aren’t any; as mentioned earlier, no Fortran 77
feature has been removed.

Fortran 90 restricts the behavior of some features that are processor dependent
in Fortran 77. Therefore, a standard-conforming Fortran 77 program that uses
any of these processor-dependent features may conform to the Fortran 90
standard and yet behave differently than with some Fortran 77 systems. In the
following situations, the Fortran 90 interpretation may be different from that of
Fortran 77.

1. Fortran 90 has more intrinsic functions than does Fortran 77 and has a few
intrinsic subroutines. Therefore, a standard-conforming Fortran 77
program may have a different interpretation under this standard if it
invokes an external procedure having the same name as one of the new
standard intrinsic procedures, unless that procedure is specified in an
EXTERNAL statement as recommended for nonintrinsic functions. Also, a
program that used a nonstandard, vendor-supplied intrinsic function
might behave differently if the function is one of the new intrinsic
functions in Fortran 90. The chances of this happening are minimal,
because most of the new intrinsic functions have names longer than six
characters.

2. If a named variable that is not in a common block is initialized in a DATA
statement, it has the SAVE attribute in Fortran 90. In Fortran 77, if the value
of the variable is changed or becomes undefined, its value on re-entry into
a procedure is processor dependent.
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1.6 Extensibility

3. In Fortran 77, an input list must never require more characters than are
present in a record during formatted input. In Fortran 90, this restriction
has been removed when the PAD= specifier is YES; in this case, the input
record is padded with as many blanks as necessary to satisfy the input
item and the corresponding format.

4. Fortran 77 permits a processor to supply extra precision for a real constant
when it is used to initialize a DOUBLE PRECISION data object in a DATA
statement. Fortran 90 does not permit this.

New data types, new operators, and new meanings for the existing operators
and assignment provide ways for the programmer to extend Fortran. These
facilities allow the programmer to create abstract data types by defining new
types and the operations to be performed on them. Modules have been
introduced into Fortran as a convenient way to package these new data types
and their operations. Modules can be used by the same user in different
applications or may be distributed to a number of users on the same or
different projects. This provides effective practical support for object-oriented
programming, as well as enhancing both economy and efficiency.

1.7 Intrinsic and Standard Modules

An intrinsic module is one that is defined within the standard. There are no
intrinsic modules in Fortran 90.

A standard module is one that might be standardized as a separate but related
(collateral) standard in the revision cycle period between new standard
releases, often a period of ten or more years. At this time, there are no standard
modaules, although a module for a varying length string data type has been
proposed.

1.7.1 Syntax Forms

In this book, a simplified form is used to describe the syntax of Fortran 90
programs. The forms consist of program text in the same font used to display
program examples (such as END D@and syntactic terms that must be replaced
with correct Fortran source for those terms, which are printed using a sans
serif font (such as input-item-list). Optional items are enclosed in brackets; items

Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



[EEN
I

enclosed in brackets followed by ellipses (...) may occur any number (including
zero) of times. The ampersand (&) is used to continue a line, just as it is used
to continue a line in a Fortran 90 program. Use of one of the syntactic forms
always produces a syntactically correct part of a Fortran 90 program. These
syntactic forms indicate how to construct most of the correct Fortran 90
statements, but may not be complete in that they do not describe all of the
possible forms.

For example, the following syntax form occurs in Chapter 9. It describes one
form that can be used to construct a direct access formatted WRITE statement.
The general syntax for the WRITE statement is quite complex and gives no hint
as to which options are allowed for direct access formatting. On the other
hand, this rule is overly restrictive in that it indicates a particular order for the
options, which is not required by the standard. Nevertheless, using this form
always will produce a correct WRITE statement.

WRITE ( [ UNIT = ] unit-number &
, FMT = format &
, REC = record-number &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
) [ output-item-list ]

Another property of the syntactic forms is that the terms used are descriptive
and informal, and they are not necessarily defined precisely anywhere in the
book. If you need to know the precise syntax allowed, refer to Appendix B,
which contains all of the syntax rules of the Fortran 90 standard.

1.8 The Fortran 90 Language Standard

The Fortran 90 standard (ISO/IEC 1539 : 1991) describes the syntax and
semantics of a programming language. However, the standard addresses
certain aspects of the Fortran processing system, but does not address others.
When specifications are not covered by the standard, the interpretation is
processor dependent; that is, the processor defines the interpretation, but the
interpretation for any two processors need not be the same. Programs that rely
on processor-dependent interpretations typically are not portable.

The specifications that are included in the standard are:

1. the syntax of Fortran statements and forms for Fortran programs
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2. the semantics of Fortran statements and the semantics of Fortran programs
3. specifications for correct input data

4. appearance of standard output data

The specifications that are not defined in the standard are:

1. the way in which Fortran compilers are written

2. operating system facilities defining the computing system

3. methods used to transfer data to and from peripheral storage devices and
the nature of the peripheral devices

e

behavior of extensions implemented by vendors

o

the size and complexity of a Fortran program and its data

S

the hardware or firmware used to run the program

7. the way values are represented and the way numeric values are computed
8. the physical representation of data

9. the characteristics of tapes, disks, and various storage media

The Fortran standard is a technical and legal specification that describes the
Fortran language. It is often used as the basis of procurement contracts; for
example, Fortran compilers that are sold to government agencies often must
pass a validation suite based on the Fortran standard.

1.8.1 Program Conformance

A program conforms to the standard if the statements are all syntactically
correct, execution of the program causes no violations of the standard (such as
dividing by zero), and the input data is all in the correct form. A program that
uses a vendor extension is not standard conforming.

1.8.2 Processor Conformance

In the Fortran 90 standard, the term “processor” means the combination of a
Fortran compiler and the computing system that executes the code. A
processor conforms to the standard if it processes any standard-conforming
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program, provided the Fortran program is not too large or complex for the
computer system in question. Except for certain restrictions in format
specifications, the processor must be able to flag any nonstandard syntax used
in the program. This includes the capability to flag any extensions available in
the vendor software and used in the program. The standard now requires that
certain other things be flagged, and that the reason they are flagged be given.
These things are:

1. obsolescent features

2. kind values not supported

3. violations of any syntax rules and their accompanying constraints
4. characters not permitted by the processor

5. illegal source form

6. violations of the scope rules for names, labels, operators, and assignment
symbols

These six conformance requirements were not present in previous Fortran
standards.

Rules for the form of the output are less stringent than for other features of the
language in the sense that the processor may have some options about the
format of the output and the programmer may not have complete control over
which of these options is used.

A processor may include extensions not in the standard; if it processes
standard-conforming programs according to the standard, it is considered to be
a standard-conforming processor.

1.8.3 Portability

One of the main purposes of a standard is to describe how to write portable
programs. However, there are some things that are standard conforming, but
not portable. An example is a program that computes a very large number like
10°0. Certain computing systems will not accommodate a number this large.
Thus, such a number could be a part of a standard-conforming program, but
may not run on all systems and thus may not be portable. Another example is
a program that uses a deeper nesting of control constructs than is allowed by a
particular compiler.
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1.8.4 A Permissive Standard

1.9 References

The primary purpose of the Fortran standard is to describe a language with the
property that, if a programmer uses the language, the difficulties of porting
programs from one computer system to another will be minimized. But to
handle the somewhat contradictory goal of permitting experimentation and
development of the language, the standard is permissive; that is, a processor can
conform to the standard even if it allows features that are not described in the
standard. This has its good and bad aspects.

On the positive side, it allows implementors to experiment with features not in
the standard; if they are successful and prove useful, they can become
candidates for standardization during the next revision. Thus, a vendor of a
compiler may choose to add some features not found in the standard and still
conform to the standard by correctly processing all of the features that are
described in the standard.

On the negative side, the burden is on the programmer to know about and
avoid these extra features when the program is to be ported to a different
computer system. The programmer is given some help with this problem in
that a Fortran 90 processor is required to recognize and warn the programmer
about syntactic constructs in a program that do not conform to the Fortran 90
standard. A good Fortran programmer’s manual also will point out
nonstandard features with some technique, such as shading on the page. But
there is no real substitute for knowledge of the standard language itself. This
handbook should help provide this knowledge.
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Programming Language FORTRAN, ANSI X3.9-1978, New York, 1978.

2. Brainerd, Walter S., Fortran 77, Communications of the ACM, Vol. 21, No. 10,
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6. A programming language for information processing on automatic data
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Fortran Conceptsand Terms 2

The features of Fortran 90 provide considerable power and expressiveness. In
order to use these features effectively, it is necessary to become familiar with
the basic concepts of the language. This is the first goal of this chapter.

Because terms are used in a precise way to describe a programming language,
the second goal of this chapter is to introduce the fundamental terms needed to
understand Fortran 90.

One of the major concepts involves the organization of a Fortran program. This
topic is introduced in this chapter by presenting the high-level syntax rules for
a Fortran program, including the principal constructs and statements that form
a program. This chapter also describes the order in which constructs and
statements must appear in a program and concludes with an example of a
short, but complete, Fortran 90 program.

While there is some discussion of language features here to help explain
various terms and concepts, Chapters 3-14 contain the complete description of
all language features.

2.1 Scope and Association

In examining the basic concepts in Fortran, it helps to trace some of the
important steps in its evolution. The results of the first few steps are familiar to
Fortran programmers, but the later ones become relevant only when the new
features of Fortran 90 are used.
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The first version of Fortran produced in the late 1950s did not have user-
defined subroutines or functions, but there were intrinsic functions, such as
SINF and ABSF. Thus, while there were no tools to help organize a program,
there were also no worries about such things as naming variables and sharing
values between subprograms, except that a variable could not have the same
name as an intrinsic function without the F (for example, a variable name
could not be SIN or ABS) and there could not be an array ending with F with
four or more characters in the name. Variables could not be typed explicitly, so
the implicit typing rules for real and integer types applied to all variables.
Then, as now, keywords such as IF and READ could be used as variable
names, although this practice did not produce any more readable programs
then than it does now.

To provide an example for this narrative, consider the problem of computing
the sum 1+ 2+ ... +100. (Supposedly this is an arithmetic exercise given to
Gauss as a young child; he solved it in a very few minutes, discovering the
formula

C o _n(n+1

for summing an arithmetic series in the process.) The following program to
compute this sum the hard way would have run on the first Fortran compiler.

M =0
DO 8 | = 1, 100
M=M+I
8 CONTINUE

WRITE (6, 9) M
9 FORMAT (I10)
STOP

Early in the development of Fortran, it was recognized as a good idea to isolate
definitive chunks of code into separate units. These were (and are) known as
function and subroutine subprograms. This not only provided a mechanism for
structuring a program, but permitted subprograms to be written once and then
be called more than once by the same program or even be used by more than
one program. Equally important, they could be compiled separately, saving
hours of compilation time.

With this powerful tool come complications. For example, if both the main

program and a subprogram use the variable named “X”, what is the connection
between them? The designers of the subprogram concept had the brilliance to
answer that question by saying there is, in general, no connection between X in
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the main program and X in a subprogram. Of course, the same answer is
obtained as a result of the fact that subprograms are separately compilable; an
X in a different subprogram is not even known at compile time, so the simplest
thing to do is have no connection between variables with the same name in
different program units. Whatever the reason that led to this decision, it is a
good one because if it is desirable to build a program by incorporating several
subprograms, there is no need to worry about two or more subprograms using
the same name. Thus, if two different programmers work on the different
program units, neither needs to worry about names picked by the other. This
idea is described by saying that the two Xs have different scope.

A subroutine could be written to do the summation and print the result of
summing the first hundred integers, just in case someone else might want to
take advantage of this mighty achievement. This one is written in Fortran 66,
and would have been a legal Fortran Il program.

SUBROUTINE TOTAL

M =0
DO 8 | = 1, 100
M=M+I
8 CONTINUE

WRITE (6, 9) M
9 FORMAT (I10)

RETURN

END

With this subroutine available, the main program can be:

CALL TOTAL
STOP
END

Suppose now it is decided that the subroutine would be more generally useful
if it just computed the sum, but did not print it.

SUBROUTINE TOTAL
M =20
DO 8 | = 1, 100
M=M+I
8 CONTINUE
RETURN
END

A first attempt to use this subroutine might produce the following erroneous
program.
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CALL TOTAL

WRITE (6, 9) M
9 FORMAT (I10)

STOP

END

Of course, this does not work, because the variable M in the subroutine has
nothing to do with the variable M in the main program. This is a case where
there should be a connection between the two values. So, when subroutines and
functions were introduced, two schemes were provided to communicate values
between them and the main program. These are procedure arguments and
common blocks. Here are two complete programs that do work and use a
subroutine to compute the sum 1+ 2 + ... + 100; one uses a subroutine
argument and the other uses a common block to communicate values. Because
the names in the different program units identify completely separate
variables, yet their values are communicated from one to the other by using
either arguments or common blocks, the name of the variable holding the sum
in the subroutine has been changed. This example Fortran 77 program uses a
subroutine argument.

PROGRAM ARGSUM
CALL TOTAL (M)
WRITE (6, 9) M

9 FORMAT (I10)
END

SUBROUTINE TOTAL (ITOTAL)
ITOTAL = 0O
DO 8 | = 1, 100
ITOTAL = ITOTAL + |
8 CONTINUE
END

A common block is used in the following Fortran 77 program COMSUM,
which performs the same computation as the program ARGSUM.

PROGRAM COMSUM
COMMON / CB / M
CALL TOTAL
WRITE (6, 9) M

9 FORMAT (I10)
END
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SUBROUTINE TOTAL
COMMON / CB / ITOTAL
ITOTAL = 0O
DO 8 | = 1, 100
ITOTAL = ITOTAL + |
8 CONTINUE
END

To describe even these simple cases and appreciate how they all work already
requires the introduction of some terms and concepts. To precisely describe the
phenomenon that the variable ITOTAL in the subroutine is not known outside
the subroutine, the concept of scope is used. The scope of the variable ITOTAL
is the subroutine and does not include the main program.

It is a common misconception that the scope of a variable in a common block is
global; this is not the case. The scope of the variable ITOTAL is just the
subroutine, whereas the scope of the variable M is just the main program.
However, the scope of the common block name CB is global. It is association
that is used to describe the connection between M in the main program and
ITOTAL in the subroutine. In one case it is argument association and in the
other it is storage association.

To summarize, very roughly, the scope of a variable is that part of the program
in which it is known and can be used. Two variables may have the same name
and nonoverlapping scopes; for example, there may be two completely
different variables named X in two different subprograms. Association of
variables means that there are two different names for the same object; this
permits sharing values under certain conditions.

With arguments available, it is natural to generalize the computation
somewhat to allow the upper limit of the sum (100 in the example) to vary.
Also, a function is more natural than a subroutine, because the object of the
computation is to return a single value. These changes produce the following
Fortran 77 program.

PROGRAM PTOTAL
INTEGER TOTAL
PRINT * TOTAL (100)
END

FUNCTION TOTAL (N)
INTEGER TOTAL

TOTAL = 0
DO 81 =1, N
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TOTAL = TOTAL + |
8 CONTINUE
END

In this example, the scope of N is the function TOTAL, but it gets the value 100
through argument association when the function TOTAL is called from the
main program in the PRINT statement. The scope of the variable 1 is the
function TOTAL. The scope of the function TOTAL is the whole program, but
note that its type must be declared in the main program, because by the
implicit typing rules, TOTAL is not of type integer. Another oddity is that there
is a function named TOTAL, whose scope is global, and a variable named
TOTAL that is local to the function. The variable TOTAL is used to compute
and store the value that is returned as the value of the function TOTAL.

It is possible to rewrite the example using internal procedures introduced in
Fortran 90. How the identifier TOTAL is used determines whether it is the local
variable TOTAL or the global function name TOTAL. In the following example,
when it is used with an argument list, it is the function name; when used
inside the function subprogram defining the function TOTAL, it is the local
variable.

PROGRAM DO_TOTAL
PRINT * TOTAL (100)

CONTAINS

FUNCTION TOTAL (N)
INTEGER TOTAL
TOTAL = 0
DO | = 1, N

TOTAL = TOTAL +
END DO
END FUNCTION TOTAL

END PROGRAM DO_TOTAL

This looks almost like the previous example, except that the function is placed
prior to the END statement of the main program and the CONTAINS
statement is inserted to mark the beginning of any internal functions or
subroutines. In this case, the function TOTAL is not global, but is local to the
program DO_TOTAL. Also, the function statement for TOTAL and the
specifications that follow it specify TOTAL as an internal function of type
integer and with one integer argument N. Thus, the type of TOTAL must not
be declared in the specification part of the program DO_TOTAL,; to do so

Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



2

would create a duplicate declaration of TOTAL. The information about the
type of the function and type of the argument is called the interface to the
internal function.

To illustrate some different rules about scoping and association related to
internal procedures, the example can be changed back to one that uses a
subroutine, but one that is now internal.

PROGRAM DO_TOTAL
INTEGER TOTAL
CALL ADD_EM_UP (100)
PRINT * TOTAL

CONTAINS

SUBROUTINE ADD_EM_UP (N)
TOTAL = 0
DO | =1, N
TOTAL = TOTAL + |
END DO
END SUBROUTINE ADD_EM_UP

END PROGRAM DO_TOTAL

The new twist here is that TOTAL in the internal subroutine and TOTAL in the
main program are the same variable. It does not need to be declared type
integer in the subroutine. This is the result of host association, wherein
internal procedures inherit information about variables from their host, which
is the main program in this case. Because the variable | is not mentioned in the
main program, its scope is the internal subroutine.

Data declarations and procedures may be placed in a module, a new feature of
Fortran 90. Then they may be used by other parts of the program. This scheme
is illustrated using the simple example, with the summation done by a function
again.

MODULE TOTAL_STUFF

CONTAINS

FUNCTION TOTAL (N)
INTEGER TOTAL, N, |
TOTAL = 0
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DO I =1, N
TOTAL = TOTAL + |
END DO
END FUNCTION TOTAL
END MODULE TOTAL_STUFF

PROGRAM DO_TOTAL
USE TOTAL_STUFF
PRINT * TOTAL (100)

END PROGRAM DO_TOTAL

The module and the program could be in completely different files and
compiled at different times just like subroutines, but, unlike subroutines, the
module must be available to the compiler when the program DO_TOTAL is
compiled. The scope of the variables N and | is the function TOTAL; N gets its
value 100 by argument association. The module name TOTAL_STUFF is global
and any program can use the module, which causes the type and definition of
the function TOTAL to become available within that program. This is called
use association.

When more extensive examples are constructed using such features as internal
procedures within a procedure in a module, there is a need to have a deeper
understanding of the models underlying scope and association. These topics
are introduced briefly below and discussed in more detail in Chapter 14.

2.1.1 Scoping Units

The scope of a program entity is the part of the program in which that entity is
known, is available, and can be used. Some of the parts of a program that
constitute the scope of entities have been classified specially as scoping units.

The scope of a label is a subprogram, which is one kind of scoping unit;
however, some entities have scopes that are something other than a scoping
unit. For example, the scope of a name, such as a variable name, can be any of
the following:

1. ascoping unit
2. an executable program
3. asingle statement

4. part of a statement
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2.1.2 Association

Association is the concept that is used to describe how different entities in the
same program unit or different program units can share values and other
properties. It is also a mechanism by which the scope of an entity is made
larger. For example, argument association allows values to be shared between a
procedure and the program that calls it. Storage association, set up by the use
of EQUIVALENCE and COMMON statements, for example, allows two or
more variables to share storage, and hence values, under certain circumstances.
Use association and host association allow entities described in one part of a
program to be used in another part of the program. Use association makes
entities defined in modules accessible, and host association makes entities in
the containing environment available to an internal or module procedure.
Examples of association are described earlier in this section, and the complete
descriptions of all sorts of association are found in Chapter 14.

2.2 Program Organization

A collection of program units constitutes an executable program. Program
units may contain other smaller units. Information may be hidden within part
of a program or communicated to other parts of a program by various means.
The programmer may control the parts of a program in which information is
accessible.

2.2.1 Program Units

A Fortran 90 program unit is one of the following:

main program

external subprogram (subroutine or function)
module

block data

A Fortran program must contain one main program and may contain any
number of the other kinds of program units. Program units contain Fortran
constructs and statements that define the data environment and the steps
necessary to perform calculations. Each program unit has an END statement to
terminate the program unit. Each has a special initial statement as well, but the
initial statement for a main program is optional. For example, a program might
contain a main program, a subroutine, and a module:
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PROGRAM MY_TASK

END PROGRAM MY_TASK
SUBROUTINE MY_CALC (X)
END SUBROUTINE MY_CALC
MODULE MY_DATA

END MODULE MY_DATA

The main program is required and could be the only program unit in a
program. If there are other program units, the main program acts as a
controller; that is, it takes charge of the program tasks and controls the order in
which they are executed.

An external subprogram (a function or a subroutine) may be used to perform a
task or calculation on entities available to the external subprogram. These
entities may be the arguments to the subprogram that are provided in the
reference, entities defined in the subprogram, or entities made accessible by
other means, such as common blocks. A CALL statement is used to invoke a
subroutine. A function is invoked when its value is needed in an expression.
The computational process that is specified by a function or subroutine
subprogram is called a procedure. An external subprogram defines a
procedure. It may be invoked from other program units of the Fortran
program. Neither a module nor a block data program unit is executable, so
they are not considered to be procedures.

A block data program unit contains data definitions only and is used to specify
initial values for a restricted set of data objects.

The program units described so far (main program, external subprogram, and
block data) are familiar to users of Fortran 77. There is a new kind of program
unit in Fortran 90—the module—and Fortran 90 provides some new things that
are similar to program units: module procedures, internal procedures, and
procedure interface blocks.

A module contains definitions that can be made accessible to other program
units. These definitions include data definitions, type definitions, definitions of
procedures known as module subprograms, and specifications of procedure
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interfaces. Module subprograms may be either subroutine or function
subprograms. A module subprogram may be invoked by another module
subprogram in the module or by other program units that access the module.

Main programs, external subprograms, and module subprograms may contain
internal subprograms, which may be either subroutines or functions. The
procedures they define are called internal procedures. Internal subprograms
must not themselves contain internal subprograms, however. The main
program, external subprogram, or module subprogram that contains an
internal subprogram is referred to as the internal subprogram’s host. Internal
subprograms may be invoked by their host or by other internal subprograms in
the same host. A Fortran 90 internal procedure may contain any number of
statements and constructs and thus is a generalization of the Fortran 77
statement function that specifies a procedure by a single statement. Of course
the statement function is permitted in Fortran 90 programs as well. Figure 2-1
illustrates the organization of a sample Fortran program.

Fortran 77 has generic intrinsic procedures, such as SIN (the sine function) that
can be referenced with a real, double precision, or complex argument. Fortran
90 has extended the concept of generic procedures and allows the programmer
to specify a generic procedure so that user-defined procedures also can be
referenced generically.

All program units, except block data, may contain procedure interface blocks.
A procedure interface block is used to describe the interface of an external
procedure; that is, the procedure name, the number of arguments, their types,
attributes, names, and the type and attributes of a function. This information is
necessary in some cases and, in others, allows the processor to check the
validity of an invocation. An interface block with a generic interface may be
used to ascribe generic properties.

Subprograms are described more fully in Chapters 11 and 12.

2.2.2 Packaging

Opportunities for applying packaging concepts are limited in Fortran 77. An
external subprogram might be thought of as a package, but it can contain only
procedures, not data declarations that can be made available to other parts of a
program. An entire Fortran 77 program can be thought of as a package made
up of program units consisting of a main program, subroutine and function
program units, and block data program units. In contrast, Fortran 90, with
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Program

Main program Module

Internal procedure

Statement function

Subroutine Function

v

Internal Internal
procedure procedure

Subroutine

Internal procedure

Function

Figure 2-1 Example of program packaging. The large arrows represent use
association with the USE statement at the arrow tip. The small
arrows represent subprogram references with the "call” at the

internal procedures and modules, provides many more opportunities for
packaging. This makes the packaging of a fair-sized program an important
design consideration when a new Fortran application is planned.

The most important benefit of packaging is information hiding. Entities can be
kept inaccessible except where they are actually needed. This provides some
protection against inadvertent misuse or corruption, thereby improving
program reliability. Packaging can make the logical structure of a program
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more apparent by hiding complex details at lower levels. Programs are
therefore easier to comprehend and less costly to maintain. The Fortran 90
features that provide these benefits are internal procedures and modules.

Internal procedures may appear in main programs, subroutines, functions, and
module subprograms. They are known only within their host. The name of an
internal procedure must not be passed as an argument. The Fortran 90
standard further restricts internal procedures in that an internal procedure
must not itself be the host of another internal procedure. However, a statement
function may appear within an internal procedure. Thus, in some ways,
internal procedures are like external procedures and in other ways they are like
statement functions.

Modules provide the most comprehensive opportunities to apply packaging
concepts, as illustrated in Figure 2-1. In addition to several levels of
organization and hiding, the entities specified in a module (types, data objects,
procedures, interfaces, etc.) may be kept private to the module or made
available to other scoping units by use association. In Figure 2-1, the dashed
lines with arrows represent subprogram references with the arrow pointing to
the subprogram. The large solid arrows represent access by use association
with the arrow pointing to the position of a USE statement.

2.3 Data Environment

Before a calculation can be performed, its data environment must be
developed. The data environment consists of data objects that possess certain
properties, attributes, and values. The steps in a computational process
generally specify operations that are performed on operands (or objects) to
create desired results or values. Operands may be constants, variables,
constructors, or function references; each has a data type and value, if defined.
In some cases the type may be assumed by the processor; in other cases it may
be declared. A data object has attributes other than type. Chapter 4 discusses
data type in detail; Chapter 5 discusses the other attributes of program entities;
and Chapters 6 and 7 describe how data objects may be used.

2.3.1 Data Type

The Fortran 90 language provides five intrinsic data types—real, integer,
complex, logical, and character—and allows users to define additional types.
Sometimes it is natural to organize data in combinations consisting of more
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2.3.2 Kind

than one type. For example, suppose a program is being written to monitor the
patients in a hospital. For each patient, certain information must be
maintained, such as the patient’s name, room number, temperature, pulse rate,
medication, and prognosis for recovery. Because all of this data describes one
object (a particular patient), it would be convenient to have a means to refer to
the aggregation of data by a single name. In Fortran 90, an aggregation of data
values of different types is called a structure. To use a structure, a programmer
must first define the type of the structure. Once the new type is defined, any
number of structures of that type may be declared. This mechanism may seem
slightly cumbersome if only one such structure is needed in a program, but
usually several are needed; in addition, there are other advantages to defining
a type for the structure. An example of a user-defined type with three
components is:

TYPE PATIENT
INTEGER PULSE_RATE
REAL TEMPERATURE
CHARACTER (LEN = 300) PROGNOSIS
END TYPE PATIENT

Once the type PATIENT is defined, objects (structures) of the type may be
declared. For example:

TYPE (PATIENT) JOHN_JONES, SALLY_SMITH

There may be more than one representation (or kind) of each of the intrinsic
types. The Fortran 90 standard requires at least two different representations
for the real and complex types that correspond to “single precision” and
“double precision”, and permits more. Fortran 90 provides portable
mechanisms for specifying precision so that numerical algorithms that depend
on at least a certain numeric precision can be programmed to produce reliable
results regardless of the processor’s characteristics. Fortran 90 permits more
than one representation for the integer, logical, and character types. Alternative
representations for the integer type permit different ranges of integers.
Alternative representations for the logical type might include a “packed
logical” type to conserve memory space and an “unpacked logical” type to
increase speed of access. The large number of characters required for
ideographic languages, such as those used in Asia with thousands of different
graphical symbols, cannot be represented as concisely as alphabetic characters
and require “more precision”. Examples of such type declarations are:
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COMPLEX (KIND = HIGH) X
INTEGER (KIND = SHORT) DAYS_OF_WEEK
CHARACTER (KIND = KANJI, LEN = 500) HAIKU

where HIGH, SHORT, and KANJI are named integer constants given
appropriate processor-dependent values by the programmer.

Type is one attribute of a data object. There are 12 others, such as DIMENSION,
POINTER, and ALLOCATABLE; they are discussed in Chapter 5. The
DIMENSION attribute permits the creation of arrays. The POINTER and
ALLOCATABLE attributes allow the declaration of dynamic objects.

2.3.3 Dimensionality

Single objects, whether intrinsic or user-defined, are scalar. Even though a
structure has components, it is technically a scalar. A set of scalar objects, all of
the same type, may be arranged in patterns involving columns, rows, planes,
and higher-dimensioned configurations to form arrays. It is possible to have
arrays of structures. An array may have up to seven dimensions. The number
of dimensions is called the rank of the array. It is declared when the array is
declared and cannot change. The size of the array is the total number of
elements and is equal to the product of the extents in each dimension. The
shape of an array is determined by its rank and its extents in each dimension.
Two arrays that have the same shape are said to be conformable. Examples of
array declarations are:

REAL COORDINATES (100, 100)
INTEGER DISTANCES (50)
TYPE (PATIENT) MATERNITY_WARD (20)

In Fortran 90, an array is treated as an object and is allowed to appear in an
expression or be returned as a function result. Intrinsic operations involving
arrays of the same shape are performed element-by-element to produce an
array result of the same shape. There is no implied order in which the element-
by-element operations are performed.

A portion of an array, such as an element or section, may be referenced as a
data object. An array element is a single element of the array and is scalar. An
array section is a subset of the elements of the array and is itself an array.

Fortran Concepts and Terms 41

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



42

2.3.4 Dynamic Data

There are three sorts of dynamic data objects in Fortran 90: pointers, allocatable
arrays, and automatic data objects.

Data objects in Fortran 90 may be declared to have the pointer attribute.
Pointer objects must be associated with a target before they can be used in any
calculation. This is accomplished by allocation of the space for the target or by
assignment of the pointer to an existing target. The association of a pointer
with a target may change dynamically as a program is executed. If the pointer
object is an array, its size and shape may change dynamically, but its rank is
fixed by its declaration. An example of pointer array declaration and allocation
is:

REAL, POINTER :: LENGTHS ()
ALLOCATE (LENGTHS (200))

An array may be declared to have the allocatable attribute. This functionality is
exactly the same as provided by the simple use of pointers illustrated above.
Space must be allocated for the array before it can be used in any calculation.
The array may be deallocated and reallocated with a different size as the
program executes. As with a pointer, the size and shape may change, but the
rank is fixed by the declaration. An allocatable array cannot be made to point
to an existing named target; the target array is always created by an
ALLOCATE statement. An example of allocatable array declaration and
allocation is:

REAL, ALLOCATABLE : LENGTHS ()
ALLOCATE (LENGTHS (200))

The similarities of these examples reflect the similarity of some of the uses of
allocatable arrays and pointers, but pointers have more functionality. Pointers
may be used to create dynamic data structures, such as linked lists and trees.
The target of a pointer can be changed by reallocation or pointer assignment.
The extents of an allocatable array can be changed only by deallocating and
reallocating the array. If the values of the elements of an allocatable array are to
be preserved, a new array must be allocated and the values moved to the new
array before the old array is deallocated.

Automatic data objects, either arrays or character strings (or both), may be
declared in a subprogram. These local data objects are created on entry to the
subprogram and disappear when the execution of the subprogram completes.
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These are useful in subprograms for temporary arrays and characters strings
whose sizes are different for each reference to the subprogram. An example of
a subprogram unit with an automatic array TEMP is:

SUBROUTINE SWAP_ARRAYS (A, B)
REAL, DIMENSION () = A, B
REAL, DIMENSION (SIZE (A)) = TEMP

TEMP = A
A =8B
B = TEMP

END SUBROUTINE SWAP_ARRAYS

A and B are assumed-shape array arguments; that is, they take on the shape of
the actual argument. TEMP is an automatic array that is created the same size
as A on entry to subroutine SWAP. SIZE is an intrinsic function that is
permitted in a declaration statement.

Even in Fortran 66, local variables with a fixed size could be allocated
dynamically, but this was an implementation choice and many
implementations allocated such variables statically. In Fortran 77 and

Fortran 90, a programmer can force the effect of static allocation by giving the
variable the SAVE attribute.

2.4 Program Execution

During program execution, constructs and statements are executed in a
prescribed order. Variables become defined with values and may be redefined
later in the execution sequence. Procedures are invoked, perhaps recursively.
Space may be allocated and later deallocated. Pointers may change their
targets.

2.4.1 Execution Sequence

Program execution begins with the first executable construct in the main
program. An executable construct is an instruction to perform one or more of
the computational actions that determine the behavior of the program or
control the flow of the execution of the program. It may perform arithmetic,
compare values, branch to another construct or statement in the program,
invoke a procedure, or read from or write to a file or device. When a procedure
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is invoked, its execution begins with the first executable construct after the
entry point in the procedure. On normal return from a procedure invocation,
execution continues where it left off. Examples of executable statements are:

READ (5, *) Z, Y

X = (4.0 * Z) + BASE

IF (X > Y) GO TO 100

CALL CALCULATE (X)
100 Y =Y +1

Unless a control construct is encountered, program statements are executed in
the order in which they appear in a program unit until a STOP, RETURN, or
END statement is executed. Control constructs include branch statements and
IF, CASE, and DO constructs. Branch statements specify a change in the
execution sequence and consist of the various forms of GO TO statements, a
procedure reference with alternative return specifiers, and input/output
statements with branch label specifiers, such as ERR=, END=, and EOR=
specifiers. The control constructs (IF, CASE, and DO) can cause internal
branching implicitly within the structure of the construct. Chapter 8 discusses
in detail control flow within a program.

2.4.2 Definition and Undefinition

Most variables have no value when execution begins; they are considered to be
undefined. Exceptions are variables that are initialized in DATA statements or
type declaration statements; these are considered to be defined. A variable may
acquire a value or change its current value, typically by the execution of an
assignment statement or an input statement. Thus it may assume different
values at different times, and under some circumstances it may become
undefined. This is part of the dynamic behavior of program execution. Defined
and undefined are the Fortran terms that are used to specify the definition
status of a variable. The events that cause variables to become defined and
undefined are described in Chapter 14.

A variable is considered to be defined only if all parts of it are defined. For
example, all the elements of an array, all the components of a structure, or all
characters of a character string must be defined; otherwise, the array, structure,
or string is undefined. Fortran 90 permits zero-sized arrays and zero-length
strings; these are always considered to be defined.
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Pointers have both a definition status and an association status. When
execution begins, the association status of all pointers is undefined. During
execution a pointer may become nullified by the execution of a NULLIFY
statement in which case its association status becomes disassociated, or it may
become associated with a target by the execution of an ALLOCATE or pointer
assignment statement, in which case its association status becomes associated.
Even when the association status of a pointer is defined, the pointer is not
considered to be defined unless the target with which it is associated is
defined. Pointer targets become defined in the same way that any other
variable becomes defined, typically by the execution of an assignment or input
statement. When an allocatable array is allocated by the execution of an
ALLOCATE statement, it is undefined until some other action occurs that
causes it to become defined with values for all array elements.

2.4.3 Dynamic Behavior
There are new kinds of dynamic behavior that are introduced by Fortran 90:
1. recursion
2. allocation and deallocation
3. pointer assignment

Many algorithms can be expressed eloquently with the use of recursion, which
occurs when a subroutine or function references itself, either directly or
indirectly. The keyword RECURSIVE must be present in the SUBROUTINE or
FUNCTION statement if the procedure is to be referenced recursively.
Recursive subroutines and functions are described in Chapter 12.

Pointers and allocatable arrays can be declared in a program, but no space is
set aside for them until the program is executed. The rank of array pointers
and allocatable arrays is fixed by declaration, but the extents in each dimension
(and thus the size of the arrays) is determined during execution by calculation
or from input values.

The ALLOCATE and DEALLOCATE statements give Fortran programmers
mechanisms to configure objects to the appropriate shape. Only pointers and
allocatable arrays can be allocated. Only whole allocated objects can be
deallocated. It is not possible to deallocate an object unless it was previously
allocated, and it is not possible to deallocate a part of an object unless it is a
named component of a structure. It is possible to inquire whether an object is
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2.5 Terms

currently allocated. Chapter 5 describes the declaration of pointers and
allocatable arrays; Chapter 6 covers the ALLOCATE and DEALLOCATE
statements; Chapter 13 and Appendix A discuss the ASSOCIATED intrinsic
inquiry function for pointers and the ALLOCATED intrinsic inquiry function
for allocatable arrays.

Pointers are more flexible than allocatable arrays, but they are more
complicated as well. In the first place, a pointer need not be an array; it may be
a scalar of any type. In the second place, a pointer need not be associated with
allocated space; any object with the TARGET attribute can become a pointer
target. A pointer assignment statement is provided to associate a pointer with
a target (declared or allocated). It makes use of the symbol pair => rather than
the single character =; otherwise, it is executed in the same way that an
ordinary assignment statement is executed, except that instead of assigning a
value it associates a pointer with a target. For example,

REAL, TARGET : VECTOR (100)
REAL, POINTER :: ODDS (i)

ODDS => VECTOR (1:100:2)

The pointer assignment statement associates ODDS with the odd elements of
VECTOR. The assignment statement

ODDS = 15

defines each odd element of VECTOR with the value 1.5. Later in the execution
sequence, the pointer ODDS could become associated with a different target by
pointer assignment or allocation, as long as the target is a one-dimensional,
real array. Chapter 7 describes the pointer assignment statement.

Frequently used Fortran 90 terms are defined in this section. Some have a
meaning slightly different from the same Fortran 77 term; for example, both an
array and an array element are variables in Fortran 90, but not in Fortran 77.
Definitions of less frequently used terms may be found by referencing the
index of this handbook or Annex A of the Fortran 90 standard.
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Entity

Data object

Data entity

Constant

Variable

Subobject

Name

Designator
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This is the general term used to refer to any Fortran 90
“thing”, for example, a program unit, a common block,
a variable, an expression value, a constant, a statement
label, a construct, an operator, an interface block, a
type, an input/output unit, a namelist group, etc.

A data object is a constant, a variable, or a part of a
constant or variable.

A data entity is a data object, the result of the
evaluation of an expression, or the result of the
execution of a function reference (called the function
result). A data entity always has a type.

A constant is a data object whose value cannot be
changed. A named entity with the PARAMETER
attribute is called a named constant. A constant
without a name is called a literal constant.

A variable is a data object whose value can be defined
and redefined. A variable may be a scalar or an array.

Portions of a data object may be referenced and defined
separately from other portions of the object. Portions of
arrays are array elements and array sections. Portions
of character strings are substrings. Portions of
structures are structure components. Subobjects are
referenced by designators and are considered to be
data objects themselves.

A name is used to identify many different entities of a
program such as a program unit, a variable, a common
block, a construct, a formal argument of a subprogram
(dummy argument), or a user-defined type (derived
type). A name may be associated with a specific
constant (named constant). The rules for constructing
names are given in Chapter 3.

Sometimes it is convenient to reference only part of an
object, such as an element or section of an array, a
substring of a character string, or a component of a
structure. This requires the use of the name of the
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Data type

Type parameter

Derived type

Scalar

Array
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object followed by a selector that selects a part of the
object. A name followed by a selector is called a
designator.

A data type provides a means for categorizing data.
Each intrinsic and user-defined data type has four
characteristics—a name, a set of values, a set of
operators, and a means to represent constant values of
the type in a program.

There are two type parameters for intrinsic types: kind
and length. The kind type parameter KIND indicates
the decimal range for the integer type, the decimal
precision and exponent range for the real and complex
types, and the machine representation method for the
character and logical types. The length type parameter
LEN indicates the length of a character string.

A derived type (or user-defined type) is a type that is
not intrinsic; it requires a type definition to name the
type and specify its components. The components may
be of intrinsic or user-defined types. An object of
derived type is called a structure. For each derived
type, a structure constructor is available to specify
values. Operations on objects of derived type must be
defined by a function with an interface and the generic
specifier OPERATOR. Assignment for derived type
objects is defined intrinsically, but may be redefined by
a subroutine with the ASSIGNMENT generic specifier.
Data objects of derived type may be used as procedure
arguments and function results, and may appear in
input/output lists.

A scalar is a single object of any intrinsic or derived
type. A structure is scalar even if it has a component
that is an array. The rank of a scalar is zero.

An array is an object with the dimension attribute. It is
a collected set of scalar data, all of the same type and
type parameters. The rank of an array is at least one
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Declaration

Definition

Statement keyword

Argument keyword
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and at most seven. Arrays may be used as expression
operands, procedure arguments, and function results,
and may appear in input/output lists.

A declaration is a honexecutable statement that
specifies the attributes of a program element. For
example, it may be used to specify the type of a
variable or function or the shape of an array.

This term is used in two ways. A data object is said to
be defined when it has a valid or predictable value;
otherwise it is undefined. It may be given a valid value
by execution of statements such as assignment or
input. Under certain circumstances described in
Chapter 14, it may subsequently become undefined.

Procedures and derived types are said to be defined
when their descriptions have been supplied by the
programmer and are available in a program unit.

A statement keyword is part of the syntax of a
statement. Each statement, other than an assignment
statement and a statement function definition, begins
with a statement keyword. Examples of these
keywords are IF, READ, and INTEGER. Statement
keywords are not “reserved”; they may be used as
names to identify program elements.

An argument keyword is the name of a dummy (or
formal) argument. These names are used in the
subprogram definition and may also be used when the
subprogram is invoked to associate dummy arguments
with actual arguments that can appear in any order.
Argument keywords for all of the intrinsic procedures
are specified by the standard (see Appendix A).
Argument keywords for user-supplied external
procedures may be specified in a procedure interface
block (described in Chapter 12).
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Expression

Construct

Executable construct

Control construct

Procedure
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A sequence is a set ordered by a one-to-one
correspondence with the numbers 1, 2, through n. The
number of elements in the sequence is n. A sequence
may be empty, in which case it contains no elements.

An operator indicates a computation involving one or
two operands. Fortran defines a number of intrinsic
operators; for example, +, —, 00 /, (dwith numeric
operands, and .NOT., .AND., .OR. with logical
operands. In addition, users may define operators for
use with operands of intrinsic or derived types.

An expression is a sequence of operands, operators,
and parentheses and represents some computation. The
operands may be constants, variables, constructors,
function references, or expressions enclosed in
parentheses.

A construct is a sequence of statements starting with a
CASE, DO, IF, or WHERE statement and ending with
the corresponding terminal statement.

An executable construct is a statement (such as a GO
TO statement) or a construct (such as a DO or CASE
construct).

A control construct is an action statement that can
change the normal execution sequence (such as a GO
TO, STOP, or RETURN statement) or a CASE, DO, or IF
construct.

A procedure is defined by a sequence of statements
that expresses a computation that may be invoked as a
subroutine or function during program execution. It
may be an intrinsic procedure, an external procedure,
an internal procedure, a module procedure, a dummy
procedure, or a statement function. A subprogram may
define more than one procedure if it contains an
ENTRY statement.
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Reference

Intrinsic
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A procedure interface is a sequence of statements that
specifies the name and characteristics of a procedure,
the name and attributes of each dummy argument, and
the generic specifier by which it may be referenced, if
any.

A data object reference is the appearance of a name,
designator, or associated pointer in an executable
statement requiring the value of the object.

A procedure reference is the appearance of the
procedure name, operator symbol, or assignment
symbol in an executable program requiring execution
of the procedure.

A module reference is the appearance of the module
name in a USE statement.

Anything that is defined by the language is intrinsic.
There are intrinsic data types, procedures, and
operators. These may be used freely in any scoping
unit. The Fortran programmer may define types,
procedures, and operators; these entities are not
intrinsic.

A scoping unit is a portion of a program in which a
name has a fixed meaning. A program unit or
subprogram generally defines a scoping unit. Type
definitions and procedure interface blocks also
constitute scoping units. Scoping units are
nonoverlapping, although one scoping unit may
contain another in the sense that it surrounds it. If a
scoping unit contains another scoping unit, the outer
scoping unit is referred to as the host scoping unit of
the inner scoping unit.

In general, association permits an entity to be
referenced by different names in a scoping unit or by
the same or different names in different scoping units.
There are several kinds of association: the principal
ones are pointer association, argument association, host
association, use association, and storage association.
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Summary of Forms

The forms of the most important components of a Fortran 90 program are
given in this section. The notation used is the same as that used to show the
syntax forms in all the remaining chapters. The complete Backus-Naur form
(BNF) as given in the standard is part of Appendix B.

The form of a main program (R1101) is:

[ PROGRAMprogram-name ]
[ specification-construct ] ...
[ executable-construct ] ...
[ CONTAINS
internal-procedure
[ internal-procedure ] ...]
END [ PROGRAM program-name ] ]

The form of a subprogram (R203) is:

procedure-heading
[ specification-construct ] ...
[ executable-construct ] ...
[ CONTAINS
internal-procedure
[ internal-procedure ] ... ]
procedure-ending

The form of a module (R1104) is:

MODULEmodule-name
[ specification-construct ] ...
[ CONTAINS
subprogram
[ subprogram ] ... ]
END [ MODULE[ module-name ] ]

The form of a block data program unit (R1110) is:

BLOCK DATA[ block-data-name ]
[ specification-statement ] ...
END [ BLOCK DATA[ block-data-name ] ]
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The form of an internal procedure (R211) is:

procedure-heading
[ specification-construct ] ...
[ executable-construct ] ...
procedure-ending

The forms of a procedure heading (R1216, R1220) are:

[ RECURSIVE] [ type-spec ] FUNCTION function-name &

( [ dummy-argument-list ] ) [ RESULT ( result-name ) ]
[ RECURSIVE] SUBROUTINEsubroutine-name &

[ ( [ dummy-argument-list ] ) ]

The forms of a procedure ending (R1218, R1222) are:

END [ FUNCTION[ function-name ] ]
END [ SUBROUTINE][ subroutine-name ] ]

The forms of a specification construct are:

derived-type-definition
interface-block
specification-statement

The form of a derived-type definition (R422) is:

TYPE[ [, access-spec ] :: ] type-name

[ PRIVATE ]

[ SEQUENCH

[ type-spec [ [ , POINTER ] :: ] component-spec-list ] ...
END TYPE][ type-name ]

The form of an interface block (R1201) is:

INTERFACE [ generic-spec ]
[ procedure-heading
[ specification-construct ] ...
procedure-ending ] ...
[ MODULE PROCEDUREbdule-procedure-name-list ] ...
END INTERFACE
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The forms of a specification statement are:

ALLOCATABLE[ :: ] allocatable-array-list

COMMON / [ common-block-name ] / ] common-block-object-list
DATA data-statement-object-list / data-statement-value-list /
DIMENSION array-dimension-list
EQUIVALENCEequivalence-set-list
EXTERNALexternal-name-list

FORMAT ([ format-item-list ] )

IMPLICIT implicit-spec

INTENT ( intent-spec ) [ :: ] dummy-argument-name-list
INTRINSIC intrinsic-procedure-name-list

NAMELIST / namelist-group-name / namelist-group-object-list
OPTIONAL [ :: ] optional-object-list

PARAMETER named-constant-definition-list )

POINTER [ :: ] pointer-name-list

PUBLIC [ [ = ] module-entity-name-list ]

PRIVATE [ [ = ] module-entity-name-list ]

SAVE[ [ = ] saved-object-list ]

TARGET][ :: ] target-name-list

USE module-name [ , rename-list ]

USE module-name , ONLY : [ access-list ]

type-spec [ [ , attribute-spec ] ... ;1 ] object-declaration-list

The forms of a type specification (R502) are:

INTEGER [ ( [ KIND= ] kind-parameter ) ]

REAL [ ( [ KIND= ] kind-parameter ) ]

DOUBLE PRECISION

COMPLEX[ ( [ KIND= ] kind-parameter ) ]

CHARACTEHR ( [ KIND= ] kind-parameter ) ]

CHARACTER ([ [ KIND= ] kind-parameter , | &
[ LEN=] length-parameter )

LOGICAL [ ( [ KIND= ] kind-parameter ) ]

TYPE ( type-name )

The forms of an attribute specification (R503) are:

ALLOCATABLE
DIMENSION ( array-spec )
EXTERNAL

INTENT ( intent-spec )
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INTRINSIC
OPTIONAL
PARAMETER
POINTER
PRIVATE
PUBLIC
SAVE
TARGET

The forms of an executable construct (R215) are:

action-statement
case-construct
do-construct
if-construct
where-construct

The forms of an action statement (R216) are:

ALLOCATE ( allocation-list [ , STAT= scalar-integer-variable ] )
ASSIGN label TO scalar-integer-variable
BACKSPACEexternal-file-unit

BACKSPACE (position-spec-list )

CALL subroutine-name [ ( [ actual-argument-spec-list ] ) ]
CLOSE ( close-spec-list )

CONTINUE

CYCLE[ do-construct-name ]

DEALLOCATE (name-list [ , STAT= scalar-integer-variable ] )
ENDFILE external-file-unit

ENDFILE ( position-spec-list )

EXIT [ do-construct-name ]

GO TOlabel

GO TO (labellist ) [, ] scalar-integer-expression

GO TOscalar-integer-variable [ [ , ] ( label-list ) ]

IF ( scalar-logical-expression ) action-statement

IF ( scalar-numeric-expression ) label , label , label
INQUIRE ( inquire-spec-list ) [ output-item-list ]

NULLIFY ( pointer-object-list )

OPEN ( connect-spec-list )

PAUSE [ access-code ]

PRINT format [ , output-item-list ]

READ ( io-control-spec-list ) [ input-item-list ]
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READ format [ , input-item-list ]

RETURN[ scalar-integer-expression ]

REWIND external-file-unit

REWIND ( position-spec-list )

STOP [ access-code ]

WHERE (array-logical-expression ) array-assignment-statement
WRITE ( io-control-spec-list ) [ output-item-list ]
pointer-variable => target-expression

variable = expression

The form of a CASE construct (R808) is:

SELECT CASE (case-variable )
[ CASE case-selector
[ executable-construct ] ... ] ...
[ CASE DEFAULT
[ executable-construct ] ... ]
END SELECT

The forms of a DO construct (R816) are:

DO label ]
[ executable-construct ] ...
do-termination

DOJ label ] [ , ] loop-variable = initial-value , final-value &
[ , increment ]
[ executable-construct ] ...
do-termination

DO label ] [, ] WHILE ( scalar-logical-expression )
[ executable-construct ] ...
do-termination

The form of an IF construct (R802) is:

IF ( scalar-logical-expression ) THEN
[ executable-construct ] ...

[ ELSE IF ( scalar-logical-expression ) THEN
[ executable-construct ] ... ] ...

[ ELSE
[ executable-construct ] ... ]

END IF
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The form of a WHERE construct (R739) is:

WHERE (array-logical-expression )
array-assignment-block

ELSEWHERE
array-assignment-block

END WHERE

Two miscellaneous forms (R1223) are:

ENTRY entry-name [ ( [ dummy-argument-list ] ) ] &
[ RESULT ( result-name ) ]

INCLUDE character-literal-constant

2.7 Ordering Requirements

Within program units and subprograms, there are ordering requirements for
statements and constructs. The syntax rules above do not fully describe the
ordering requirements. Therefore, they are illustrated in Tables 2-1 and 2-2. In
general, data declarations and specifications must precede executable
constructs and statements, although FORMAT, DATA, and ENTRY statements
may appear among the executable statements. USE statements, if any, must
appear first. Internal or module subprograms, if any, must appear last
following a CONTAINS statement.

In Table 2-1 a vertical line separates statements and constructs that can be
interspersed; a horizontal line separates statements that must not be
interspersed.

There are restrictions on the places where some statements may appear. Table
2-2 summarizes these restrictions.
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Table 2-1  Requirements on statement ordering

PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA statements

USE statements

IMPLICIT NONE

PARAMETER statements

IMPLICIT statements

FORMAT and PARAMETER and DATA | Derived-type definitions, interface blocks type declaration statements
statement function statements and specification statements

ENTRY statements statements

DATA statements

Executable constructs

CONTAINS statement

Internal subprograms or module subprograms

END statement

Table 2-2  Restrictions on the appearance of statements

Kind of
scoping unit

Main

program Module

Block External Module Internal Interface
data subprog subprog subprog body

USE statement

ENTRY statement

FORMAT statement

Misc. declarations (see note)
DATA statement
Derived-type definition
Interface block

Statement function
Executable statement

CONTAINS

Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
No
No
Yes
Yes
Yes
Yes
No
No

Yes

No Yes Yes Yes Yes
No Yes Yes No No
No Yes Yes Yes No
Yes Yes Yes Yes Yes
Yes Yes Yes Yes No
No Yes Yes Yes Yes
No Yes Yes Yes Yes
No Yes Yes Yes No
No Yes Yes Yes No
No Yes Yes No No

Note: Misc. declarations are PARAMETER statements, IMPLICIT statements, DATA statements, type declaration

statements, and specification statements.
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2.8

2.9

Example Fortran 90 Program

Illustrated below is a very simple Fortran 90 program consisting of one
program unit, the main program. Three data objects are declared: H, T, and U.
These become the loop indices in a triply-nested loop structure (8.5) containing
a logical IF statement (8.3.2) that conditionally executes an input/output
statement (9.4).

PROGRAM SUM_OF_CUBES
I This program prints all 3-digit numbers that
I equal the sum of the cubes of their digits.
INTEGER H, T, U
DOH=1,9
DO T =0, 9
DO U =0, 9
IF (100*H + 10* T + U == H*3 + T*3 + U*3) &
PRINT "(3I11)", H, T, U
END DO
END DO
END DO
END PROGRAM SUM_OF_CUBES

This Fortran 90 program is standard conforming and should be compilable and
executable on any standard Fortran 90 computing system, producing the
following output:

153
370
371
407

Summary

2.9.1 Program Units
There are five kinds of program units:

main program
external subroutine
external function
module

block data
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The module is new to Fortran with Fortran 90. It may contain data definitions,
type definitions, procedure definitions, and procedure interface descriptions.
Information in a module may be made available to other program units or it
may be kept private to the module. Type definitions and procedure interface
descriptions are also new to Fortran. Procedure interface descriptions are used
to describe the interfaces of external procedures and provide generic specifiers
for external and module procedures. For some new Fortran 90 features,
procedure interfaces are required for proper communication.

2.9.2 Scoping

The scope of an entity determines where it is accessible in the program. A
scope may be as large as an entire program or as small as a part of one Fortran
statement. The scope of an entity is often, but not always, a scoping unit,
which is one of the following:

1. a program unit or subprogram, excluding derived-type definitions,
procedure interface bodies, and subprograms contained within it

2. a derived-type definition

3. a procedure interface body, excluding any derived-type definitions and
procedure interface bodies contained within it

2.9.3 Association

Association allows more than one entity to share values and other properties.
Storage association and argument association establish that different entities,
possibly with different scopes, share values. Use and host association extend
the scope of entities into other procedures.

2.9.4 Packaging

Programs are made up of program units. Program units are made up of Fortran
constructs and statements and may contain other scoping units.

Internal procedures may appear in the main program and in external and
module procedures. They must not appear in internal procedures nor may the
names of internal procedures be passed as arguments.
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Statement function statements may appear in the main program and in
external, internal, and module procedures.

Interface blocks may appear in the main program, in modules, and in external,
internal, and module procedures. They must not appear in a block data
program unit.

Type definitions may appear in the main program, in modules, in block data
subprograms, and in external, internal, and module procedures.

Packaging allows programs to be structured logically and information to be
hidden unless it is needed. This permits more robust programs to be created.

2.9.5 Data Type

Fortran provides five intrinsic data types:

integer
real
complex
logical
character

A standard-conforming Fortran 90 processor must support at least two kinds
(representations) of real and complex values; it may support more. It must
support one kind of integer, logical, and character representations and may
support more.

A Fortran 90 user may define new data types that are made up of components
that are of intrinsic or user-defined type. An object of one of these new types is
called a structure. It is considered to be a scalar.

2.9.6 Dimensionality

If a data object has the dimension attribute, it is an array; otherwise, it is a
scalar. Arrays are treated as variables in Fortran 90; they may appear in
expressions and be returned as function results. Either whole arrays or array
sections may be referenced. A structure may have an array component, but it is
still considered to be a scalar. Arrays of structures are permitted.
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2.9.7 Dynamic Data

There are three dynamic data objects in Fortran 90:

pointers
allocatable arrays
automatic data objects

Dynamic data objects do not exist until a program is executed. They are
declared, but no space is set aside by the compiler for these objects. During
execution pointers may be allocated space, in which case new space is created
for them; or they may be assigned to point to existing space. Allocatable arrays
must have space allocated for them during execution. Automatic data objects,
which may be arrays or character strings, can be declared only in subprograms.
Space is created for them when the subprogram is invoked, and they cease to
exist when execution of the subprogram completes.

2.9.8 Execution Sequence

Program execution begins with the first executable statement in the main
program. It continues with successive statements unless a statement or
construct is encountered that changes the flow of control. When a procedure is
invoked, its execution begins with the first executable statement after the entry
point in the procedure. On normal return from a procedure, execution
continues where it left off.

2.9.9 Definition and Undefinition

When program execution begins, most variables have no value. Their
definition status is considered to be undefined. If, however, the variable was
initialized by a DATA statement or a type declaration statement, its definition
status is defined. During the course of execution, a variable may acquire a
value or change its current value, which would cause its definition status to be
defined. On the other hand, some event could occur that would cause its
definition status to become undefined.

Pointers have both a definition status and an association status. Initially, the
association status of all pointers is undefined. When the pointer becomes
associated with a target, its status changes to associated. Its definition status is
defined only if it is associated with a target that is defined.
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In a like manner, allocatable arrays must be both allocated and defined before
their definition status is defined.

2.9.10 Dynamic Behavior
Fortran 90 introduces some new kinds of dynamic behavior:
1. recursion
2. allocation and deallocation
3. pointer assignment

The Fortran programmer can now write subprograms that invoke themselves.
The keyword RECURSIVE must appear in the SUBROUTINE or FUNCTION
statement if this occurs.

The Fortran programmer can now control the utilization of space with
ALLOCATE and DEALLOCATE statements.

Pointers can be allocated or they can be associated with existing space with a
pointer assignment statement.
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Language Elements
and Source Form 3

This chapter describes the language elements that a Fortran statement may
contain. Language elements consist of lexical tokens, which include names,
keywords, operators, and statement labels. Rules for forming lexical tokens
from the characters in the Fortran character set are given.

The source form describes how to place these elements on a line in a Fortran
program. There are two source forms in Fortran 90. One is oriented towards
the Hollerith punched card common in the 1960s and is restricted to 80
positions. It is called fixed source form. The other is new in Fortran 90 and is
oriented towards terminal input of source code. It is called free source form.

A processor must have a character set that includes the Fortran character set
(described in the next section) but may permit other characters in certain
contexts. These characters may include control characters (which may have no
graphic representation, such as escape or newline) or may include characters
with specified graphics. The characters with specified graphics are typically
oriented towards other languages such as Greek, Arabic, Chinese, or Japanese.
Such characters are not required to be part of the character set for the default
character type, but would be part of some optional, nondefault character type,
permitted by the standard and supplied by a particular implementation.

The INCLUDE line is a new feature in Fortran that permits the inclusion of
source code from a specified file. It is a convenient way to place the same text
in several places in a program.
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3.1 The Processor Character Set

The processor character set contains:

® the Fortran character set with specified graphics except for the currency
symbol ($). The Fortran 90 character set includes the Fortran 77 character
set plus the characters >, <, ;, 1, ?, %, _, ", and &.

® as an option, a processor-dependent set of control characters that have no
graphic representation, such as “newline” or “escape”

® as an option, a set of characters with graphics (such as Greek letters,
Japanese ideographs, or characters in the shape of a heart or a diamond)

It is recommended that the programmer consult the implementor’s
documentation describing the processor-dependent features of each particular
Fortran 90 implementation.

3.1.1 The Fortran Character Set

Characters in the Fortran character set are shown in Table 3-1.
Rules and restrictions:

1. Lowercase letters are permitted, but a processor is not required to
recognize them. If a processor does recognize them, they are considered the
same as uppercase letters except within a character constant or a quote,
apostrophe, or H edit descriptor, where uppercase and lowercase letters are
different data values. Thus, for a processor that accepts lowercase letters,
the following two statements are equivalent:

PRINT *, N
Print *, n

Whether uppercase and lowercase letters are distinguished in the FILE= or
NAME= specifier in an OPEN or an INQUIRE statement is processor
dependent.

2. The digits are assumed to be decimal numbers when used to describe a
numeric value, except in binary, octal, and hexadecimal (BOZ) literal
constants or input/output records corresponding to B, O, or Z edit
descriptors. For example, consider the following DATA statement:

DATA X, |, J / 4.89, B'1011', ZBAC91' /
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Table 3-1 The Fortran character set

Alphanumeric characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digits 0123456789
Underscore

Special characters

Graphic Name of character Graphic ~ Name of character
Blank : Colon
= Equals ! Exclamation point

tation mark or
+ Plus " Quotation mark o

quote
- Minus % Percent
* Asterisk & Ampersand
/ Slash ; Semicolon
( Left parenthesis < Less than
) Right parenthesis > Greater than
, Comma ? Question mark
E:rciiorgal point or $ Currency symbol
’ Apostrophe

The digits of the first constant are decimal digits, those of the second
constant are binary digits, and those of the third are hexadecimal digits.

3. The underscore is used to make names more readable. For example, in the
identifier NUMBER_OF_CARS, each underscore is used to separate the
obvious English words. It is a significant character in any name. It cannot
be used as the first character of a name; however, it may be the last
character. An underscore is also used to separate the kind value from the
actual value of a literal constant (for example, 123_2).

Language Elements and Source Form 67

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



68

4. Except for the currency symbol ($), the graphic for each character must be
the same as in Table 3-1; however, any style, font, or printing convention
may be used.

There are twenty-one special characters used for operators like multiply and
add, and as separators or delimiters in Fortran statements. Separators and
delimiters make the form of a statement unambiguous. The special characters,
$ and ?, are not required for any Fortran statement.

Fortran’s treatment of uppercase and lowercase letters may lead to portability
problems when calling subprograms written in other languages. The problem
occurs because the standard does not specify the case of letters used for
external names. To illustrate the problem, consider the program fragment:

EXTERNAL FOO
CALL FOO

END

One Fortran processor may use FOO as the external name whereas another
Fortran system may use foo. If FOO were to be written in a programming
language such as C, which is case sensitive, the external name used in C would
then be different for different programming systems.

Undoubtedly, most implementations will use the case that makes the Fortran
90 compiled code compatible with previous Fortran implementations on the
same system. For example, Unix implementations of Fortran generally use
lowercase letters for external names in Fortran implementations, and thus can
be expected to continue to use lowercase letters for all externals. Consult your
vendor’s documentation for the specific details.

3.1.2 Other Characters

In addition to the Fortran character set, other characters may be included in the
processor character set. These are either control characters with no graphics or
additional characters with graphics. The selection of the other characters and
where they may be used is processor dependent. However, wherever they are
permitted, the other characters are restricted in use to character constants,
guote, apostrophe, and H edit descriptors, comment lines, and input/output
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3.2 Lexical Tokens

records. All characters of the Fortran character set may be used in character
constants, quote, apostrophe, and H edit descriptors, comment lines, and
input/output records.

A processor is required to support the Fortran character set as part of a
character set referred to as the default character set. A processor is allowed to
support more than one character set, each set using a different kind value of
the intrinsic character type (4.3.5). The choice of characters in such sets is
processor dependent except that each such set must contain a character that
can be used as a blank. This specially designated character is used where blank
padding is required.

The choice of the representable characters beyond the Fortran character set is
expected to be dependent on the particular implementation. It is recommended
that the implementor’s documentation be consulted for specific details.

A statement is constructed from low-level syntax. The low-level syntax
describes the basic language elements, called lexical tokens, in a Fortran
statement. A lexical token is the smallest meaningful unit of a Fortran
statement and may consist of one or more characters. Tokens are names,
keywords, literal constants (except for complex literal constants), labels,
operator symbols, comma, =, =>, ;, i;, ;, %, and delimiters. A complex literal
(4.3.3.4) consists of several tokens. Examples of operator symbols are + and //.

Delimiters in Fortran are pairs of symbols that enclose parts of a Fortran
statement. The delimiters are slashes (in pairs), left and right parentheses, and
the symbol pair (/7 and /).

/.7
()
/.7

In the statements:

DATA X, Y/ 1.0, -10.2/
CALL PRINT_LIST (LIST, SIZE)
VECTOR = (/ 10, 20, 30, 40 /)
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the slashes distinguish the value list from the object list in a DATA statement,
the parentheses are delimiters marking the beginning and end of the argument
list in the CALL statement, and the pairs (/ and /) mark the beginning and
end of the elements of an array constructor.

3.2.1 Statement Keywords

Statement keywords appear in uppercase letters in the syntax rules. Some
statement keywords also identify the statement, such as in the DO statement:

DO I =1, 10

where DO is a statement keyword identifying the DO statement. Other
keywords delimit parts of a statement such as ONLY in a USE statement, or
WHILE in one of the forms of a DO construct, as, for example:

DO WHILE( .NOT. FOUND )

Others specify options in the statement such as IN, OUT, or INOUT in the
INTENT statement.

There are three statements in Fortran that have no statement keyword. They
are the assignment statement, the pointer assignment statement, and the
statement function.

Some equences of capital letters in the formal syntax rules are not statement
keywords. For example, EQ in the lexical token .EQ. and EN as an edit
descriptor are not statement keywords.

A dummy argument keyword, a different sort of keyword, is discussed in
Section 12.5.4.

3.2.2 Names

Variables, named constants, program units, common blocks, procedures,
arguments, constructs, derived types (types for structures), namelist groups,
structure components, dummy arguments, and function results are among the
elements in a program that have a name.
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Rules and restrictions:

1. A name must begin with a letter and consist of letters, digits, and
underscores. Note that an underscore must not be the first character of a
name—see the syntax rule for name in 3.6.

2. Fortran 90 permits up to 31 characters in names.

Examples of names:

A
CAR_STOCK_NUMBER
A__BUTTERFLY

Z 28

TEMP_

3.2.3 Constants

A constant is a syntactic notation for a value. The value may be of any intrinsic
type, that is, a numeric (integer, real, or complex) value, a character value, or a
logical value.

A value that does not have a name is a literal constant. Examples of literal
constants are:

1.23
400

( 0.0, 1.0)
"ABC"
B'0110110’
TRUE.

No literal constant can be array-valued or of derived type. The forms of literal
constants are given in more detail in Section 4.3.

A value that has a name is called a named constant and may be of any type,
including a derived type. A named constant may also be array-valued.
Examples of named constants are:

X_AXIS
MY_SPOUSE

where these names have been specified in a declaration statement as follows:

/ 0.0, 1.0 /)

REAL, DIMENSION(2), PARAMETER :: X_AXIS = (
= PERSON( 39, 'PAT )

TYPE(PERSON), PARAMETER :: MY_SPOUSE
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Note, however, that the entity on the right of the equal sign is not itself a
constant but a constant expression (7.2.9.1). The forms for defining named
constants are described in more detail in Section 5.5.2.

3.2.4 Operators

Operators are used with operands in expressions to produce other values.
Examples of language-supplied operators are:

representing multiplication of numeric values

// representing concatenation of character values

_ representing comparison for equality (same as
.EQ.)

.OR. representing logical disjunction

.NOT. representing logical negation

The complete set of the intrinsic operators built into Fortran 90 is given by the
class intrinsic-operator (R310) in Appendix B.2.

Users may define operators (12.6.4) in addition to the intrinsic operators. User-
defined operators begin with a period (.), followed by a sequence of up to 31
letters, and end with a period (.), except that the letter sequence must not be
the same as any intrinsic operator or the logical constants .FALSE. or .TRUE.

3.2.5 Statement Labels

A label may be used to identify a statement. A label consists of one to five
decimal digits, one of which must be nonzero. If a Fortran statement has a
label, it is uniquely identified and the label can be used in DO constructs,
CALL statements, branching statements, and input/ output statements. In
most cases, two statements in the same program unit must not have the same
label (there are exceptions because a program unit may contain more than one
scoping unit, for example, several internal procedures). Leading zeros in a
label are not significant so that the labels 020 and 20 are the same label. The
cases in which duplicate labels can be used in the same program unit are
explained in Chapter 14 as part of the general treatment of the scope of entities.
Examples of statements with labels are:
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3.3 Source Form

100 CONTINUE
21 X = X + 1.2
101 FORMAT (1X, 2F10.2)

The Fortran 90 syntax does not permit a statement with no content, sometimes
referred to as a blank statement. Such a statement is always treated as a
comment; therefore, if such a statement is created, it must not be labeled. For
example, each of the following lines is nonstandard Fortran 90:

10
X=0;101;

A Fortran program consists of Fortran statements, comments, and INCLUDE
lines; this collection of statements, comments, and lines is called source text. A
Fortran statement consists of one or more complete or partial lines of source
text and is constructed from low-level syntax (3.6). A complete or partial line is
a sequence of characters. The following examples illustrate how statements can
be formed from partial or complete lines:

I This example is written for one of the source forms,
! called free source form (3.3.1). It uses the & on the
I continued line to indicate continuation, and ! to

! indicate the beginning of a comment.

10 FORMAT( 2X, 15 ) I A statement on a complete line
13 FORMAT( 2X, & I A statement on two complete
15) ! lines
X = 5; 10 FORMAT( 2X, 15) I Two statements, each as part
! of a line
X=5+ & I A statement consisting of a
Y; 10 FORMAT( 2X, 15 ) ! complete line and a partial
! line
X =5+ &
Y; 10 FORMAT( 2X, & I A statement made up of two
I15); READ & ! partial lines

(5, 10) A, B, C
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The lines within a program unit (except comment lines) and the order of the
lines are in general significant (see Table 2-1), except that the order of the
subprograms following a CONTAINS statement and before the END statement
for the containing program unit is insignificant. Because all program units
terminate with their own END statement, lines following such an END
statement are never part of the preceding program unit; they are part of the
program unit that follows.

There are two source forms for writing source text: free source form, which is
new, and fixed source form, which is the traditional Fortran form.
Programmers must use either fixed or free source form throughout a program
unit, although different program units within the program may use different
source forms. Each Fortran processing system must provide a way to indicate
which source form is being used; for example, this might be indicated with a
compiler option or compiler directive, or the processor might assume one of
the forms by default. Section 3.4 describes a way to write Fortran statements so
that the source text is acceptable to both free and fixed source forms.

Characters that form the value of a character literal constant or a character
string edit descriptor (quote, apostrophe, or H edit descriptor) are said to be in
a character context. Note that the characters in character context do not include
the delimiters used to indicate the beginning and end of the character constant
or string. Also, the ampersands in free source form, used to indicate that a
character string is being continued and used to indicate the beginning of the
character string on the continued line, are never part of the character string
value and thus are not in character context—see Section 3.3.1.1.

The rules that apply to characters in a character context are different from the
rules that apply to characters in other contexts. For example, blanks are always
significant in a character context, but are never significant in other parts of a
program written using fixed source form.

CHAR = CHAR1 // "Mary K. Williams"
I The blanks within the character string
I (within the double quotes) are significant.

I The next two statements are equivalent
I'in fixed source form.

DO2I=1,N

DO 21 =1, N
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Comments may contain any graphic character that is in the processor character
set. For fixed source form, comments may contain, in addition, certain control
characters as allowed by the processor—see the implementor’s manual for the
specific control characters allowed.

3.3.1 Free Source Form

In free source form, there are no restrictions limiting statements to specific
positions on a Fortran line. The blank character is significant and may be
required to separate lexical tokens.

Rules and restrictions:

1. Blank characters are significant everywhere except that a sequence of blank
characters outside a character context is treated as a single blank character.
They may be used freely between tokens and delimiters to improve the
readability of the source text. For example, the two statements

SUM=SUM+A(l)
SUM = SUM + A (I)

are the same.

2. Each line may contain from 0 to 132 characters, provided that they are of
default character kind. If any character is of a nondefault character kind,
the processor may limit the number of characters to fewer than 132
characters. For example, a line such as

TEXT = GREEK_'This line has 132 characters and contains ' a

may use exactly 132 graphic characters, but the implementation may
require more space to represent this source line than 132 Fortran
characters. The processor may thus limit how many graphic characters
may be used on a line if any of them are of nondefault character kind.

3. The exclamation mark (!), not in character context, is used to indicate the
beginning of a comment that ends with the end of the line. A line may
contain nothing but a comment. Comments, including the !, are ignored
and do not alter the interpretation of Fortran statements in any way. There
is no language limit on the number of comments in a program unit,
although the processor may impose such a limit. A line whose first
nonblank character is an exclamation mark is called a comment line. An
example of a Fortran statement with a trailing comment is:
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ITER = ITER + 1 ! Begin the next iteration.
An example of a comment line is:
! Begin the next iteration.

An ampersand, not in character context, is a continuation symbol and can
only be followed by zero or more blanks or a comment and the end of the
line. The line following that is not a comment line is called a continuation
line. An example of a continued line and a continuation line is:

FORE = G * MASS1 * & ! This is a continued line.
MASS2 / R**2 I This is a continuation line.

No more than 39 continuation lines are allowed in a Fortran statement. No
line may contain an ampersand as the only nonblank character before an
exclamation mark. Comment lines cannot be continued; that is, the
ampersand as the last character in a comment is part of the comment and
does not indicate continuation. The next section gives more details on the
use of the ampersand in free source form as a continuation symbol.

A line with only blank characters or with no characters is treated as a
comment line.

More than one statement or partial statements may appear on a line. The
statement separator is the semicolon (;), provided it is not in a character
context; multiple successive semicolons on a line with or without blanks
intervening are considered as a single separator. The end of a line is also a
statement separator, but a semicolon at the end of a line that is not part of
a comment is considered as a single separator. For example:

I The semicolon is a statement separator.
X =10 Y =20

! However, the semicolon below at the end of a line is
I not treated as a separator and is ignored.
Z = 3.0;

I Also, consecutive semicolons are treated as one
I semicolon, even if blanks intervene.
Z =30 ;W=40

The effect of these rules is as if a null statement were a legal Fortran
statement.
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7. A label may appear before a statement, provided it is not part of another
statement, but it must be separated from the statement by at least one
blank. For example:

10 FORMAT(10X,2I5) 1 10 is a label
IF (X == 00) 20 0 Y = SQRT(X) ! Label 200 is
I not allowed.

8. Any graphic character in the processor character set may be used in
character literal constants (4.3.5.4) and character string edit descriptors
(10.2.3). Note that this excludes control characters; it is recommended that
the implementor’s manual be consulted for the specific details.

3.3.1.1 The Ampersand as a Continuation Symbol

The ampersand (&) is used as the continuation symbol in free source form. If it
is the last nonblank character after any comments are deleted and it is not in a
character context, the statement is continued on the next line that does not
begin with a comment. If the first nonblank character on the continuing line is
an ampersand, the statement continues after the ampersand; otherwise, the
statement continues with the first position of the line. The ampersand or
ampersands used as the continuation symbols are not considered part of the
statement. For example, the following statement takes two lines (one
continuation line) because it is too long to fit on one line:

STOKES_LAW_VELOCN = 2 * GRAVITY * RADIUS ** 2 * &
(DENSITY_1 - DENSITY_2) / (9 * COEFF_OF_VISCOSITY)

The leading blanks on the continued line are included in the statement and are
allowed in this case because they are between lexical tokens.

The double-ampersand convention must be used to continue a name, a
character constant, or a lexical token consisting of more than one character split
across lines. The following statement is the same statement as in the previous
example:

STOKES_LAW_VELOCN = 2 * GRAVITY * RADIUS * 2 * (DEN&
&SITY_1 - DENSITY_2) / (9 * COEFF_OF_VISCOSITY)

However, splitting names across lines makes the code difficult to read and is
not recommended.

Ampersands may be included in a character constant. Only the last ampersand
on the line is the continuation symbol, as illustrated in the following example:
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3.3.1.2

LAWYERS = "Jones & Clay & &
&Davis"

The value of this constant is "Jones & Clay & Davis" (provided the lines begin
in position 1). The first two ampersands are in character context; they are part
of the value of the character string.

To continue a character constant so that the continued line is indented, an
ampersand must be used as the first character of the continued line, as in:

NAME = "Mary K. W&
&illiams"

In this case, the first nonblank character on the next line (that is not a
comment) must be an ampersand because Williams is split between lines;
otherwise the blanks at the beginning of the second line will be included as
part of the character constant. The statement continues with the character
following the ampersand. The value in NAME is "Mary K. Williams". This
allows character strings (that could be quite long) to be continued.

Blanks as Separators

Blanks in free source form may not appear within tokens, such as hames or
symbols consisting of more than one character, except that blanks may be
freely used in format specifications. For instance, blanks may not appear
between the characters of multicharacter operators such as [(11and .NE.
Format specifications are an exception because blanks may appear within edit
descriptors such as BN, SS, or TR in format specifications. On the other hand, a
blank must be used to separate a statement keyword, name, constant, or label
from an adjacent name, constant, or label. For example, the blanks in the
following statements are required.

INTEGER SIZE
PRINT 10,N
DO I=1,N

Adjacent keywords require a blank separator in some cases (for example,
CASE DEFAULT) whereas in other cases two adjacent keywords may be
written either with or without intervening blanks (for example, BLOCK
DATA); Table 3-2 gives the situations where blank separators are optional or
mandatory. Despite these rules, blank separators between statement keywords
make the source text more readable and clarify the statements. In general, if
common rules of English text are followed, everything will be correct. For
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Table 3-2

Where blanks are optional and required separating

statement keywords

Blanks optional

Blanks mandatory

BLOCK DATA
DOUBLE PRECISION
ELSE IF

END BLOCK DATA
END DO

END FILE

END FUNCTION
END IF

END INTERFACE
END MODULE
END PROGRAM
END SELECT

END SUBROUTINE
END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

CASE DEFAULT

DO WHILE

IMPLICIT type-spec
IMPLICIT NONE
INTERFACE ASSIGNMENT
INTERFACE OPERATOR
MODULE PROCEDURE
RECURSIVE FUNCTION
RECURSIVE SUBROUTINE
RECURSIVE type-spec
type-spec FUNCTION
type-spec RECURSIVE

example, blank separators in the following statement make them quite
readable, even though the blank between the keywords RECURSIVE and
FUNCTION in the first statement is the only one that is required.

RECURSIVE FUNCTION F(X)

DOUBLE PRECISION X
END FUNCTION F

Language Elements and Source Form
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3.3.1.3 Sample Program, Free Source Form

A sample program in free source form is:

123456789.......

|PROGRAM LEFT_RIGHT

| REAL X(5), Y(5)

| I Print arrays X and Y

| PRINT 100, X, Y

| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &
| F10.5)
|

END

3.3.2 Fixed Source Form

Fixed source form is position oriented on a line using the conventions for
position that were used historically for Fortran written on punched cards.
Currently, most programmers use Fortran systems that permit a less stilted
style of source form; this is similar to or the same as the free source form
described in the previous sections.

Rules and restrictions:

1.

3.

Fortran statements or parts of Fortran statements must be written between
positions 7 and 72. Character positions 1 through 6 are reserved for special
purposes.

Blanks are not significant in fixed source form except in a character context.
For example, the two statements

DO 10 I=1,LOOPEND
DO 10 | = 1, LOOPEND

are the same.

A C or Oin position 1 identifies a comment. In this case, the entire line is a
comment and is called a comment line. A'! in any position except position
6 and not in character context indicates that a comment follows to the end
of the line. Comments are not significant, and there is no language limit on
the number of comment lines. However, a processor may impose a limit.
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4. A line with only blank characters or with no characters is treated as a
comment line.

5. Multiple statements on a line are separated by one or more semicolons,
and semicolons may occur at the end of a line, which are ignored.

6. Any character (including ! and ;) other than blank or zero in position 6
indicates that the line is a continuation of the previous line. Such a line is
called a continuation line. The text on the continuation line begins in
position 7. There must be no more than 19 continuation lines for one
statement in fixed source form. The first line of a continued statement is
called the initial line.

7. Statement labels may appear only in positions 1 through 5. Labels may
appear only on the first line of a continued statement. Thus, positions 1
through 5 of continuation lines must contain blanks.

8. An END statement must not be continued. END also must not be an initial
line of a statement other than an END statement. For example, an
assignment statement for the variable ENDLESS may not be written as

END
+LESS = 3.0

because the initial line of this statement is identical to an END statement.

9. Any character from the processor character set (including graphic and
control characters) may be used in a character literal constant and character
edit descriptors, except that the processor is permitted to limit the use of
some of the control characters in such character contexts. Consult the
implementor’s documentation for such limitations.

3.3.3 Sample Program, Fixed Source Form

A sample program in fixed source form is:
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| PROGRAM LEFT_RIGHT

| REAL X(5), Y(5)

|C Print arrays X and Y

| PRINT 100, X, Y

| 100 FORMAT (F10.1, F10.2, F10.3, F10.4,
| 1 F10.5)

|

I

END

3.4 Rules for Fixed/Free Source Form

82

For many purposes, such as an included file (3.5), it is desirable to use a form
of the source code that is valid and equivalent for either free source form or
fixed source form. Such a fixed/free source form can be written by obeying the
following rules and restrictions:

1. Limit labels to positions 1 through 5, and statements to positions 7 through

72. These are the limits required in fixed source form.

. Treat blanks as significant. Because blanks are ignored in fixed source form,

using the rules of free source form will not impact the requirements of
fixed source form.

Use the exclamation mark (!) for a comment, but don’t place it in position
6, which indicates continuation in fixed source form. Do not use the C or *
forms for a comment.

. To continue statements, use the ampersand in both position 73 of the line

to be continued, and in position 6 of the continuation. Positions 74 to 80
must remain blank or have only a comment there. Positions 1 through 5
must be blank. The first ampersand continues the line after position 72 in
free source form and is ignored in fixed source form. The second
ampersand indicates continuation in fixed source form and in free source
form indicates that the text for the continuation of the previous line begins
after the ampersand.

3.4.1 Sample Program, Use with Either Source Form

A sample program that is acceptable for either source form is:
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123456789..... 73
| PROGRAM LEFT_RIGHT

[ REAL X(5), Y(5)

! Print arrays X and Y

| PRINT 100, X, Y

| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &

I

|

I

& F10.5)

END

3.5 The INCLUDE Line

Source text may be imported from another file and included within a program
file during processing. An INCLUDE line consists of the keyword INCLUDE
followed by a character literal constant. For example,

INCLUDE 'MY_COMMON_BLOCKS’

The specified text is substituted for the INCLUDE line before compilation and
is treated as if it were part of the original program source text. The location of
the included text is specified by the value of the character constant in some
processor-dependent manner. A frequent convention is that the character literal
constant is the name of a file containing the text to be included. Use of the
INCLUDE line provides a convenient way to include source text that is the
same in several program units. For example, the specification of interface
blocks or objects in common blocks may constitute a file that is referenced in
the INCLUDE line.

The form for an INCLUDE line is:
INCLUDE character-literal-constant
Rules and restrictions:

1. The character literal constant used must not have a kind parameter that is
a named constant.

2. The INCLUDE line is a directive to the compiler; it is not a Fortran
statement.

3. The INCLUDE line is placed where the included text is to appear in the
program.
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4. The INCLUDE line must appear on one line with no other text except
possibly a trailing comment. There must be no statement label.

5. INCLUDE lines may be nested. That is, a second INCLUDE line may
appear within the text to be included. The permitted level of nesting is not
specified and is processor dependent. However, the text inclusion must not
be recursive at any level; for example, included text A must not include
text B, which includes text A.

6. Afile intended to be referenced in an INCLUDE line must not begin or end
with an incomplete Fortran statement.

An example of a program unit with an INCLUDE line follows:

PROGRAM MATH

REAL, DIMENSION (10,5,79) = X, ZT
I Some arithmetic

INCLUDE 'FOURIER’

I More arithmetic

END

The Fortran source text in the file FOURIER in effect replaces the INCLUDE
line. The INCLUDE line behaves like a compiler directive.

3.6 Low-Level Syntax

The basic lexical elements of the language consist of the classes character
(R301), name (R304), constant (R305), intrinsic-operator (R310), defined-operator
(R311), and label (R313), which are defined in Appendix B.2. These items are
defined in terms of the classes letter, digit, underscore, and special-character which
are defined in Section 3.1.1.

3.7 Summary

3.7.1 The Fortran and Processor Character Sets

The Fortran character set consists of the 26 uppercase letters of the English
alphabetic, the 10 decimal digits, and 21 special characters. The processor
character set consists of the Fortran character set plus, as an option, a set of
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control characters with no graphics plus, as an option, a set of additional
characters with graphics. The characters of the default character type must
include the Fortran character set and may include other characters.

The processor may support other character sets, one for each nondefault
character type. Each of these additional character sets is a subset of the
processor character set and must contain a character designated as a blank
character.

The characters of the processor character set may be used in character context,
in comments, and in input/output records. (Recall that characters in a
character literal constant or in a character string edit descriptor are in character
context.) The processor may also represent and recognize lowercase letters.
However, each lowercase letter is considered the same as its corresponding
uppercase letter in all contexts except character context and input/output
records.

3.7.2 Low-Level Syntax and Lexical Tokens

A Fortran statement is constructed from low-level syntax. The lexical tokens
are the basic language elements. They are described by low-level syntax rules
in terms of the characters of the Fortran character set. The lexical tokens consist
of names, keywords, literal constants, labels, delimiters, operators, and various
other basic symbols such as =, =>, ;, i}, ;, and %.

3.7.3 Source Forms

Fortran has two source forms: fixed source form and free source form.

3.7.4 Fixed Source Form

Fixed source form is oriented towards a fixed-size record of 80 characters with
positional restrictions. Labels must be in positions 1 through 5, the Fortran
statements must be in positions 7 through 72, and positions 73 through 80 are
unused. If needed, a character in position 6 indicates the line is continuing the
previous line. Any line with the letter C or an asterisk in position 1 is a
comment. An exclamation (!) in any position except 6 and not in character
context indicates that the characters to the end of the line represent a comment.
More than one statement may be written on one line with a semicolon
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separating the statements. Blanks are insignificant except in a character
context; that is, they may be inserted anywhere within a statement. Of course,
they may be used to make the Fortran source text readable.

3.7.5 Free Source Form

Free source form is oriented towards variable-length records with no position
restrictions. Source records with up to 132 characters must be accepted by the
processor. Blanks are significant and must not be used within tokens,
particularly identifiers, keywords, literal constants, and multicharacter
operators. More than one statement may be written on one line with a
semicolon separating the statements. Comments begin with an exclamation (!)
and may appear on a separate line or at the end of any line. Lines are
continued by using an ampersand as the last nonblank character not in a
comment on the line to be continued and, optionally, using an ampersand as
the first character of the continued line. An ampersand may be used as the first
nonblank character on the continuation line to indicate that the continuation
line begins after the ampersand. If a character string is to be continued
between lines, ampersands can be used on both the end of the line to be
continued and at the beginning of the continued line so that no blanks are
inserted between the end of the continued line and the beginning of the
continuation line.

3.7.6 Source Form That Is Both Fixed and Free

Fortran statements can be written so that their form is acceptable for both fixed
and free source form. Briefly, the form of such statements must be that labels
appear in positions 1 through 5, statements in positions 7 through 72, blanks
are significant, the exclamation mark (!) is used to begin a comment in any
position except 6, and statements are continued by placing an ampersand in
position 73 of the continued line and in position 6 of the continuation line.

Within a given program unit, the source forms must not be mixed; that is, one
source form must be used throughout a program unit.

3.7.7 The INCLUDE Mechanism

An INCLUDE line specifies the location of text to be included in the source in
place of the INCLUDE line. The location is specified by a character string
which normally is the name of a file. The line before the INCLUDE line and the
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final line of the included text must not be continued. The first line of the
included text and the line after the INCLUDE line must not be continuation
lines. The included text may contain INCLUDE lines, provided that the
included text does not recurse directly or indirectly.
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Fortran was designed to give scientists and engineers an easy way to solve
problems using computers. Statements could be presented that looked like
formulas or English sentences. For example:

X=B+A*C
might be performing typical numeric calculations.
CX = SQRT (CY)
might be performing a calculation in the complex domain.
I=1+1
could be counting the number of times some calculation is performed.
IF (LIMIT_RESULTS .AND. X .GT. XMAX ) X = XMAX
could specify that a certain action is to be taken based on a logical decision.
PRINT *, "CONVERGENCE REACHED"

could be used to communicate the results of a calculation to a scientist or
engineer in a meaningful way.
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Each of these statements performs a task that makes use of a different type of

data.
Task Type of data
Calculating typical numeric results Real data
Calculating in the complex domain Complex data
Counting Integer data
Making decisions Logical data
Explaining Character data

These are the five commonly needed data types, and the Fortran language
provides them. Anything provided by the language is said to be intrinsic to
the language. Other types, not intrinsic to the language, may be specified by a
programmer; this is a facility that is new in Fortran 90. The new types are built
of (or derived from) the intrinsic types and thus are called derived types. The
Fortran 90 data types are categorized in Figure 4-1.

The type of the data determines the operations that can be performed on it. For
example:

Type of data Operations

Addition, subtraction, multiplication, division,

Real, complex, integer o - .
exponentiation, negation, comparison

Negation, conjunction, disjunction,

Logical and equivalence
Character Concatenation, comparison
User defined User defined

That is, the intrinsic types have the appropriate built-in (intrinsic) operations.
On the other hand, operations performed on data of user-defined type must
themselves be defined by the user.
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Fortran 90 data types

N\

Intrinsic types Derived types
Numeric types Nonnumeric types
Integer Real Complex Logical Character

Figure 4-1 Fortran 90 data types

This chapter discusses the data environment (the collection of necessary data
objects) for a problem solution. It explains what is meant by a data type in
Fortran 90. It then describes each of the intrinsic types. It ends with a
discussion of derived types and the facilities provided by the language that
allow users to define types and declare and manipulate objects of these types
in ways that are analogous to the ways in which objects of the intrinsic types
can be manipulated.

4.1 Building the Data Environment for a Problem Solution
When envisioning a computer solution to a problem, a scientist or engineer
usually focuses initially on the operations that must be performed and the

order in which they must be performed. It is a good idea, however, to consider
the variables that will be needed before determining all the computational
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steps that are required. The variables that are chosen, together with their types
and attributes, sometimes determine the course of computation, particularly
when variables of user-defined type are involved.

Choosing the Type and Other Attributes of a Variable. There are a number of
decisions to make about a variable in a program. Usually, if the variable is of
an intrinsic type, the intended use of the variable will readily determine its
type, so this is an easy decision. While type is the most important attribute of a
variable, there are other attributes. Certainly it will be necessary to decide very
early whether the variable is to be a single data object (a scalar) or an array.
Fortran 90 provides many new facilities for manipulating arrays as objects,
making it possible to specify computations as straightforward array operations
that, in Fortran 77, require program loops. The fact that these facilities exist
may have some influence on the choice.

Because Fortran 90 provides allocatable arrays and pointers, it is no longer
necessary to decide at the outset how big an array must be. In fact,
determining sizes may be postponed until the finished program is executed,
when sizes may be read in as input or calculated. Setting aside space for an
array may thus be deferred until the appropriate size needed for a particular
calculation is known. Before these dynamic facilities were added to the
language, it was necessary for array declarations to specify the maximum size
that would ever be needed in any execution of the program. This frequently
caused programs to consume a great deal more memory than was actually
required for a particular calculation or, if the size estimate was insufficient,
prevented the execution of a particular calculation, at least until the program
was recompiled. Now, instead of making a decision about the size of an array,
a programmer may decide to make the array a dynamic object.

Another decision that can be made about a variable is its accessibility. Control
of accessibility is a new feature available in modules. If the variable is needed
only within the module, then it can be kept private or hidden from other
program units which prevents it from being corrupted inadvertently. This new
feature can be used to make Fortran 90 programs safer and more reliable.

In addition to type, dimensionality, dynamic determination, and accessibility,
there are other attributes that can be applied to data objects. The attributes that
are permitted depend on where and how the object is to be used; for example,
there are a number of attributes that can be applied only to subprogram
arguments. All of the attributes of data objects are described in Chapter 5.
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Choosing the Kind of a Variable of Intrinsic Type. Once the type of a variable
is decided, it may be necessary for the programmer to consider which “kind”
of the type to use. “Kind” is a technical term that is new with Fortran 90. Each
of the intrinsic types may be specified with a kind parameter that selects a
processor-dependent representation of objects of that type and kind. If no kind
parameter is specified, the default kind is assumed. Fortran 77 does not have
kind parameters but it does provide two kinds for the real type: REAL and
DOUBLE PRECISION. It treats double precision real as a separate type, but it
is really a different kind of real. Fortran 90, while remaining compatible with
Fortran 77, treats it as a separate kind of real. That is, there are two ways to
declare real variables with higher precision in Fortran 90: one is with a REAL
statement specifying a nondefault kind, and the other is with a DOUBLE
PRECISION statement. Fortran 77 provides only one kind for the other four
types (integer, complex, logical, and character). Fortran 90 requires a processor
to support at least two kinds for the real and complex types and at least one
kind for the other three intrinsic types. An implementation may include any
number of additional kinds of any intrinsic type.

The Fortran 90 addition of kind parameters for each of the intrinsic types
addresses several problems that exist with Fortran 77.

1. Real. Programs with REAL and DOUBLE PRECISION declarations are not
numerically portable across machine architectures with different word
sizes. Each compiler vendor chooses a representation for the real type that
is efficient on the host machine. For example, a representation that will fit
into 32 bits is chosen on a 32-bit-word machine while a representation that
fits into 64 bits is chosen for a 64-bit-word machine. If 64 bits is required
for the numerical stability of the algorithm, DOUBLE PRECISION
declarations must be used on the 32-bit machine. When the program is
moved to a 64-bit machine, the DOUBLE PRECISION declarations must be
changed to REAL declarations because a 128-bit representation is not
needed and would degrade the performance of the program. With
Fortran 90, a programmer can use kind parameters in REAL declarations to
specify a required minimum precision. When the program is run on a 32-
bit machine, it will use two words for each real object. When the same
program (without any changes) is run on a 64-bit machine, one word will
be used. Some processors may provide more than two representations for
the real type. These could reflect different sizes or different methods of
representation such as the standard IEEE method and the native method.
Kind parameters give the Fortran 90 user access to and control over the use
of these different machine representations.
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Complex. The Fortran 77 standard does not require a double precision
complex type. This is an inconsistency that is corrected by the kind
parameters specified in the Fortran 90 standard. Fortran 90 does not need a
DOUBLE PRECISION COMPLEX declarative because it uses a COMPLEX
declarative with a nondefault kind parameter to specify double precision
complex. As with the real type, more than two representations for complex
may be available on a given processor, but at least two are required.

Character. The character data type usually has an underlying machine
representation of a single byte (8 bits). This is adequate to represent 28 or
256 different characters, which is more than enough for alphabetic
languages. However, ideographic languages, such as Japanese and
Chinese, have several thousand graphic symbols that require at least a
two-byte representation (16 bits). Japanese and Chinese scientists and
engineers need readable explanatory information in their printouts just as
American and European scientists and engineers do. To accommodate this
spectrum of users, Fortran 90 makes provision for (although it does not
require implementation of) different kinds of character data. Because these
additional kinds of character data are not required for standard-
conforming Fortran 90 processors, many processors intended for English-
speaking Fortran users may not support ideographic languages.
Nevertheless, the character kind mechanism allows an implementation to
support an alphabetic language or an ideographic language or both
simultaneously.

Logical. Because the logical data type has only two values (true and false),
it could be represented in a single bit. Fortran 77 requires that logical data
and real data be represented in the same size machine unit. This is
especially wasteful on 64-bit word machines. In Fortran 90, the default
logical type retains this requirement, but Fortran 90 permits alternative
representations of logical data; that is, a nondefault logical kind might be
represented in a byte on byte-addressable machines and in a bit on
machines that have large word sizes or small memories.

Integer. One motivation for alternative representations of integer data is
the same, to a lesser degree, as that for logical data: memory conservation.
An alternative representation might also provide an integer kind with a
very large range. As with the logical data type, only one representation is
required in a standard-conforming Fortran 90 processor, but more are
permitted.
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Choosing to Define a Type for a Variable. Sometimes it is easier to think about
an essential element of a problem as several pieces of related data, not
necessarily all of the same type. Arrays can be used to collect homogeneous
data (all of the same type) into a single variable. In Fortran 90, a structure is a
collection of nonhomogeneous data in a single variable. To declare a structure,
it is first necessary to define a type that has components of the desired types.
The structure is then declared as an object of this user-defined (or derived)
type. An example of objects declared to be of user-defined type was given in
Section 2.3.1. It is repeated here. First a type, named PATIENT, is defined; then
two structures JOHN_JONES and SALLY_SMITH are declared.

TYPE PATIENT
INTEGER PULSE_RATE
REAL TEMPERATURE
CHARACTER *300 PROGNOSIS
END TYPE PATIENT

TYPE (PATIENT) JOHN_JONES, SALLY_SMITH

Type PATIENT has three components, each of a different intrinsic type (integer,
real, and character). In practice, a type of this nature probably would have
even more components, such as the patient’s name and address, insurance
company, room number in the hospital, etc. For purposes of illustration, three
components are sufficient. JOHN_JONES and SALLY_SMITH are structures (or
variables) of type PATIENT. A type definition indicates names, types, and
attributes for its components; it does not declare any variables that have these
components. Just as with the intrinsic types, a type declaration is needed to
declare variables of this type. But because there is a type definition, any
number of structures can be created that have the components specified in the
type definition for PATIENT; subprogram arguments and function results can
be of type PATIENT; there can be arrays of type PATIENT, and operations can
be defined that manipulate objects of type PATIENT. Thus the derived-type
definition can be used merely as a way to specify a pattern for a particular
collection of related but nonhomogeneous data; but, because the pattern is
specified by a type definition, a number of other capabilities are available.
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4.2 What Is Meant by “Type” in Fortran?

96

Knowing exactly what is meant by type in Fortran becomes more important
now that a user can define types in addition to the intrinsic types. A data type
provides a means to categorize data and thus determine which operations may
be applied to the data to get desired results. For each data type there is:

1. aname

2. a set of values

w

a set of operations

>

a form for constants of the type

4.2.1 Data Type Names

Each of the intrinsic types has a name supplied by the standard. The names of
derived types must be supplied in type definitions. The name of the type is
used to declare entities of the type unless the programmer chooses to let the
processor determine the type of an entity implicitly by the first character of its
name. Chapter 5 describes declarations and implicit typing.

4.2.2 Data Type Values

Each type has a set of valid values. The logical type has only two values: true
and false. The integer type has a processor-dependent set of integral numeric
values that may be positive, negative, or zero. For complex or derived types,
the set of valid values is the set of all combinations of the values of the
individual components.

The kind of an intrinsic type determines the set of valid values for that type
and kind. For example, if there are two integer data types, the default type and
a “short” integer type, the short integer type will have a set of values that is
(probably) a subset of the default integer values. There must be two kinds of
the real data type to correspond to real and double precision in Fortran 77. In
most implementations, the higher-precision real kind permits a superset of the
values permitted for the lesser-precision real kind. The kind of a type is
referred to as a “kind parameter” or “kind type parameter” of the type. The
character data type has a length parameter as well as a kind parameter. The
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length parameter specifies the number of characters in an object, and this
determines the valid values for a particular character object. Derived types do
not have parameters, even though their components may.

4.2.3 Data Type Operations

For each of the intrinsic data types, a set of operations with corresponding
operators is provided by the language. These are described in Chapter 7.

A user may specify new operators and define operations for the new operators.
The form of a new operator is an alphabetic name of the user’s choice
delimited by periods. These new operators are analogous to intrinsic operators
such as .GT., .AND., and .NEQV. For example, a user might specify and
define the operations .PLUS., .REMAINDER., and .REVERSE. In defining
the operation, the types of allowable operands must be specified. Such new
operations may apply to objects of intrinsic type and in these cases extend the
set of operations for the type. Perhaps more often a user would define
operations for objects of derived type. It is not possible to redefine an intrinsic
operation, but it is possible to define meanings for intrinsic operator symbols
when at least one operand is not of an intrinsic type or for intrinsic operands
for which the intrinsic operation does not apply. For example, consider the
expression A + B. If both A and B are of numeric type, the operation is
intrinsically defined. However, if either A or B is of derived type or
nonnumeric type, then the plus operation between A and B is not intrinsically
defined, and the user may provide a meaning for the operation. New
operations are defined by functions with the OPERATOR interface. These are
described in Chapter 12.

Assignment is defined intrinsically for each intrinsic and derived type.
Structure assignment is component-by-component intrinsic or pointer
assignment, although this may be replaced by a defined assignment. No other
intrinsically defined assignment, including array assignment, can be redefined.
Beyond this, any assignment between objects of different type may be defined
with the ASSIGNMENT interface as described in Chapter 12.
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4.2.4 Forms for Constants

The language specifies the syntactic forms for literal constants of each of the
intrinsic types. Syntactic mechanisms (called derived-type constructors) specify
derived-type values and named constants. The form indicates both the type
and a particular member of the set of valid values for the type (see Table 4-1).
patient

Array constructors are used to specify arrays of any type.

Table 4-1  The form of a constant indicates both a type and a valid value of

the type

Syntax Type Value

1 integer 1
103.1 or 1.031E2 real 103.1

(2.0, 1.0) complex 1+

.TRUE. logical true
"Hello" character Hello

70

{PATIENT(710,99.7,"Recovering") patient 99.7

Recovering

If a constant is not of default kind, some indication of its kind must be
included in its syntactic form. This form is the default literal constant
separated from the kind value by an underscore. Kind specifications follow
integer, real, and logical values and precede character values. Kinds are known
to the processor as integer values, but if a program is to be portable, the actual
numbers should not be used because the kind values are processor dependent.
Instead, a kind value should be assigned to a named constant, and this name
should always be used. For example,
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real 1.3141592653589793238462643383_QUAD
complex (1.75963_HIGH, -2.0)

integer 7_SHORT

logical .FALSE. BYTE

character SPANISH_"Olé, Sefior"

where QUAD, HIGH, SHORT, BYTE, and SPANISH are named constants for
processor dependent kind values. The kind of a complex constant is
determined by the kind of its parts (see 4.3.3.4).

4.3 Intrinsic Data Types

The Fortran 77 data types are based on a storage model in which a real, integer,
and logical object each are represented in a numeric storage unit, and a
complex and double precision object each are represented in two numeric
storage units. A character in Fortran 77 is represented in a character storage
unit, which is different from a numeric storage unit. Fortran 90, while
remaining compatible with Fortran 77, extends this underlying model. The
default kinds for Fortran 90 intrinsic types conform to the Fortran 77 model.
That is, the storage units for default real kind, default integer kind, and default
logical kind must all be the same. Default complex (which is really two default
reals) requires two of these storage units, and double precision real requires
two of these storage units. Because Fortran 90 requires at least two
representations of the real type, one of these must require two storage units to
conform with the specifications for the Fortran 77 double precision type.

Beyond these requirements, Fortran 90 standard conforming processors may
provide additional representations for real, complex, integer, logical, and
character data that bear no relationship to an underlying storage model.
Variables of these other kinds may be declared. Literal constants of these other
kinds must be specified with an explicit indication of their kind.

Fortran 77 depends on COMMON statements to permit objects to be accessible
from more than one subprogram. COMMON statements depend on an
underlying storage model. Although Fortran 90 allows nondefault kinds of
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objects in COMMON statements, restrictions must be placed on their
appearance. Global access to any kind of object without such restrictions is
provided in Fortran 90 with modules.

Each of the intrinsic types is described below. The descriptions include a
simple statement form to show how objects of these types may be declared.
These simple forms do not give the complete story. If they are used to construct
statements, the statements will be correct, but other variations are permitted. A
complete form may be found in Section 5.1. The kind parameter that appears in
the forms is limited to a scalar integer initialization expression, which is
described in Section 7.2.9.2.

4.3.1 Integer Type

4.3.1.1 Name

The name of the integer type is INTEGER. A form that shows how integer
objects may be declared is:

INTEGER [ ( [ KIND = ] kind-parameter ) ] &
[, attribute-list :: ] entity-list

Examples are:

INTEGER X

INTEGER COUNT, K, TEMPORARY_COUNT
INTEGER (SHORT) PARTS

INTEGER, DIMENSION (0:9) :: SELECTORS, IX

4.3.1.2 Values

The integer data type has values that represent a subset of the mathematical
integers. The set of values varies from one processor to another. The intrinsic
inquiry function RANGE provides the decimal exponent range for integers of
the kind of its argument. Only one kind of integer is required by the standard,
but a processor may provide more. The intrinsic function KIND can be used to
determine the kind parameter of its integer argument.
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4.3.1.3

43.14

There is an intrinsic function, SELECTED_INT_KIND, that returns the integer
kind parameter required to represent as many decimal digits as are specified
by the function argument. If there is no such integer type available from the
processor, -1 is returned. For example:

INTEGER (SELECTED_INT KIND (5)) I, J

declares | and J to be integer objects with a representation method that permits
at least five decimal digits; that is, it includes all integers between —10° and

10°.

Operators

There are both binary and unary intrinsic operators for the integer type. Binary
operators have two operands and unary operators have only one. The binary
arithmetic operations for the integer type are: +, —, 0 /, and 11 The unary
arithmetic operations are + and —. The relational operations (all binary) are:
.LT., <, .LE., <=, .EQ., ==, .NE., /=, .GE., >=, .GT., and >. The result of an
intrinsic arithmetic operation on integer operands is an integer entity; the
result of an intrinsic relational operation is a logical entity of default logical
kind.

Form for Constant Values

An integer constant is a string of decimal digits, optionally preceded by a sign
and optionally followed by an underscore and a kind parameter.

The form of a signed integer literal constant (R403) is:
[ sign ] digit-string [ _ kind-parameter ]
where a sign is either + or — and the kind parameter is one of:

digit-string
scalar-integer-constant-name

Examples are:

42
9999999999999999999999 LONG
+64

10000000

-258_SHORT
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where LONG and SHORT are named constants with values that are valid
integer kind parameters for the processor.

Integer constants are interpreted as decimal values. However, in a DATA
statement, it is possible to initialize an object with a value that is presented as
if it had a nondecimal base. The allowed forms are unsigned binary, octal, and
hexadecimal constants.

A binary constant (R408) has one of the forms:

B digit [ digit ] ..°
B " digit [ digit ] .. "

where a digit is restricted to 0 or 1.
An octal constant (R409) has one of the forms:

O’ digit [ digit ] ...
o " digit [ digit ] .. "

where a digit is restricted to the values 0 through 7.
A hexadecimal constant (R410) has one of the forms:

z ' digit [ digit ] ...~
z " digit [ digit ] .. "

where a digit is 0 through 9 or one of the letters A through F (representing the
decimal values 10 through 15). If a processor supports lowercase letters, the
hexadecimal digits A through F may be represented by their lowercase
equivalents, a through f.

In these constants, the binary, octal, and hexadecimal digits are interpreted
according to their respective number systems. Examples (all of which have a
value equal to the decimal value 10 on a machine with a traditional
representation) are:

B"1010"
012
7 A

The standard does not specify what these bit patterns actually represent.
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4.3.2 Real Type

43.2.1

4.3.2.2

Name

The name of the real data type is REAL. The name DOUBLE PRECISION is
used for another kind of the real type. Forms that show how objects of real
type may be declared are:

REAL [ ( [ KIND = ] kind-parameter ) ] &
[, attribute-list :: ] entity-list
DOUBLE PRECISION[ , attribute-list :: ] entity-list

Examples are:

REAL X, Y
REAL (KIND = HIGH), SAVE : XY(10, 10)
REAL, POINTER :: A, B, C

DOUBLE PRECISION DD, DXY, D

Values

The values of the real data type approximate the mathematical real numbers.

The set of values varies from processor to processor. A processor must provide
at least two approximation methods for the real type. Each method has its kind
type parameter. One of the required approximation methods is for the default
real type and the other is for the double precision real type, which must have
more precision than the default real type.

Intrinsic functions are available to inquire about the representation methods
provided on a processor. The intrinsic function KIND can be used to determine
the kind parameter of its real argument. The intrinsic functions PRECISION
and RANGE return the decimal precision and exponent range of the
approximation method used for the kind of the argument. The intrinsic
function SELECTED_REAL_KIND returns the kind value required to represent
as many digits of precision as specified by the first argument and the decimal
range specified by the optional second argument. For example:

REAL (SELECTED_REAL_KIND (5)) X

declares X to have at least five decimal digits of precision and no specified
minimum range.

REAL (SELECTED_REAL KIND (8, 70)) Y
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declares Y to have at least eight decimal digits of precision and a range that
includes values between 10-70 and 1070 in magnitude.

Operators

The intrinsic binary arithmetic operators for the real type are: +, —, [J /, and 1]
The intrinsic unary arithmetic operators are; + and —. The relational operators
are: .LT., <, .LE., <=, .EQ., ==, .NE., /=, .GE., >=, .GT., and >. The result of
an intrinsic arithmetic operation on real operands is a real entity. If one of the
operands of an arithmetic operation is an integer entity, the result is still a real
entity. The result of an intrinsic relational operation is a logical entity of default
logical kind.

Forms for Constants

A real constant is distinguished from an integer constant by containing either a
decimal point, an exponent, or both. Forms for a signed real literal constant
(R412) are:

[ sign ] digit-string &

exponent-letter exponent [ _ kind-parameter ]
[ sign ] whole-part . [ fraction-part ] &

[ exponent-letter exponent ] [ _ kind-parameter ]
[ sign ] . fraction-part &

[ exponent-letter exponent ] [ _ kind-parameter ]

where the exponent letter (R415) is E or D, the whole part and fraction part are
digit strings (R401), and an exponent (R416) is a signed digit string. If both a
kind parameter and an exponent letter are present, the exponent letter must be
E. If a kind parameter is present, the real constant is of that kind; if a D
exponent letter is present, the constant is of type double precision real,
otherwise the constant is of type default real. A real constant may have more
decimal digits than will be used to approximate the real number. Examples of
signed real literal constants are:

-14.78
+1.6E3

2.1
-16.E4_HIGH
0.45_LOW
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.123
3E4
2.718281828459045D0

The parameters HIGH and LOW must have been defined and their values
must be kind parameters for the real data type permitted by the processor. If a
real literal constant has a kind parameter, it takes precedence over an exponent
letter, for example:

1.6E4_HIGH
will be represented by the method specified for HIGH, even though
1.6E4

would be represented by a different method.

4.3.3 Complex Type

4331

4.3.3.2

Name

The name of the complex type is COMPLEX. A form for declaring objects of
this type is:

COMPLEX[ ( [ KIND = ] kind-parameter ) ] &
[ , attribute-list :: ] entity-list

Examples are:

COMPLEX CC, DD
COMPLEX (KIND = QUAD), POINTER :: CTEMP ()

Values

The complex data type has values that approximate the mathematical complex
numbers. A complex value is a pair of real values; the first is called the real
part and the second is called the imaginary part. Each approximation method
used to represent data entities of type real is available for entities of type
complex with the same kind parameter values. Therefore, there are at least two
approximation methods for complex, one of which corresponds to default real
and one of which corresponds to double precision real. When a complex entity
is declared with a kind specification, this kind is used for both parts of the
complex entity. There is no special double precision complex declaration, as
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such. If no kind parameter is specified, the entity is of type default complex
which corresponds to default real. The SELECTED_REAL_KIND intrinsic
function may be used in a declaration of a complex object. For example:

COMPLEX (SELECTED_REAL_KIND (8, 70)) CX

CX must be represented by an approximation method with at least 8 decimal
digits of precision and at least a decimal exponent range between 10-70 and
1079 in magnitude for the real and imaginary parts.

Operators

The intrinsic binary arithmetic operators for the complex type are: +, —, J /,
and 11 The intrinsic unary arithmetic operators are: + and —. The intrinsic
relational operators are: .EQ., ==, .NE., and /=. The arithmetic operators
specify complex arithmetic; the relationals compare operands to produce
default logical results. The result of an intrinsic arithmetic operation on
complex operands is a complex entity. If one of the operands is an integer or
real entity, the result is still a complex entity.

Form for Constants

A complex literal constant is written as two literal constants that are real or
integer, separated by a comma, and enclosed in parentheses. The form for a
complex literal constant (R417) is:

( real-part , imaginary-part )

where the real part and imaginary part may be either a signed integer literal
constant (R403) or a signed real literal constant (R412).

Examples are:

(3.0, -3.0)
(6, -7.6E9)
(3.0_HIGH, 1.6E9_LOW)

A real kind parameter may be specified for either one of the two real values. If
a different real kind parameter is given for each of the two real values, the
complex value will have the kind parameter that specifies the greater precision,
unless the kind parameters specify the same precision. In this case one part is
converted to the kind of the other part, and the choice of which part is
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converted is processor dependent. If both parts are integer, each part is
converted to default real. If one part is of integer type and the other is of real
type, the integer value is converted to the kind and type of the real value.

4.3.4 Logical Type

434.1

4.3.4.2

4.3.4.3

Name

The name of the logical type is LOGICAL. A form for declaring objects to be of
this type is:

LOGICAL [ ( [ KIND = ] kind-parameter ) ] &
[ , attribute-list :: ] entity-list

Examples are:

LOGICAL IR, XT
LOGICAL (KIND = BIT), SAVE :: XMASK (3000)

Values

The logical data type has two values that represent true and false. A processor
is required to provide one logical kind, but may provide other kinds to allow
the packing of logical values; for example, one value per bit or one per byte.
(An object of default logical type must occupy the same unit of storage as an
object of default real type.) The KIND intrinsic function may be used to
determine the kind number of its argument. There is no
SELECTED_LOGICAL_KIND intrinsic function analogous to the functions
SELECTED_INT_KIND and SELECTED_REAL_KIND.

Operators

The intrinsic binary operators for the logical type are: conjunction (.AND.),
inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical
nonequivalence (or exclusive disjunction) (.NEQW.). The intrinsic unary
operation is negation (.NOT.).
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4.3.4.4 Form for Constants

There are only two logical literal constants. Optionally, they may be followed
by an underscore and a kind parameter. The forms for logical literal constants
(R421) are:

.TRUE. [ _ kind-parameter ]
.FALSE. [ _ kind-parameter ]

The kind parameter specified must be available on the processor. If a kind is
not specified, the type of the constant is default logical.

Examples are:
.FALSE.

.TRUE._BIT

4.3.5 Character Type

4.3.5.1

4.3.5.2

Name

The name of the character type is CHARACTER. Declarations for objects of
this type may take several different forms. One of these is:

CHARACTER [ ([ LEN =] length-parameter &
[, [ KIND =] kind-parameter ] ) ] &
[ , attribute-list :: ] entity-list

The length parameter length-parameter may be an asterisk or a specification
expression, which is described in Section 7.2.9.3. The various forms of the
CHARACTER statement are described in Section 5.1.6, but the following
examples use the form given above:

CHARACTER (80) LINE
CHARACTER (*, HANZI) GREETING
CHARACTER (LEN = 30, KIND = CYRILLIC), DIMENSION (10) :: C1

Values

The character data type has a set of values composed of character strings. A
character string is a sequence of characters, numbered from left to right 1, 2, ...,
n, where n is the length of (number of characters in) the string. Both length
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and kind are type parameters for the character type. If no length parameter is
specified, the length is 1. A character string may have length 0. The maximum
length permitted for character strings is processor-dependent.

A standard-conforming processor must support one character kind and may
support more. Each kind must contain a character designated as a blank that
can be used as a padding character in character operations and input/output
data transfer. The characters in all processor-supported character sets are
considered to be representable characters. The default character kind must
include the characters that make up the Fortran character set as described in
Section 3.1.1.

A partial collating sequence is required so that operations that compare
character objects containing only characters from the Fortran character set will
be portable across different processors. The blank must precede both the
alphabetic and numeric characters in the collating sequence. The alphabetic
characters, whether uppercase or lowercase (if lowercase is supported by the
processor), must be in the normal alphabetic sequence. The numeric characters
must be in the normal numeric sequence, 0, 1, ..., 9. Numeric characters and
alphabetic characters must not be interspersed. Other than blank, there are no
constraints on the position of the special characters and the underscore, nor is
there any specified relationship between the uppercase and lowercase
alphabetic letters. Thus, the standard does not require that a processor provide
the ASCII encoding, but does require intrinsic functions (ACHAR and
IACHAR) that convert between the processor’s encoding and the ASCII
encoding. Intrinsic functions (LGT, LGE, LLE, and LLT) provide comparisons
between strings based on the ASCII collating sequence.

Operators

The binary operation concatenation (//) is the only intrinsic operation on
character entities that has a character entity as a result. A number of intrinsic
functions are provided that perform character operations. These are described
in Chapter 13 and Appendix A. The intrinsic relational operators on objects of
type character are .LT., <, .LE., <=, .EQ., ==, .NE., /=, .GE., >=, .GT,, and
>. The relational operations may be used to compare character entities, but,
because of possible processor-dependent collating sequences, care must be
taken if the results are intended to be portable.

Data Types 109

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



1]l
N

110

4.3.5.4 Form for Constants

4.4 Derived Types

A character literal constant is written as a sequence of characters, enclosed
either by apostrophes or quotation marks. Forms for character literal constants
(R420) are:

[ kind-parameter _ ] ' [ representable-character | ...’
[ kind-parameter " [ representable-character ] ... "

where a representable character is any character in that character set kind that
the processor can represent. The use of control characters in character literal
constants may be restricted by the processor. Note that, unlike the other
intrinsic types, the kind parameter for the character literal constant precedes
the constant. The kind parameter specified must be available on the processor.
If a kind is not specified, the type of the constant is default character. If the
string delimiter character (either an apostrophe or quotation mark) is required
as part of the constant, two consecutive such characters with no intervening
blanks serve to represent a single such character in the string.

Examples are:

GREEK B3¢’
GERMAN_"gemditlichkeit"
"DON'T"

'DON"T’

The last two both have the value DON'T. A zero-length character constant may
be written as "" or

Unlike the intrinsic types that are defined by the language, derived types must
be defined by the programmer. It is intended that these types have the same

utility as the intrinsic types. That is, for example, variables of these types may
be declared, passed as procedure arguments, and returned as function results.

A derived-type definition specifies a name for the type; this name is used to
declare objects of the type. A derived-type definition also specifies components
of the type, of which there must be at least one. A component may be of
intrinsic or derived type; if it is of derived type, it can be resolved into
components, called the ultimate components. These ultimate components are
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of intrinsic type and may be pointers. If the complex type were not provided
by the language and had to be derived, it could be defined as a derived type
with two real components.

A type definition may contain the keywords PUBLIC and PRIVATE if the type
definition appears in a module. In general, entities specified in a module may
be kept private to the module and will not be available outside the module.
This is true of data objects, module subprograms, and type definitions. By
default, entities specified in a module are available to any program unit that
accesses the module. That is, they have PUBLIC accessibility by default. This
default can be changed by inserting a PRIVATE statement ahead of the
specifications and definitions in the module. Individual entities can be
specified to have either the PUBLIC or PRIVATE attribute regardless of the
default. For a type definition, one way this may be accomplished is by an
optional PUBLIC or PRIVATE specifier in the TYPE statement of the type
definition. Actually, the keyword PRIVATE may be used in two ways in type
definitions in a module. One makes the entire type private to the module; the
other allows the type name to be known outside the module, but not the names
or attributes of its components. A separate PRIVATE statement that mentions
the type name or a PRIVATE specifier in the TYPE statement of the type
definition provides the first of these. An optional PRIVATE statement inside
the type definition provides the second. There are examples of a private type
and a public type with private components in Section 4.4.1

A type definition may contain a SEQUENCE statement. In general, no storage
sequence is implied by the order of components in a type definition. However,
if a SEQUENCE statement appears inside the type definition, the type is
considered to be a sequence type. In this case, the order of the components
specifies a storage sequence for objects of the type so that such objects may
appear in COMMON and EQUIVALENCE statements. There is an example of a
sequence type in Section 4.4.1.

A derived type has a set of values that is every combination of the permitted
values for the components of the type. The language provides a syntax for
constants of complex type; it provides a somewhat similar mechanism, called a
structure constructor, to specify values of derived types. These constructors
can be used in PARAMETER statements and type declaration statements to
define derived-type named constants; they can be used in DATA statements to
specify initial values; and they can be used as structure-valued operands in
expressions.
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Special functions and subroutines are used to define operations on entities of
derived type. Thus, the four properties of the intrinsic types (possession of a
name, a set of values, a set of operations, and a syntactic mechanism to specify
constants) are also provided for derived types.

4.4.1 Derived-Type Definition

A type definition gives a new type a name and specifies the types and
attributes of its components. A type definition begins with a derived-type
statement of the general form:

TYPE type-name

ends with an END TYPE statement, and has component declarations in
between. An example is the definition of type PATIENT given earlier in this

chapter:
TYPE PATIENT
INTEGER PULSE_RATE
REAL TEMPERATURE

CHARACTER *300 PROGNOSIS
END TYPE PATIENT

More precisely, the form of a type definition (R422) is:

TYPE[ [, access-spec ] :: ] type-name
[ private-sequence-statement ] ...
component-definition-statement
[ component-definition-statement | ...

END TYPE][ type-name ]

where an access specifier is either PRIVATE or PUBLIC and a private-sequence
statement is PRIVATE or SEQUENCE. A type containing a SEQUENCE
statement is called a sequence type.

A component definition statement (R426) contains a type specification (R502).
A component definition has the form:

type-spec [ [ , component-attribute-list ] = ] &
component-declaration-list
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where component attributes (R427) are limited to POINTER and DIMENSION.
A component array (R428) must be a deferred-shape array if the POINTER
attribute is present; otherwise, it must be an explicit-shape array. A component
declaration (R429) has the form:

component-name [ ( component-array-spec ) | &
[ * character-length ]

Rules and restrictions:

1. The name of the derived type must not be the same as any locally
accessible name in the same class (14.2.1.2, item 4) and any intrinsic type; it
has the scope of local names declared in the scoping unit, which means
that it may be accessible by use or host association in other scoping units.
A component name has the scope of the type definition only; another type
definition in the same scoping unit may specify the same component name
(14.2.1.2, item 5).

2. If the END TYPE statement is followed by a name, it must be the name
specified in the derived-type statement.

3. A type may be defined at most once within a scoping unit.

4. A PRIVATE statement must not appear more than once in a given type
definition.

5. A SEQUENCE statement must not appear more than once in a given type
definition

6. The keywords PUBLIC and PRIVATE may appear only if the definition is
in the specification part of a module.

7. 1f SEQUENCE is present, all derived types specified as components must
also be sequence types.

8. There must be at least one component definition statement in a type
definition.

9. No component attribute may appear more than once in a given component
definition statement.

10. A component may be declared to have the same type as the type being
defined only if it has the POINTER attribute.
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11. An array component without the POINTER attribute must be specified
with an explicit-shape specification where the bounds are integer constant
expressions.

12. If a component is of type character with a specified length, the length must
be an integer constant specification expression. If the length is not
specified, it is 1.

An example of a derived-type definition with four components (three integer
and one character) is:

TYPE COLOR
INTEGER HUE, SHADE, INTENSITY
CHARACTER (LEN = 30) NAME
END TYPE COLOR

A form for declaring variables of derived type is:
TYPE ( type-name ) [, attribute-list :: ] entity-list
For example, variables of type COLOR may be declared as follows:

TYPE (COLOR) MY_FAVORITE
TYPE (COLOR) RAINBOW (7)
TYPE (COLOR), DIMENSION (100) :: CURRENT_SELECTIONS

The object MY_FAVORITE is a structure. The objects RAINBOW and
CURRENT_SELECTIONS are arrays of structures.

Note that the initial statement of a type definition and the statement used to
declare objects of derived type both begin with the keyword TYPE. The initial
statement of a type definition is called a derived-type statement, and the
statement used to declare objects of derived type is called a TYPE statement.
The type name in a derived-type statement is not enclosed in parentheses,
whereas the type name in a TYPE statement is.

A component of a structure is referenced using a percent sign, as in the
following template:

parent-structure % component-name
For example:

MY_FAVORITE % HUE
RAINBOW (3) % NAME
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Following are several examples of definitions of derived types. Each example
illustrates a different aspect of a type definition:

1. a derived type with a component of a different derived type
a derived type with a pointer component
a derived type with a pointer component of the type being defined

a private type definition

o > w D

a public type definition with private components
There is an example of a sequence type later in this section.

Example 1. A derived type may have a component that is of a different derived
type. The type WEATHER in the following example has a component of type
TEMPERATURES.

TYPE TEMPERATURES
INTEGER HIGH, LOW
END TYPE TEMPERATURES

TYPE WEATHER

CHARACTER (LEN = 32) CITY

TYPE (TEMPERATURES) RANGE (1950:2050)
END TYPE WEATHER

TYPE (WEATHER) WORLDWIDE (200)

WORLDWIDE is an array of type WEATHER. Components of an element of
the array are referenced as shown below.

WORLDWIDE (I) % CITY = "Nome"
WORLDWIDE (I) % RANGE (1990) % LOW = -83

Example 2. A derived type may have a component that is a pointer.

TYPE ABSTRACT
CHARACTER (LEN = 50) TITLE
INTEGER NO_OF_PAGES
CHARACTER, POINTER : TEXT()
END TYPE ABSTRACT
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Any object of type ABSTRACT will have three components: TITLE,
NO_OF_PAGES, and TEXT. TEXT is a pointer to an array of character strings,
each of which is of length one. The size of the array is determined during
program execution. The space for the target of TEXT may be allocated (6.5.1),
or TEXT may be pointer-assigned (7.5.3) to existing space.

Example 3. A derived type may have a pointer component that is of the type
being defined. This is useful in creating linked lists and trees. For example:

TYPE LINK
REAL VALUE
TYPE (LINK), POINTER : PREVIOUS
TYPE (LINK), POINTER : NEXT
END TYPE LINK

Example 4. A type definition in a module may be kept private to the module.

TYPE, PRIVATE :: FILE
INTEGER DRAWER_NO
CHARACTER (LEN 20) FOLDER_NAME
CHARACTER (LEN 5) ACCESS_LEVEL
END TYPE FILE

When a module containing this type definition is accessed by another scoping
unit, the type FILE is not available.

Example 5. A type definition may be public while its components are kept
private.

MODULE COORDINATES
TYPE POINT
PRIVATE
REAL X, Y
END TYPE POINT

END MODULE COORDINATES

In a program unit that uses module COORDINATES, variables of type POINT
may be declared; values of type POINT may be passed as arguments; and if the
program unit is a function, a value of type POINT may be returned as the
result. However, the internal structure of the type (its components) is not
available. If, at some future time, the type POINT is changed to (for example):
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TYPE POINT

PRIVATE

REAL RHO, THETA
END TYPE POINT

no other program unit that uses COORDINATES will have to be changed.

If a subprogram argument is of derived type, the corresponding actual
argument must be of the same type. There are two ways in which objects in
different scoping units may be declared to be of the same type. Two data
entities have the same type if they are declared with reference to the same type
definition. The definition may appear in a module that is accessed or, in the
case of an internal or module procedure, in the host scoping unit. For example:

MODULE SHOP

TYPE COMPONENT
CHARACTER (LEN = 20) NAME
INTEGER CATALOG_NO
REAL WEIGHT

END TYPE COMPONENT

TYPE (COMPONENT) PARTS(100)

CONTAINS

SUBROUTINE GET_PART (PART, NAME)
TYPE (COMPONENT) PART
CHARACTER (LEN = *) NAME
DO | = 1, 100

IF (NAME .EQ. PARTS(l) % NAME) THEN
PART = PARTS(l)
RETURN
END IF

END DO
PRINT *, "Part not available"
PART % NAME = "none"
PART % CATALOG_NO =0
PART % WEIGHT = 0.0

END SUBROUTINE GET_PART

END MODULE SHOP
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PROGRAM BUILD_MACHINE
USE SHOP
TYPE (COMPONENT) MOTOR(20)
TOTAL_WEIGHT = 0.0
CALL GET_PART (MOTOR(1), "VALVE")

TOTAL_WEIGHT = TOTAL_WEIGHT + MOTOR(1) % WEIGHT

END PROGRAM BUILD_MACHINE

Module procedure GET_PART has access to the type COMPONENT because
the type definition appears in its host. Program BUILD_MACHINE has access
to the type because it uses module SHOP. This allows a variable of the type,
such as MOTOR(1), to be passed as an actual argument.

The other way to declare data entities in different scoping units to be of the
same type is provided for programmers who, for some reason, choose not to
use a module. Instead of a single type definition in the module, a sequence
type may be defined in each of the scoping units that need access to the type.
Each of the type definitions must specify the same name; the SEQUENCE
property; have no PRIVATE components; and have components that agree in
order, name, and attributes. If this is the case, data entities declared in any of
these scoping units to be of the named type are considered to be of the same
type. The example for program BUILD_MACHINE above is restated to

illustrate the differences between the two ways:

PROGRAM BUILD_MACHINE
TYPE COMPONENT
SEQUENCE
CHARACTER (LEN = 20) NAME
INTEGER CATALOG_NO
REAL WEIGHT
END TYPE COMPONENT

TYPE (COMPONENT) PARTS, MOTOR(20)

COMMON /WAREHOUSE/ PARTS(100)
TOTAL_WEIGHT = 0.0
CALL GET_PART (MOTOR(1), "VALVE")

TOTAL_WEIGHT = TOTAL_WEIGHT + MOTOR(1) % WEIGHT

END PROGRAM BUILD_MACHINE

SUBROUTINE GET_PART (PART, NAME)
TYPE COMPONENT
SEQUENCE
CHARACTER (LEN = 20) NAME
INTEGER CATALOG_NO
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REAL WEIGHT
END TYPE COMPONENT
TYPE (COMPONENT) PART, PARTS
CHARACTER (LEN = *) NAME
COMMON /WAREHOUSE/ PARTS(100)
DO I = 1, 100
IF (NAME .EQ. PARTS(l) % NAME) THEN
PART = PARTS(l)
RETURN
END IF
END DO
PART % NAME = "none"
PART % CATALOG NO =0
PART % WEIGHT = 0.0
PRINT *, "Part not available"
END SUBROUTINE GET_PART

In this example, type COMPONENT in program BUILD_MACHINE and type
COMPONENT in subroutine GET_PART are the same because they are
sequence types with the same name; have no private components; and have
components that agree in order, name, and attributes. This allows variables of
the type to appear in COMMON and be passed as arguments. Note that this
example is less concise, particularly if there are more procedures that need
access to the type definition, and therefore may be more error prone than the
previous example.

Type COMPONENT is a sequence type because its definition contains a
SEQUENCE statement. If all of the ultimate components of a sequence type are
of type default integer, default real, double precision real, default complex, or
default logical, and are not pointers, the type is a numeric sequence type. An
object of numeric sequence type may appear in a common block that contains
only objects that occupy numeric storage units and be equivalenced to default
numeric objects without the restrictions that otherwise apply to objects of user-
defined type in COMMON and EQUIVALENCE statements. If all of the
ultimate components of a sequence type are of type default character and are
not pointers, the type is a character sequence type. An object of character
sequence type may appear in a common block that contains only objects that
occupy character storage units and be equivalenced to default character objects
without the restrictions that otherwise apply to objects of user-defined type in
COMMON and EQUIVALENCE statements.
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4.4.2 Derived-Type Values

The set of values of a derived type consists of all combinations of the
possibilities for component values that are consistent with the components
specified in the type definition.

4.4.3 Derived-Type Operations

Any operation on derived-type entities must be defined explicitly by a function
with an OPERATOR interface. Assignment, other than the intrinsic assignment
provided for entities of the same derived type, must be defined by a subroutine
with an ASSIGNMENT interface. These are described in Chapter 12.

A simple example is provided. Suppose it is desirable to determine the number
of words and lines in a section of text. The information is available for each
paragraph. A type named PARAGRAPH is defined as follows:

TYPE PARAGRAPH
INTEGER NO_OF WORDS, NO_OF LINES
CHARACTER (LEN = 30) SUBJECT

END TYPE PARAGRAPH

It is now desirable to define an operator for adding the paragraphs. An
OPERATOR interface is required for the function that defines the addition
operation for objects of type PARAGRAPH.

INTERFACE OPERATOR (+)
MODULE PROCEDURE ADDP
END INTERFACE

This definition of addition for objects of type PARAGRAPH adds the words
and lines, but does nothing with the component SUBJECT because that would
have no useful meaning.

TYPE (PARAGRAPH) FUNCTION ADDP (P1, P2)
TYPE (PARAGRAPH) P1, P2
ADDP % NO_OF WORDS = P1 % NO_OF WORDS + P2 % NO_OF WORDS
ADDP % NO_OF LINES = P1 % NO_OF LINES + P2 % NO_OF_LINES

END FUNCTION ADDP

If the following variables were declared:

TYPE (PARAGRAPH) BIRDS, BEES
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the expression BIRDS + BEES would be defined and could be evaluated in the
module subprograms as well as any program unit accessing the module.

4.4.4 Syntax for Specifying Derived-Type Constant Expressions

When a derived type is defined, a structure constructor for that type is defined
automatically. The structure constructor is used to specify values of the type. It
specifies a sequence of values, one for each of the components of the type. A
structure constructor whose values are all constant expressions is a derived-
type constant expression. A named constant of user-defined type may be given
such a value. Structure constructors are described in Section 4.5.

A component of a derived type may be an array (6.4). In this case a mechanism
called an array constructor is used to specify that component of a scalar value
of the type. An array constructor whose values are all constant expressions is
an array-valued constant expression. Such an expression may be specified for
an array component of a named constant. Array constructors have utility
beyond specifying the value of a component of a structure, however. They may
be used to specify array values for objects of any type including objects of
derived type. Array constructors are described in Section 4.6.

4.5 Structure Constructors

A structure constructor is a mechanism that is used to specify a scalar value of
a derived type by specifying a sequence of values for the components of the
type. If a component is of derived type, an embedded structure constructor is
required to specify the value of that component. A structure constructor is the
name of the type followed by a sequence of component values in parentheses.
For example, a value of type COLOR (defined in 4.4.1) may be constructed
with the following structure constructor:

COLOR (I, J, K, "MAGENTA")

The form for a structure constructor (R430) is:
type-name ( expression-list )

Rules and restrictions:

1. There must be a value in the expression list for each component.
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2. The expressions must agree in number and order with the components of
the derived type. Values may be converted to agree in type, kind, length,
and, in some cases, rank with the components. The conversions permitted
are those for intrinsic assignment where the component is the variable on
the left and the expression is the one given in the structure constructor
corresponding to the component.

3. If a component is specified as an explicit shape array, the values for it in
the expression list must agree in shape with the component.

4. If a component is a pointer, the value for it in the expression list must
evaluate to an allowable target for the pointer. A constant is not an
allowable target.

5. A structure constructor must not appear before that type is defined.

6. The structure constructor for a private type or a public type with private
components is not available outside the module in which the type is
defined.

If all of the values in a structure constructor are constants, the structure
constructor may be used to specify a named constant, for example:

PARAMETER ( TEAL = COLOR (14, 7, 3, "TEAL") )
PARAMETER ( NO_PART = COMPONENT ("none", 0, 0.0) )

Following are several examples of structure constructors for types with
somewhat different components:

1. atype with a component that is of derived type
2. atype with an array component
3. atype with a pointer component

Example 1. A structure constructor for a type that has a derived type as a
component must provide a value for each of the components. A component
may be of derived type, in which case a structure constructor is required for
the component. In the example below, type RING has a component of type
STONE.
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TYPE STONE
REAL CARETS
INTEGER SHAPE

CHARACTER (30) NAME
END TYPE STONE

TYPE RING
REAL EST_VALUE
CHARACTER (30) INSURER
TYPE (STONE)  JEWEL
END TYPE RING

If OVAL is a named integer constant, a structure constructor for a value of type
RING is:

RING (5000.00, “Lloyds", STONE (2.5, OVAL, “"emerald") )

Example 2. If a type is specified with an array component, the value that
corresponds to the array component in the expression list of the structure
constructor must conform with the specified shape. For example, type
ORCHARD has an array component:

TYPE ORCHARD

INTEGER AGE, NO_OF TREES
CHARACTER (LEN = 20) VARIETIES (10)
END TYPE

Given the declarations:

CHARACTER (LEN = 20) CATALOG (16, 12)
PARAMETER (LEMON = 3)

a structure constructor for a value of type ORCHARD is:
ORCHARD (5, ROWS * NO_PER_ROW, CATALOG (LEMON, 1:10) )

Example 3. When a component of the type is a pointer, the corresponding
structure constructor expression must evaluate to an object that would be an
allowable target for such a pointer in a pointer assignment statement (7.5.3). If
the variable SYNOPSIS is declared:

CHARACTER, TARGET : SYNOPSIS (4000)
a value of the type ABSTRACT (defined in 4.4.1) may be constructed:

ABSTRACT ("War and Peace", 1025, SYNOPSIS)
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A constant expression cannot be constructed for a type with a pointer
component because a constant is not an allowable target in a pointer
assignment statement.

4.6 Array Constructors

An array constructor is used to specify the value of an array. More precisely, an
array constructor is a mechanism that is used to specify a sequence of scalar
values that is interpreted as a rank-one array. Syntactically, it is a sequence of
scalar values and implied-do specifications enclosed in parentheses and
slashes. For example:

REAL VECTOR_X(3), VECTOR_Y(2), RESULT(100)
RESULT (1: 8) = (/ 1.3, 5.6, VECTOR_X, 2.35, VECTOR_Y /)

The value of the first eight elements of RESULT is constructed from the values
of VECTOR_X and VECTOR_Y and three real constants in the specified order.
If a rank-two or greater array appears in the value list, the values of its
elements are taken in array element order. If it is necessary to construct an
array of rank greater than one, the RESHAPE intrinsic function may be applied
to an array constructor.

The form for an array constructor (R431) is:
(/ ac-value-list /)

where an ac-value is either an expression (R723) or an ac-implied-do. The form
for an ac-implied-do (R433) is:

( ac-value-list , ac-do-variable = scalar-integer-expression , &
scalar-integer-expression [ , scalar-integer-expression ] )

Rules and restrictions:

1. Each ac-value expression in the array constructor must have the same type
and type parameters, including length parameters.

2. The type and type parameters of an array constructor are those of its ac-
value expressions.

3. If there are no ac-value expressions or the ac-implied-do yields no values,
the array is a rank-one, zero-sized array.
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4. An ac-do-variable must be a scalar integer named variable. This variable
has the scope of this ac-implied-do.

5. If an ac-implied-do is contained within another ac-implied-do, they must
not have the same ac-do-variable.

There are three possibilities for an ac-value:
1. It may be a scalar expression as is each ac-value in:
(/ 1.2, 35, 1.1 /)
2. It may be an array expression as is each ac-value in:
( A (I, 1:3), A (I+1, 6:8) /)
3. It may be an implied-do specification as in:
(/ (SQRT (REAL (I)) , 1 =1, 9) /)
Of course, the possibilities may be mixed in a single array constructor as in:
(/ 1.2, B (2:6,), (REAL (I) .1 =1, N), 35/

If an ac-value is an array expression, the values of the elements of the
expression in array element order (6.4.7) become the values of the array
constructor. For example, the values that result from the example in possibility
2 above are:

( AL, A(,2), A(L3), A(+1,6), A(I+1,7), A(I+1,8) /)

If an ac-value is an implied-do specification, it is expanded to form a sequence
of values under control of the ac-do-variable as in the DO construct (8.5). For
example, the values that result from the example in possibility 3 above are:

(/1.0, 1.414, 1.732, 2.0, 2.236, 2.449, 2.645, 2.828, 3.0/)

If every expression in an array constructor is a constant expression, the array
constructor is a constant expression as in the example above. Such an array
constructor may be used to give a value to a named constant, for example:

REAL X(3), EXTENDED_X(4)
PARAMETER (X = (/ 2.0, 4.0, 6.0 /) )
PARAMETER (EXTENDED X = (/ 0.0, X /) )
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Following are several examples of array constructors. Examples 1 and 2
demonstrate the construction of arrays; examples 3 and 4 demonstrate the
construction of values of derived type when the type has an array component:

1. aconstructor for a rank-two array

2. aconstructor for an array of derived type

3. aconstructor for a value of derived type with an array component

4. a constructor for a value of derived type with a rank-two array component

Example 1. To create a value for an array of rank greater than one, the
RESHAPE intrinsic function (A.88) must be used. With this function, a one-
dimensional array may be reshaped into any allowable array shape.

Y = RESHAPE (SOURCE = (/ 2.0, (/ 45, 40 /), Z I), &
SHAPE = (/ 3, 2 /)

If Z has the value given in possibility 1 above, then Y is a 3 x 2 array with the
elements:

2.0 1.2
4.5 35
4.0 11

Example 2. It may be necessary to construct an array value of derived type.

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 40) NAME
END TYPE PERSON

TYPE (PERSON) CAR_POOL (3)

CAR_POOL = (/ PERSON (35, "SCHMITT"), &
PERSON (57, "LOPEZ"), PERSON (26, "YUNG") /)

Example 3. When one of the components of a derived type is an array, then an
array constructor must be used in the structure constructor for a scalar value of
the derived type. Suppose that the definition for type COLOR differed slightly
from that given above:

Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



N
1]

4.7 Summary

TYPE COLOR
INTEGER PROPERTIES (3)
CHARACTER (LEN = 30) NAME
END TYPE COLOR

A value of the revised type COLOR can be constructed:
COLOR ((/ 5, 20, 8 /), "MAGENTA")

Example 4. A derived type might contain an array of rank two or greater.

TYPE LINE
REAL COORD (2, 2)
REAL WIDTH

INTEGER PATTERN
END TYPE LINE

where the values of COORD are the coordinates X,, y; and x,, y, representing
the end points of a line; WIDTH is the line width in centimeters; and PATTERN
is 1 for a solid line, 2 for a dashed line, and 3 for a dotted line. An object of
type line is declared and given a value as follows:

TYPE (LINE) SLOPE

SLOPE = LINE (RESHAPE ((/ 0.0, 1.0, 0.0, 2.0 /), &
(/2,21),01 1)

The RESHAPE intrinsic function is used to construct a value that represents a
solid line from (0, 0) to (1, 2) of width 0.1 centimeters.

The following are intrinsic data types in both Fortran 77 and Fortran 90:

integer
real
complex
logical
character

Type is the most important attribute of a data entity, but there are others such
as dimensionality. The other attributes are described in Chapter 5.
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Fortran 90 introduces two new ideas to the Fortran 77 data capabilities: kind
parameters for the intrinsic types and nonintrinsic, derived (or user-defined)

types.

The Fortran 90 standard requires a processor to provide two different kinds of
each of the real and complex types and allows a processor to provide other
kinds of real and complex types. A standard-conforming processor must
provide one kind for each of the integer, logical, and character types, and may
provide more. Examples of type declarations are:

REAL PRESSURE(500)
INTEGER (SHORT) AGE
COMPLEX (QUAD) SOLUTION

PRESSURE is a real array variable of rank one. AGE is an integer variable of
kind SHORT where SHORT is a named constant whose value is a processor-
dependent kind number for the integer type. SOLUTION is a complex variable
of kind QUAD where QUAD is a named constant whose value is a processor-
dependent kind number for the real data type.

A data type in Fortran has a name, a set of values, a set of operations, and a
means to represent constants of the type. This is the case for the intrinsic types
as well as for the new derived types.

The five intrinsic types and their various kinds may be used as components to
derive other types. A type definition specifies the name of the new type as well
as the names and attributes of its components. A component may be of derived
type and may be a pointer or an array. An example of a simple type is:

TYPE EMPLOYEE
CHARACTER (LEN = 30) NAME
INTEGER SSN
INTEGER (SHORT) EMP_NO

END TYPE EMPLOYEE

An object of user-defined type is called a structure. The name of the user-
defined type is used to declare structures of the type. For example:

TYPE (EMPLOYEE) J_JONES, W_WILLIAMS, JANITOR

Operations for the intrinsic types are provided by the language, whereas
operations for derived types must be defined in terms of functions provided by
the user. A means, called a structure constructor, is provided to specify a value
of derived type. For example:
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J_JONES = EMPLOYEE ("Jones, John", 123456789, 35)

Structure constructors may be used to create nonconstant values of derived
type as well.

Array constructors are also provided to create array-valued objects. These may
be array components in structures or arrays of any intrinsic or derived type. If
all the values specified are constant, the result is an array-valued constant
expression. For example:

PRESSURE(L:5) = (/ 80., 45.1, 100., 23.5, 60. /)
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Declarations 5

Declarations are used to specify the type and other attributes of program
entities. The attributes that an entity possesses determine how the entity may
be used in a program. Every variable and function has a type, which is the
most important of the attributes; type is discussed in Chapter 4. However, type
is only one of a number of attributes that an entity may possess. Some entities,
such as subroutines and namelist groups, do not have a type but may possess
other attributes. In addition, there are relationships among objects that can be
specified by EQUIVALENCE, COMMON, and NAMELIST statements.
Declarations are used to specify these attributes and relationships.

In general, Fortran keywords are used to declare the attributes for an entity.
The following list summarizes these keywords:

Type INTEGER
REAL (and DOUBLE PRECISION)
COMPLEX
LOGICAL
CHARACTER
TYPE (user-defined name)

Array properties DIMENSION
ALLOCATABLE

Pointer properties POINTER
TARGET
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DATA

Settng values PARAMETER

PUBLIC
PRIVATE
Object accessibility and use  INTENT
OPTIONAL
SAVE

EXTERNAL

Procedure properties INTRINSIC

The attributes are described and illustrated in turn using each of the two forms
that attribute specifications may take: entity-oriented and attribute-oriented.

In Fortran 77, it is necessary to use a different statement for each attribute
given to a variable or a collection of variables, for example:

INTEGER A, B, C
SAVE A B, C

In Fortran 90, for objects that have a type, the other attributes may be included
in the type declaration statement. For example:

INTEGER, SAVE : A, B, C

Collecting the attributes into a single statement is sometimes more convenient
for readers of programs. It eliminates searching through many declaration
statements to locate all the attributes of a particular object. Emphasis can be
placed on an object and its attributes (entity-oriented declaration) or on an
attribute and the objects that possess the attribute (attribute-oriented
declaration), whichever is preferred by a programmer. In both forms,
dimensionality may be specified as an attribute or as an attachment to the
object name. For example:

® entity-oriented declarations
REAL, DIMENSION(20), SAVE : X
or

REAL, SAVE :: X(20)
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® attribute-oriented declarations

REAL X
DIMENSION X(20)
SAVE X

or

REAL X (20)
SAVE X

In the following description of each attribute, the entity-oriented method of
specification is described first, followed by the attribute-oriented. In most cases
these are equivalent, but not always.

If no attributes are declared for a data object, defaults apply. In general, if an
attribute is not specified for an object, it is assumed that the object does not
possess the attribute. However, every data object has a type, and if this is not
explicitly specified, it is assumed from the first letter of its name. The
IMPLICIT statement may be used to specify any intrinsic or user-defined type
for an initial letter or a range of initial letters. The IMPLICIT NONE statement,
on the other hand, removes implicit typing and thus requires explicit type
declarations for every named data object in the scoping unit.

Fortran 90 provides new dynamic data objects that can be sized at the time a
program is executed. These include allocatable arrays and objects with the
POINTER attribute. They also include automatic data objects (arrays of any
type and character strings) that are created on entry into a procedure. Only
objects whose size may vary are called automatic.

Other declarations (NAMELIST, EQUIVALENCE, and COMMON) establish
relationships among data objects. The NAMELIST statement is used to name a
collection of objects so that they can be referenced by a single name in an
input/output statement. In Fortran 77, storage (the location of an object in a
computer’s memory) is an important concept. EQUIVALENCE is used to
reference storage by more than one name. COMMON is used to share storage
among the different units of a program. Fortran 90 provides new features that
deemphasize the concept of storage. Objects may be referenced by name, and
modules (11.6) provide shared access to named objects. In new programs, there
is no need for COMMON and EQUIVALENCE statements; they are provided
in Fortran 90 for compatibility with existing Fortran 77 programs.
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5.1 Type Declaration Statements

A type statement begins with the name of the type, optionally lists other
attributes, then ends with a list of variables that possess these attributes. In
addition, a type declaration statement may include an initial value for a
variable. It must include the value of a named constant. The form of a type
declaration statement (R501) is:

type-spec [ [ , attribute-spec ] ... :: ] entity-declaration-list
where a type specification (R502) is one of:

INTEGER [ kind-selector ]

REAL [ kind-selector ]

DOUBLE PRECISION
COMPLEX kind-selector ]
CHARACTEN character-selector ]
LOGICAL [ kind-selector ]

TYPE ( type-name )

with a kind selector (R505) taking the form:
( [ KIND = ] scalar-integer-initialization-expression )
and where an attribute specification (R503) is one of;

PARAMETER
access-spec
ALLOCATABLE
DIMENSION ( array-spec )
EXTERNAL

INTENT ( intent-spec )
INTRINSIC

OPTIONAL

POINTER

SAVE

TARGET

with an access specification being either PUBLIC or PRIVATE. An entity
declaration (R504) has one of the forms:

object-name [ ( array-spec ) ] [ * character-length | &
[ = initialization-expression ]
function-name [ ( array-spec ) ] [ * character-length ]
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Rules and restrictions:

1. The type specification may override or confirm the implicit type indicated
by the first letter of the entity name according to the implicit typing rules
in effect.

2. The same attribute must not appear more than once in a given type
declaration statement.

3. An entity must not be given any attribute more than once in a scoping unit.

4. The value specified in a kind selector must be a kind type parameter
allowed for that type by the implementation.

5. The character length option may appear only when the type specification is
CHARACTER.

6. If an initialization expression appears, a double colon separator must be
used.

7. Aninitialization expression must be included if the PARAMETER attribute
is specified.

8. A function name must be the name of an external function, an intrinsic
function, a function dummy procedure, or a statement function.

9. An array function name must be specified as an explicit-shape array
(5.3.1.1) unless it has the POINTER attribute, in which case it must be
specified as a deferred-shape array (5.3.1.3).

There are other rules and restrictions that pertain to particular attributes; these
are covered in the sections describing that attribute. The attributes that may be
used with the attribute being described are also listed. The simple forms that
appear in the following sections to illustrate attribute specification in a type
declaration statement seem to imply that the attribute being described must
appear first in the attribute list, but this is not the case; attributes may appear
in any order. If these simple forms are used to construct statements, the
statements will be correct, but other variations are permitted. The complete
form appears earlier in this section.

Some example type declaration statements are:

REAL A(10)
LOGICAL, DIMENSION(5, 5) :: MASK_1, MASK_2
COMPLEX :: CUBE_ROOT = (-0.5, 0.867)
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INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND(4)
INTEGER(SHORT) K ! Range of -9999 to 9999
REAL, ALLOCATABLE :: A1(, :), A2(, : 3)

TYPE(PERSON) CHAIRMAN

TYPE(NODE), POINTER :: HEAD_OF_CHAIN, END_OF_CHAIN
REAL, INTENT(IN) :: ARG1

REAL, INTRINSIC :: SIN

5.1.1 Integer

An INTEGER statement declares the names of entities to be of type integer
(4.3.1). If a kind selector is present, it specifies the representation method. A
simple form for declaring objects of this type is:

INTEGER[ ( [ KIND = ] kind-value ) ] [, attribute-list :: ] entity-list
For example:
® entity-oriented

INTEGER, DIMENSION(:), POINTER : MILES, HOURS
INTEGER (SHORT), POINTER :: RATE, INDEX

® attribute-oriented

INTEGER MILES, HOURS

INTEGER (SHORT) RATE, INDEX
DIMENSION MILES (}), HOURS ()
POINTER MILES, HOURS, RATE, INDEX

5.1.2 Real
A REAL statement declares the names of entities to be of type real (4.3.2). If a
kind selector is present, it specifies the representation method. A simple form
for declaring objects of this type is:
REAL[ ( [ KIND =] kind-value ) ] [, attribute-list :: ] entity-list
For example:
® entity-oriented
REAL (KIND = HIGH), OPTIONAL : VARIANCE
REAL, SAVE : A1(10, 10), A2(100, 10, 10)
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® attribute-oriented

REAL (KIND = HIGH) VARIANCE
REAL A1(10, 10), A2(100, 10, 10)
OPTIONAL VARIANCE

SAVE Al, A2

5.1.3 Double Precision

A DOUBLE PRECISION statement declares the names of entities to be of type
real with a representation method that represents more precision than the
default real representation (4.3.2). DOUBLE PRECISION is not needed in
Fortran 90, as REAL with the appropriate kind parameter value is equivalent.
A kind selector is not permitted in the DOUBLE PRECISION statement. A
simple form for declaring objects of this type is:

DOUBLE PRECISION[ , attribute-list :: ] entity-list
For example:
® entity-oriented

DOUBLE PRECISION, DIMENSION(N,N) :: MATRIX_A, MATRIX_B
DOUBLE PRECISION, POINTER :: C, D, E, F(, )

® attribute-oriented
DOUBLE PRECISION MATRIX_A, MATRIX_B, C, D, E, F
DIMENSION MATRIX_A (N, N), MATRIX_B (N, N), F(, )
POINTER C, D, E, F

If DOUBLE is a named integer constant that has the value of the kind
parameter of the double precision real type, the entity-oriented declarations
above could be written as:

REAL (DOUBLE), DIMENSION (N,N) :: MATRIX_A, MATRIX_B
REAL (DOUBLE), POINTER :: C, D, E, F(,)

5.1.4 Complex

A COMPLEX statement declares the names of entities to be of type complex
(4.3.3). If a kind selector is present, it specifies the representation method. A
simple form for declaring objects of this type is:

COMPLEX ( [ KIND =] kind-value ) ] [, attribute-list :: ] entity-list
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For example:
® entity-oriented

COMPLEX (KIND = LOW), POINTER :: ROOTS()
COMPLEX, POINTER :: DISCRIMINANT, COEFFICIENTS ()

® attribute-oriented

COMPLEX (KIND = LOW) ROOTS()
COMPLEX DISCRIMINANT, COEFFICIENTS ()
POINTER ROOTS, DISCRIMINANT, COEFFICIENTS

5.1.5 Logical

A LOGICAL statement declares the names of entities to be of type logical
(4.3.4). If a kind selector is present, it specifies the representation method. A
simple form for declaring objects of this type is:

LOGICAL [ ( [ KIND =] kind-value ) ] [ , attribute-list :: ] entity-list
For example:
® entity-oriented

LOGICAL, ALLOCATABLE :: MASK_1(:), MASK_2()
LOGICAL (KIND = BYTE), SAVE :: INDICATOR, STATUS

® attribute-oriented
LOGICAL MASK_1(:), MASK_2(:)
LOGICAL (KIND = BYTE) INDICATOR, STATUS

ALLOCATABLE MASK_1, MASK_2
SAVE INDICATOR, STATUS

5.1.6 Character

A CHARACTER statement declares the names of entities to be of type
character (4.3.5). A simple form for declaring objects of this type is:

CHARACTER character-selector | [ , attribute-list :: ] entity-list

The length of a character entity may be specified in a character selector (R506).
It has one of the forms:
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length-selector

( LEN = type-param-value , &
KIND = kind-value )

( type-param-value , &
[ KIND = ] kind-value )

( KIND = kind-value &
[ . LEN = type-param-value ] )

where a length selector (R507) has one of the forms:

( [ LEN =] type-param-value )
* character-length [ , ]

and a character length (R508) has one of the forms:

( type-param-value )
scalar-integer-literal-constant

where a type parameter value (R509) is one of:

specification-expression
*

Rules and restrictions:

1. The optional comma in a length selector is permitted only if no double
colon separator appears in the type declaration statement.

2. A character type declaration that appears in a procedure or a procedure
interface and that is not a component declaration in a derived-tpe
definition may specify a character length that is a nonconstant expression.
The length is determined on entry into the procedure and is not affected by
any changes in the values of variables in the expression during the
execution of the procedure. A character object declared this way that is not
a dummy argument is called an automatic data object.

3. The length of a named character entity or a character component in a type
definition is specified by the character selector in the type specification
unless there is a character length in an entity or component declaration; if
so, the character length specifies an individual length and overrides the
length in the character selector. If a length is not specified in either a
character selector or a character length, the length is 1.
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If the length parameter has a negative value, the length of the character
entity is 0.

The scalar integer literal constant that specifies a character length must not
include a kind parameter. (This could produce an ambiguity when fixed
source form is used.)

a.

. A length parameter value of 0may be used only in the following ways:

It may be used to declare a dummy argument of a procedure, in which
case the dummy argument assumes the length of the associated actual
argument when the procedure is invoked.

It may be used to declare a named constant, in which case the length is
that of the constant value.

It may be used to declare the result variable for an external function.
Any scoping unit that invokes the function must declare the function
with a length other than O or it must access such a declaration by host
or use association. When the function is invoked, the length of the
result is the value specified in the declaration in the program unit
referencing the function.

Note that an implication of this rule is that a length of Omust not appear in
an IMPLICIT statement.

. A function name must not be declared with a length of Oif the function is

an internal or module function, or if it is array-valued, pointer-valued, or
recursive.

The length of a character-valued statement function or statement function
dummy argument of type character must be an integer constant
expression.

Examples of character type declaration statements are:

® entity-oriented

CHARACTER (LEN = 10, KIND = KANJI), SAVE : GREETING(2)
CHARACTER (10) :: PROMPT = "PASSWORD?"

CHARACTER (*), INTENT(IN) :: HOME_TEAM, VISITORS
CHARACTER *3, SAVE : NORMAL_1, LONGER(9) *20, NORMAL_2
CHARACTER : GRADE = "A"
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® attribute-oriented

CHARACTER (LEN = 10, KIND = KANJI) GREETING(2)
CHARACTER (10) PROMPT

CHARACTER (*) HOME_TEAM, VISITORS

CHARACTER *3 NORMAL_1, LONGER(9) *20, NORMAL_2
CHARACTER GRADE

SAVE GREETING, NORMAL_1, LONGER, NORMAL_2
INTENT (IN) HOME_TEAM, VISITORS

DATA PROMPT / "PASSWORD?" / GRADE / "A" /

5.1.7 Derived Type

A TYPE declaration statement declares the names of entities to be of the
specified user-defined type (4.4). The type name appears in parentheses
following the keyword TYPE. A form for declaring objects of user-defined type
is:

TYPE ( type-name ) [, attribute-list :: ] entity-list
For example, using types defined in Chapter 4:
® entity-oriented

TYPE (COLOR), DIMENSION (:), ALLOCATABLE : HUES_OF_RED
TYPE (PERSON), SAVE : CAR_POOL (3)
TYPE (PARAGRAPH), SAVE : OVERVIEW, SUBSTANCE, SUMMARY

® attribute-oriented

TYPE (COLOR) HUES_OF_RED

TYPE (PERSON) CAR_POOL(3)

TYPE (PARAGRAPH) OVERVIEW, SUBSTANCE, SUMMARY
DIMENSION HUES_OF RED ()

ALLOCATABLE HUES_OF RED

SAVE CAR_POOL, OVERVIEW, SUBSTANCE, SUMMARY

Rules and restrictions:

1. An object of derived type must not have the PUBLIC attribute if its type is
private.

2. A structure constructor (4.5) must be used to initialize an object of derived
type. Each component of the structure must be an initialization expression.
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5.2 Implicit Typing

142

Each variable, named constant, and function has a type and a name. If the type
is not declared explicitly, it is assumed from the first letter of the name. This
method of determining type is called implicit typing. In each scoping unit,
there is in effect a mapping of each of the letters A, B, ..., Z to one of the
accessible types or to no type. IMPLICIT statements in a scoping unit may be
used to specify a mapping different from the default mapping; this makes it
easier to transform an external procedure into an internal or module
procedure. If a new mapping for a letter is not specified in an IMPLICIT
statement, the default mapping continues to apply for that letter. An IMPLICIT
NONE statement specifies that there is no mapping for any letter and thus all
variables, named constants, and functions must be declared in type declaration
statements. If the host of a scoping unit contains the IMPLICIT NONE
statement and the scoping unit contains IMPLICIT statements for some letters,
the other letters retain the null mapping. This is the only situation in which
some initial letters specify an implied type and other initial letters require
explicit declarations. A program unit is treated as if it had a host with the
mapping shown in Figure 5-1. That is, each undeclared variable or function
whose name begins with any of the letters I, J, K, L, M, or N is of type integer
and all others are of type real.

Real Integer Real

A A A
N \ 7 ~N

r
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure 5-1 Default implicit mapping for a program unit

The IMPLICIT statement (R540) has two forms:

IMPLICIT type-spec ( letter-spec-list )
IMPLICIT NONE

where a letter specification (R542) is:
letter [ - letter ]
Rules and restrictions:

1. If IMPLICIT NONE appears, it must precede any PARAMETER statements
and there must be no other IMPLICIT statements in the scoping unit.
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2. If the — letter option appears in a letter specification, the second letter must
follow the first alphabetically.

3. The same letter must not appear as a single letter or be included in a range
of letters more than once in all of the IMPLICIT statements in a scoping
unit.

4. An IMPLICIT statement may be used to specify implicit mappings for
user-defined types as well as for intrinsic types.

The IMPLICIT statement specifies that all variables, named constants, and
functions beginning with the indicated letters are implicitly given the indicated
data type (and type parameters). For example, the statement

IMPLICIT COMPLEX (A-C, 2)

indicates that all undeclared variables, named constants, and functions
beginning with the letters A, B, C, and Z are of type default complex. If this is
the only IMPLICIT statement, undeclared variables, named constants, and
functions beginning with I-N will still be of type integer; undeclared variables,
named constants, and functions beginning with D-H and O-Y will be of type
real.

The statement
IMPLICIT NONE

indicates that there is no implicit typing in the scoping unit and that each
variable, named constant, and function used in the scoping unit must be
declared explicitly in a type statement. This statement is useful for detecting
inadvertent misspellings in a program because misspelled names become
undeclared rather than implicitly declared.

An IMPLICIT statement may specify a user-defined type.
Some examples of IMPLICIT statements are:

IMPLICIT INTEGER (A-G), LOGICAL (KIND = BIT) (M)
IMPLICIT CHARACTER *10 (P, Q)
IMPLICIT TYPE (COLOR) (X-Z)

The additional complexity that implicit typing causes in determining the scope
of an undeclared variable in a nested scope is explained in Section 11.4.
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5.3 Array Properties

An array object has the dimension attribute. An array specification determines
the array’s rank, or number of dimensions. The extents of the dimensions may
be declared or left unspecified. If they are left unspecified, the array must also
have the ALLOCATABLE or POINTER attribute, or it must be a dummy
argument.

5.3.1 Array Specifications

There are four forms that an array specification (R512) may take:

explicit-shape-spec-list
assumed-shape-spec-list
deferred-shape-spec-list
assumed-size-spec

Rules and restrictions:
1. The maximum rank of an array is 7. A scalar is considered to have rank 0.

2. An array with a deferred-shape specification list must have the POINTER
or ALLOCATABLE attribute.

3. An array with an assumed-shape specification list or an assumed-size
specification list must be a dummy argument.
5.3.1.1 Explicit-Shape Arrays

An explicit-shape array has bounds specified in each dimension. Each

dimension is specified by an explicit-shape specification (R513), which has the
form:

[ lower-bound : ] upper-bound

where the lower bound, if present, and the upper bound are specification
expressions (7.2.9.3).

Rules and restrictions:

1. The number of sets of bounds specified is the number of dimensions (rank)
of the array.
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2. If the lower bound is omitted, the default value is 1.

3. The value of a lower bound or an upper bound may be positive, negative,
or 0.

4. The subscript range of the array in a given dimension is the set of integer
values between and including the lower and upper bounds, provided the
upper bound is not less than the lower bound. If the upper bound is less
than the lower bound, the range is empty, the extent in that dimension is 0,
and the size of the array is 0.

5. The expression for a bound may involve variables that cause the
expression to have different values each time the procedure in which it is
declared is executed. If so, the array must be a dummy argument, a
function result, or an automatic array, in which case the actual bounds are
determined when the procedure is entered. The bounds of such an array
are unaffected by any redefinition or undefinition of the specification
variables during the execution of the procedure.

For example:
® entity-oriented
REAL Q (-10:10, -10:10, 2)
or in a subroutine
SUBROUTINE EX1 (Z, I, J)
REAL, DIMENSION (21 + 1, J) == Z
® attribute-oriented
REAL Q (-10:10, -10:10, 2)
or in a subroutine

SUBROUTINE EX1 (Z, I, J)
REAL Z
DIMENSION Z (21 + 1, J)
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5.3.1.2 Assumed-Shape Arrays

An assumed-shape array is a dummy argument that takes the shape of the
actual argument passed to it. An assumed-shape specification (R516) has the
form:

[ lower-bound ] :
Rules and restrictions:

1. The rank is equal to the number of colons in the assumed-shape
specification.

2. The lower bound of the assumed-shape array is the specified lower bound,
if present, and is 1 otherwise.

3. The upper bound is the extent of the corresponding dimension of the
associated array plus the lower bound minus 1.

4. An assumed-shape array must not have the POINTER or ALLOCATABLE
attribute.

For example:
® entity-oriented

REAL, DIMENSION (2;, 3) = X

® attribute-oriented

SUBROUTINE EX2 (A, B, X)
REAL A (), B (0:), X
DIMENSION X (2:, :)
INTENT (IN) A, B

Suppose EX2 is called by the statement

CALL EX2 ( U, V, W (4:9, 2:6))

For the duration of the execution of subroutine EX2, the dummy argument X is
an array with bounds (2:7, 1:5). The lower bound of the first dimension is 2
because X is declared to have a lower bound of 2. The upper bound is 7
because the dummy argument takes its shape from the actual argument W.
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5.3.1.3 Deferred-Shape Arrays

A deferred-shape array is either an array pointer or an allocatable array. An
array pointer is an array that has the POINTER attribute. Its extent in each
dimension is determined when the pointer is allocated or when a pointer
assignment statement for the pointer is executed. An allocatable array is an
array that has the ALLOCATABLE attribute. Its bounds, and thus its shape, are
determined when the array is allocated. In both cases the declared bounds are
specified by just a colon; that is, the form of a deferred-shape specification
(R517) is:

Rules and restrictions:

1. The rank is equal to the number of colons in the deferred-shape
specification.

2. The bounds of an allocatable array are specified in an ALLOCATE
statement when the array is allocated.

3. The lower bound of each dimension of an array pointer is the result of the
LBOUND intrinsic function applied to the corresponding dimension of the
target. The upper bound of each dimension is the result of the UBOUND
intrinsic function applied to the corresponding dimension of the target.
This means, in effect, that if the bounds are determined by allocation of the
pointer, they may be specified by the user; if the bounds are determined by
pointer assignment, there are two cases:

a. If the pointer target is a named whole array, the bounds are those
declared in the array declaration or those specified when the array was
allocated.

b. If the pointer target is an array section, the lower bound is 1 and the
upper bound is the extent in that dimension.

4. The bounds, and thus the shape, of an array pointer or allocatable array are
unaffected by any subsequent redefinition or undefinition of variables
involved in determination of the bounds.

For example:
® entity-oriented

REAL, POINTER :: D (, :), P () ! array pointers
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REAL, ALLOCATABLE : E () ! allocatable array
® attribute-oriented

REAL D (:, 3), P (), E ()
POINTER D, P
ALLOCATABLE E

5.3.1.4 Assumed-Size Arrays

An assumed-size array is a dummy argument array whose size is assumed
from that of the associated actual argument. Only the size is assumed—the
rank, extents, and bounds (except for the upper bound and extent in the last
dimension) are determined by the declaration of the dummy array. There are
four rules for argument association between an actual argument and an
assumed-size array.

® They have the same initial array element.
® Successive array elements are storage associated (5.10).

® Declarations for the dummy argument determine the rank. They also
determine lower bounds for all dimensions and the extents and upper
bounds for all dimensions except the last.

® The size of the actual argument determines the size of the dummy
argument as explained in rule 2 below.

The upper bound of the last dimension of an assumed-size array is an asterisk
(D. The form of an assumed-size specification (R518) is:

[ explicit-shape-spec-list , ] [ lower-bound : ] *
Rules and restrictions:

1. The rank of an assumed-size array is the number of explicit-shape
specifications plus one.

2. The size of an assumed-size array is determined as follows:

a. If the actual argument associated with the assumed-size dummy
argument is an array of any type other than default character, the size
is that of the actual array.
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b. If the actual argument associated with the assumed-size dummy array
is an array element of any type other than default character with a
subscript order value (6.4.7) of v in an array of size x, the size of the
dummy argument is x—v+ 1.

c. If the actual argument is a default character array, default character
array element, or a default character array element substring (6.2), and
if it begins at character storage unit t of an array with ¢ character
storage units, the size of the dummy array is

MAX (INT ((c—=t+ 1) /e), 0)
where e is the length of an element in the dummy character array.
3. If r is the rank of the array, the bounds of the first r—1 dimensions are
those specified by the explicit-shape specification list, if present. The lower

bound of the last dimension is the specified lower bound, if present, and 1
otherwise.

4. The expression for a bound may involve variables that cause the
expression to have different values each time the procedure in which it is
declared is executed. If so, the bounds are unaffected by any subsequent
redefinition or undefinition of such variables involved in the determination
of the bounds.

5. A function result must not be an assumed-size array.

6. An assumed-size array must not appear in a context where the shape of the
array is required, such as a whole array reference.

For example:
® entity-oriented

SUBROUTINE EX3 (N, S, YY)
REAL, DIMENSION (N, *) = S
REAL Y (10, 5, %)
® attribute-oriented

SUBROUTINE EX3 (N, S, V)
REAL S, Y (10, 5, *
DIMENSION S (N, *)
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5.3.2 DIMENSION Attribute and Statement

The dimensions of an array may be specified by the appearance of a
DIMENSION attribute or by the appearance of an array specification following
the name of the array in a type declaration statement. In fact, both a
DIMENSION attribute and an array specification following the name may
appear in a type declaration statement. In this case, the array specification
following the name overrides the array specification following the
DIMENSION attribute. A form for a type declaration statement with a
DIMENSION attribute is:

type , DIMENSION ( array-spec ) [, attribute-list ] :: entity-list

See the examples below. Other attributes that are allowed with the
DIMENSION attribute are:
initialization
ALLOCATABLE
INTENT
OPTIONAL
POINTER
PARAMETER
PRIVATE
PUBLIC
SAVE
TARGET

In addition, an array specification can appear following a name in several
different kinds of statements to declare an array. They are DIMENSION, type
specification, ALLOCATABLE, POINTER, TARGET, and COMMON
statements.

The DIMENSION statement (R525) is the statement form of the DIMENSION
attribute.

DIMENSION [ :: ] array-name ( array-spec ) &
[ , array-name ( array-spec ) ] ...

For example:
® entity-oriented

INTEGER, DIMENSION (10), TARGET, SAVE : INDICES
INTEGER, ALLOCATABLE, TARGET : LG (i, & )
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® attribute-oriented

INTEGER INDICES, LG (, : )
DIMENSION INDICES (10)
TARGET INDICES, LG
ALLOCATABLE LG

SAVE INDICES

® with the array specification in other statements

INTEGER INDICES, LG
TARGET INDICES (10), LG
ALLOCATABLE LG (;, : 2)
SAVE INDICES

® an additional example with the array specification in a COMMON
statement

COMMON / UNIVERSAL / TIME (80), SPACE (20, 20, 20, 20)

5.3.3 ALLOCATABLE Attribute and Statement

Arrays are the only objects that can have the ALLOCATABLE attribute. An
allocatable array is one for which the bounds are determined when an
ALLOCATE statement is executed for the array. Such arrays must be deferred-
shape arrays. A form for a type declaration statement with an ALLOCATABLE

attribute is:
type , ALLOCATABLE [ , attribute-list ] :: entity-list
Other attributes that may be used with the ALLOCATABLE attribute are:

DIMENSION (with deferred shape)
PRIVATE

PUBLIC

SAVE

TARGET

The form of the ALLOCATABLE statement (R526) is:

ALLOCATABLE[ :: ] array-name [ ( deferred-shape-spec-list ) ] &
[ ., array-name [ ( deferred-shape-spec-list ) ] 1] ..
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Rules and restrictions:
1. The array must not be a dummy argument or function result.

2. If the array is given the DIMENSION attribute elsewhere, the bounds must
be specified as colons (deferred shape).

For example:
® entity-oriented

REAL, ALLOCATABLE :: A (i, )
LOGICAL, ALLOCATABLE, DIMENSION (:) :: MASK1

® attribute-oriented

REAL A (;, 2)

LOGICAL MASK1
DIMENSION MASK1 ()
ALLOCATABLE A, MASK1

5.4 Pointer Properties
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Most attributes, when applied to an ordinary object, add characteristics that
the object would not have otherwise. The POINTER attribute, in some sense,
takes away a characteristic that an ordinary object has. An ordinary object has
storage space set aside for it. If the object has the POINTER attribute, it has no
space initially and must not be referenced until space is associated with it. An
ALLOCATE statement creates new space for a pointer object. A pointer
assignment statement permits the pointer to borrow the space from another
object. The space that becomes associated with a pointer is called the pointer’s
target. The target may change during the execution of a program. A pointer
target is either an object or part of an object declared to have the TARGET
attribute; or it is an object or part of an object that was created by the allocation
of a pointer. A pointer may be assigned the target (or part of the target) of
another pointer. An array with the ALLOCATABLE attribute may be a pointer
target only if it also has the TARGET attribute.

Another way of thinking about a pointer is as a descriptor that contains
information about the type, type parameters, rank, extents, and location of the
pointer’s target. Thus, a pointer to a scalar object of type real would be quite
different from a pointer to an array of user-defined type. In fact, each of these
pointers is considered to occupy a different unspecified storage unit. When an
object with the POINTER attribute is declared to be in a common block, it is
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likely to be the descriptor that occupies the storage. This is why every
declaration of a common block that contains a pointer must specify the same
sequence of storage units.

5.4.1 POINTER Attribute and Statement

A form for a type declaration statement with a POINTER attribute is:
type , POINTER [, attribute-list ] :: entity-list
Other attributes that may be used with the POINTER attribute are:

DIMENSION (with deferred shape)
OPTIONAL

PRIVATE

PUBLIC

SAVE

The POINTER statement (R527) also provides a means for declaring pointers.
Its form is:

POINTER [ :: ] object-name [ ( deferred-shape-spec-list ) ] &
[ , object-name [ ( deferred-shape-spec-list ) ] 1] ..

Rules and restrictions:
1. The target of a pointer may be a scalar or an array.
2. A pointer that is an array must be declared as a deferred-shape array.

3. A pointer must not be referenced or defined unless it is associated with a
target that may be referenced or defined. (A pointer on the right-hand side
of a pointer assignment is not considered to be a pointer reference.)

For example:
® entity-oriented

TYPE (NODE), POINTER :: CURRENT
REAL, POINTER = X (; 2, Y ()

® attribute-oriented
TYPE (NODE) CURRENT

REAL X (;, 2), Y ()
POINTER CURRENT, X, Y
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5.4.2 TARGET Attribute and Statement

An object with the TARGET attribute may become the target of a pointer
during execution of a program. The sole purpose of the TARGET attribute is to
provide aid to a compiler in the production of efficient code. If an object does
not have the target attribute or has not been allocated, no part of it can be

accessed via a pointer. A form for a type declaration statement with a TARGET
attribute is:

type , TARGET [ , attribute-list ] ::  entity-list
Other attributes that may be used with the TARGET attribute are:

data initialization
ALLOCATABLE
DIMENSION
INTENT
OPTIONAL
PRIVATE
PUBLIC

SAVE

The TARGET statement (R528) also provides a means for specifying pointer
targets. It has the form:

TARGET][ :: ] object-name [ ( array-spec ) ] &
[ , object-name [ ( array-spec ) ]1] ..

For example:
® entity-oriented

TYPE (NODE), TARGET :: HEAD OF LIST
REAL, TARGET, DIMENSION (100, 100) :: V, W (100)

® attribute-oriented

TYPE (NODE) HEAD OF LIST
REAL V, W (100)

DIMENSION V (100, 100)
TARGET HEAD_OF_LIST, V, W

154 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



o1
1]

5.5 Value Attributes

Variables may be given values before execution of the program begins; named
constant values must be specified prior to execution. The general provisions for
these two cases are:

1. A variable may be given an initial value by an entity-oriented type
declaration statement that contains an entity declaration of the form:

object-name = initialization-expression

or by a DATA statement. The value may be redefined later in the program.
This gives the programmer a convenient and efficient way to establish
initial values.

2. A named constant is declared and defined with a value by an entity-
oriented declaration statement that contains the PARAMETER attribute
and an entity declaration of the form:

object-name = initialization-expression

or by a PARAMETER statement. The value associated with the name
cannot be changed during the execution of the program. For example, Pl or
E may be associated with the familiar mathematical constants to provide
more convenient access to these values. Named constants are also used to
give names to values (such as a sales tax rate) that may change at some
later time. When a change is necessary, it can be made at one place in the
program and not every place where the value is used. The program can be
recompiled to effect the change.

5.5.1 Data Initialization and the DATA Statement

The DATA statement is the only attribute specification statement for which
there is no corresponding attribute that may appear in a type declaration
statement. It is, however, possible to initialize a variable in an entity-oriented
type declaration statement. When an initialization expression appears in a
declaration for an object that does not have the PARAMETER attribute, the
object (which is a variable) is given the specified initial value. The same rules
apply to the assignment of the initial value as apply when an assignment
statement is executed. For example, if the variable is of type real but the value
is an integer value, the variable will be assigned the real equivalent of the
integer value. If the kind of the variable is different from the kind of the value,
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the value will be “converted” to the kind of the variable. Array constructors
may be used to initialize arrays, and structure constructors may be used to
initialize variables of user-defined type. The form of a type declaration
statement that provides an initial value for a variable is:

type [ , attribute-list ] ::  object-name [ ( array-spec ) | &
[ * character-length ] = initialization-expression

Other attributes that may be used with variable initialization are:

DIMENSION
PRIVATE
PUBLIC
SAVE
TARGET

The PARAMETER attribute may appear, but in this case the object is a named
constant.

Initialization of a variable in a type declaration statement or any part of a
variable in a DATA statement implies that the variable has the SAVE attribute
unless the variable is in a named common block. The automatically acquired
SAVE attribute may be reaffirmed by the appearance of SAVE as an attribute in
its type declaration statement or by inclusion of the variable name in a separate
SAVE statement.

The DATA statement (R529) is somewhat complicated. It has the form:

DATA data-object-list / data-value-list / &
[ [, ] data-object-list / data-value-list / ] ...

where a data object (R531) is one of:

variable
data-implied-do

and a data value (R532) is:
[ repeat-factor * ] data-constant

where a repeat factor (R534) is a scalar integer constant and a data constant
(R533) is one of:
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scalar-constant
signed-integer-literal-constant
signed-real-literal-constant
structure-constructor
boz-literal-constant

The form of a data-implied do (R535) is:

( data-implied-do-object-list , scalar-integer-variable = &
scalar-integer-expression , scalar-integer-expression &
[ , scalar-integer-expression ] )

where a data-implied-do object (R536) is one of:

array-element
structure-component
data-implied-do

Rules and restrictions:

1.

If an object is of type character or logical, the constant used for
initialization must be of the same type. If an object is of type real or
complex, the corresponding constant must be of type integer, real, or
complex. If the object is of type integer, the corresponding constant must
be of type integer, real, or complex; or, if the initialization is specified in a
DATA statement, the corresponding constant may be a binary, octal, or
hexadecimal literal constant. If an object is of derived type, the
corresponding constant must be of the same type.

The value of the data constant or the initialization expression must be such
that its value could be assigned to the variable using an intrinsic
assignment statement. The variable becomes initially defined with the
value of the constant.

A variable, or the same part of a variable, must not be initialized more than
once in an executable program.

4. None of the following may be initialized:

a dummy argument

an object made accessible by use or host association
a function result

an automatic object

a pointer
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10.

11.

12.

an allocatable array

an object in a named common block, unless the data initialization
is in a block data program unit

an object in a blank common block

an external or intrinsic procedure

For an object being initialized, any subscript, section subscript, substring
starting point, or substring ending point must be an initialization
expression.

Each component of a structure constructor used for initialization must be
an initialization expression.

A variable that appears in a DATA statement and is thereby declared and
typed implicitly may appear in a subsequent type declaration statement
only if that declaration confirms the implicit declaration. An array name,
array section, or array element appearing in a DATA statement must have
had its array properties established previously.

An array element or structure component that appears in a DATA
statement must not have a constant parent.

The DATA statement repeat factor must be positive or zero, and if it is a
named constant, the value must be specified in a prior statement in the
same scoping unit when the DATA statement is encountered.

A subscript in an array element of an implied-do list must contain as
operands only constants or DO variables of the containing implied-dos.

A scalar integer expression in an implied-do must contain as operands
only constants or DO variables and each operation must be an intrinsic
operation.

The data object list is expanded to form a sequence of scalar variables. An
array or array section is equivalent to the sequence of its array elements in
array element order. A data-implied-do is expanded to form a sequence of
array elements and structure components, under the control of the implied-
do variable, as in the DO construct. A zero-sized array or an implied-do
with an iteration count of zero contributes no variables to the expanded
list, but a character variable declared to have zero length does contribute a
variable to the list.
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13. The data value list is expanded to form a sequence of scalar constant

14.

values. Each value must be a constant that is known to the processor when
the DATA statement is encountered. A DATA statement repeat factor
indicates the number of times the following constant is to be included in
the sequence. If the repeat factor is zero, the following constant is not
included in the sequence.

Scalar variables and constant values of the expanded sequence must be in
one-to-one correspondence. Each constant specifies the initial value for the
corresponding variable. The lengths of the two expanded sequences must
be the same.

For example:

® entity-oriented

CHARACTER (LEN = 10) :: NAME = "JOHN DOE"
INTEGER, DIMENSION (0:9) :: METERS = (/ (0 , | = 1, 10) /)
TYPE (PERSON) :: ME = PERSON (21, "JOHN SMITH"), &

YOU = PERSON (35, "FRED BROWN")

REAL : SKEW(100,100) = RESHAPE ( (/ ( (1.0 , K = 1,J-1), &
(00, K=J100) ,J = 1,100 ) /), (/ 100, 100 /) )

® attribute-oriented

CHARACTER (LEN = 10) NAME

INTEGER METERS

DIMENSION METERS (0:9)

DATA NAME / "JOHN DOE" /, METERS / 10*0 /

TYPE (PERSON) ME, YOU

DATA ME / PERSON (21, "JOHN SMITH") /

DATA YOU % AGE, YOU % NAME / 35, "FRED BROWN" /

REAL SKEW (100, 100)
DATA ((SKEW (K, J) , K
DATA ((SKEW (K, J) , K

1, J1),3
J, 100), J

1, 100) / 4950 * 1.0 /
1, 100) / 5050 * 0.0 /

In both forms, the character variable NAME is initialized with the value JOHN
DOE with padding on the right because the length of the constant is less than
the length of the variable. All ten elements of the integer array METERS are
initialized to 0; an array constructor is used in the entity-oriented form; a
repeat factor is used for the attribute-oriented form. ME and YOU are
structures declared using the user-defined type PERSON defined in Section 4.6.
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In both forms ME is initialized using a structure constructor. In the attribute-
oriented form YOU is initialized by supplying a separate value for each
component.

In both forms, the two-dimensional array SKEW is initialized so that the lower
triangle is 0 and the strict upper triangle is 1. The RESHAPE intrinsic function
is required in the entity-oriented form because SKEW is of rank 2. Repeat
factors are used in the attribute-oriented form.

5.5.2 PARAMETER Attribute and Statement

Constants may be given a name in a type declaration statement with the
PARAMETER attribute or in a separate PARAMETER statement. A form for a
type declaration statement with a PARAMETER attribute is:

type , PARAMETER][ , attribute-list ] :: name = initialization-expression

More than one named constant can be specified in a single type declaration
statement; see the examples below. Other attributes that are allowed with the
PARAMETER attribute are:

initialization (must be present)
DIMENSION

PRIVATE

PUBLIC

SAVE

The named constant becomes defined with the value determined from the
initialization expression in accordance with the rules for intrinsic assignment.
Any named constant that appears in the initialization expression must have
been either: 1) defined previously in this type declaration statement or in a
previous type declaration statement, or 2) otherwise made known to the
processor (through host or use association).

The PARAMETER statement (R538) also provides a means of defining a named
constant. It takes the form:

PARAMETER (named-constant = initialization-expression &
[ , named-constant = initialization-expression | ... )
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Rules and restrictions:

1. The PARAMETER attribute must not be specified for dummy arguments,
functions, or objects in a common block.

2. A named constant that appears in a PARAMETER statement and is thereby
declared and typed implicitly may appear in a subsequent type declaration
statement only if that declaration confirms the implicit declaration.

3. A named array constant appearing in a PARAMETER statement must have
had its array properties established previously.

4. A named constant must not appear in a format specification because of a
possible ambiguity.

For example:
® entity-oriented

INTEGER, PARAMETER :: STATES = 50
INTEGER, PARAMETER = M = MOD (28, 3), &
NUMBER_OF_SENATOR= 2 * STATES

® attribute-oriented

INTEGER STATES, M, NUMBER_OF_SENATORS

PARAMETER (STATES = 50)

PARAMETER (M = MOD (28, 3), &
NUMBER_OF SENATSR= 2 * STATES)

5.6 Object Accessibility and Use

Several attributes indicate where an object may be accessed and how it may be
used. Some of these attributes apply only to objects in a module and others
only to dummy arguments or other variables declared in a subprogram.

Entities specified in a module are generally available (PUBLIC attribute) to a
program unit that contains a USE statement for the module, or they are
restricted (PRIVATE attribute) to use in the module. The INTENT attribute
determines the use of a dummy argument within a subprogram. The
OPTIONAL attribute allows a subprogram argument to be omitted in a
particular reference to the subprogram. The SAVE attribute preserves the
values of variables between subprogram references.

Declarations 161

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



162

5.6.1 PUBLIC and PRIVATE Accessibility

The PUBLIC and PRIVATE attributes control access to type definitions,
variables, functions, and named constants in a module. The PUBLIC attribute
declares that entities in a module are available outside the module by use
association; the PRIVATE attribute prevents access outside the module by use
association. The default accessibility is PUBLIC, but it can be changed to
PRIVATE.

Forms for type declaration statements with PUBLIC and PRIVATE attributes
are:

type , PUBLIC [, attribute-list ] 1 entity-list
type , PRIVATE [, attribute-list ] :: entity-list

PUBLIC and PRIVATE specifications may also appear in the derived-type
statement of a derived-type definition to specify the accessibility of the type
definition (4.4.1).

TYPE , PUBLIC :: type-name
TYPE , PRIVATE : type-name

Further, if a PRIVATE statement without an access-id list appears inside a type
definition, it specifies that, although the type may be accessible outside the
module, its components are private.

Other attributes that are allowed with the PUBLIC and PRIVATE attributes in
type declaration statements are:
initialization
ALLOCATABLE
DIMENSION
EXTERNAL
INTRINSIC
PARAMETER
POINTER
SAVE
TARGET

PUBLIC and PRIVATE statements provide another means for controlling the
accessibility of variables, functions, type definitions, and named constants. In
addition, PUBLIC and PRIVATE statements can control the accessibility of
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some entities that do not have a type and thus cannot appear in type
declaration statements; these are subroutines, generic specifiers, and namelist
groups. Forms for PUBLIC and PRIVATE statements (R521) are:

PUBLIC [ [ = ] access-id-list ]
PRIVATE [ [ = ] access-id-list ]

where an access-id (R522) is one of:

use-name
generic-spec

A generic specification (R1206) is one of:

generic-name
OPERATOR (defined-operator )
ASSIGNMEN ( = )

Generic specifications are explained in Section 12.6. Examples of PUBLIC and
PRIVATE statements that might be used with generic specifications are:

PUBLIC HYPERBOLIC_COS, HYPERBOLIC_SIN I generic names
PRIVATE HY_COS_RAT, HY_SIN_RAT I specific names
PRIVATE HY_COS_INF_PREC, HY_SIN_INF_PREC ! specific names
PUBLIC :: OPERATOR ( .MYOP. ), OPERATOR (+), ASSIGNMENT (=)

Rules and restrictions:
1. PUBLIC and PRIVATE may appear only in a module.

2. A use name may be a variable name, procedure, derived type, named
constant, or namelist group.

3. Only one PUBLIC or PRIVATE statement with an omitted access-id list is
permitted in the scoping unit of a module. It determines the default
accessibility of the module.

4. A PRIVATE statement (but not a PUBLIC statement) may appear within a
derived-type definition to indicate that the components of a structure of
the type are not accessible outside the module.

5. A procedure that has a generic identifier that is public is accessible through
the generic identifier even if its specific name is private.
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6. A module procedure that has an argument of a private type or function
result of a private type must be private and must not have a generic
identifier that is public.

The default accessibility of entities defined in a module is PUBLIC. A PUBLIC
statement without an access-id list may appear in the module to confirm the
default accessibility. A PRIVATE statement without an access-id list may
appear in the module to change the default accessibility.

For example:
® entity-oriented

REAL, PUBLIC :: GLOBAL_X
TYPE, PRIVATE :: LOCAL_DATA
LOGICAL :: FLAG
REAL, DIMENSION (100) :: DENSITY
END TYPE LOCAL_DATA

® attribute-oriented

REAL GLOBAL_X
PUBLIC GLOBAL_X
TYPE LOCAL_DATA
LOGICAL FLAG
REAL DENSITY
DIMENSION DENSITY (100)
END TYPE LOCAL_DATA
PRIVATE LOCAL_DATA

® a public type with private components

TYPE LIST_ELEMENT

PRIVATE

REAL VALUE

TYPE (LIST_ELEMENT), POINTER :: NEXT, FORMER
END TYPE LIST_ELEMENT

® changing the default accessibility

MODULE M
PRIVATE
REAL R, K, TEMP (100) ! R, K, and TEMP are private
REAL, PUBLIC :: A(100), B(100 ) ' A and B are public

END MODULE M
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5.6.2 INTENT Attribute and Statement

The INTENT attribute specifies the intended use of a dummy argument. If
specified, it can help detect errors, provide information for readers of the
program, and give the compiler information that can be used to make the code
more efficient. It is particularly valuable in creating software libraries.

Some dummy arguments are referenced but not redefined within the

subprogram; some are defined before being referenced within the subprogram;
others may be referenced before being redefined. INTENT has three forms: IN,
OUT, and INOUT which correspond respectively to the above three situations.

If the intent of an argument is IN, the subprogram must not change the value
of the argument nor must the argument become undefined during the course
of the subprogram. If the intent is OUT, the subprogram must not use the
argument before it is defined, and it must be definable. If the intent is INOUT,
the argument may be used to communicate information to the subprogram and
return information; it must be defined on entry into the subprogram and must
be definable. If no intent is specified, the use of the argument is subject to the
limitations of the associated actual argument; for example, the actual argument
may be a constant (for example, 2) or a more complicated expression (for
example, N+2), and in these cases the dummy argument can only be referenced
but not defined.

A form for a type declaration statement with an INTENT attribute is:

type , INTENT ( intent-spec ) [, attribute-list ] ;1 &
dummy-argument-list

where an intent specification is IN, OUT, or INOUT.
Other attributes that are allowed with the INTENT attribute are:

DIMENSION
OPTIONAL
TARGET

The INTENT statement (R519) also provides a means of specifying an intent for
an argument. It has the form:

INTENT ( intent-spec ) [ :: ] dummy-argument-list

where an intent specification is one of:
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IN
ouT
INOUT

Rules and restrictions:
1. The INTENT attribute may be specified only for dummy arguments.

2. An INTENT statement may appear only in the specification part of a
subprogram or interface body.

3. An intent must not be specified for a dummy argument that is a dummy
procedure because it is not possible to change the definition of a procedure.
It would not be clear whether an intent specified for a dummy pointer
applied to the pointer or to its target, so intent for a dummy pointer must
not be specified either.

For example:

® entity-oriented

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

SUBROUTINE SUB (X, Y)
INTEGER, INTENT (INOUT) :: X, Y

® attribute-oriented

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON) FROM, TO
INTENT (IN) FROM
INTENT (OUT) TO

SUBROUTINE SUB (X, Y)

INTEGER X, Y
INTENT (INOUT) X, Y
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5.6.3 OPTIONAL Attribute and Statement

Sometimes there are procedures that are used most frequently to perform a
special case of a more general calculation, but on occasion are called upon to
perform the fully general calculation. In the more frequent special case, there
are arguments that do not change from one invocation to the next, but in the
general case, all the arguments are different. It is inconvenient to supply the
same arguments for 90 percent of the invocations just to accommodate the 10
percent where the arguments are different. The OPTIONAL attribute allows a
procedure reference to omit arguments with this attribute. Default values can
then be used instead of the omitted arguments. The PRESENT intrinsic
function can be used to test the presence of an optional argument in a
particular invocation and this test can be used to control the subsequent
processing in the procedure. If the argument is not present, a default value
may be used or the subprogram may use an algorithm that is not based on the
presence of the argument.

A form for a type declaration statement with an OPTIONAL attribute is:
type , OPTIONAL [ , attribute-list ] :: dummy-argument-list
Other attributes that are allowed with the OPTIONAL attribute are;

DIMENSION
EXTERNAL
INTENT
POINTER
TARGET

The OPTIONAL statement (R520) also provides a means for specifying an
argument that may be omitted. It has the form:

OPTIONAL [ = ] dummy-argument-name-list
Rules and restrictions:
1. The OPTIONAL attribute may be specified only for dummy arguments.

2. An OPTIONAL statement may appear only in the scoping unit of a
subprogram or interface body.

For example:

® entity-oriented declarations (in a program fragment)
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CALL SORT X (X = VECTOR_A)

SUBROUTINE SORT_X (X, SIZEX, FAST)
REAL, INTENT (INOUT) = X ()
INTEGER, INTENT (IN), OPTIONAL :: SIZEX
LOGICAL, INTENT (IN), OPTIONAL :: FAST

INTEGER TSIZE

IF (PRESENT (SIZEX)) THEN
TSIZE = SIZEX
ELSE
TSIZE = SIZE (X)
END IF
IF (NOT. PRESENT (FAST) .AND. TSIZE > 1000) THEN
CALL QUICK_SORT (X)
ELSE
CALL BUBBLE_SORT (X)
END IF

® attribute-oriented declarations (to be inserted in the same program
fragment)

SUBROUTINE SORT_X (X, SIZEX, FAST)
REAL X ()
INTENT (INOUT) X
INTEGER SIZEX
LOGICAL FAST
INTENT (IN) SIZEX, FAST
OPTIONAL SIZEX, FAST

INTEGER TSIZE

5.6.4 SAVE Attribute and Statement

Variables with the SAVE attribute retain their value and their definition,
association, and allocation status after the subprogram in which they are
declared completes execution. Variables without the SAVE attribute cannot be
depended on to retain their value and status, although in some Fortran
implementations all local variables and common blocks are treated as if they
had the SAVE attribute. With virtual memory, multiprocessors, and modern
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operating systems, this is becoming less common. The SAVE attribute should
always be specified for an object or the object’s common block, if it is necessary
for the object to retain its value and status.

Objects declared in a module may be given the SAVE attribute, in which case
they always retain their value and status when a procedure that uses the
module completes execution.

Objects declared in recursive subprograms may be given the SAVE attribute.
Such objects are shared by all instances of the subprogram.

Any object that is data initialized (in a DATA statement or a type declaration
statement) has the SAVE attribute by default.

A form for a type declaration statement with a SAVE attribute is:
type , SAVE [, attribute-list ] 1 entity-list

Other attributes that are allowed with the SAVE attribute are:
initialization
ALLOCATABLE
DIMENSION
POINTER
PRIVATE

PUBLIC
TARGET

An object with the PARAMETER attribute (named constant) is always
available, so there is no need to specify the SAVE attribute for it. It is not
permitted to specify the SAVE attribute for such an object.

The SAVE statement (R523) provides a means for specifying the SAVE attribute
for objects and also for common blocks. It has the form:

SAVE[ [ = ] saved-entity-list ]
where a saved entity (R524) is either of:

data-object-name
|/ common-block-name /
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Rules and restrictions:

1. A SAVE statement without a saved entity list is treated as though it
contained the names of all items that could be saved in the scoping unit.
No other SAVE statements or attributes may appear in the scoping unit.

2. If SAVE appears in a main program as an attribute or a statement, it has no
effect.

3. The following objects must not be saved:

a procedure

a function result

a dummy argument

an automatic data object

an object in a common block
a namelist group

4. Variables in a common block cannot be saved individually; the entire
common block must be saved if any variables in it are to be saved.

5. If a common block is saved in one scoping unit of a program, it must be
saved in every scoping unit of the program in which it is defined (other
than the main program).

6. If a named common block is specified in a main program, it is available to
any scoping unit of the program that specifies the named common block; it
does not need to be saved.

For example:

® entity-oriented

CHARACTER (LEN

12), SAVE :: NAME

® attribute-oriented

CHARACTER (LEN
SAVE NAME

12) NAME

® saving objects and common blocks

SAVE A, B, / BLOCKA /, C, / BLOCKB /
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5.7 Procedure Properties

If an external or dummy procedure is to be an actual argument to a
subprogram, the procedure name must be declared to be EXTERNAL. (A
dummy procedure is a dummy argument that is a procedure.) If an external
procedure has the same name as an intrinsic procedure, again the name must
be declared to be EXTERNAL. When this occurs, the intrinsic procedure of that
name is no longer accessible to that program unit. If an intrinsic procedure is to
be an actual argument, the name of the procedure must be declared to be
INTRINSIC. Sections 12.4.4 and 12.4.5 discuss further the usage of these
attributes.

Because only functions, not subroutines, are declared to have a type (the type
of the result), only function names can appear in type declaration statements.
The EXTERNAL and INTRINSIC attributes in type declaration statements
therefore apply only to functions. The EXTERNAL and INTRINSIC statements
can be used to specify properties of subroutines (12.4.4, 12.4.5), and the
EXTERNAL statement can specify block data program units (11.7).

Module procedures can have an accessibility attribute. They may be accessible
outside the module (PUBLIC) or their accessibility may be restricted to the
module in which they are defined (PRIVATE). See Section 5.6.1.

5.7.1 EXTERNAL Attribute and Statement

The EXTERNAL attribute is used to indicate that a name is the name of an
external function or a dummy function and permits the name to be used as an
actual argument.

A form for a type declaration statement with an EXTERNAL attribute is:
type , EXTERNAL [ , attribute-list ] :: function-name-list
Other attributes that are allowed with the EXTERNAL attribute are:

OPTIONAL
PRIVATE
PUBLIC
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If a function returns an array or a pointer, the interface of the function must be
explicit. Interface blocks are used to describe the interfaces of external
functions. A function described by an interface block thus has the external
attribute by default; it need not be declared explicitly.

The EXTERNAL statement (R1207) provides a means for declaring subroutines
and block data program units, as well as functions, to be external. It has the
form:

EXTERNALexternal-name-list
Rules and restrictions:

1. Each external name must be the name of an external procedure, a dummy
argument, or a block data program unit.

2. If adummy argument is specified to be EXTERNAL, the dummy argument
is a dummy procedure.

3. An interface block specifies the external attribute (12.6.2) for all procedures
in the interface block, with the exception of module procedures specified in
MODULE PROCEDURE statements within the block. The attribute given
by an interface block may be specified redundantly in an EXTERNAL
statement.

For example:
® entity-oriented

SUBROUTINE SUB (FOCUS)
INTEGER, EXTERNAL : FOCUS
LOGICAL, EXTERNAL :: SIN

® attribute-oriented

SUBROUTINE SUB (FOCUS)
INTEGER FOCUS
LOGICAL SIN
EXTERNAL FOCUS, SIN

FOCUS is declared to be a dummy procedure. SIN is declared to be an external
procedure. Both are functions. To declare an external subroutine, the
EXTERNAL statement or an interface block must be used because a subroutine
does not have a type, and thus its attributes cannot be specified in a type
declaration statement. The specific name SIN of the intrinsic function SIN is no
longer available to subroutine SUB.
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5.7.2 INTRINSIC Attribute and Statement

The INTRINSIC attribute is used to indicate that a name is the name of an
intrinsic function and permits the name to be used as an actual argument.

A form for a type declaration statement with an INTRINSIC attribute is:
type , INTRINSIC [ , attribute-list ] :: intrinsic-function-name-list
Other attributes that are allowed with the INTRINSIC attribute are:

PRIVATE
PUBLIC

The INTRINSIC statement (R1208) provides a means for declaring intrinsic
subroutines, as well as functions. Its form is:

INTRINSIC intrinsic-procedure-name-list
Rules and restrictions:
1. Each intrinsic procedure name must be the name of an intrinsic procedure.
2. Within a scoping unit, a name may be declared INTRINSIC only once.

3. A name must not be declared to be both EXTERNAL and INTRINSIC in a
scoping unit.

4. A type may be specified for an intrinsic function even though it has a type
as specified in Appendix A. If a type is specified for the generic name of an
intrinsic function, it does not remove the generic properties of the function
name.

5. The documentation provided with a compiler may specify intrinsic
procedures in addition to the ones required by the standard. These
procedures have the status of intrinsic procedures, but programs that use
them may not be portable to other computer systems.

For example:
® entity-oriented

REAL, INTRINSIC : SIN, COS
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REAL SIN, COS
INTRINSIC SIN, COS

Because the interfaces of intrinsic procedures are explicit (known), it is not
necessary to specify a type for them, but it is not incorrect to do so.

5.8 Automatic Data Objects
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Automatic data objects are especially useful as working storage in a procedure.
These objects may be declared only in procedures or procedure interfaces; they
are created when the procedure is entered and disappear when the procedure
completes execution. They can be created the same size as an argument to the
procedure, so they can be tailored to each invocation.

There are two kinds of automatic data objects: automatic arrays of any type
and objects of type character. Note that in Fortran 90 the term “automatic
object” does not include noncharacter scalar local variables. For an array, the
extents in each dimension are determined when the procedure is entered. For a
character object, the length is determined when the procedure is entered. Apart
from dummy arguments, this is the only character object whose length may
vary. For arrays, extents may vary for allocatable arrays and array pointers as
well as dummy arguments. An automatic object is not a dummy argument, but
it is declared with a specification expression that is not a constant expression.
The specification expression may be the length of the character object or the
bounds of the array. Automatic objects cannot be saved or initialized. For
example:

SUBROUTINE SWAP_ARRAYS (A, B, A_NAME, B_NAME)
REAL, DIMENSION (:), INTENT (INOUT) :: A, B
CHARACTER (LEN = *), INTENT(IN) = A_NAME, B_NAME

REAL C (SIZE (A))
CHARACTER (LEN = LEN (A_NAME) + LEN (B_NAME) + 17) &
MESSAGE

A
B

C
A
B=°C
MESSAGE = A_NAME // " and " // B_NAME // " are swapped"
PRINT *, MESSAGE
END SUBROUTINE SWAP_ARRAYS
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In the example, C is an automatic array and MESSAGE is an automatic
character object.

5.9 NAMELIST Statement

A NAMELIST statement establishes the name for a collection of objects that
can then be referenced by the group name in certain input/output statements.
The form of the NAMELIST statement (R543) is:

NAMELIST / namelist-group-name / variable-name-list &
[ [, ]/ namelist-group-name / variable-name-list ] ...

Rules and restrictions:

1.

A variable in the variable name list must not be an array dummy argument
with nonconstant bounds, a variable with assumed character length, an
automatic object, a pointer, an object of a type that has a pointer
component at any level, an allocatable array, or a subobject of any of the
preceding objects.

If a namelist group name has the PUBLIC attribute, no item in the namelist
group object list may have the PRIVATE attribute.

The order in which the data objects (variables) are specified in the
NAMELIST statement determines the order in which the values appear on
output.

A namelist group name may occur in more than one NAMELIST statement
in a scoping unit. The variable list following each successive appearance of
the same namelist group name in a scoping unit is treated as a
continuation of the list for that namelist group name.

A variable may be a member of more than one namelist group.

A variable either must have its type, type parameters, and shape specified
previously in the same scoping unit, or must be determined by implicit
typing rules. If a variable is typed by the implicit typing rules, its
appearance in any subsequent type declaration statement must confirm
this implicit type.

Examples of NAMELIST statements are:

NAMELIST / N_LIST / A, B, C
NAMELIST / S LIST / A, V, W, X, Y, Z
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5.10 Storage Association
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In general, the physical storage units or storage order for data objects cannot
be specified. However, the COMMON, EQUIVALENCE, and SEQUENCE
statements provide sufficient control over the order and layout of storage units
to permit data to share storage units.

In Fortran 77, the COMMON statement provides the primary means of sharing
data between program units. The EQUIVALENCE statement provides a means
whereby two or more objects can share the same storage units. These two
statements are powerful tools that can accomplish tasks for which no other
mechanisms exist in Fortran 77, but they also permit the construction of
programs that are difficult to understand and maintain.

In Fortran 90, modules, pointers, allocatable arrays, and automatic data objects
provide more effective tools for sharing data and managing storage. The
SEQUENCE statement has been introduced in Fortran 90 to define a storage
order for structures. This permits structures to appear in common blocks and
be equivalenced. The SEQUENCE statement can appear only in derived-type
definitions to define sequence types. The components of a sequence type have
an order in storage sequences that is the order of their appearance in the type
definition.

The concept of storage association involves storage units and storage sequence.
These concepts are used to explain how the COMMON and EQUIVALENCE
mechanisms work. This description does not imply that any particular memory
allocation scheme is required by a Fortran system, but the system must
function as though storage were actually managed according to these
descriptions.

5.10.1 Storage Units

In Fortran 77, there are only two kinds of storage units: numeric and character.
Fortran 90 introduces new types (the nondefault types), user-defined types,
and pointers. Objects of these types and pointers cannot be accommodated by
the two storage units allowed in Fortran 77, and, in fact, it is not desirable to
specify storage units for the space these objects occupy. Fortran 90 uses the
term “unspecified storage unit” for these objects. A new Fortran 90 object (a
pointer, an object of nondefault type, or a structure containing components that
are of nondefault types or are pointers) is said to occupy an unspecified
storage unit, but this unit is different for each different sort of object. If a
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processor provides a quadruple precision real type and a small-size logical
type, they each occupy an unspecified storage unit, but the quadruple
precision object will probably take more storage than the small-size logical
object. A pointer occupies a single unspecified storage unit that is different
from that of any nonpointer object and is different for each combination of
type, type parameters, and rank.

There are two kinds of structures, sequence structures and nonsequence
structures, depending on whether the type definition contains a SEQUENCE
statement or not. A nonsequence structure occupies a single unspecified
storage unit that is different for each type. There are three kinds of sequence
structures:

1. numeric sequence structures (containing only numeric and logical entities
of default kind)

2. character sequence structures (containing only character entities of default
kind)

3. sequence structures (containing a mixture of components including objects
that occupy numeric, character, and unspecified storage units)

Table 5-1 lists objects of various types and attributes and the storage units they
occupy.

5.10.2 Storage Sequence

A storage sequence is an ordered sequence of storage units. The storage units
may be elements in an array, characters in a character variable, components in
a sequence structure, or variables in a common block. A sequence of storage
sequences forms a composite storage sequence. The order of the storage units
in such a composite sequence is the order of the units in each constituent taken
in succession, ignoring any zero-sized sequences.

Storage is associated when the storage sequences of two different objects have
some storage in common. This permits two or more variables to share the same
storage. Two objects are totally associated if they have the same storage
sequence; two objects are partially associated if they share some storage but
are not totally associated.
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Table 5-1
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Types and attributes and the storage units they occupy

Type and attributes of object.

Storage units

Default integer

Default real

Default logical

Double precision

Default complex

Default character of length 1
Default character of length s
Nondefault integer

Real other than default real
or double precision

Nondefault logical

Nondefault complex

Nondefault character of length 1

Nondefault character of length s

Nonsequence structure

Numeric sequence structure

character sequence structure

Sequence structure

Any type with the pointer attribute

Any intrinsic or sequence type with the

dimension attribute

Any nonintrinsic, nonsequence type

with the dimension attribute

Any type with the pointer attribute and

the dimension attribute

1 numeric
1 numeric
1 numeric
2 numeric
2 numeric
1 character
s character

1 unspecified
1 unspecified

1 unspecified
1 unspecified
1 unspecified
s unspecified
1 unspecified

n numeric, where n is the number of numeric storage units
the structure occupies

n character, where n is the number of character storage
units the structure occupies

1 unspecified

1 unspecified

The size of the array times the number of storage units for
the type (will appear in array element order)

Unspecified number of unspecified storage units

1 unspecified
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5.10.3 EQUIVALENCE Statement

To indicate that two or more variables are to share storage, they may be placed
in an equivalence set in an EQUIVALENCE statement. If the objects in an
equivalence set have different types or type parameters, no conversion or
mathematical relationship is implied. If a scalar and an array are equivalenced,
the scalar does not have array properties and the array does not have the
properties of a scalar. The form of the EQUIVALENCE statement (R545) is:

EQUIVALENCE
( equivalence-object , equivalence-object-list ) &
[ . ( equivalence-object , equivalence-object-list ) ] ...

where an equivalence object (R547) is one of:

variable-name
array-element
substring

Rules and restrictions:
1. An equivalence object must not be:

a dummy argument

a pointer

an allocatable array

a nonsequence structure

a structure containing a pointer at any level
an automatic object

a function name, result name, or entry name
a named constant

a subobject of any of the above

2. An equivalence set list must contain at least two items.

3. Any subscripts and subscript ranges must be integer initialization
expressions.

4. If an equivalence object is of type default integer, default real, double
precision real, default complex, default logical, or numeric sequence type,
all of the objects in the set must be of these types.
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10.

If an equivalence object is of type default character or character sequence
type, all of the objects in the set must be of these types. The lengths do not
need to be the same.

If an equivalence object is of sequence type other than numeric or character
sequence type, all of the objects in the set must be of the same type.

If an equivalence object is of intrinsic type other than default integer,
default real, double precision real, default complex, default logical, or
default character, all of the objects in the set must be of the same type with
the same kind type parameter value.

The use of an array name unqualified by a subscript list in an equivalence
set specifies the first element of the array; that is, A means the first element
of A.

An EQUIVALENCE statement must not specify that the same storage unit
is to occur more than once in a storage sequence. For example, the
following is illegal because it would indicate that storage for X(2) and X(3)
is shared.

EQUIVALENCE (A, X (2)), (A, X (3))

An EQUIVALENCE statement must not specify the sharing of storage units
between objects declared in different scoping units.

An EQUIVALENCE statement specifies that the storage sequences of the data
objects in an equivalence set are storage associated. All of the nonzero-sized
sequences in the set, if any, have the same first storage unit, and all of the zero-
sized sequences, if any, are storage associated with one another and with the
first storage unit of any nonzero-sized sequences. This causes storage
association of the objects in the set and may cause storage association of other
data objects.

For example:
CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) = C (2)
EQUIVALENCE (A, C (1)), (B, C (2)
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causes the alignment illustrated below:

A(Ll) | A(22) | AB3) | A@44)

B(2:2) | B(3:3) | B:4)

c)@:D) |cW)(2:2) | c)33) | cE@D) |c@22) | c@)(3:3)

As a result, the fourth character of A, the first character of B, and the first
character of C(2) all share the same character storage unit.

REAL, DIMENSION (6) = X, Y
EQUIVALENCE (X (5), Y(3))

causes the alignment illustrated below:

X(1) X(2) X(3) X(4) X(5) X(6)

Y(1) Y(2) Y(@) Y(4) Y(5) Y(6)

5.10.4 COMMON Statement

The COMMON statement establishes blocks of storage called common blocks
and specifies objects that are contained in the blocks. Two or more program
units may share this space and thus share the values of variables stored in the
space. Thus, the COMMON statement provides a global data facility based on
storage association. Common blocks may be named, in which case they are
called named common blocks, or may be unnamed, in which case they are
called blank common.

Fortran 77 restricts a common block to contain only numeric storage units or to
contain only character storage units. Fortran 90 relaxes this restriction.
Common blocks may contain mixtures of storage units and may contain
unspecified storage units; however, if a common block contains a mixture of
storage units, every declaration of the common block in the program must
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contain the same sequence of storage units, thereby matching types, kind type
parameters, and attributes (dimension and pointer). The form of the
COMMON statement (R548) is:

COMMON / [ common-block-name ] / ] common-block-object-list &
[ [, ]/ [ common-block-name ] / common-block-object-list ] ...

where a common block object (R549) is:

variable-name [ ( explicit-shape-spec-list ) ]

Rules and restrictions:

1. A common block object must not be:

a dummy argument

an allocatable array

a nonsequence structure

an automatic object

a function name, result name, or entry name

The appearance of two slashes with no common block name between them
declares the objects in the following object list to be in blank common.

. A common block name or an indication of blank common may appear

more than once in one or more COMMON statements in the same scoping
unit. The object list following each successive block name or blank
common indication is treated as a continuation of the previous object list.

. A variable may appear in only one common block within a scoping unit.

If a variable appears with an explicit-shape specification list, it is an array,
and each bound must be a constant specification expression.

. A nonpointer object of type default integer, default real, double precision

real, default complex, default logical, or numeric sequence type must
become associated only with nonpointer objects of these types.

. A nonpointer object of type default character or character sequence must

become associated only with nonpointer objects of these types.

If an object of numeric sequence or character sequence type appears in a
common block, it is as if the individual components were enumerated in
order directly in the common block object list.
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9. A nonpointer object of sequence type other than numeric or character
sequence type must become associated only with nonpointer objects of the
same type.

10. A nonpointer object of intrinsic type other than default integer, default
real, double precision real, default complex, default logical, or default
character must become associated only with nonpointer objects of the same
type with the same kind type parameter value.

11. A pointer must become associated only with pointers of the same type,
type parameters, and rank.

12. Only a named common block may be saved, not individual variables in the
common block.

For each common block, a common block storage sequence is formed. It
consists of the sequence of storage units of all the variables listed for the
common block in the order of their appearance in the common block list. The
storage sequence may be extended (on the end) to include the storage units of
any variable equivalenced to a variable in the common block. Data objects
storage associated with a variable in a common block are considered to be in
that common block. The size of a common block is the size of its storage
sequence including any extensions of the sequence resulting from equivalence
association.

Within an executable program, the common block storage sequences of all
nonzero-sized common blocks with the same name have the same first storage
unit and must have the same size. Zero-sized common blocks are permitted.
Frequently a program is written with array extents and character lengths
specified by named constants. When there is a need for a different-sized data
configuration, the values of the named constants can be changed and the
program recompiled. Allowing extents and lengths to be specified to have the
value zero, and thus possibly specifying zero-length common blocks, permits
the maximum generality. All zero-sized common blocks with the same name
are storage associated with one another. The same is true of all blank common
blocks except that because they may be of different sizes, it is possible for a
zero-sized blank common block in one scoping unit to be associated with the
first storage unit of a nonzero-sized blank common block in another scoping
unit. In this way, many subprograms may use the same storage. They may
specify common blocks to communicate global values or to reuse and thus
conserve storage.
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A blank common block has the same properties as a named common block
except for the following:

1.
2.

Variables in blank common must not be initially defined.

Blank common is always saved; a named common block is not saved

unless it is mentioned in a SAVE statement.

3. Named common blocks of the same name must be the same size in all
scoping units of a program. Blank common blocks may be of different

sizes.
For example:

SUBROUTINE FIRST

INTEGER, PARAMETER :: SHORT = 2
REAL B(2)
COMPLEX C
LOGICAL FLAG
TYPE COORDINATES
SEQUENCE
REAL X, Y
LOGICAL Z_O ! zero origin?
END TYPE COORDINATES
TYPE (COORDINATES) P
COMMON / REUSE / B, C, FLAG, P

REAL MY_VALUES (100)

CHARACTER (LEN = 20) EXPLANATION
COMMON / SHARE / MY_VALUES, EXPLANATION
SAVE / SHARE /

REAL, POINTER = W (; 2

REAL, TARGET, DIMENSION (100, 100) :: EITHER, OR
INTEGER (SHORT) :: M (2000)

COMMON / MIXED / W, EITHER, OR, M

SUBROUTINE SECOND

INTEGER, PARAMETER :: SHORT = 2
INTEGER 1(8)
COMMON / REUSE / |
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REAL MY_VALUES (100)

CHARACTER (LEN = 20) EXPLANATION
COMMON / SHARE / MY_VALUES, EXPLANATION
SAVE / SHARE /

REAL, POINTER : V ()

REAL, TARGET, DIMENSION (10000) :: ONE, ANOTHER
INTEGER (SHORT) : M (2000)

COMMON / MIXED / V, ONE, ANOTHER, M ! ILLEGAL

Common block REUSE has a storage sequence of 8 numeric storage units. It is
being used to conserve storage. The storage referenced in subroutine FIRST is
associated with the storage referenced in subroutine SECOND as shown below:

B(1) B(2) C FLAG X Y ZO

I(1) 1) I3) 1(4) I(5) 1(6) I(7) I(8)

There is no guarantee that the storage is actually retained and reused because,
in the absence of a SAVE attribute for REUSE, some processors may release the
storage when either of the subroutines completes execution.

Common block SHARE contains both numeric and character storage units and
is being used to share data between subroutines FIRST and SECOND.

The declaration of common block MIXED in subroutine SECOND is illegal
because it does not have the same sequence of storage units as the declaration
of MIXED in subroutine FIRST. The array pointer in FIRST has two
dimensions; the array pointer in SECOND has only one. With common blocks,
it is the sequence of storage units that must match, not the names of variables.

5.10.5 Restrictions on Common and Equivalence

An EQUIVALENCE statement must not cause two different common blocks to
become associated and must not cause a common block to be extended by
adding storage units preceding the first storage unit of the common block.

For example:

COMMON A (5)
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REAL B (5)
EQUIVALENCE (A (2), B (1))

is legal and results in the following alignment:

A1) AQ2) AQ) A4) A()

B(1) B(2) B(3) B(4) B(5)

On the other hand, the following is not legal:
EQUIVALENCE (A (1), B (2))

because it would place B (1) ahead of A (1) as in the following alignment:

A1) AQ2) AB) A4) AB)

B(1) B(2) B(3) B(4) B(5)

and a common block must not be extended from the beginning of the block.

COMMON and EQUIVALENCE statements may appear in a module. If a
common block is declared in a module, it must not also be declared in a
scoping unit that accesses the module. The name of a PUBLIC data object from
a module must not appear in a COMMON or EQUIVALENCE statement in any
scoping unit that has access to the data object.

5.11 Summary

Declarations are used to specify the attributes and relationships of the entities
in a program. Variables, functions, and named constants have a type which is
the most important of the attributes.

5.11.1 Type

Fortran 90 has five intrinsic types and permits users to define additional types.
The types are:
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integer

real
complex
logical
character
user-defined

The following are type declaration statements:

REAL (KIND = HIGH) ROOT, ANSWER

INTEGER INDEX, SELECTOR, COUNTER

TYPE (VEHICLE) CAR, BIKE, TRAIN

CHARACTER (LEN = STRING_LEN) WORK_STRING

The only character objects that may have a length that is specified as a variable
are dummy arguments and automatic character variables in a procedure. The
length is determined each time the procedure is invoked.

If there is no type declaration for a variable, named constant, or function, its
type is determined implicitly by the first letter of its name. Unless there is an
IMPLICIT NONE statement in the scoping unit, there is a default mapping for
each letter to one of the permissible types. IMPLICIT statements may be used
to change the default mapping rules. In the absence of any other mapping, it is
as if the following IMPLICIT statements defined the mapping:

IMPLICIT REAL (A-H, O-2)
IMPLICIT INTEGER (I-M)

Entities such as subroutines, common blocks, and namelist groups do not have
a type but may possess other attributes.

5.11.2 Other Attributes

There are 12 other attributes, as well as initialization, for variables. In general,
attributes may be specified in type declaration statements (entity-oriented
form) or in separate attribute declaration statements (attribute-oriented form).
For example:

® entity-oriented

INTEGER, TARGET, SAVE : SCORES (50)
INTEGER, POINTER : TEAM ()
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® attribute-oriented

INTEGER SCORES (50), TEAM ()
TARGET SCORES

SAVE SCORES

POINTER TEAM

Initialization and the DATA Statement. A variable is given an initial value
(that may change during program execution) in a type declaration statement or
in a separate DATA statement. For example:

® entity-oriented

REAL :: DELTA = .01
LOGICAL, SAVE :: STATES(3) = (/.TRUE.,.FALSE.,.FALSE./)

® attribute-oriented

REAL DELTA

LOGICAL STATES(3)

SAVE STATES

DATA DELTA /.01/, STATES / .TRUE.,.FALSE.,.FALSE. /

ALLOCATABLE. An array may have the ALLOCATABLE attribute. No space
is set aside for such an array until an ALLOCATE statement, specifying the
extent of each dimension, is executed. A DEALLOCATE statement may be
executed to release the space. Such an array may be declared as:

® entity-oriented
REAL, ALLOCATABLE :: MATRIX_X (;, :), MATRIX_Y (, )
® attribute-oriented

REAL MATRIX_X (;, :), MATRIX_Y (., 1)
ALLOCATABLE MATRIX_X, MATRIX_Y

DIMENSION. An array has the DIMENSION attribute. There are four ways to
declare arrays:

® with explicit shape
® with assumed shape
® with deferred shape

® with assumed size
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An explicit-shape array is declared with all upper bounds specified. The only
arrays that may have a dimension specified by a variable are dummy
arguments and automatic arrays in a procedure. In these cases, the extents are
determined each time the procedure is invoked.

An assumed-shape array is a dummy argument that takes its shape from the
actual argument. The interface of the procedure in which the dummy argument
appears must be explicit in the scope of the procedure reference.

A deferred-shape array must have the POINTER or ALLOCATABLE attribute.
If an array argument or array function result has the POINTER attribute, the
interface of the procedure must be explicit in the scope of the procedure
reference.

An assumed-size array is a dummy argument with an asterisk (0) as its last
dimension and explicit upper bounds for all other dimensions. The interface of
the procedure in which the dummy argument appears need not be explicit in
the scope of the procedure reference.

There are some limitations on appearances in a program of arrays declared in
each of these four ways. Table 5-2 gives a partial summary of the allowable
appearances.

There are several ways to specify an array. It may be specified by a
DIMENSION attribute in a type declaration statement or in a separate
DIMENSION statement; or it may be specified by attaching the dimension
specification to the array name in a type declaration, ALLOCATABLE,
COMMON, POINTER, or TARGET statement. For example:

® entity-oriented

REAL, DIMENSION(.,:), ALLOCATABLE : MX_X, MX_Y
COMPLEX (HIGH), SAVE :: HYPER_SPACE (20,20,20,20)
LOGICAL, INTENT(IN) :: MASK1(SIZE(ARG1))

® attribute-oriented

REAL MX_X, MX_Y

COMPLEX (HIGH) HYPER_SPACE (20,20,20,20)
LOGICAL MASK1 (SIZE(ARG1))

DIMENSION MX_X (:, 2), MX_Y (, 3
ALLOCATABLE MX_X, MX_Y

SAVE HYPER_SPACE

INTENT (IN) MASK
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Table 5-2  Partial summary of allowable appearances of arrays declared in
each of the four ways

An array declared with

Explicit Assumed Deferred Assumed

May appear as a shape shape shape size
Primary in an expression Yes Yes Yes No
Vector subscript Yes Yes Yes No
Dummy argument Yes Yes Yes1 Yes
Actual argument Yes Yes Yes Yes
Equivalence object Yes No No No
Common obiject Yes No Yes1 No
Namelist object Yes2 No No No
Saved object Yes2 No Yes No
Data initialized object Yes2 No No No
170 list item Yes Yes Yes No
Format Yes Yes Yes Yes
Internal file Yes Yes Yes No
Allocate object No No Yes No
ES:EEZ: Zg?g;::ent statement No No Yes' No
Target object in pointer Yes Yes Yes No

assignment statement

1 Must have the POINTER attribute

2 Must have constant bounds

EXTERNAL and INTRINSIC. These attributes permit the names of external or
intrinsic procedures to be actual arguments in subroutine calls and function
references. If the procedure is a subroutine, then the attribute must be specified
in an EXTERNAL or INTRINSIC statement because subroutines must not
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appear in type declaration statements. The type of an intrinsic function is
known to the processor, but it may be specified in a type declaration statement
as well. For example:

® entity-oriented

REAL, EXTERNAL :: INVERT
EXTERNAL MY_SUB
COMPLEX, INTRINSIC :: CSIN, CCOS

® attribute-oriented

REAL INVERT
EXTERNAL INVERT, MY_SUB
INTRINSIC CSIN, CCOS

INTENT. The INTENT attribute specifies the intended use of a dummy
argument. There are three possible intents: IN, OUT, and INOUT. For example:

® entity-oriented

INTEGER, INTENT (IN) :: SIGNAL (N)
REAL, INTENT (OUT) :: SOLUTION
COMPLEX, INTENT (INOUT) :: CX_VAL

® attribute-oriented

INTEGER SIGNAL (N)
REAL SOLUTION
COMPLEX CX_VAL
INTENT (IN) SIGNAL
INTENT (OUT) SOLUTION
INTENT (INOUT) CX_VAL

OPTIONAL. If a dummy argument has the OPTIONAL attribute, the
corresponding actual argument may be omitted from a reference to the
procedure. The PRESENT intrinsic function may be used within the procedure
to inquire about the presence of the actual argument. Thus, it is possible to
establish defaults within a procedure that may be reset when an optional
argument is actually present. Example declarations are:

® entity-oriented

REAL, INTENT (IN), OPTIONAL :: ORIGIN (2)
CHARACTER (*), OPTIONAL : REPLY
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® attribute-oriented

REAL ORIGIN (2)
CHARACTER (*) REPLY
INTENT (IN) ORIGIN
OPTIONAL ORIGIN, REPLY

PARAMETER. If an object has the PARAMETER attribute, it is a named
constant. As with any constant, its value does not change during execution.
The value of a named constant may be specified in a type declaration
statement or in a separate PARAMETER statement.

® entity-oriented

REAL, PARAMETER : Pl = 3.14159
TYPE (COLOR), PARAMETER : &
MAUVE = COLOR (12, 22, 3, "mauve")

® attribute-oriented

REAL PI
TYPE (COLOR) MAUVE
PARAMETER ( Pl = 3.14159, &

MAUVE = COLOR (12, 22, 3, "mauve") )

POINTER. An object with the POINTER attribute has no space set aside for it
until an ALLOCATE statement is executed for the pointer or the pointer is
assigned to point to existing space. An object that is accessed by a pointer is
called the target of the pointer. The pointer’s target may change during
program execution. Examples of pointer declarations are:

® entity-oriented

REAL, POINTER :: BUFFER (10000)
TYPE (LINK), POINTER :: HEAD_OF_CHAIN

® attribute-oriented

REAL BUFFER (10000)
TYPE (LINK) HEAD_OF CHAIN
POINTER BUFFER, HEAD OF_CHAIN

PUBLIC and PRIVATE. A programmer can control the accessibility of entities
specified in a module. The default accessibility of module entities is PUBLIC,
but it can be changed to PRIVATE by the insertion of a PRIVATE statement
after the MODULE statement. Accessibility of the following entities can be
controlled:
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variables
functions

named constants
type definitions
subroutines
generic specifiers
namelist groups

There are two ways to specify accessibility individually for variables,
functions, and named constants: with PUBLIC and PRIVATE attributes in type
declaration statements or with PUBLIC and PRIVATE statements. There are
two ways to specify accessibility for a type definition: with a PUBLIC or
PRIVATE attribute in the derived-type statement of the definition or with a
PUBLIC or PRIVATE statement containing the type name. Further, the type
name may be public, but the components kept private by the insertion of a
PRIVATE statement following the derived-type statement in the type
definition. There is only one way to specify accessibility for subroutines,
genereic specifiers, and namelist groups: with a PUBLIC or PRIVATE statement
containing their names. Examples of declarations of accessibility for two
objects and for a type are:

® entity-oriented

CHARACTER (10), PUBLIC, SAVE : ACCESS_NAME = "ALPHA"
CHARACTER (10), PRIVATE :: PASSWORD = "rosebud"
TYPE, PRIVATE :: VEHICLE

INTEGER NO_WHEELS
CHARACTER (10) FUEL
REAL WEIGHT

END TYPE VEHICLE
® attribute-oriented

CHARACTER (10) ACCESS_NAME, PASSWORD
DATA ACCESS_NAME /"ALPHA"/, PASSWORD /"rosebud"/
TYPE :: VEHICLE

INTEGER NO_WHEELS
CHARACTER (10) FUEL
REAL WEIGHT

END TYPE VEHICLE

PRIVATE PASSWORD, VEHICLE
PUBLIC ACCESS_NAME

SAVE ACCESS_NAME
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SAVE. Local variables and data in named common blocks are not necessarily

saved when a subprogram completes execution. To guarantee that they are, the
variables and common blocks must have the SAVE attribute. Because common
blocks have no type, the SAVE statement must be used to give the attribute to
them. Examples of such declarations are:

® entity-oriented
INTEGER, SAVE : NO_OF WEIGHTS, NO_OF_MEASURES
® attribute-oriented

INTEGER NO_OF WEIGHTS, NO_OF MEASURES
SAVE NO_OF WEIGHTS, NO_OF MEASURES
SAVE /BLOCK1/, /BLOCK2/

TARGET. If an object has the TARGET attribute, it may become a pointer
target. If it does not have the TARGET attribute (and is not a pointer), it can
never be referenced by a pointer. This knowledge gives the processor much
more leeway in the optimization of code. An allocatable array may have the
TARGET attribute. Example TARGET declarations are:

® entity-oriented

LOGICAL, ALLOCATABLE, TARGET :: MASK (; )
REAL, TARGET :: COEFFICIENTS

® attribute-oriented

LOGICAL MASK (;, 1)
REAL COEFFICIENTS
ALLOCATABLE MASK
TARGET MASK, COEFFICIENTS

Attribute Compatibility. No single entity can possess all of the attributes
because some attributes are incompatible with others. For example,
OPTIONAL is an attribute that can be applied only to dummy arguments, and
dummy arguments must not have the SAVE attribute. Table 5-3 shows which
attributes may be used together to specify an entity.

5.11.3 Relationships

Other statements are used to declare relationships among objects.
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Table 5-3  Attribute compatibility. If two attributes can appear in the same
type declaration statement, a check mark appears at their
intersection in the chart. A cross indicates incompatibility.
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5.11.4 NAMELIST
A NAMELIST statement specifies a name for a list of objects so that the entire

list of objects can be referenced simply by the name in certain input/output
statements. For example:

NAMELIST /MY_GROUP/ FRIENDS, ROMANS, COUNTRYMEN
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5.11.5 EQUIVALENCE

The EQUIVALENCE statement is used to indicate that a group of variables
share storage. For example:

EQUIVALENCE (FIRST_A, A(1,1,1)), (LAST_A, A(100,100,100))

5.11.6 COMMON

The COMMON statement is used to specify a name for a block of storage and
to declare objects that are contained in the block. Two or more program units
may declare the same named common block, and thus they can share the
values of variables contained in the block. Fortran 90 permits objects of
numeric type and objects of character type to appear in the same common
block. Fortran 90 also permits pointers, sequence structures, and objects of
nondefault type to appear in common blocks, as long as each specification of
the common block contains the same sequence of storage units. For example:

TYPE LINK

REAL VALUE

TYPE (LINK) NEXT
END TYPE LINK
CHARACTER (20) NAME_OF_SPARSE_ARRAY
LOGICAL (KIND = BIT) MASK (1000, 1000)
TYPE (LINK) HEAD_OF CHAIN, END_OF CHAIN

COMMON /SPARSE_ARRAY/ NAME_OF SPARSE_ARRAY, MASK, &
HEAD_OF_CHAIN, END_OF_CHAIN
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Using Data 6

Chapter 5 explained how data objects are created and how their attributes are
specified. Chapter 6 goes further and explains how these objects can be used.
To use a data object, its name or designator must appear in a Fortran
statement. The appearance of the name or designator where its value is
required is a reference to the object. When an object is referenced, it must be
defined; that is, it must have a value. The reference makes use of the value. For
example:

A
B

1.0
A+ 40

In the first statement, the constant value 1.0 is assigned to the variable A. It
does not matter whether A was previously defined with a value or not; it now
has a value and can be referenced in an executable statement. In the second
statement, A is referenced; its value is obtained and added to the constant 4.0
to obtain a value that is then assigned to the variable B. The appearances of A
in the first statement and B in the second statement are not considered to be
references because their values are not required. The appearance of A in the
second statement is a reference.

A data object may be a constant or a variable. If it is a constant, either a literal
or a named constant, its value will not change. If it is a variable, it may take on
different values as program execution proceeds. Variables and constants may
be scalar objects (with a single value) or arrays (with any number of values, all
of the same type).
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Variables generally have storage space set aside for them by the compiler and
are usually found in the same place. If, however, the variable is a pointer or an
allocatable array, the compiler does not set aside any space. The programmer
must allocate space or, in the case of a pointer, the programmer might assign

existing space.

Arrays are said to be dynamic if their size as well as their position may change.
Automatic arrays were discussed in Section 5.8; they are created on entry to a
procedure and their size and location are determined at that time. Allocatable
arrays or pointer arrays may change size as well as location. The declared rank
cannot change, but the extents of the dimensions may change with each
reallocation or pointer assignment.

If a variable or constant is a portion of another object, it is called a subobject.
A subobiject is one of:

an array element

an array section

a structure component
a substring

A variable is referenced by its name, whereas a subobject is referenced by a
designator. A designator indicates the portion of an object that is being
referenced. Each subobject is considered to have a parent and is a portion of
the parent. Each of the subobjects is described in this chapter; first, substrings
and structure components, and then array subobjects (array elements and array
sections) along with the use of subscripts, subscript triplets, and vector
subscripts. A number of additional aspects of arrays are covered: array
terminology, use of whole arrays, and array element order.

A reference to a variable or subobject is called a data reference. There are
guidelines for determining whether a particular data reference is classified as a
character string, character substring, structure component, array, array
element, or array section. These classifications are perhaps of more interest to
compiler writers than to users of the language, but knowing how a data
reference is classified makes it clearer which rules and restrictions apply to the
reference and easier to understand some of the explanations for the formation
of expressions. Briefly, character strings and substrings must be of type
character. Arrays have the dimension attribute. Some data references may be
classified as both structure components and arrays sections. In general, if a
data reference contains a percent, it is a structure component, but its actual
classification may be determined by other factors such as a section subscript or
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the rightmost element of the reference. If a substring range appears in a data
reference, it must appear at the right end of the reference, and the reference is
considered to be a substring unless some component of the reference is an
array section, in which case the data reference is considered to be an array
section that just happens to have elements that are substrings. For a component
reference to be classified as an array element, every component must have rank
zero and a subscript list must appear at the right end of the reference. Sections
6.1 through 6.4.5 contain many examples that demonstrate how these
guidelines for classification apply.

Finally, Chapter 6 explains how pointers and allocatable arrays can be created
and released by using ALLOCATE and DEALLOCATE statements. In addition,
pointers can be disassociated from any target object by using the NULLIFY
statement.

6.1 Constants and Variables

A constant has a value that cannot change; it may be a literal constant or a
named constant (parameter). As explained in Chapter 4, each of the intrinsic
types has a form that specifies the type, type parameters, and value of a literal
constant of the type. For user-defined types, there is a structure constructor to
specify values of the type. If all of the components of a value are constants, the
resulting derived-type value is a constant expression. Array constructors are
used to form array values of any intrinsic or user-defined type. If all array
elements are constant values, the resulting array is a constant array expression.
A reference to a constant is always permitted, but a constant cannot be
redefined.

A variable has a name such as A or a designator such as B(l), and may or may
not have a value. If it does not have a value, it must not be referenced. A
variable (R601) may be one of the following:

scalar-variable-name
array-variable-name
subobject

where a subobject (R602) is one of;

array-element
array-section
structure-component
substring
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Rules and restrictions:

1. Variables may be of any type. There are contexts in which a variable must
be of a certain type. In some of these cases, terms, such as logical-variable,
character-variable, or default-character-variable, provide precise limitations.

2. A subobject with a constant parent is not a variable.

A single object of any of the intrinsic or user-defined types is a scalar. A set of
scalar objects, all of the same type and type parameters, may be arranged in a
pattern involving columns, rows, planes, and higher-dimensioned
configurations to form arrays. An array has a rank between one and seven; a
Fortran processor is not required to support the processing of arrays of rank
greater than seven. A scalar has rank zero. In simple terms, an array is an
object with the DIMENSION attribute; a scalar is not an array.

For example, given the declarations:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 40) NAME
END TYPE PERSON

TYPE(PERSON) FIRECHIEF, FIREMEN(50)
CHARACTER (20) DISTRICT, STATIONS(10)

the following data references are classified as indicated by the comments on

each line.
DISTRICT I character string
DISTRICT(1:6) ! substring
FIRECHIEF % AGE I structure component
FIREMEN % AGE I array of integers
STATIONS I array of character strings
STATIONS(1) I array element (character string)
STATIONS(1:4) I array section of character strings

A subobject may have a constant parent, for example:

CHARACTER (*), PARAMETER :: MY_DISTRICT = "DISTRICT 13"
CHARACTER (2) DISTRICT_NUMBER
DISTRICT_NUMBER = MY_DISTRICT (10:11)

DISTRICT_NUMBER has the value "13", a character string of length 2.
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6.2 Substrings

A character string consists of zero or more characters. Even though it is made
up of individual characters, a character string is considered to be scalar. As
with any data type, it is possible to declare an array of character strings, all of
the same length.

A substring is a contiguous portion of a character string that has a starting
point and an ending point within the character string. It is possible to reference
a substring of a character scalar variable or constant. The form of a substring
(R609) is:

parent-string ( substring-range )
where a parent string (R610) is one of:

scalar-variable-name
array-element
scalar-structure-component
scalar-constant

and a substring range (R611) is:

[ starting-position ] : [ ending-position ]
The starting position and ending position must be scalar integer expressions.
Rules and restrictions:

1. The parent string of a substring must be of type character. The substring is
of type character.

2. A substring is the contiguous sequence of characters within the string
beginning with the character at the starting position and ending at the
ending position. If the starting position is omitted, the default is 1; if the
ending position is omitted, the default is the length of the character string.

3. The length of a character string or substring may be 0, but not negative.
Zero-length strings result when the starting position is greater than the
ending position. The formula for calculating the length of a string is:

MAX ( ending-position — starting-position + 1, 0 )
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4. The first character of a parent string is at position 1 and the last character is
at position n where n is the length of the string. The starting position of a
substring must be greater than or equal to 1 and the ending position must
be less than or equal to the length n, unless the length of the substring is 0.
If the parent string is of length 0, the substring must be of length 0.

In the following example,

CHARACTER (14) NAME
NAME = "John Q. Public"
NAME(1:4) = "Jane"
PRINT *, NAME (9:14)

NAME is a scalar character variable, a string of 14 characters, that is assigned
the value "John Q. Public" by the first assignment statement. NAME(1:4) is a
substring of four characters that is reassigned the value "Jane" by the second
assignment statement, leaving the remainder of the string NAME unchanged;
the string name then becomes "Jane Q. Public". The PRINT statement prints the
characters in positions 9 through 14, in this case, the surname, "Public".

Given the definition and declarations:

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 40) NAME
END TYPE PERSON

TYPE(PERSON) FIRECHIEF, FIREMEN(50)
CHARACTER (20) DISTRICT, STATIONS(10)

the following are all substrings:

STATIONS (1) (1:5) I array element as parent string
FIRECHIEF%NAME (4:9) ! structure component as parent string
DISTRICT (7:14) ! scalar variable as parent string

‘0123456789’ (N:N+1) ! character constant as parent string

The reference STATIONS (2) (1:5) is permitted. It is an array whose elements are
substrings, but it is not considered to be a substring reference. Even though the
entire array is indicated, this reference is considered to be an array section
reference, and the description can be found in Section 6.4.5. STATIONS (1:5)
(1:5) is also permitted. It is an array section whose elements are substrings.
Whenever an array is constructed of character strings and any part of it (other
than the whole object) is referenced, an array section subscript must appear
before the substring range specification, if any. Otherwise, the substring range
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specification will be treated as an array section specification because the two
have the same form. STATIONS (1:5) is an array section reference that
references the entire character strings of the first five elements of STATIONS.
The last example is a substring where the parent is a constant and the starting
and ending positions are variable. This substring is considered to be neither a
constant nor a variable. It is in a category all by itself.

6.3 Structure Components

A structure is an aggregate of components of intrinsic or derived types. It is
itself an object of derived type. The types and attributes of the components are
specified in the type definition; they may be scalars or arrays. Each structure
has at least one component. There may be arrays of structures. In the example
given above, FIRECHIEF is a structure; FIREMEN is an array of structures of
type PERSON.

A component of a structure may be referenced by placing the name of the
component after the name of the parent structure, separated by a percent sign
(%). For example, FIRECHIEF % NAME references the character string
component of the variable FIRECHIEF of type PERSON.

A structure component (R614) is a data reference (R612) that has the form:
part-reference [ % part-reference ] ...

where a part reference (R613) has the form
part-name [ ( section-subscript-list ) ]

and a section subscript (R618) is one of:

subscript
subscript-triplet
vector-subscript

Rules and restrictions:

1. For a data reference to be considered a structure component reference,
there must be more than one part reference.

2. For a data reference to be classified as a structure component reference, the
rightmost part reference must be a part name. If the rightmost component
is of the form
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part-name ( section-subscript-list )

the reference is considered to be an array section or array element (the
simplest form of a section subscript list is a subscript list).

3. In a data reference, each part name except the rightmost must be of
derived type.

4. In a data reference, each part name except the leftmost must be the name of
a component of the derived-type definition of the type of the preceding
part name.

5. In a part reference containing a section subscript list, the number of section
subscripts must equal the rank of the part name.

6. It is possible to create a structure with more than one array part, but in a
data reference to the structure, there must not be more than one part
reference with nonzero rank. This is a somewhat arbitrary restriction
imposed for the sake of simplicity.

7. In a data reference, a part name to the right of a part reference with
nonzero rank must not have the POINTER attribute. It is possible to
declare an array of structures that have a pointer as a component, but it is
not possible to reference such an object as an array.

The rank of a part reference consisting of just a part name is the rank of the
part name. The rank of a part reference of the form

part-name ( section-subscript-list )

is the number of subscript triplets and vector subscripts in the list. The rank is
less than the rank of the part name if any of the section subscripts are
subscripts other than subscript triplets or vector subscripts. The shape of a data
reference is the shape of the part reference with nonzero rank, if any;
otherwise, the data reference is a scalar and has rank zero.

The parent structure in a data reference is the data object specified by the
leftmost part name. If the parent object has the INTENT, TARGET, or
PARAMETER attribute, the structure component has the attribute. The type
and type parameters of a structure component are those of the rightmost part
name. A structure component is a pointer only if the rightmost part name has
the POINTER attribute.

Given the type definition and structure declarations:
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6.4 Arrays

TYPE PERSON

INTEGER AGE

CHARACTER (LEN = 40) NAME
END TYPE PERSON

TYPE(PERSON) FIRECHIEF, FIREMEN(50)
examples of structure components are:

FIRECHIEF % AGE I scalar component of scalar parent
FIREMEN(J) % NAME ! component of array element parent
FIREMEN(1:N) % AGE ! component of array section parent

If a derived-type definition contains a component that is of derived type, then
a reference to an ultimate component can contain more than two part
references as do the references in the first two PRINT statements in the
following example.

TYPE REPAIR_BILL
REAL PARTS
REAL LABOR

END TYPE REPAIR_BILL

TYPE VEHICLE
CHARACTER (LEN = 40) OWNER
INTEGER MILEAGE
TYPE(REPAIR_BILL) COST

END TYPE VEHICLE

TYPE (VEHICLE) BLACK_FORD, RED_FERRARI

PRINT *, BLACK_FORD % COST % PARTS
PRINT *, RED_FERRARI % COST % LABOR
PRINT *, RED_FERRARI % OWNER

An array is a collection of scalar elements of any intrinsic or derived type. All
of the elements of an array must have the same type and kind parameter. There
may be arrays of structures. An object of any type that is specified to have the
DIMENSION attribute is an array. The value returned by a function may be an
array. The appearance of an array name or designator has no implications for
the order in which the individual elements are referenced unless array element
ordering is specifically required.
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6.4.1 Array Terminology

An array consists of elements that extend in one or more dimensions to
represent columns, rows, planes, etc. There may be up to seven dimensions in
an array declaration in a standard-conforming program. The number of
dimensions in an array is called the rank of the array. The number of elements
in a dimension is called the extent of the array in that dimension. Limits on the
size of extents are not specified in the Fortran standard. The shape of an array
is determined from the rank and the extents; to be precise, the shape is a vector
where each element of the vector is the extent in the corresponding dimension.
The size of an array is the product of the extents; that is, it is the total number
of elements in the array.

For example, given the declaration
REAL X (0:9, 2)

the rank of X is 2; X has two dimensions. The extent of the first dimension is
10; the extent of the second dimension is 2. The shape of X is 10 by 2, that is, a
vector of two values, (10, 2). The size is 20, the product of the extents.

An object is given the DIMENSION attribute in a type declaration or in one of
several declaration statements. The following are some ways of declaring that
A has rank 3 and shape (10, 15, 3):

DIMENSION A(10, 15, 3)

REAL, DIMENSION(10, 15, 3) = A
REAL A(10, 15, 3)

COMMON A(10, 15, 3)

TARGET A(10, 15, 3)

Arrays of nonzero size have a lower and upper bound along each dimension.
The lower bound is the smallest subscript value along a dimension; the upper
bound is the largest subscript value along that dimension. The default lower

bound is 1 if the lower bound is omitted in the declaration. Array bounds may
be positive, zero, or negative. In the example:

REAL Z(-3:10, 12)

the first dimension of Z ranges from -3 to 10, that is, -3, -2, -2, 0, 1, 2, ..., 9, 10.
The lower bound is -3; the upper bound is 10. In the second dimension, the
lower bound is 1; the upper bound is 12. The bounds for array expressions are
described in Section 7.2.8.4.
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6.4.2 Whole Arrays

Some arrays are named. The name is either an array variable name or the name
of a constant. If the array name appears without a subscript list or section
subscript list, all of the elements of the array are referenced and the reference is
considered to be a whole array reference. References to a single element of an
array or a section of an array are permitted. If the array has the INTENT,
TARGET, or PARAMETER attribute, an element or section of the array also has
the attribute. An element or section of an array never has the POINTER
attribute.

6.4.3 Array Elements

An array element is one of the scalar elements that make up an array. A
subscript list is used to indicate which element is referenced. If A is declared to
be a one-dimensional array:

REAL, DIMENSION (10) :: A

then A(2) refers to the first element, A(2) to the second, and so on. The number
in the parentheses is the subscript that indicates which scalar element is
referenced. If B is declared to be a seven-dimensional array:

REAL B (5, 5, 5, 5, 4, 7, 5)

then B (2, 3, 5, 1, 3, 7, 2) refers to one scalar element of B, indexed by a
subscript in each dimension. The set of numbers that indicate the position
along each dimension in turn (in this case, 2, 3, 5, 1, 3, 7, 2) iscalled a
subscript list.

6.4.4 Array Sections

Sometimes only a portion of an array is needed for a calculation. It is possible
to refer to a selected portion of an array as an array; this portion is called an
array section. A parent array is the whole array from which the portion that
forms the array section is selected.

An array section is specified by an array variable name and a section subscript
list that consists of subscripts, triplet subscripts, or vector subscripts. At least
one subscript must be a triplet or vector subscript; otherwise, the reference
indicates an array element, not an array. The following example uses a section
subscript to create an array section:
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REAL A (10)
A (25) = 1.0

The parent array A has 10 elements. The array section consists of the elements
A (2), A (3), A (4), and A (5) of the parent array. The section A (2:5) is an
array itself and the value 1.0 is assigned to all four of its elements.

6.4.5 Form of Array Elements and Array Sections

The form of an array element is a data reference (R612) and the form of an
array section (R616) is a data reference followed by an optional substring range
enclosed in parentheses; the form of a substring range is found in Section 6.2.

A part name in a data reference may be followed by an optional section
subscript list. A section subscript (R618) can be any of:

subscript
subscript-triplet
vector-subscript

where a subscript triplet (R619) is:
[ subscript ] : [ subscript ] [ : stride ]

Subscripts and strides must be scalar integer expressions and a vector
subscript (R621) must be an integer array expression of rank one.

Rules and restrictions:

1. For a data reference to be classified as an array element, every part
reference must have rank zero and the last part reference must contain a
subscript list.

2. For a data reference to be classified as an array section, exactly one part
reference must have nonzero rank, and either the final part reference must
have a section subscript list with nonzero rank or another part reference
must have nonzero rank.

3. In an array section that is a data reference followed by a substring range,
the rightmost part name must be of type character.

4. In an array section of an assumed-size array, the second subscript must not
be omitted from a subscript triplet in the last dimension.
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5. A section subscript must be present for each dimension of an array. If any
section subscript is simply a subscript, the section will have a lesser rank
than its parent.

Examples of array elements and array sections are:

ARRAY_A (1,2) I array element
ARRAY_A (1:N:2,M) ! rank-one array section
ARRAY_B (:,:,}) (2:3) I array whose elements are

I substrings of length 2
SCALAR_A % ARRAY_C(L) I array element
SCALAR_A % ARRAY_C(1:L) I array section
SCALAR_B % ARRAY_D(1:N) % SCALAR_C I array section

ARRAY_E(1:N:2) % ARRAY_F(I,J) % STRING(K)(:) ! array section

If any part of a reference is an array section, the reference is considered to be
an array section reference. In a data reference, there may be at most one part
with rank greater than zero. As mentioned earlier, this is a somewhat arbitrary
restriction imposed for the sake of simplicity.

Only the last component of a data reference may be of type character. In the
last example above, each component of the type definition is an array and the
object ARRAY _E is an array. The reference is valid because each component in
the reference is scalar. The substring range is not needed because it specifies
the entire string; however, it serves as a reminder that the last component is of
type character.

The following examples demonstrate the allowable combinations of scalar and
array parents with scalar and array components.

TYPE REPAIR_BILL
REAL PARTS (20)
REAL LABOR

END TYPE REPAIR BILL

TYPE (REPAIR_BILL) FIRST
TYPE (REPAIR_BILL) FOR 1990 (6)

Scalar parent

1. FIRST % LABOR ! structure component

2. FIRST % PARTS (l) I array element

3. FIRST % PARTS I component (array-valued)

4. FIRST % PARTS (1:J) I array section

5. FOR_1990 (K) % LABOR I structure component

Using Data 209

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



210

6.4.5.1

6.4.5.2

6. FOR_1990 (K) % PARTS (l) I array element
FOR_1990 (K) % PARTS I component (array-valued)
8. FOR_1990 (K) % PARTS (I:J) I array section

~

Array parent

9. FOR_1990 % LABOR I component and array section
10. FOR_1990 % PARTS (I) ! array section

11. FOR_1990 % PARTS I ILLEGAL

12. FOR_1990 % PARTS (I:J) I ILLEGAL

13. FOR_1990 (K:L) % LABOR I component and array section
14. FOR_1990 (K:iL) % PARTS (I) ! array section

15. FOR_1990 (K:L) % PARTS ! ILLEGAL

16. FOR_1990 (K:L) % PARTS (I:J) ! ILLEGAL

References 11, 12, 15, and 16 are illegal because only one component may be of
rank greater than zero. References 3 and 7 are compact (contiguous) array
objects and are classified as array-valued structure components. References 9,
10, 13, and 14 are noncontiguous array objects and are classified as sections.
These distinctions are important when such objects are actual arguments in
procedure references.

Subscripts

In an array element reference, each subscript must be within the bounds for
that dimension. A subscript may appear in an array section reference.
Whenever this occurs, it decreases the rank of the section by one less than the
rank of the parent array. A subscript used in this way must be within the
bounds for the dimension.

Subscript Triplets

The first subscript in a subscript triplet is the lower bound; the second is the
upper bound. If the lower bound is omitted, the declared lower bound is used.
If the upper bound is omitted, the declared upper bound is used. The stride is
the increment between successive subscripts in the sequence. If it is omitted, it
is assumed to be 1. If the subscripts and stride are omitted and only the colon
(:) appears, the entire declared range for the dimension is used.
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6.4.5.3

When the stride is positive, an increasing sequence of integer values is
specified from the first subscript in increments of the stride, up to the last
value that is not greater than the second subscript. The sequence is empty if
the first subscript is greater than the second. If any subscript sequence is
empty, the array section is a zero-sized array, because the size of the array is
the product of its extents. For example, given the array declared A(5, 4, 3) and
the section A(3:5, 2, 1:2), the array section is of rank 2 with shape (3, 2) and size
6. The elements are:

A(3 2 1)AS 2 2)
A4 2 1)A 42 2)
A5 2 1)A G, 2, 2)

The stride must not be 0.

When the stride is negative, a decreasing sequence of integer values is
specified from the first subscript, in increments of the stride, down to the last
value that is not less than the second subscript. The sequence is empty if the
second subscript is greater than the first, and the array section is a zero-sized
array. For example, given the array declared B(10) and the section B (9:4:-2),
the array section is of rank 1 with shape (3) and size 3. The elements are:

B (9)
B (7)
B (5)

However, the array section B (9:4) is a zero-sized array.

A subscript in a subscript triplet is not required to be within the declared
bounds for the dimension as long as all subscript values selected by the triplet
are within the declared bounds. For example, the section B (3:11:7) is
permitted. It has rank 1 with shape (2) and size 2. The elements are:

B (3)
B (10)

Vector Subscripts

While subscript triplets specify values in increasing or decreasing order with a
specified stride to form a regular pattern, vector subscripts specify values in
arbitrary order. The values must be within the declared bounds for the
dimension. A vector subscript is a rank-one array of integer values used as a
section subscript to select elements from a parent array. For example:
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6.4.6 Using

INTEGER J(3)
REAL A(30)

I=(8 4 7))
AQ) = 1.0

The last assignment statement assigns the value 1.0 to A(4), A(7), and A(8). The
section A(J) is a rank-one array with shape (3) and size 3.

If J were assigned (/ 4, 7, 4 /) instead, the element A(4) would be accessed in
two ways: as A(J(1)) and as A(J(3)). Such an array section is called a many-one
array section. A many-one section must not appear on the left of the equal sign
in an assignment statement or as an input item in a READ statement. The
reason is that the result will depend on the order of evaluation of the
subscripts, which is not specified by the language. The results would not be
predictable and the program containing such a statement would not be
portable.

There are places where array sections with vector subscripts must not appear:
1. as internal files
2. as pointer targets

3. as actual arguments for INTENT (OUT) or INTENT (INOUT) dummy
arguments

Array Elements and Array Sections

Subscripts, subscript triplets, and vector subscripts may be mixed in a single
section subscript list used to specify an array section. A triplet section may
specify an empty sequence (for example 1:0), in which case the resulting
section is a zero-sized array.

If B were declared:

REAL B (10, 10, 5)
then the section:

B (1:4:3, 6:8:2, 3)

consists of four elements:
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B (1,6, 3)B (L8 3)
B (4,6, 3)B (48 3)

The stride along the first dimension is 3, resulting in a subscript-value list of 1
and 4. The stride along the second subscript is 2 resulting in a subscript-value
list of 6 and 8. In the third position there is a subscript that reduces the rank of
the section by 1. The section has shape (2, 2) and size 4.

Assume 1V is declared:

INTEGER, DIMENSION (3) = IV = (/ 4, 5, 4 /)
then the section:

B (89, 5, IV)
is a 2 x 3 array consisting of the six elements:

B (8,5, 4) B (8, 5, 5) B (8,5, 4)
B (9,5 4) B (9,5 5) B (9,5 4)

B (8:9, 5:4, IV) is a zero-sized array of rank 3.

6.4.7 Array Element Order

When whole arrays are used as operands in an executable statement, the
indicated operation is performed element-by-element, but no order is implied
for these elemental operations. They may be executed in any order or
simultaneously. Although there is no order of evaluation when whole array
operations are performed, there is an ordering of the elements in an array
itself. An ordering is required for the input and output of arrays and for certain
intrinsic functions such as MAXLOC. The elements of an array form a
sequence whose ordering is called array element order. This is the sequence
that occurs when the subscripts along the first dimension vary most rapidly,
and the subscripts along the last dimension vary most slowly. Thus, for an
array declared as:

REAL A (3, 2)

the elements in array element order are: A (1, 1), A (2, 1), A (3, 1), A (1, 2),
A(2,2),A(3 2.
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The position of an array element in this sequence is its subscript order value.
Element A (1, 1) has a subscript order value of 1. Element A (1, 2) has a
subscript order value of 4. Table 6-1 shows how to compute the subscript order
value for any element in arrays of rank 1 through 7.

Table 6-1  Computation of subscript order value

Explicit shape

Rank specifier Subscript list Subscript order value
1 kg S, 1+ (s;-1]y)
. s 1+ (Sl_jl)
2 jpikgdpiky S: Sy + (5,-j,) xd,
3 Jpkpdoikydgikg 54,858, 1+ (s;—iq)

+(s,—s,) xd,
+(s3—55) xdyxd;

1+ (51 _jl)

+(8,=0p) xdg

+ (83—ig) xd, xd;

+ ...

+(s; —l7) *dg
xdgx...xd;

7 kg e dgike Sqs s 87

Notes for Table 6-1:
1. d; = max (k; - j; + 1, 0) is the size of the ith dimension.
2. If the size of the array is nonzero, ji <s; < ki foralli=1,2,..,7.

The subscript order of the elements of an array section is that of the array
object that the section represents. That is, given the array A(10) and the section
A(2:9:2) consisting of the elements A(2), A(4), A(6), and A(8), the subscript
order value of A(2) in the array section A(2:9:2) is 1; the subscript order value
of A(4) in the section is 2 and A(8) is 4.
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6.5 Pointersand Allocatable Arrays

Fortran 90 provides several dynamic data objects. Automatic objects (arrays
and character strings) were discussed in Section 5.8. In addition, there are two
data attributes that can be used to specify dynamic data objects:
ALLOCATABLE and POINTER. Arrays of any type may have the
ALLOCATABLE attribute; scalars or arrays of any type may have the
POINTER attribute. Chapter 5 described how such objects are declared. This
section describes how space is created for these objects with the ALLOCATE
statement, how it may be released with the DEALLOCATE statement, and how
pointers can be disassociated from any target with the NULLIFY statement.
The association status of a pointer may be defined or undefined; initially
(when a pointer is declared), it is undefined. If it is defined, the pointer may be
associated with a target or disassociated from any target. The target is
referenced by the name of the pointer and is like any other variable in that it is
defined when it acquires a value. Figure 6-1 shows the various states that a
pointer may assume.

Section 7.5.3 describes how pointers can be associated with existing space and
how dynamic objects can acquire values.

6.5.1 ALLOCATE Statement
The ALLOCATE statement creates space for:
1. arrays with the ALLOCATABLE attribute
2. variables with the POINTER attribute
The pointer becomes associated with the newly created space.
The form of the ALLOCATE statement (R622) is:
ALLOCATE ( allocation-list [ , STAT = stat-variable ] )
where an allocation (R624) is:
allocate-object [ ( allocate-shape-spec-list ) ]
An allocate object (R625) is one of:

variable-name
structure-component
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Defined association status,

Undefined association status Undefined target
Undefined
POINTER P(:) ALLOCATE (P(3))
Defined association status. Defined association status,
Disassociated Defined target

NULLIFY

[
’

P = (/25,50,100/)

Figure 6-1 States in the lifetime of a pointer

and an allocate shape specification (R626) is:
[ allocate-lower-bound : ] allocate-upper-bound
Rules and restrictions:

1. The STAT= variable, allocate lower bound, and allocate upper bound must
be scalar integer expressions.

2. Each allocate object must be a pointer or an allocatable array.

3. An attempt to allocate space for an allocatable array that is currently
allocated results in an error condition.
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4. If a STAT= variable appears, it must not also be allocated in the same
ALLOCATE statement. It is set to zero if the allocation is successful and is
set to a processor-dependent positive value if there is an error condition. If
there is no STAT= variable, the program terminates when an error
condition occurs.

5. An argument to an inquiry function in an ALLOCATE statement must not
appear as an allocate object in that statement. For example, the use of the
intrinsic inquiry function SIZE (A.99) in the following example is not
permitted.

REAL, ALLOCATABLE : A(), B()
ALLOCATE (A(10), B(SIZE(A)))

6. The number of allocate shape specifications must agree with the rank of
the array.

7. If the lower bound is omitted, the default is 1. If the upper bound is less
than the lower bound, the extent in that dimension is 0 and the array has
zero size.

8. An allocate object may be of type character and it may have a length of 0,
in which case no memory is allocated.

9. The values of the bounds expressions at the time an array is allocated
determine the shape of the array. If an entity in a bounds expression is
subsequently redefined, the shape of the allocated array is not changed.

6.5.1.1 Allocation of Allocatable Arrays

The rank of an allocatable array is declared. The bounds, extents, shape, and
size are determined when the array is allocated. After allocation the array may
be defined and redefined. The array is said to be currently allocated. It is an
error to allocate a currently allocated allocatable array. The intrinsic function
ALLOCATED (A.9) may be used to query the allocation status of an allocatable
array if the allocation status is defined. For example:

REAL, ALLOCATABLE : X(, : 3)

IF (NOT. ALLOCATED (X) ) ALLOCATE (X (-6:2, 10, 3))
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6.5.1.2

X is not available for use in the program until it has been allocated space by an
ALLOCATE statement. X must be declared with a deferred-shape array
specification and the ALLOCATABLE attribute.

Allocation of Pointers

When an object with the POINTER attribute is allocated, space is created, and
the pointer is associated with that space, which becomes the pointer target. A
reference to the pointer name can be used to define or access its target. The
target may be an array or a scalar. Additional pointers may become associated
with the same target by pointer assignment (described in Section 7.5.3). A
pointer target may be an array with the ALLOCATABLE attribute if the array
also has the TARGET attribute. Allocation of a pointer creates an object that
implicitly has the TARGET attribute. It is not an error to allocate a pointer that
is currently associated with a target. In this case, a new pointer target is created
and the previous association of the pointer is lost. If there was no other way to
access the previous target, it becomes inaccessible. The ASSOCIATED intrinsic
function may be used to query the association status of a pointer if the
association status of the pointer is defined. The ASSOCIATED function (A.13)
also may be used to inquire whether a pointer is associated with a target or
whether two pointers are associated with the same target.

Pointers can be used in many ways; an important usage is the creation of
linked lists. For example,

TYPE NODE

INTEGER :: VALUE

TYPE (NODE), POINTER :: NEXT
END TYPE NODE

TYPE(NODE), POINTER :: LIST

ALLOCATE (LIST)
LIST % VALUE = 17
ALLOCATE (LIST % NEXT)

The first two executable statements create a node pointed to by LIST and put
the value 17 in the VALUE component of the node. The third statement creates
a second node pointed to by the NEXT component of the first node.
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6.5.2 NULLIFY Statement

The NULLIFY statement causes a pointer to be disassociated from any target.
Pointers have an initial association status that is undefined. To initialize a
pointer to point to no target, it is necessary to execute a NULLIFY statement
for the pointer.

The form of the NULLIFY statement (R629) is:
NULLIFY ( pointer-object-list )
where a pointer object (R630) is one of:

variable-name
structure-component

Rules and restrictions:

1. Each pointer object must have the POINTER attribute.

6.5.3 DEALLOCATE Statement

The DEALLOCATE statement releases the space allocated for an allocatable
array or a pointer target and nullifies the pointer. After an allocatable array or
pointer has been deallocated, it cannot be accessed or defined until it is
allocated again or, in the case of a pointer, assigned to an existing target.

In some cases the execution of a RETURN statement in a subprogram may
cause the allocation status of an allocatable array or the association status of a
pointer to become undefined. This can be avoided if the array or pointer is
given the SAVE attribute or if it is declared in a subprogram that remains
active. The main program is always active. Variables declared in modules
accessed by the main program and named common blocks specified in the
main program do not need to be given the SAVE attribute; these entities have
the attribute automatically. If the main program calls subroutine A and
subroutine A calls function B, then the main program, subroutine A, and
function B are active until a return from function B is executed, at which time
only the main program and subroutine A are active. If a recursive subprogram
becomes active, it remains active until the return from its first invocation is
executed.
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The form of the DEALLOCATE statement (R631) is:
DEALLOCATE (allocate-object-list [ , STAT = stat-variable ] )
where an allocate object is (R625) one of:

variable-name
structure-component

Rules and restrictions:
1. The STAT= variable must be a scalar integer variable.
2. Each allocate object must be a pointer or an allocatable array.

3. If there is a STAT= variable and it is a pointer, it must not be deallocated in
the same DEALLOCATE statement. The STAT= variable is set to zero if the
deallocation is successful and is set to a processor-dependent positive
value if there is an error condition. If there is no STAT= variable, the
program terminates when an error condition occurs.

6.5.3.1 Deallocation of Allocatable Arrays

To be deallocated, an allocatable array must be currently allocated; otherwise,
an error condition will occur. The inquiry function ALLOCATED (A.9) may be
used to determine if an array is currently allocated.

An allocatable array may have the TARGET attribute. If such an array is
deallocated, the association status of any pointer associated with the array will
become undefined. Such an array must be deallocated by the appearance of its
name in a DEALLOCATE statement. It must not be deallocated by the
appearance of the pointer name in a DEALLOCATE statement.

When a RETURN or END statement is executed in a subprogram, allocatable
arrays become undefined and their allocation status becomes undefined unless:

1. the array has the SAVE attribute
2. the array is specified in a module that is accessed by an active subprogram
3. the array is accessed by host association

Any other allocatable arrays should be deallocated before leaving the
subprogram because if an allocatable array acquires an undefined allocation
status, it can no longer be referenced, defined, allocated, or deallocated.
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6.5.3.2

An example of the allocation and deallocation of an allocatable array is:

REAL, ALLOCATABLE : X (i, 1)

ALLOCATE (X (10, 2), STAT = IERR)
IF (IERR) .GT. 0) CALL HANDLER
X = 0.0

DEALLOCATE (X)
ALLOCATE (X (-10:10), 5), STAT = JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the
ALLOCATABLE attribute. Space is allocated for it and it is given bounds,
extents, shape, and size and then initialized to have zero values in all elements.
Later X is deallocated, and still later, it is again allocated with different bounds,
extents, shape, and size, but its rank remains as declared.

Deallocation of Pointers

Only a pointer with defined association status may be deallocated.
Deallocating a pointer with an undefined association status or a pointer
associated with a target that was not created by allocation causes an error
condition in the DEALLOCATE statement. A pointer associated with an
allocatable array must not be deallocated. (Of course, the array itself may be
deallocated.)

It is possible (by pointer assignment) to associate a pointer with a portion of an
object such as an array section, an array element, or a substring. A pointer
associated with only a portion of an object cannot be deallocated. If more than
one pointer is associated with an object, deallocating one of the pointers causes
the association status of the others to become undefined. Such pointers must
not be arguments to the ASSOCIATED inquiry function.

When a RETURN or END statement is executed in a procedure, the association
status of a pointer declared or accessed in the procedure becomes undefined
unless:

1. the pointer has the SAVE attribute

2. the pointer is specified in a module that is accessed by an active
subprogram

3. the pointer is accessed by host association
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6.6 Summary

4. the pointer is in blank common

5. the pointer is in a named common block that is specified in an active
subprogram or has the SAVE attribute

6. the pointer is the return value of a function declared to have the POINTER
attribute

If the association status of a pointer becomes undefined, the pointer can no
longer be referenced, defined, or deallocated. It may be allocated, nullified, or
pointer assigned to a new target.

An example of the allocation and deallocation of a pointer is:
REAL, POINTER :: X (;, 3)

ALLOCATE (X (10, 2), STAT = IERR)
IF (IERR .GT. 0) CALL HANDLER
X = 0.0

DEALLOCATE (X)
ALLOCATE (X (-10:10), 5), STAT = JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the
POINTER attribute. Space is allocated for it and it is given bounds, extents,
shape, and size and then initialized to have zero values in all elements. Later X
is deallocated, and still later, it is again allocated with different bounds,
extents, shape, and size. This example is quite similar to the previous example
for allocatable arrays, except that, in the case of pointers, it is not necessary to
deallocate X before allocating it again. If a compiler has the ability to collect
and reuse released space, explicit deallocation may lead to more space efficient
programs.

A data object may be categorized in several ways. It may be a variable or a
constant; it may be a scalar or an array; it may be a whole object or part of an
object; and finally, it may be dynamic.
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6.6.1 Variables and Constants

Variables must become defined with a value before they can be used
(referenced) in a program. They may have several values during program
execution. Constants may be referenced any time. They have a specified value
and cannot be redefined. There are two kinds of constants: literal and named.

6.6.2 Scalars and Arrays

A data object can be categorized by its rank. A scalar has a rank of zero and
can have only a single value from the set of values permitted for its type. An
array is a set of scalar data, all with the same type and type parameters, that is
arranged in a regular pattern. The pattern will have columns, rows, planes,
etc., depending on the rank of the array. An array may have a rank between
one and seven, inclusively. The rank is the number of dimensions in the array
declaration. The number of elements in a dimension is called the extent in that
dimension. The shape of an array is determined by the rank and the extents,
and the size of the array is the product of the extents. A constant, as well as a
variable, may be a scalar or an array.

6.6.3 Whole Objects and Parts of Objects

Fortran 90 permits several objects that are aggregations of data. Some are scalar
objects. A character string, even though it may consist of several characters, is
a scalar. It is possible to reference a substring of a character object; even a
substring of a character constant. For example:

CHARACTER (3) HIGH_THREE, ANY_THREE
CHARACTER (10) :: NUMBERS = "0123456789"

HIGH_THREE = NUMBERS ( 8:10 )
ANY_THREE = "7302694815" ( N : N + 2)

A structure, even though it may contain a component that is an array, is a
scalar. It is possible to reference a single component of a structure. For
example, if the type ADDRESS _BOOK is defined and the variable CLIENTS is
declared to be of this type:
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TYPE ADDRESS_BOOK

INTEGER NO_ADDRESSES (26)

TYPE (DATE) FIRST_ENTRY, LAST ENTRY
END TYPE ADDRESS_BOOK

TYPE (ADDRESS_BOOK) CLIENTS

then CLIENTS % NO_ADDRESSES refers to a rank-one integer array even
though CLIENTS refers to a scalar of type ADDRESS_BOOK.

It is possible to reference a scalar element of an array. For example, if X is
declared:

REAL X (40, 20, 30)

then X (3, 5, 21) refers to a scalar element. It is also possible to reference a
section of an array, for example X(1:10, 3:4, 15:30). A section is itself an array.

A whole object is referenced by its name if it is a variable or a named constant.
A part of an object is referenced by a designator which is a whole object
reference followed by a substring selector, a component selector, an array
element selector, or an array section selector.

An array section selector is a list of section subscripts, one for each dimension
of the array. There are three possibilities for section subscripts: a single
subscript, a subscript triplet, or a vector subscript.

If a single subscript appears in a section selector, it will reduce by one the rank
of the resulting array section. For example, X(1:10, 3, 15:30) is a rank-two array.

A subscript triplet selects a regularly formed section. For example, X (2:40:2, 1,
1) is a rank-one array that consists of the even-numbered elements in the first
dimension of X. A subscript triplet may be reduced to a single colon (:). In this
case, the entire range of the dimension is selected. X ( :, 1, 1) references the
entire first column of X.

A vector subscript may select an irregularly formed section. If Il =
(/3,7,19,2 /), then X (ll, 1, 1) is a rank-one array consisting of the elements
X(3,1,1), X(7,1,1), X (19,1, 1), and X (2, 1, 1).

When operations on arrays are performed, no order of evaluation is required,;
however, there is an order for array elements that is reflected in input and
output sequences and in certain intrinsic functions. This order is “column-
wise”; that is, the subscripts along the first dimension vary most rapidly.
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6.6.4 Dynamic Data Objects

Fortran 90 introduces three new categories of data objects with dynamic
properties: automatic objects, allocatable arrays, and pointers. Automatic
objects are character objects and arrays of any type that may be declared only
in procedures or procedure interfaces. These are described in Section 5.8. The
declaration of allocatable arrays and pointers is described in Sections 5.3.3 and
5.4.1. These objects can not be referenced, however, until space is created for
them. For allocatable arrays, this can be accomplished with an ALLOCATE
statement. For pointers, it may be accomplished with an ALLOCATE statement
or the pointer may be assigned to already existing space by a pointer
assignment statement (7.5.3). A pointer may be declared as a scalar or an array.
Neither pointers nor allocatable arrays can be named constants. Allocatable
arrays and pointers are allocated as whole objects, but an element or section of
an allocatable array can be referenced. A pointer target may be any part of an
existing object including substrings, components, array elements, and array
sections. A pointer target may be the whole or part of an allocatable array if the
array has the TARGET attribute.

The ALLOCATE statement has an optional STAT= specifier that may be used to
determine whether the requested allocation was successful. For example:

REAL, ALLOCATABLE = A (:. :), B (: :)

ALLOCAE ( A (100, 100), STAT = DID_IT)
IF (DID_IT .GT. 0) GO TO ALLOC_ERR

It is an error to allocate an already allocated allocatable array. An intrinsic
function ALLOCATED is provided to test the status of an allocatable array. For
example:

IF (NOT. ALLOCATED (B) ) ALLOCAT E ( B ( -10:10, 3) )
It is not an error to allocate an already allocated pointer.

The ALLOCATED intrinsic function is not available for pointers; instead, there
is an ASSOCIATED intrinsic function to test the status of a pointer. Initially, a
pointer has an undefined association status. A NULLIFY statement may be
used to set its status to disassociated. For example:

TYPE (LINK), POINTER :: NEXT
NULLIFY (NEXT)

IF (NOT. ASSOCIATED (NEXT) ) ALLOCATE (NEXT)
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The DEALLOCATE statement releases space that was previously allocated. If a
pointer is deallocated, the DEALLOCATE statement nullifies the pointer. Only
whole objects may be deallocated. The DEALLOCATE statement also has an
optional status specifier STAT that may be used to determine whether the
requested deallocation was successful. For example:

DEALLOCATE ( A, B, NEXT, STAT = ALL_GONE )

226 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



Expressionsand Assignment 14

In Fortran, calculations are specified by writing expressions. Expressions look
much like algebraic formulas in mathematics, particularly when the
expressions involve calculations on numerical values. In fact, the attempt to
give the programmer a programming language that reflects, as much as
possible, ordinary mathematical notation is what inspired the name Fortran
(Formula translation).

Expressions often involve nonnumeric values, such as character strings, logical
values, or structures; these also can be considered to be formulas—ones that
involve nonnumeric quantities rather than numeric ones.

This chapter describes how valid expressions can be formed, how they are
interpreted, and how they are evaluated. One of the major uses of expressions
is in assignment statements where the value of an expression is assigned to a
variable. The assignment statement appears in four forms: intrinsic
assignment, defined assignment, masked array assignment, and pointer
assignment. In the first three forms, a value is computed by performing the
computation specified in an expression and the value is assigned to a variable.
In the fourth form, a pointer, the object on the left side, is made to point to the
object or target on the right side. The four forms of the assignment statement
are also described in detail in this chapter.
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7.1 Introduction to Fortran 90 Expressions

228

Fortran 90 extensions allow the programmer to define new data types,
operators for these types, and new operators for intrinsic types. These
additional capabilities are provided within the general Fortran 77 framework
for expressions which consists of three parts:

® the rules for forming a valid expression (7.2)
® the rules for interpreting the expression (giving it a meaning) (7.3)

® the rules for evaluating the expression (how the computation may be
carried out) (7.4)

An expression is formed from operators and operands. There is no change
from Fortran 77 in the rules for forming expressions, except that a new class of
operators has been defined. These are user-defined operators, which are either
unary or binary operators. They have the form of a sequence of letters
surrounded by periods; .INVERSE. and .PLUS. are examples of possible user-
defined operators.

The formal (BNF) rules for forming expressions imply an order for combining
operands with operators. These rules specify that expressions enclosed in
parentheses are combined first and that, for example, the multiply operator Ois
combined with its operands before the addition operator + is combined with
its operands. This order for operators in the absence of specific parentheses is
called the operator precedence and is summarized in Section 7.2.5. Operator
precedence for Fortran 77 operators is unchanged in Fortran 90. There are also
some new operators, such as == and >=, that are equivalent, including
precedence, to their corresponding Fortran 77 operators; for example, == and
>= have the same precedence and meaning as .EQ. and .GE., respectively.

The formation rules for expressions imply that the defined unary operators
have highest precedence of all operators, and defined binary operators have
the lowest precedence of all operators. When they appear in a context where
two or more of these operators of the same precedence are adjacent, the
operands are combined with their operators in a left-to-right manner, as is the
case for the familiar + and — operators, or in a right-to-left manner for the
exponentiation operator (C1).

Intrinsic operators (3.6) are generic in the sense that they can operate on
operands of different types. For example, the plus operator + operates on
operands of type integer as well as real and complex. Intrinsic operators can be
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extended further by the programmer to operate on operands of types for which
there are no intrinsic operations. Similarly, defined unary and defined binary
operators can be extended by the programmer to operate on operands of types
for which there are no previous definitions. Section 12.6.4 describes how any
operator can be made generic by the programmer using a generic specifier on
an interface block.

The rules for interpretation of an expression are provided by the interpretation
of each operator in the expression. When the operator is an intrinsic operator
such as +, [J or .NOT., and the operands are of intrinsic types allowed for the
intrinsic operator, the interpretation is provided by the usual mathematical or
symbolic meaning of the operation. Thus, + with two numeric operands means
that the two operands are added together. For the user-defined operators, the
interpretation is provided by a user-supplied function subprogram with a
designation that this subprogram is to be used to define the operation. This
aspect is new to Fortran 90. In addition, Fortran 90 allows the intrinsic operator
symbols to be extended to cases in which the operands are not of the usual
intrinsic types defined by the standard. For example, the + operator can be
defined for operands of type RATIONAL (a user-defined type) or for operands
of type logical with the interpretation provided by a user-supplied function
subprogram. The rules for construction of expressions (the syntax rules) are the
same for user-defined operators as for intrinsic operators.

The general rule for evaluation of a Fortran expression remains unchanged in
Fortran 90. In essence, the rule states that any method that is mathematically
equivalent to that provided by the construction and interpretation rules for the
expression is permitted, provided the order of evaluation indicated by explicit
parentheses in the expression is followed. Thus, a compiler has a great deal of
freedom to rearrange or optimize the computation, provided the rearranged
expression has the same mathematical meaning. Because the definitions of
user-defined operations are provided by subprograms, the opportunities for
determining mathematical equivalent forms for expressions involving user-
defined operations are more limited than for expressions involving only
intrinsic operations.

New to Fortran 90 are arrays and pointers as objects that can appear in
expressions and assignment statements. This chapter describes the use of
arrays and pointers in the following contexts:

® as operands of intrinsic and user-defined operations

® as the variables being assigned in intrinsic assignment statements
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® as the variables in pointer assignment statements and masked array
assignment statements, new in Fortran 90

7.1.1 Assignment

The result obtained from the evaluation of an expression can be used in many
ways. For example, it can be printed or passed to a subprogram. In many cases,
however, the value is assigned to a variable and that value may be used later
in the program by referencing the variable.

Execution of the assignment statement causes the expression to be evaluated
(by performing the computation indicated), and then the value of the
expression is assigned to the variable on the left of the equal sign. The form of
assignment and the process of assignment is illustrated in Figure 7-1.

Variable = Computation
-~

Figure 7-1 The assignment operation

An example of an assignment statement is:
REAL_AGE = REPORTED_AGE + 3.0

REPORTED_AGE + 3.0 is the expression that indicates how to compute a
value, which is assigned to the variable REAL_AGE.

Use of the equal sign for assignment is a little misleading because assignment
is not equality in the algebraic sense. It indicates a replacement of the value of
the variable named on the left-hand side of the equal sign with the value of the
expression on the right. Assigning a value to the variable on the left-hand side
is performed after all expressions in the statement have been evaluated.
Additional examples of assignment statements are:

3.1416

X
PI
Z=31* Pl + X

In the first statement, the value of C is added to 1.0 in order to compute the
value of the expression C + 1.0; the resulting value is given to X, replacing any
value X already has with the new value. In the second statement, Pl is assigned
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the constant value 3.1416. In the third statement, the value of Z is determined
from a more complicated expression; first the values of X and Pl are added and
then the result is multiplied by 3.1; the final value is assigned to Z.

An example involving subscripts is:
A(+3) =P | + A (I-3)

The value of the subscript expression 1-3 is determined and the value of the I-
3 element of A is added to the value of PI to produce a sum. Before the result
of this expression is assigned, the value of the subscript expression 1+3 is
determined, and the value of the sum is assigned to the element 1+3 of A.
Whether 1+3 is evaluated before or after Pl + A (1-3) is computed is not
specified and therefore is processor dependent.

The above examples are arithmetic; Fortran has expressions of other types,
such as logical, character, and derived type. Values of expressions of these
other types can be assigned to variables of these other types. As with
operators, the programmer can extend the meaning of assignment to types not
defined intrinsically and can redefine assignment for two objects of the same
derived type—such assignments are called defined assignments (7.5.2, 12.6.5).
New to Fortran 90 are arrays and pointers of any type. Arrays and the targets
associated with the pointers can be assigned values in intrinsic assignment
statements. In addition, arrays and pointers each have a special form of
assignment statement called masked array assignment (7.5.4) and pointer
assignment (7.5.3), respectively.

7.1.2 Expressions

An assignment statement is only one of the Fortran statements where
expressions may occur. Expressions also may appear in subscripts, actual
arguments, IF statements, PRINT statements, WHERE statements, declaration
statements, and many other statements.

An expression represents a computation that results in a value and may be as
simple as a constant or variable. The value of an expression has a type and
may have zero, one, or two type parameter values. In addition, the value is a
scalar (including a structure) or an array. If the value is of a derived type, it has
no type parameter. If it is of an intrinsic type, it has a kind type parameter, and
if, in addition, it is of the type character, it has a length type parameter.
Complicated expressions can be formed from simpler expressions, for example:
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A* (-B)+30/C-C*(A+B)

A complex value or a structure value is a scalar, even though it may consist of
more than one value (for example, a complex value consists of two real values).

Arrays and pointers may be used as operands of intrinsic and defined
operators. For intrinsic operators, when an array is an operand, the operation
is performed elementwise on the elements of the array. For intrinsic operators,
when a pointer is an operand, the value of the target pointed to by (associated
with) the pointer is used as the operand. For defined operators, the array or
pointer is used in a manner determined by the procedure defining the
operation.

As indicated in the introduction to this chapter, the presentation of expressions
is described in terms of the following three basic parts:

® The rules for forming expressions (syntax)
® The rules for interpreting expressions (semantics)
® The rules for evaluating expressions (optimization)

The syntax rules indicate which forms of expressions are valid. The semantics
indicate how each expression is to be interpreted. Once an expression has been
given an interpretation, a compiler may evaluate another completely different
expression, provided the expression evaluated is mathematically equivalent to
the one written.

To see how this works, consider the expression 2 OA + 2 OB in the following
PRINT statement:

PRINT *, 2 * A+ 2 *B

The syntax rules described later in this chapter indicate that the expression is
valid and suggest an order of evaluation. The semantic rules specify the
operations to be performed which, in this case, are the multiplication of the
values of A and B by 2 and the addition of the two results. That is, the semantic
rules indicate that the expression is to be interpreted as if it were

(2*A) +(2*B)
and not, for example

(@ * A +2 *B)
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Once the correct interpretation has been determined, the Fortran rules of
evaluation permit a different expression to be used to evaluate the expression,
provided the different expression is mathematically equivalent to the one
written. For example, the computer may first add A and B and then multiply
the result by 2, because the expression

2 * (A + B)
is mathematically equivalent to the one written.

When reading the rules about allowed alternative evaluations, three properties
should be noted:

® Parentheses must not be violated. For example, the expression
(2 *A) + (2 *B)
must not be evaluated as
2 * (A + B)
This gives the programmer some control over the method of evaluation.

® [nteger division is not mathematically equivalent to real division. The
value of 3/2 is 1 and so cannot be evaluated as 3 00.5, which is 1.5.

® Mathematically equivalent expressions may produce computationally

different results, due to the implementation of arithmetic and rounding on
computer systems. For example, the expression X/2.0 may be evaluated as
0.50X, even though the results may be slightly different. Also, for example,
the expression 2 OA + 2 OB may be evaluated as 2[{A+B); when A and B
are of type real, the two mathematically equivalent expressions may yield
different values because of different rounding errors and different
arithmetic exceptions in the two expressions.

Expressions and Assignment 233

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



5

7.2 Formation of Expressions

An expression is formed from operands, operators, and parentheses. The
simplest form of an expression is a constant or a variable. Some examples are:

3.1416
.TRUE.

X

Y

Y (K)

Y (2:10:2)

M % N

Y (K) (I:1+3)

A real constant

A logical constant

A scalar variable

An array variable

A variable that is an array element of Y

A variable that is an array section of Y

A variable that is a component of a structure M

A variable that is a substring of array element Y (K)

The values of these simple expressions are the constant value 3.1416, the
constant value . TRUE., the value of the variable X, the value of the array Y, the
value of the array element Y (K), the value of the array section Y (2:10:2), the
value of the component N of structure M, and the value of a substring of an
array element Y (K), respectively.

7.2.1 Operands

An operand in an expression may be one of the following:

® aconstant or subobject of a constant

® avariable (for example, a scalar, an array, a substring, or a pointer—see

Section 6.1)

® an array constructor

® a structure constructor

® a function reference (returning, for example, a scalar, an array, a substring,
or a pointer—see Section 12.3.3)

® another expression in parentheses
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Examples of operands are:

A I a scalar or an array

B(1) I an array element or function
C(3:5) I an array section or a substring
(A + COS(X)) I an expression in parentheses

(/ 1.2, 241 /) ! an array constructor

RATIONAL(1,2) I a structure constructor or function
I_PTR I a pointer to an integer target

7.2.2 Binary and Unary Operations

There are two forms that operations may take in an expression. One is an
operation involving two operands such as multiplying two numbers together.
The other is an operation on one operand such as making a number negative.
These forms are called binary and unary operations, respectively.

Table 7-1 lists the intrinsic operators. A programmer may define additional
operators using function subprograms. User-defined operators are either
binary or unary operators.

A binary operator combines two operands as in:
Xl operator X2
Examples are:

A+ B
2*C

The examples show an addition between two operands A and B, and a
multiplication of two operands, the constant 2 and the operand C.

A unary operation acts on one operand as in:
operator X1
Examples are:
- C

+J
.NOT. L
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The first example results in the value minus C. The second example yields the
value J; a unary plus operator is, in effect, the identity operator. The third
example produces a value that is the logical complement of L; the operator
.NOT. is the only intrinsic operator that is a unary operator and is never a
binary operator.

Note that the operators + and — may be used as operators with one operand as
well as two. With two operands, the value of the expression is the sum or
difference of the operands and, with one operand, the value of the expression
is the operand itself or the negation of the operand.

7.2.3 Intrinsic and Defined Operations

Intrinsic operations are those whose definitions are known to the compiler.
They are built into Fortran and are always available for use in expressions.
Table 7-1 lists the operators built into Fortran as specified by the standard.
There may, of course, be other operations that are intrinsic to the compiler.

Table 7-1 Intrinsic operators and the allowed types of their operands
Operator Intrinsic
category operator Operand types
Arithmetic mag/z, + - Numeric of any combination of numeric

unary +, unary — types and kind type parameters

Character of any length with the same

Character 7/ kind type parameter
Both of any numeric type and any kind
Relational .EQ., .NE., type parameter, or both of type character
==, /= with any length type parameter and with

the same kind type parameter

Both of any numeric type except complex
.GT., .GE., .LT., and any kind type parameter, or both of

Relational .LE., type character with any length type pa-
>, >=, <, <= rameter and with the same kind type pa-
rameter
.NOT., .AND.,

Both of type logical with any combination

Logical -OR., of kind type parameters

.EQV., .NEQVW.
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The relational operator symbols ==, /=, >, >=, <, and <= are new to Fortran
and are synonyms for the operators .EQ., .NE., .GT., .GE., .LT., and .LE.,
respectively.

In addition to the Fortran operators that are intrinsic (built in), there may be
user-defined operators in expressions.

Defined operations are those that the user defines in the Fortran program and
makes available to each program unit that uses them. The computation
performed by a defined operation is described explicitly in a function that
must appear as a subprogram in the Fortran program where it is used. The
operator used in a defined operation is called a defined operator. In this way,
users extend the repertoire of operations so that computations can be
expressed in a natural way using operator notation. Function subprograms that
define operators are explained in detail in Section 12.6.4.

A defined operator uses a symbol that is either the symbol for an intrinsic
operator or is a new operator symbol. The synonyms described above for the
relational operators remain synonyms in all contexts, even when there are
defined operators. For example, if the operator < is defined for a new type, say
STRING, the same definition applies to the operator .LT. for the type STRING;
if the operator .LT. is specified as private, the operator < is also private.

A distinction is made between a defined (or new) operator and an extended
intrinsic operator. An extended intrinsic operator is one that uses the same
symbol as an intrinsically defined Fortran operator, like plus + or multiply O It
also causes the operations to be combined in the same order as is specified for
the intrinsic operator. A new operator is one where the operator symbol is not
the same as an intrinsic operator but is new, such as .INVERSE. New
operators, however, have a fixed precedence; new unary operators have the
highest precedence of all operators and new binary operators have the lowest
precedence of all operators. The precedences of all operators are described in
more detail in Section 7.2.5.

7.2.4 Rules for Forming Expressions

Expressions are formed by combining operands. Operands may be constants,
variables (scalars, array elements, arrays, array sections, structures, structure
components, and pointers), array constructors, structure constructors,
functions, and parenthesized expressions with intrinsic and defined operators.
Examples of expressions satisfying the expression formation rules are:
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B
B/C
B+C /D-F*10 .EQ G

4+ o+

A
A
A
A

The method used to specify these formation rules is a collection of syntax rules
that determine the forms of expressions. The order of evaluation of the
operations in an expression is determined by the usual semantics for the
operations, and the syntax rules are designed to be consistent with these
semantics. In fact, the order of evaluation defines a precedence order for
operators that is summarized in Table 7-2.

The set of syntax rules defines at the highest level an expression in terms of
operators and operands which are themselves expressions. As a result, the
formal set of rules is recursive. The basic or lowest level of an expression is a
primary, which, for example, can be a variable, a constant, or a function, or
recursively an expression enclosed in parentheses. The rules for forming
expressions are described from the lowest or most primitive level to the
highest or most complex level; that is, the rules are stated from a primary up to
an expression.

Primary. A primary has one of the following forms (R701):

constant
constant-subobject
variable
array-constructor
structure-constructor
function-reference

( expression )

Rules and restrictions:
1. A constant subobiject is a subobject whose parent is a constant.

2. A variable that is a primary must not be an assumed-size array (5.3.1.4) or
a section of an assumed-size array name, unless the last subscript position
of the array is specified with a scalar subscript or a section subscript in
which the upper bound is specified.
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Examples of primaries are:

32 A real constant
ONE A named constant
"ABCS’ (1) A constant subobiject
A A variable (scalar, array, structure, or pointer)
B (.1:N) An assumed-size_array with "f‘” _
upper bound in the last dimension
ca An array element
CH (1)) A substring
/71,3,77) An array constructor

RATIONAL (I,J) A structure constructor
FCN (A) A function reference

(AOB) A parenthesized expression

In the above examples, ONE is a hamed constant if it has the PARAMETER
attribute or appears in a PARAMETER statement. ’ABCS’(I:1) is a constant
subobject even though | may be a variable because its parent is a constant; it is
a constant subobject because it cannot be defined like a variable can be defined.
RATIONAL is a derived type and FCN is a user-defined function.

When an array variable is a primary, the whole array is used, except in a
masked assignment statement (7.5.4). In a masked assignment statement, only
that part of the array specified by the mask is used. When a pointer is a
primary, the target associated with (pointed to by) the pointer is used, except
possibly when the pointer is an actual argument of a procedure, or is an
operand of a defined operation or a defined assignment. Whether the pointer
or the target is used in these exceptional cases is determined by the procedure
invoked by the reference.

Recall that an assumed-size array (5.3.1.4) is a dummy argument whose shape
is not completely specified in the subprogram in that the extent in the last
dimension is determined by its corresponding actual argument. The
implementation model is that the extent in the last dimension is never known
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to the subprogram but is specified by the use of a subscript, section subscript,
or vector subscript expression which defines an upper bound in the last
dimension. Unless the extent is specified in this way, such an object must not
be used as a primary in an expression. On the other hand, if a subscript,
section subscript with an extent for the upper bound, or a vector subscript is
specified for the last dimension, the array value has a well-defined shape and
hence can be used as a primary in any expression. For example, if A is declared
as

REAL A(3,%)
A(;,3) has a well-defined shape and can be used as a primary in an expression.

Expressions are used as actual arguments in procedure references (function
references or subroutine calls). Because actual arguments can be expressions
involving operations, actual arguments must not contain assumed-size arrays,
unless their shape is well-defined, as described above. An actual argument,
however, can be just a variable, which then allows the actual argument to be
the name of an assumed-size array. This implies that such actual arguments
can be assumed-size arrays, unless the procedure requires the shape of the
argument to be specified by the actual argument. Most of the intrinsic
procedures that allow array arguments require the shape to be specified for the
actual array arguments, and therefore assumed-size arrays cannot be used as
actual arguments for most intrinsic functions. The exceptions are all references
to the intrinsic function LBOUND, and certain references to the intrinsic
functions UBOUND and SIZE—see their descriptions in Appendix A.

Defined-Unary Expression. A defined-unary expression is a defined operator
followed by a primary. Its form (R703) is:

[ defined-operator ] primary
where defined operator has the form (R704)
. letter [ letter ] ... .
Rules and restrictions:
1. A defined operator must not contain more than 31 letters.

2. A defined operator must not be the same name as the name of any intrinsic
operator (.NOT., .AND., .OR., .EQV., .NEQV., .EQ., .NE., .GT., .GE.,
.LT., or .LE.) or any logical literal constant (.FALSE. or .TRUE.).
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Examples of defined-unary expressions are:

.INVERSE. B A defined-unary expression

A A primary is also a defined-unary expression

where .INVERSE. is a defined operator.

Exponentiation Expression. An exponentiation expression is an expression in
which the operator is the exponentiation operator 11 Its form (R705) is:

defined-unary-expression [ ** exponentiation-expression ]

Note that the definition is right recursive (that is, the defined term appears to
the right of the operator [T) which indicates that the precedence of the 1]
operator in contexts of equal precedence is right-to-left. Thus, the
interpretation of the expression A [1IB [TIC is A [TJ( B [TIC ). Examples of
exponentiation expressions are:

A [1IB An exponentiation expression

A B [C An exponentiation expression with right-to-left precedence

INVERSE. B A deflngd—unary expression is also an exponentiation
expression

A A primary is also an exponentiation expression

Multiplication Expression. A multiplication expression is an expression in
which the operator is either Oor /. Its forms (R706) are:

[ multiplication-expression * ] exponentiation-expression
multiplication-expression / exponentiation-expression

Note that the definition is left recursive (that is, the defined term appears to the
left of the operator Oor /) which indicates that the precedence of the Oand /
operators in contexts of equal precedence is left-to-right. Thus, the
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interpretation of the expression AOB OCis (AOB)OC,orA/BOCIis(A/B)
OC. This left-to-right precedence rule applies to the remaining binary operators
except the relational operators. Examples of multiplication expressions are:

A OB A multiplication expression

A OB OC A multiplication expression with left-to-right precedence

A/B A multiplication expression

A/B/C A multiplication expression with left-to-right precedence

AOB/C A multiplication expression with left-to-right precedence

A DB An equnentiation expression is alsoa multiplication
expression

INVERSE. B A defin_ed-unary expression is alsoa multiplication
expression

A A primary is also a multiplication expression

Summation Expression. A summation expression is an expression in which the
operator is either + or —. Its forms (R707) are:

[ summation-expression + ] multiplication-expression
summation-expression - multiplication-expression

+ multiplication-expression

- multiplication-expression

Examples of summation expressions are:

A+B A summation expression

A+B-C A summation expression with left-to-right precedence
-A-B-C A summation expression with left-to-right precedence
+ A A summation expression using unary +

-A A summation expression using unary —

A OB A multiplication expression is also a summation

expression
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A [1IB

.INVERSE. B

A

An exponentiation expression is also a summation
expression

A defined-unary expression is also a summation
expression

A primary is also a summation expression

Concatenation Expression. A concatenation expression is an expression in
which the operator is //. Its form (R711) is:

[ concatenation-expression // ] summation-expression

Examples of concatenation expressions are:

A//B
A//B//C

A-B

-A

A OB

A 1B

.INVERSE. B

A

A concatenation expression
A concatenation expression with left-to-right precedence

A summation expression is also a concatenation
expression

A summation expression is also a concatenation
expression

A multiplication expression is alsoa concatenation
expression

An exponentiation expression is also a concatenation
expression

A defined-unary expression is also a concatenation
expression

A primary is also a concatenation expression

Comparison Expression. A comparison expression is an expression in which
the operator is a relational operator. Its form (R713) is:

[ concatenation-expression relational-operator | concatenation-expression

Expressions and Assignment 243

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



244

where a relational operator (R714) is one of the operators .EQ., ==, .NE., /=,
.LT., <, .LE., <=, .GT., >, .GE., and >=. The operators ==, /=, <, <=, >, and
>= are synonyms in all contexts for the operators .EQ., .NE., .LT., .LE., .GT.,
and .GE., respectively.

Note that the definition of a comparison expression is not recursive, and
therefore comparison expressions cannot contain relational operators in
contexts of equal precedence. Examples of comparison expressions are:

A .EQ.B A comparison expression
A<B A comparison expression
A//B A concatenation expression is also a comparison expression
A-B A summation expression is also a comparison expression
-A A summation expression is also a comparison expression
A OB A multiplication expression is also a comparison
expression
A (1B An exponentiation expression is also a comparison
expression
A defined-unary expression is also a comparison
.INVERSE. B . y exp P
expression
A A primary is also a comparison expression

Not Expression. A not expression is an expression in which the operator is
.NOT. Its form (R715) is:

[ «.NOT ] comparison-expression

Note that the definition of a not expression is not recursive, and therefore not
expressions cannot contain adjacent .NOT. operators. Examples of not
expressions are:

.NOT. A A not expression
A .EQ. B A comparison expression is also a not expression
A//B A concatenation expression is also a not expression
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A-B
A

A OB

A 1B
.INVERSE. B
A

A summation expression is also a not expression

A summation expression is also a not expression

A multiplication expression is also a not expression
An exponentiation expression is also a not expression
A defined-unary expression is also a not expression

A primary is also a not expression

Conjunct Expression. A conjunct expression is an expression in which the
operator is .AND. Its form (R716) is:

[ conjunct-expression .AND. ] not-expression

Note that the definition of a conjunct expression is left recursive, and therefore
the precedence of the .AND. operator in contexts of equal precedence is left-
to-right. Thus, the interpretation of the expression A .AND. B .AND. Cis (A
.AND. B) .AND. C. Examples of conjunct expressions are:

A .AND. B A conjunct expression

AAI\T\SDC B A conjunct expression with left-to-right precedence

NOT. A A not expression is also a conjunct expression

A .EQ. B A comparison expression is also a conjunct expression

A//B A concatenation expression is also a conjunct expression

A-B A summation expression is also a conjunct expression

-A A summation expression is also a conjunct expression

A OB A multiplication expression is also a conjunct expression

A (1B An expgnentiation expression is also a conjunct
expression

.INVERSE. B A defined-unary expression is also a conjunct expression

A A primgry is also a conjunct expressiona conjunct
expression
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Disjunct Expression. A disjunct expression is an expression in which the
operator is .OR. Its form (R717) is:

[ disjunct-expression .OR ] conjunct-expression

Note that the definition of a disjunct expression is left recursive, and therefore
the precedence of the .OR. operator in contexts of equal precedence is left-to-
right. Thus, the interpretation of the expression A .OR. B .OR. Cis (A .OR.
B) .OR. C. Examples of disjunct expressions are:

A .OR. B
A .OR. B .OR. C
A .AND. B
NOT. A

A .EQ.B
A//B

A-B

A

A OB

A [1IB

INVERSE. B
A

A disjunct expression

A disjunct expression with left-to-right precedence

A conjunct expression is also a disjunct expression

A not expression is also a disjunct expression

A comparison expression is also a disjunct expression
A concatenation expression is also a disjunct expression
A summation expression is also a disjunct expression

A summation expression is also a disjunct expression

A multiplication expression is also a disjunct expression

An exponentiation expression is also a disjunct
expression

A defined-unary expression is also a disjunct expression

A primary is also a disjunct expression

Equivalence Expression. An equivalence expression is an expression in which
the operator is either .EQV. or .NEQWV. Its forms (R718) are:

[ equivalence-expression .EQV. ] disjunct-expression
equivalence-expression .NEQV disjunct-expression
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Note that the definition of an equivalence expression is left recursive, and
therefore the precedence of the .EQV. or .NEQWV. operators in contexts of equal
precedence is left-to-right. Thus, the interpretation of the expression A .EQW.
B.NEQV. C is (A .EQV. B) .NEQV. C. Examples of equivalence expressions

are:
A .EQV. B An equivalence expression
A .NEQV. B An equivalence expression

A .NEQV. B .EQV.
C

A .OR. B
A .AND. B
.NOT. A

A .EQ. B

A//B

.INVERSE. B

A

An equivalence expression with left-to-right precedence

A disjunct expression is also an equivalence expression
A conjunct expression is also an equivalence expression
A not expression is also an equivalence expression

A comparison expression is also an equivalence
expression

A concatenation expression is also an equivalence
expression

A summation expression is also an equivalence
expression

A summation expression is also an equivalence
expression

A multiplication expression is also an equivalence
expression

An exponentiation expression is also an equivalence
expression

A defined-unary expression is also an equivalence
expression

A primary is also an equivalence expression

Expression. The most general form of an expression (R723) is:

[ expression defined-operator ] equivalence-expression
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Note that the definition of an expression is left recursive, and therefore the
precedence of the binary defined operator in contexts of equal precedence is
left-to-right. The interpretation of the expression A .PLUS. B .MINUS. C is
thus (A .PLUS. B) .MINUS. C. Examples of expressions are:

A PLUS. B

A .CROSS. B .CROSS.
C

A EQV. B
A OR.B
A AND. B
NOT. A
A EQ.B

A//B

A-B
-A

A OB

A [1IB

.INVERSE. B

A

An expression
An expression with left-to-right precedence

An equivalence expression is also an expression
A disjunct expression is also an expression

A conjunct expression is also an expression

A not expression is also an expression

A comparison expression is also an expression

A concatenation expression is also an
expression

A summation expression is also an expression
A summation expression is also an expression

A multiplication expression is also an
expression

An exponentiation expression is also an
expression

A defined-unary expression is also an
expression

A primary is also an expression

where .PLUS., .MINUS., and .CROSS. are defined operators.

Summary of the Forms and Hierarchy for Expressions. The previous sections
have described in detail the sorts of expressions that can be formed. These
expressions form a hierarchy that can best be illustrated by two figures. Figure
7-2 describes the hierarchy by placing the simplest form of an expression,
namely, a variable, at the center of a set of nested rectangles. The more general
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forms of an expression are the enclosing rectangles, from a primary to an
exponential expression, to a summation expression, and finally to a general
expression using a defined binary operator .CROSS. Thus, Figure 7-2
demonstrates that an expression is indeed all of these special case forms,
including the simplest form, a primary.

A CROSS'B eneral expression
- ) p
AEQV.B - equivalence expression
A OR'B disjunct expression
- J P
A.AND. B - conjunct expression
NOT. A - not expression
A EQ.B - comarison expression
A77B - concatenation expression
A summation expression
-} P
AB - multiplication expression
AlB - exponentiation expression
INVERSEA defined unary expression
‘< primary

Figure 7-2 The hierarchy of expressions by examples

Figure 7-3 illustrates the relationship between the different sorts of expressions
by summarizing the definitional forms in one table. The simplest form of an
expression is at the bottom and is the primary as in Figure 7-2. The next, more

Expressions and Assignment 249

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



250

general, form is second from the bottom and is the defined unary expression; it
uses the primary in its definition. At the top of the figure is the most general
form of an expression.

The following are examples of more complicated expressions:

A +B.CROSS.C-D An expression mixing new operators and old ones

An expression which has the same interpretation

(A + B) .CROSS. (C - D) . .
as the previous expression

An expression which has a different interpretation

A+ (B.CROSS.C)-D . .
from the previous two expressions

A .CROSS. (B .CROSS. An expression which in general is not the same
C) as the expression A .CROSS. B .CROSS. C

7.2.5 Precedence of Operators

The above formation rules suggest a precedence among the operators—that is,
the order in which operands are combined with operators to form values of
subexpressions. Table 7-2 summarizes the relative precedence of operators,
including the precedence when operators of equal precedence are adjacent. An
entry “N/A” in the column titled “In context of equal precedence” indicates
that the operator cannot appear in such contexts. The column titled “Category
of operator” classifies the operators as extension, numeric, character, relational,
and logical operators. Note that these operators are not intrinsic operators
unless the types of the operands are those specified in Table 7-3.

For example, in the expression
A .AND. B .AND. C .OR. D

Table 7-2 indicates that the .AND. operator is of higher precedence than the
.OR. operator, and the .AND. operators are combined left-to-right when in
contexts of equal precedence; thus, A and B are combined by the .AND.
operator, the result A .AND. B is combined with C using the .AND. operator,
and that result is combined with D using the .OR. operator. This expression is
thus interpreted the same way as the following fully parenthesized expression

(((A .AND. B) .AND. C) .OR. D)
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Term

Definition

expression
equivalence-expression

disjunct-expression
conjunct-expression

not-expression
comparison-expression

concatenation-expression

summation-expression

multiplication-expression

exponentiation-expression

defined-unary-expression

primary

[ expression defined-operator ] equivalence-expression

[ equivalence-expression .EQV. ] disjunct-expression
equivalence-expression .NEQV. disjunct-expression

[ disjunct-expression .OR. ] conjunct-expression
[ conjunct-expression .AND. ] not-expression
[ .NOT. ] comparison-expression

[ concatenation-expression relational-operator ] &
concatenation-expression

[ concatenation-expression // ] summation-expression

[ summation-expression + ] multiplication-expression
summation-expression - multiplication-expression

+ multiplication-expression

- multiplication-expression

[ multiplication-expression * ] exponentiation-expression
multiplication-expression / exponentiation-expression

defined-unary-expression [ ** exponentiation-expression ]
[ defined-operator ] primary

constant
constant-subobject
variable
array-constructor
structure-constructor
function-reference

( expression )

Figure 7-3The hierarchy of expressions via forms

Notice that the defined (or new) operators have fixed precedences; new unary
operators have the highest precedence of all operators and are all of equal
precedence; new binary operators have the lowest precedence, are all of equal
precedence, and are combined left-to-right when in contexts of equal
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Table 7-2 Categories of operations and relative precedences

In context of

Category equal
of operator Operator Precedence precedence

Extension Unary defined-operator Highest N/A
Numeric ** Right-to-left
Numeric Oor / Left-to-right

Numeric Unary + or — . N/A
Numeric Binary + or — Left-to-right
Character // Left-to-right

.EQ., .NE., .LT,, .LE., .GT,,
Relational .GE. N/A
==, /=<, <=, >, >=

Logical .NOT. N/A
Logical .AND. Left-to-right
Logical .OR. Left-to-right
Logical .EQV. or .NEQV. Left-to-right
Extension Binary defined-operator Lowest Left-to-right

precedence. Both kinds of new operators may have multiple definitions in the
program unit and therefore may be generic just as intrinsic operators and
intrinsic procedures are generic.

As a consequence of the expression formation rules, unary operators cannot
appear in a context of equal precedence; the precedence must be specified by
parentheses. There is thus no left-to-right or right-to-left rule for any unary
operators. Similarly, the relational operators cannot appear in a context of
equal precedence; consequently, there is no left-to-right or right-to-left rule for
the relational operators.
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7.2.6 Intrinsic Operations

Intrinsic operations are those known to the processor. For an operation to be
intrinsic, an intrinsic operator symbol must be used, and the operands must be
of the intrinsic types specified in Table 7-3.

Table 7-3  Type of operands and result for intrinsic operations

Type of
Intrinsic operator Type of x; Type of x5 result
Unary +, — LR, Z LR, Z
I LR, Z LR, Z
Binary +, -, 0 /, (I R LR, Z R/ R, Z
z LR, Z Z2,2,Z
// C C C
| ILR. Z L, L L
.EQ., .NE. R LR, Z L L L
==, /= z LR, Z L, L L
C C L
| LR L,L
.GT.,>.G>E_.,<.L'I<'._, .LE. R IR L L
i ] ’ - C C L
.NOT. L L
.AND., .OR., .EQV., .NEQW. L L L

Note: The symbols I, R, Z,C, and L stand for the types integer, real,
complex, character, and logical, respectively. Where more than one
type for x,, is given, the type of the result of the operation is given
in the same relativeposition in the next column. For the intrinsic
operators requiring operands of type character, the kind type
parameters of the operands must be the same.

The intrinsic operations are either binary or unary. The binary operations use
the binary intrinsic operator symbols +, -, 00 /, (1] //, .EQ., .NE., .LT., .GT.,
.LE., .GE. (and their synonyms ==, /=, <, >, <=, and >=), .AND., .OR,,
.EQV., and .NEQV. The unary operations use the unary intrinsic operator
symbols +, —, and .NOT.
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The intrinsic operations are divided into four classes with different rules and
restrictions for the types of the operands. The four classes are numeric
intrinsic, character intrinsic, logical intrinsic, and numeric relational intrinsic
operations.

The numeric intrinsic operations use the intrinsic operators +, —, [] /, and [T]
The operands may be of any numeric type and with any kind type parameters.
The result of the operation is of a type specified by Table 7-3 and has type
parameters as specified in Section 7.2.8.2.

For example, the expressions
I + R
I *1
| - D
1/ Zz

where |, R, D, and Z are declared to be of types integer, real, double precision
real, and complex have the types and type parameters of the variables R, I, D,
and Z, respectively.

7.2.7 Defined Operations

A defined operation is any nonintrinsic operation that is interpreted and
evaluated by a function subprogram specified by an interface block with a
generic specifier of the form OPERATOR (defined-operator). A defined operation
uses either a defined operator or an intrinsic operator symbol, and is either
unary or binary. Its forms (R703, R723) are:

intrinsic-unary-operator X,
defined-operator  x,

X1 intrinsic-binary-operator X,
X, defined-operator X,

where x4 and x, are operands. When either an intrinsic unary or binary
operator symbol is used, the type of x, and types of x; and x, must not be
the same as the types of the operands specified in Table 7-3 for the
particular intrinsic operator symbol. Thus, intrinsic operations on intrinsic
types cannot be redefined by the user. Examples of each of the previous
forms are:
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- A

.PLUS. A
A*B

A .HIGHER. B

When a defined operation uses an intrinsic operator symbol, the generic
properties of that operator are extended to the new types specified by the
interface block. When a defined operation uses a defined operator, the defined
operation is called an extension operation, and the operator is called an
extension operator. An extension operator may have generic properties by
specifying more than one interface block with the same generic specifier of the
form OPERATOR (defined-operator) or by specifying more than one function
subprogram in an interface block.

7.2.8 Data Type, Type Parameters, and Shape of an Expression

7.2.8.1

The data type, type parameters, and shape of a complete expression are
determined by the data type, type parameters, and shape of each constant,
variable, constructor, and function reference appearing in the expression. The
determination is inside-out in the sense that the properties are determined first
for the primaries. These properties are then determined repeatedly for the
operations in precedence order, resulting eventually in the properties for the
expression.

For example, consider the expression A + B 0OC, where A, B, and C are of
numeric type. First, the data types, type parameter values, and shapes of the
three variables A, B, and C are determined. Because [Jhas a higher precedence
than +, the operation B [IC is performed first. The type, type parameters, and
shape of the expression B OC are determined next, and then these properties
for the entire expression are determined from those of A and B OC.

Data Type and Type Parameters of a Primary

The type, type parameters, and shape of a primary that is a nonpointer
variable or constant is straightforward because these properties are determined
by specification statements for the variable or named constant, or by the form
of the constant (4.2.4). For example, if A is a variable, its declaration in a
specification statement such as

REAL A (10, 10)
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determines it as an explicit-shaped array of type real with a default kind
parameter. For a constant such as

(1.3, 2.9)

the form of the constant indicates that it is a scalar constant of type complex
and of default kind.

For a pointer variable, the type, type parameters, and rank are determined by
the declaration of the pointer variable. However, if the pointer is of deferred
shape, the shape (in particular, the extents in each dimension) is determined by
the target of the pointer. Consider the declarations

REAL, POINTER = A (, 1)
REAL, TARGET : B (10, 20)

and suppose that the pointer A is associated with the target B. Then the shape
of A is (10, 20).

The type, type parameters, and shape of an array constructor are determined
by the form of the constructor. Its shape is of rank one and of size equal to the
number of elements. Its type and type parameters are those of any element of
the constructor because they must all be of the same type and type parameters.
Therefore, the type and type parameters of the array constructor

(/ 1.1, 123 1, -10_1 /)
are integer and kind value 1.

The type of a structure constructor is the derived type used as the name of the
constructor. A structure constructor is always a scalar. A structure has no type
parameters. So, the type of the structure constructor

PERSON( 56, 'Father’ )
is the derived type PERSON. (See Section 4.6 for the type definition PERSON.)

The type, type parameters, and shape of a function are determined either by:

® an implicit type declaration for the function within the program unit
referencing the function,

® an explicit type declaration for the function within the program unit
referencing the function (just like a variable), or
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® an explicit interface to the function (12.6.1). (When the interface is not
explicit, the function is either an external function or a statement function.)

In case the interface is explicit, these properties are determined by:

® the type and other specification statements for the function in an interface
block within the program unit referencing the function

® the type and other specification statements for the internal or module
procedure specifying the function

® the description of the particular intrinsic function being referenced (see
Appendix A)

Note, however, that because intrinsic functions and functions with interface
blocks may be generic, these properties are determined by the type, type
parameters, and shapes of the actual arguments of the particular function
reference.

For example, consider the statements

REAL FUNCTION FCN (X)
DIMENSION FCN (10, 15)

as part of the program unit specifying an internal function FCN. A reference to
FCN (3.3) is of type default real with shape (10, 15). As a second example,
consider

REAL ( SINGLE ) X (10, 10, 10)
SIN (X)

The interface to SIN is specified by the definition of the sine function in
Appendix A. In this case, the function reference SIN (X) is of type real with
kind parameter value SINGLE and of shape (10, 10, 10).

As mentioned above, the interface is implicit if the function is external (and no
interface block is provided) or is a statement function. In these cases, the shape
is always that of a scalar, and the type and type parameters are determined by
the implicit type declaration rules in effect, or by an explicit type declaration
for the function name. For example, given the code fragment:

IMPLICIT INTEGER ( SHORT ) (A-F)

FCN (X)
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7.2.8.2

FCN (X) is a scalar of type integer with kind type parameter value SHORT.

The one case for variables and functions that is not straightforward is the
determination of the shape of a variable when it is of deferred shape or of
assumed shape. For deferred-shape arrays, the rank is known from the
declaration but the sizes in each dimension are determined as the result of
executing an ALLOCATE statement or a pointer assignment statement. For
assumed-shape arrays, the rank is also known from the declaration but the
sizes are determined by information passed into the subprogram through a
descriptor in the argument sequence. In the case of pointers, the shape of the
object is that of the target associated with (pointed to by) the pointer. The
shape of deferred-shape and assumed-shape arrays thus cannot be determined
in general until execution time.

Type and Type Parameters of the Result of an Operation

The type of the result of an intrinsic operation is determined by the type of the
operands and the intrinsic operation and is specified by Table 7-3.

For nonnumeric operations, the type parameters of the result of an operation
are determined as follows. For the relational intrinsic operations, the kind type
parameter is that for the default logical type. For the logical intrinsic
operations, the kind type parameter is that of the operands if the operands
have the same kind type parameter, and otherwise is processor dependent. For
the character intrinsic operation (note—there is only one, namely //), the
operands must have the same kind type parameter and the result has that kind
type parameter. The length type parameter value for the result is the sum of
the length type parameters of the operands.

For example, consider the operation C1 // C2 where C1 and C2 are of type
character with kind type parameters 2 and lengths 7 and 18. The result is of
type character with kind type parameter value 2 and length type parameter
value 25.

For numeric intrinsic operations, the kind type parameter value of the result is
determined as follows:

® For unary operations, it is that of the operand.

® For binary operations, if the operands are of different types (for example,
I+R), it is the kind type parameter of the operand with the same type as the
result (as specified by Table 7-3).
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® For binary operations, if the operands are of the same type and kind
type parameters, it is the kind type parameter of the operands.

® For binary operations, if the operands are both of type integer but with
different kind type parameters, it is the kind type parameter of the
operand with the larger decimal exponent range. If the decimal
exponent ranges of the two kinds are the same, it is processor
dependent.

® For binary operations, if the operands are both of type real or complex
but with different kind type parameters, it is the kind type parameter
of the operand with the larger decimal precision. If the decimal
precisions are the same, the kind type parameter is processor
dependent.

For numeric intrinsic operations, an easy way to remember the result type
and type parameter rules is to consider that the three numeric
types—integer, real, and complex—are ordered by the increasing generality
of numbers: integers are contained in the set of real numbers and real
numbers are contained in the set of complex numbers. Within the integer
type, the kinds are ordered by increasing decimal exponent ranges. Within
the real and complex types, the kinds for each type are ordered by
increasing decimal precision. If there is more than one kind of integer with
the same decimal exponent range, the ordering is processor dependent; a
similar processor-dependent ordering is selected for the real and complex
types, if there is more than one kind with the same decimal precision.

Using this model, the result type of a numeric intrinsic operation is the
same type as the operand of the greater generality. For the result type
parameter, the rule is complicated: if one or both of the operands is of type
real or complex, the type parameter is that of the set of numbers of the
more general type described above and with a precision at least as large as
the precision of the operands; if both are of type integer, the result type
parameter is of a set of numbers that has a range at least as large as the
range of the operands.

To illustrate this ordering, consider an implementation that has two kinds
of integers (kind=1 is a 16-bit format; kind=2 is a 32-bit format) with
decimal exponent ranges 4 and 10, two kinds of reals (kind=1 is a 32-bit
format; kind=2 is a 64-bit format) with decimal precisions 6 and 15, and
two kinds of complex numbers (kind=1 is a 64-bit format; kind=2 is a 128-
bit format) with decimal precisions 6 and 15. Figure 7-4 gives the ordering
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14 110 R6 R15 C6 C15
integer integer real real complex complex
exp=4 exp=10 prec=6 prec=15 prec=6 prec=15
kind=1 | Y| kind=2 | O | kind=1 | O | kind=2 | O | kind=1 | O| kind=2

16-bit 32-bit 32-bit 64-bit 64-bit 128-bit

Figure 7-4 Example ordering of numeric types

of the integer, real, and complex types that are likely for the common 32- and
64-bit representations used by most workstations. Let variables of the 6
numeric types be 14, 110, R6, R15, C6, and C15, where the letter designates the
type and the digits designate the decimal exponent range or decimal precision.
Using this ordering, Table 7-4 gives the type and type parameters of some
simple expressions.

Table 7-4 Type and type parameters of some simple expressions

Type and type parameters are

Expressions the same as the variable

14 + R6 R6
110 OC15 C15
C6 / C15 C15

14 - 110 110

14 [TIC6 C6
R15 + C6 C15

Co6 114 C6

110 - R6 R6

The type and type parameter values of a defined operation are determined by
the interface block (or blocks) for the referenced operation and are the type and
type parameters of the name of the function specified by the interface block.
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7.2.8.3

Note that the operator may be generic and therefore the type and type
parameters may be determined by the operands. For example, consider the
interface:

INTERFACE OPERATOR (.PLUS.)

TYPE (SET) FCN_SET_PLUS (X, Y)
TYPE (SET) X, Y
END FUNCTION FCN_SET PLUS

TYPE (RATIONAL) FCN_RAT_PLUS (X, Y)
TYPE (RATIONAL) X, Y
END FUNCTION FCN_RAT PLUS

END INTERFACE

The operation A .PLUS. B where A and B are of type RATIONAL is an
expression of type RATIONAL with no type parameters. The operation

C .PLUS. D where C and D are of type SET is an expression of type SET with
no type parameters.

Shape of an Expression

The shape of an expression is determined by the shape of each operand in the
expression in the same recursive manner as for the type and type parameters

for an expression. That is, the shape of an expression is the shape of the result
of the last operation determined by the interpretation of the expression.

However, the shape rules are simplified considerably by the requirement that
the operands of binary intrinsic operations must be in shape conformance; that
is, two operands are in shape conformance if both are arrays of the same
shape, or one or both operands are scalars. The operands of a defined
operation have no such requirement but must match the shape of the
corresponding dummy arguments of the defining function.

For primaries that are constants, variables, constructors, or functions, the shape
is that of the constant, variable, constructor, or function name. Recall that
structure constructors are always scalar, and array constructors are always
rank-one arrays of size equal to the number of elements in the constructor. For
unary intrinsic operations, the shape of the result is that of the operand. For
binary intrinsic operations, the shape is that of the array operand if there is one
and is scalar otherwise. For defined operations, the shape is that of the
function name specifying the operation.
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7.2.8.4

For example, consider the intrinsic operation A + B where A and B are of type
default integer and default real respectively; assume A is a scalar and B is an
array of shape (3, 5). Then, the result is of type default real with shape (3, 5).

As a second example, consider the expression A // B as a defined operation
where A is a scalar of type character with kind type parameter value 1 and of
length 25, and B is an array of type character with kind type parameter value 2,
of length 30, and of shape (10). Suppose further there is the following interface
for the // operator:

INTERFACE OPERATOR (/)

FUNCTION FCN_CONCAT (X, Y)

CHARACTER (*, 1) X

CHARACTER (*, 2) Y ()

CHARACTER (LEN (X) + LEN (Y), 2) FCN_CONCAT (SIZE (Y))
END FUNCTION FCN_CONCAT

END INTERFACE

The type declaration for FCN_CONCAT determines that the result of the
expression A // B is of type character with kind type parameter 2. In addition,
the same type declaration specifies that the length of the result is the sum of
the lengths of the operands A and B, that is, of length 55. The shape is specified
to be of rank one and of size equal to the size of the actual argument B
corresponding to the dummy argument Y, that is, of shape (10).

The Extents of an Expression

For most contexts, the extents (lower and upper bounds) of an array expression
are not needed; only the sizes of each dimension are needed to satisfy array
conformance requirements for expressions. The extents of an array expression
when it is the ARRAY argument (first positional argument) of the LBOUND
and UBOUND intrinsic functions are needed, however.

The functions LBOUND and UBOUND have two keyword arguments ARRAY
and DIM; ARRAY is an array expression and DIM, which is optional, is an
integer. If the DIM argument is present, LBOUND and UBOUND return the
lower and upper bounds, respectively, of the dimension specified by the DIM
argument. If DIM is absent, they return a rank-one array of the lower and
upper bounds, respectively, of all dimensions of the ARRAY argument. As
described below, these functions distinguish the special cases when the array
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argument is a name or structure component with no section subscript list from
the general case when the array argument is a more general expression. Note
that if A is a structure with an array component B, A % B is treated as if it
were an array name and not an expression.

When the ARRAY argument is an array expression that is not a name or a
structure component, the function LBOUND returns 1 if the DIM argument is
specified and returns a rank-one array of 1s if the DIM argument is absent. For
the same conditions, the function UBOUND returns as the upper bound the
size of the requested dimension or the size of all dimensions in a rank-one
array.

When the ARRAY argument is an array name or a structure component with
no section subscript list, there are four cases to distinguish depending on the
array specifier for the name.

Explicit-Shape Specifier. LBOUND and UBOUND functions return the
declared lower and upper bounds of the array name or the structure
component with no section subscript list.

Examples:
INTEGER A (2:10, 11:12)

TYPE PASSENGER_INFO
INTEGER NUMBER
INTEGER TICKET_IDS (2:500)
END TYPE PASSENGER_INFO

TYPE (PASSENGER_INFO) PAL, MANY (3:10)

LBOUND (A) has the value (2, 11), and UBOUND (A, 1) has the value 10.
LBOUND (PAL % TICKET_IDS) has the value (2) and UBOUND (MANY %
TICKET_IDS(2), 1) has the value 10.

Assumed-Shape Specifier. The name is a dummy argument whose extents are
determined by the corresponding actual argument. The dummy argument may
have its lower bound in a particular dimension specified but if not, the lower
bound is defined to be 1. The LBOUND function returns these lower bounds.
The upper bound for a particular dimension is the extent of the actual
argument in that dimension, if no lower bound is specified for the dummy
argument, and is the extent minus 1 plus the lower bound if a lower bound is
specified. The UBOUND function returns these upper bounds.
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Example:

REAL C (2:10, 11:12)

CALL S (C (48, 7:9) )
CONTAINS
SUBROUTINE S (A)
REAL A (;, 2)

| Reference to LBOUND (A) and UBOUND (A)

Inside the body of subroutine S, LBOUND (A) has the value (1, 2), because the
array starts at subscript position 1 by default in the first dimension and starts
at subscript position 2 by declaration in the second dimension. UBOUND (A)
has the value (5, 4), because there are 5 subscript positions (4 to 8) in the first
dimension of the actual argument corresponding to A, and 3 subscript
positions (7 to 9) in the second dimension of the same actual argument and the
subscripts are specified to start at 2 by the declaration of the dummy argument
A.

Assumed-Size Specifier. The name is a dummy argument whose upper and
lower bounds in all but the last dimension are declared for the dummy
argument. The lower bound for the last dimension may be specified in the
assumed-shape specifier but, if absent, the lower bound is 1. The LBOUND
function returns these lower bounds. The upper bound for all dimensions
except the last one is known to the subprogram but the upper bound in the last
dimension is not known. The UBOUND function, therefore, must not be
referenced with the first argument being the name of an assumed-size array
and no second argument, or the first argument being the name of an assumed-
size array and the second argument specifying the last dimension of the array.
Otherwise, the UBOUND function returns the upper bounds as declared for all
but the last dimension.

Example:

REAL C (2:10, 11:12)

CALL S (C (48, 7:9) )
CONTAINS
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SUBROUTINE S (A)
REAL A (-2:2, %)

! Reference to LBOUND (A, 1) and UBOUND (A (:, 2))
I A reference to UBOUND (A) would be illegal.
I A reference to UBOUND (A, 2) would be illegal.

Inside the body of subroutine S, LBOUND (A, 1) has the value -2, and
UBOUND (A (;, 2)) has the value (5) because A(;,2) is an expression, which is
an array section, not an array name.

Deferred-Shape Specifier. The name is the name of an allocatable array, an
array pointer, or a structure component with one of its part references being an
allocatable or pointer array. As such, if the array or a part reference has not
been allocated or associated with a target, the LBOUND and UBOUND
functions must not be invoked with the ARRAY argument equal to such an
array name. If it is allocated, the functions LBOUND and UBOUND return the
lower and upper bounds specified in the ALLOCATE statement that allocated
the array. If no lower bound is specified, it is taken as 1. If it is an array
pointer, either its target has been allocated by an ALLOCATE statement or its
target has become associated with the pointer using a pointer assignment
statement. In the former case, the LBOUND and UBOUND functions return the
lower and upper bounds specified in the ALLOCATE statement. In the latter
case, the LBOUND and UBOUND functions return values as if the ARRAY
argument were equal to the target used in the pointer assignment statement
that created the last association for the pointer.

Example:

REAL, ALLOCATABLE = A (;, 1)
ALLOCATE ( A (5, 7:9) )

! Reference to LBOUND (A) and UBOUND (A)

After the ALLOCATE statement above is executed, LBOUND (A) has the
value (1, 7), and UBOUND (A) has the value (5, 9).
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7.2.9 Special Expressions

7.29.1

Expressions may appear in statements other than assignment statements, in
particular in specification statements. In many cases, such expressions are
restricted in some way; for example, the operands in expressions in a
PARAMETER statement are restricted to essentially constants. Throughout the
standard, there are terms used for the various categories of expressions
allowed in specific syntactic contexts. For example, the expressions that can be
used in PARAMETER statements are called initialization expressions and can
be evaluated at the time the program is compiled. Initialization expressions are
restricted forms of constant expressions.

The expressions that can be used as array bounds and character lengths in
specification statements are called specification expressions and are those that
are scalar and of type integer that can be evaluated on entry to the program
unit at the time of execution. The remainder of this subsection describes and
defines such limited expressions and summarizes where they can be used.

Constant Expressions

A constant expression is an extended constant or is an expression consisting of
intrinsic operators whose operands are extended constants. An extended
constant in this context is defined as any one of the following:

1. a literal or named constant, or a subobject of a constant where each
subscript, section subscript, or starting and ending point of a substring
range is a constant expression

2. an array constructor where every subexpression has primaries that are
constant expressions or are implied-DO variables of the array constructor

3. astructure constructor where each component is a constant expression
4. an intrinsic function reference that can be evaluated at compile-time
5. a constant expression enclosed in parentheses.

The restriction in item (4) above to intrinsic functions that can be evaluated at
compile-time eliminates the use of the intrinsic functions PRESENT,
ALLOCATED, and ASSOCIATED, and requires that each argument of the
intrinsic function reference be a constant expression or a variable whose type
parameters or bounds are known at compile-time. This restriction excludes, for
example, named variables that are assumed-shape arrays, assumed-size arrays
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for inquiries requiring the size of the last dimension, and variables that are
pointer arrays or allocatable arrays. For example, if an array X has explicit
bounds in all dimensions, an inquiry such as SIZE (X) can be computed at
compile-time, and SIZE (X) + 10 is considered a constant expression.

Constant expressions may be used in any executable statement where general
expressions (that is, unrestricted expressions) are permitted.

Examples of constant expressions are:

2
3.0E+01

~7.5_QUAD

7 LONG
/7,01, 1=1, 10) /)

RATIONAL (1, 2+))

LBOUND (A,1)+3

An integer literal constant
A real literal constant

A real literal constant where QUAD
is @ named integer constant

An integer literal constant where LONG
is a named integer constant

An array constructor

A structure constructor where RATIONAL is a
derived type and J is a named integer constant

A reference to an inquiry intrinsic function
where A is an explicit-shape array

INT (N, 2) An intrinsic function where N is a named constant
KIND (X) An |n_tr|nS|c function where X is a real variable

with known type parameter
REAL (10+1) An intrinsic functlon where | is

a named integer constant
COUNT (A) An intrinsic fun_ctlon where A is

a named logical constant
LOG (2.0) An intrinsic function
1/3.3 + JIB.3 A numeric expression where | and J are

named integer constants

A reference to a transformational intrinsic function

SUM (A) . .

where A is a named integer array constant
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7.2.9.2 Initialization Expressions

An initialization expression is a constant expression restricted as follows:

1.

The exponentiation operator ((T) is allowed only when the power (second
operand) is of type integer; that is, X [(11Y is allowed only if Y is of type
integer.

Subscripts, section subscripts, starting and ending points of substring
ranges, components of structure constructors, and arguments of intrinsic
functions must be initialization expressions.

The elements of array constructors must be initialization expressions or
implied-DOs for which the array constructor values and implied-DO
parameters are expressions whose primaries are initialization expressions
or implied-DO variables.

An elemental intrinsic function in an initialization expression must have
arguments of type integer or character, and must return a result of type
integer or character.

A transformational intrinsic function in an initialization expression must
be one of the transformational intrinsic functions REPEAT, RESHAPE,
SELECTED_INT_KIND, SELECTED_REAL_KIND, TRANSFER, and TRIM,
and must have initialization expressions as arguments; this excludes the
use of the transformational functions ALL, ANY, COUNT, CSHIFT,
DOT_PRODUCT, EOSHIFT, MATMUL, MAXLOC, MAXVAL, MINLOC,
MINVAL, PACK, PRODUCT, SPREAD, SUM, TRANSPOSE, and UNPACK.

An inquiry intrinsic function is allowed, except that the arguments must
either be initialization expressions or variables whose type parameters or
bounds inquired about are not assumed, not defined by an ALLOCATE
statement, or not defined by pointer assignment.

Any subexpression enclosed in parentheses must be an initialization
expression.

All but the last five examples in Section 7.2.9.1 are initialization expressions.
The last five are not because initialization expressions cannot contain functions
that return results of type real (REAL, LOG), must not reference certain
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transformational functions (COUNT, SUM), or use the exponentiation operator
when the second operand is of type real. Further examples of initialization
expressions are:

An integer expression where A is

SIZE (A, 1) * 4 an array with an explicit shape

An inquiry function

KIND (0.000) with a constant argument

SELECTED_REAL_KIND (6, An inquiry function
30) with constant arguments

An inquiry function with an argument
that is an initialization expression,
where R is a previously declared
named constant of type integer

SELECTED_INT_KIND (2 * R)

Initialization expressions must be used in the following contexts:

1. as initial values following the equal signs in PARAMETER statements and
in type declaration statements with the PARAMETER attribute

2. as initial values following the equal signs for entities in type declaration
statements

3. as expressions in structure constructors in the DATA statement value list

4. as kind type parameter values in type declaration statements; in this case,
they also must be scalar and of type integer

5. as actual arguments for the KIND dummy argument of the conversion
intrinsic functions AINT, ANINT, CHAR, CMPLX, INT, LOGICAL, NINT,
REAL,; in this case, they also must be scalar and of type integer

6. as case values in the CASE statement; in this situation, they must be scalar
and of type integer, logical, or character

7. as subscript or substring range expressions of equivalence objects in an
EQUIVALENCE statement; in this case, they must be scalar and of type
integer
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7.2.9.3

Thus, initialization expressions must be used for situations where the value of
the expression is needed at compile time. Note that the initialization
expressions do not include intrinsic functions that return values of type real,
logical, or complex, or have arguments of type real, logical, or complex.

Specification Expressions

Specification expressions are forms of restricted expressions (defined below),
limited in type and rank. Briefly, a restricted expression is limited to constants
and certain variables accessible to the scoping unit whose values can be
determined on entry to the programming unit before any executable statement
is executed. For example, variables that are dummy arguments, are in a
common block, are in a host program unit, or are in a module made accessible
to the program unit can be evaluated on entry to a program unit. Array
constructors, structure constructors, intrinsic function references, and
parenthesized expressions made up of these primaries must depend only on
restricted expressions as building blocks for operands in a restricted
expression. To be specific, a restricted expression is an expression in which
each operation is intrinsic and each primary is limited to one of the following:

1. a constant or constant subobject
a variable that is a dummy argument

a variable that is in a common block

> wDd

a variable made accessible from a module
5. avariable from the host program unit

6. an array constructor where every expression has primaries that are
restricted expressions or are implied-DO variables of the array constructor

7. a structure constructor where each component is a restricted expression

8. an elemental intrinsic function whose result is of type integer or character
and whose arguments are all restricted expressions of type integer or
character

9. one of the transformational intrinsic functions REPEAT, RESHAPE,
SELECTED_INT_KIND, SELECTED_REAL_KIND, TRANSFER, and TRIM,
where each argument is a restricted expression of type integer or character
(this excludes the use of the transformational functions ALL, ANY,
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7.29.4

COUNT, CSHIFT, DOT_PRODUCT, EOSHIFT, MATMUL, MAXLOC,
MAXVAL, MINLOC, MINVAL, PACK, PRODUCT, SPREAD, SUM,
TRANSPOSE, and UNPACK).

10. an inquiry intrinsic function except PRESENT, ALLOCATED, and
ASSOCIATED where each argument is either:

a. a restricted expression, or

b. a variable whose bounds or type parameters inquired about are not
assumed, not defined by an ALLOCATE statement, and not defined by
a pointer assignment statement

where any subscript, section subscript, and starting or ending point of a
substring range is a restricted expression.

A specification expression is a restricted expression that has a scalar value and
is of type integer. Specification expressions are used as bounds for arrays and
length parameter values for character entities in type declarations, attribute
specifications, dimension declarations, and other specification statements (see
Table 7-5).

Initialization and Specification Expressions in Declarations

The following rules and restrictions apply to the use of initialization and
specification expressions in specification statements.

Rules and restrictions:

1. The type and type parameters of a variable or named constant in one of
these expressions must be specified in a prior specification in the same
scoping unit, in a host scoping unit, in a module scoping unit made
accessible to the current scoping unit, or by the implicit typing rules in
effect. If the variable or named constant is explicitly given these attributes
in a subsequent type declaration statement, it must confirm the implicit
type and type parameters.

2. If an element of an array is referenced in one of these expressions, the array
bounds must be specified in a prior specification.

3. If a specification expression includes a variable that provides a value
within the expression, the expression must appear within the specification
part of a subprogram. For example, the variable N in the program segment:
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7.2.9.5

INTEGER N
COMMON N
REAL A (N)

is providing a value that determines the size of the array A. This program
segment must not appear in a main program but may appear in the
specification part of a subprogram.

A prior specification in the above cases may be in the same specification
statement, but to the left of the reference. For example, the following
declarations are valid:

INTEGER, DIMENSION (4), PARAMETER :: A = (/ 4, 3, 2, 1 /)
REAL, DIMENSION (A (2)) = B, C (SIZE (B))

B and C are of size 3 (the second element of the constant array A). But the
following declaration is invalid because SIZE (E) precedes E:

REAL, DIMENSION (2) = D (SIZE (E)), E

Uses of the Various Kinds of Expressions

The various kinds of expressions are somewhat confusing and it is difficult to
remember where they can be used. To summarize the differences, Section 7.2.4
specifies the most general kind of expression; the other kinds of expressions
are restrictions of the most general kind. The classification of expressions forms
two orderings, each from most general to least general, as follows:

® expression, restricted expression, and specification expression
® expression, constant expression, and initialization expression

The relationship between the various kinds of expression can be seen in the
diagram in Figure 7-5.

Note that initialization expressions are not a subset of specification expressions
because the result of an initialization expression can be of any type, whereas
the result of a specification expression must be of type integer and scalar. Also,
specification expressions are not a subset of initialization expressions because
specification expressions allow certain variables (such as dummy arguments
and variables in common blocks) to be primaries, whereas initialization
expressions do not allow such variables.

Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



\l
1]

General

Restricted

Specification Initialization

Figure 7-5 Diagram describing relationships between the kinds of expressions

Table 7-5 describes in detail the differences between the various kinds of
expressions. Table 7-6 summarizes where each of these kinds of expressions are
used in other Fortran statements and gives the restrictions as to their type and
rank when used in the various contexts. For example, Table 7-5 indicates that
initialization and specification expressions are different in that initialization
expressions can be array valued, whereas specification expressions are scalar. A
consequence of this difference, as indicated in Table 7-6, is that an initialization
expression is used in a type declaration statement or a PARAMETER statement
to specify the value of a named constant array, whereas a specification
expression is used to specify the bounds of an array in a declaration statement.

Also in Table 7-6 are the kinds of expressions that can be used as data-implied-
do parameters and subscripts of DATA statement objects in a DATA statement;
such expressions must be scalar integer expressions in which each primary is
either a constant or a variable of a containing implied-do, and each operation
must be an intrinsic operation. (These expressions are anomalous in terms of
the above categorization of expressions mainly because of the limited scope of
the DO variables in data-implied-do lists and because the DATA statement is
treated by many implementations as a compile-time assignment statement.)
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Table 7-5  Differences and similarities between initialization and specification expressions

Kind of expression

Property Initialization Specification
Character result Yes No?!
Integer result Yes Yes
Scalar result Yes Yes
Array result Yes No

Variables as primaries
(limited to dummy arguments,

common objects, host objects, No Yes
module objects)
Elemental intrinsic fun_ctlon_s of type integer Yes Yes
and character as primaries
Elemental intrinsic functions of type real, complex,
. . - . No No
logical, and derived type as primaries
Only constants as primaries Yes No
Only constant subscripts, strides, character lengths Yes No

One of the transformational intrinsic functions
REPEAT, RESHAPE, SELECTED INT_KIND, Yes Yes
SELECTED_REAL_KIND, TRANSFER,
or TRIM as primaries

Inquiry intrinsic functions (not including
ALLOCATED, ASSOCIATED, or PRESENT) Yes Yes
as primaries

Note 1. Expression results of type character are allowed if they are arguments of certain intrinsic functions.
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Table 7-6  Kinds of expressions and their uses

Kinds of expressions

Arb. Init. Spec.
Context expr. expr. expr. Type!  Rank?
Bounds in declaration statement® No No Yes | Scalar
Lengths in declaration statement? No No Yes | Scalar
Subscripts and substring ranges in EQUIVALENCE statement No Yes No | Scalar
Values in CASE statement No Yes No I,.L,C Scalar
Kind parameters in declaration statement No Yes No | Scalar
Kind arguments in intrinsics No Yes No | Scalar
Initial value in PARAMETER and type declaration statement No Yes No Any Any
Data-implied-DO parameters No Restr.? No | Scalar
Assignment Yes Yes Yes Any Any
Subscripts in executable statement Yes Yes Yes | <1
Strides in executable statement Yes Yes Yes | Scalar
Substring ranges in executable statement Yes Yes Yes | Scalar
Expression in SELECT CASE Yes Yes Yes I,L,C Scalar
IF-THEN statement Yes Yes Yes L Scalar
ELSE-IF statement Yes Yes Yes L Scalar
IF statement Yes Yes Yes L Scalar
Arithmetic IF statement Yes Yes Yes LR Scalar
DO statement Yes Yes Yes IR Scalar
Mask in WHERE statement Yes Yes Yes L Array
Mask in WHERE construct Yes Yes Yes L Array
Output item list Yes Yes Yes Any Any
1/0 specifier values except FMT= specifier Yes Yes Yes 1,.C Scalar
1/0 FMT= specifier value Yes Yes Yes C(def) Any
RETURN statement Yes Yes Yes | Scalar
Computed GO TO statement Yes Yes Yes | Scalar
Array-constructor-implied-DO parameters Yes Yes Yes | Scalar
1/0-implied-DO parameters Yes Yes Yes LR Scalar
Actual arguments Yes Yes Yes Any Any
Expressions in statement function definitions Yes Yes Yes Any Scalar
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Notes for previous table.

Note 1: “Any” in this column means any intrinsic or derived type.
Note 2: “Any” in this column means that the result may be a scalar or an array of any rank (less than 8).

Note 3: The relevant declaration statements are type declaration, component definition, DIMENSION,
TARGET, and COMMON statements.

Note 4: The relevant declaration statements are type declaration, component definition, IMPLICIT, and
FUNCTION statements.

Note 5. A data-implied DO parameter may be an expression involving intrinsic operations with constants
and variables as operands.

For example,
DATA ((A (I*3) , | = 1+2*J, 5%J/3) ,J =1, 10 ../

the expressions 1[B, 1+2[J, 500/3, 1, and 10 are all expressions allowed in
subscripts and DO parameter expressions in an implied-do list in a DATA
statement. However, expressions such as:

RADIX(I)
N ! where N is not a named constant nor an
! implied-do variable in a containing implied-do list

are not allowed expressions for data-implied-do parameters or subscripts of
DATA statement objects.

Thus, such special expressions are restricted forms of initialization expressions
in the sense that the primaries must not include references to any intrinsic
function. On the other hand, they are extended forms of initialization
expressions in the sense that they permit the use of implied-do variables that
have the scope of the implied-do list—namely, are implied-do variables of the
implied-do or a containing implied-do in the DATA statement.

7.3 Interpretation of Expressions

The interpretation of an expression specifies the value of the expression when
it is evaluated. As with the rules for forming an expression, the rules for
interpreting an expression are described from the bottom up, from the
interpretation of constants, variables, constructors, and functions to the
interpretation of each subexpression to the interpretation of the entire
expression.
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When an expression is interpreted, the value of each constant and variable is
determined. Once these are determined, the operations for which they are
operands are interpreted in precedence order, and a value for the operation is
determined by the interpretation rules for each operator. This repeats
recursively until the entire expression is interpreted and a value is determined.

The interpretation rules for operations are of two sorts: rules for the intrinsic
operations (intrinsic operators with operands of the intrinsic types specified by
Table 7-3) and rules for the defined operations (provided by the programmer
using function subprograms). Except for integer division, the intrinsic
operations are interpreted in the usual mathematical way, subject to
representation limitations imposed by a computer (for example, a finite range
of integers, or finite precision of real numbers). The defined operations are
interpreted by a function program that is specified in an interface block with a
generic specifier of the form OPERATOR (defined-operator).

The interpretation rules for an intrinsic or a defined operation are independent
of the context in which the expression occurs. That is, the type, type
parameters, and interpretation of any expression do not depend on any part of
a larger expression in which it occurs. This statement is often misunderstood. It
does not mean that in all cases the results of individual operations with the
same operands must be the same in all contexts. The reason is that the actual
results of the intrinsic operations (except for logical, character, and possibly
integer operations) are not specified precisely. For example, the expression

A + B in the assignment statement X = A + B where A and B are of type real
may not yield the same results as the same expression A + B in the expression
A+B .EQ. X. The result of A + B is required to be only an approximation of
the mathematical result of adding A to B, and different numerical
approximations are allowed in different contexts. In terms of understanding
the behavior of a program, this behavior is not desirable and rarely happens in
practice. On the other hand, it allows an implementation the freedom to
optimize the evaluation of certain expressions to speed up the program.

7.3.1 Interpretation of the Intrinsic Operations

When the arguments of the intrinsic operators satisfy the requirements of Table
7-3, the operations are intrinsic and are interpreted in the usual mathematical
way as described in Table 7-7, except for integer division. For example, the
binary operator (is interpreted as the mathematical operation multiplication
and the unary operator — is interpreted as negation.
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Table 7-7

Interpretation of the intrinsic operations

Use of operator

Interpretation

*%

Raise x, to the power X,
Divide x; by X,

Multiply x,; by x,

Subtract x,, from x,;

Negate X,

Add x; and x,

Same as X,

Concatenate x; with x,

X, less than x,

X, less than x,

X, less than or equal to x,

X, less than or equal to x,

X, greater than x,

X, greater than x,

X, greater than or equal to x,
X, greater than or equal to x,
X, equal to x,

X, equal to x,

X, not equal to x,

X, not equal to x,

True if x, is false

True if x; and x, are both true
True if x; and/or x, is true
True if either x,; or X, is true, but not both

True if both Xy and X, are true or both are false

Xq Xy
Xq / Xy
Xq * Xy
Xq - Xy
— X,

Xq + Xy
+ X2

Xq // Xy
Xq LT, Xy
Xq < Xy
Xq LE. X,
Xq <= Xy
X, WGTo X,
Xq > Xy
X, «GE. X,
Xq >= Xy
X, «EQ. X,
Xq == Xy
X, «NE. X,
Xq /= Xy
NOT. x,

X, «AND. X,
X, OR. X,
X; NEQV. X,
X, EQVL X,
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7.3.1.1

7.3.1.2

Interpretation of Numeric Intrinsic Operations

Except for exponentiation to an integer power, when an operand for a numeric
intrinsic operation does not have the same type or type parameters as the
result of the operation, the operand is converted to the type, type parameter,
and shape of the result and the operation is then performed. For
exponentiation to an integer power, the operation may be performed without
the conversion of the integer power, say, by developing binary powers of the
first operand and multiplying them together to obtain an efficient computation
of the result.

For integer division, when both operands are of type integer, the result must be
of type integer, but the mathematical quotient is, in general, not an integer. In
this case, the result is specified to be the integer value closest to the quotient
and between zero and the quotient inclusively.

For exponentiation, there are three cases that need to be further described.
When both operands are of type integer, the result must be of type integer;
when x, is negative, the operation x; [TIx, is interpreted as the quotient
1/(x; [0 (=x,) ). Note that it is subject to the rules for integer division. For
example, 4 (1T1(-2) is 0.

The second case occurs when the first operand is a negative value of type
integer or real and the second operand is of type real. In this case, the result is,
in general, a complex number but the returned type is real. A program is
invalid if it causes a reference to the exponentiation operator with such values.
For example, a program that contains the expression (-1.0) [11 0.5 and causes
the expression to be evaluated is an invalid program.

The third case occurs when the second operatnd is of type real or of type
complex. In this case, the result returned is the principal value of the
mathematical power function x)l(z.

Interpretation of Nonnumeric Intrinsic Operations

The intrinsic character operation performs the usual concatenation operation.
For this operation, the operands must be of type character with the same kind
type parameters. The length parameter values may be different. The result is of
type character with the kind type parameter of its operands and a length type
parameter value equal to the sum of the lengths of the operands. The result
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consists of the characters of the first operand in order followed by those of the
second operand in order. For example, 'Fortranb’ // 'h90’ yields the result
"Fortranbb90’.

The intrinsic relational operations perform the usual comparison operations for
character and most numeric operands. For these operations, the operands must
both be of numeric type or both be of character type. The kind type parameter
values of the operands of the numeric types may be different but must be the
same for operands of type character. However, the lengths of the character
operands may be different. Complex operands must only be compared for
equality and inequality; the reason is that complex numbers are not totally
ordered. The result in all cases is of type default logical.

When the operands of an intrinsic relational operation are both numeric, but of
different types or type parameters, each operand is converted to the type and
type parameters of the sum of the two operands. Then, the operands are
compared according to the usual mathematical interpretation of the particular
relational operator.

When the operands are both of type character, the shorter one is padded on the
right with blank padding characters until the operands are of equal length.
Then, the operands are compared one character at a time in order, starting
from the leftmost character of each operand until the corresponding characters
differ. The first operand is less than or greater than the second operand
according to whether the characters in the first position where they differ are
less than or greater than in the processor collating sequence. The operands are
equal if both are of zero length or all corresponding characters are equal,
including the padding characters. Note that the padding character is the
Fortran blank (3.1.1) when the operands are of default character type and is a
processor specified character for nondefault character types. Also, all
comparisons, except equality (.EQ. or ==) and inequality (.NE. or /=), are
processor dependent as they depend on the processor-dependent collating
sequence.

There is no ordering defined for logical values. However, logical values may be
compared for equality and inequality by using the logical equivalence and not
equivalence operators .EQV. and .NEQW. That is, L1 .EQV. L2 is true when L1
and L2 are equal and is false otherwise; L1 .NEQWV. L2 is true if L1 and L2 are
not equal and is false otherwise.
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7.3.1.3

The intrinsic logical operations perform many of the common operations for
logical computation. For these operations, the operands must both be of logical
type but may have different kind type parameters. When the kind type
parameters are the same, the kind parameter value of the result is that value; if
different, the kind parameter value of the result is processor dependent. The
values of the result in all cases are specified inTable 7-8.

Table 7-8  The values of operations involving logical intrinsic operators

NOT.  x, .AND. x, EQV.  x; .NEQV.

Xq X, X, X, Xq .OR. X, X, X,
true true  false true true true false
true false true false true false true
false true  false false true false true
false false  true false false true false

Interpretation of Intrinsic Operations with Array Operands

Each of the intrinsic operations may have array operands; however, for the
binary intrinsic operations, the operands must both be of the same shape, if
both are arrays. When one operand is an array and the other is a scalar, the
operation behaves as if the scalar operand were broadcast to an array of the
result shape and the operation performed. Broadcasting a scalar to an array
means creating an array of elements all equal to the scalar. This broadcast need
not actually occur if the operation can be performed without it.

For both the unary and binary intrinsic operators, the operation is interpreted
element-by-element; that is, the scalar operation is performed on each element
of the operand or operands. For example, if A and B are arrays of the same
shape, the expression A OB is interpreted by taking each element of A and the
corresponding element of B and multiplying them together using the scalar
intrinsic operation [0to determine the corresponding element of the result.
Note that this is not the same as matrix multiplication. As a second example,
the expression —A is interpreted by taking each element of A and negating it to
determine the corresponding element of the result.
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7.3.14

For intrinsic operations that appear in masked assignment statements (7.5.4)
(in WHERE blocks, ELSEWHERE blocks, or in a WHERE statement), the scalar
operation is performed only for those elements selected by the logical mask
expression.

Note that there is no order specified for the interpretation of the scalar
operations. Indeed, a processor is allowed to perform them in any order,
including all at once (possible for vector and array processors). For masked
operations in masked assignment statements, the scalar operations on the
unselected elements may still be performed, provided they have no side
effects; that is, the computation on the unselected elements must not change
any value in the expression or statement, or cause any execution-time error.

Interpretation of Intrinsic Operations with Pointer Operands

The intrinsic operations may have pointers for their operands. In such cases,
each pointer must be associated with a target that is defined, and the value of
the target is used as the operand. The target may be scalar or array-valued; the
rules for interpretation of the operation are those appropriate for the operand
being a scalar or an array, respectively.

Recall that an operand may be a structure component that is the component of
a structure variable that is itself a pointer. In this case, the value used for the
operand is the named component of the target structure associated with the
structure variable. For example, consider the declarations:

TYPE( RATIONAL )
N, D :: INTEGER
END TYPE

TYPE( RATIONAL ), POINTER : PTR
TYPE( RATIONAL ), TARGET = T

and suppose the pointer PTR is associated with T. If PTR % N appears as an
operand, its value is the component N of the target T, namely T % N.

7.3.2 Interpretation of Defined Operations

The interpretation of a defined operation is provided by a function
subprogram with an OPERATOR interface (see Section 12.6.4). When there is
more than one function with the same OPERATOR interface, the function
giving the interpretation of the operation is the one whose dummy arguments
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match the operands in order, types, kind type parameters, and ranks (if the
operands are arrays). For example, for the operation A .PLUS. B, where A and
B are structures of the derived type RATIONAL, the interface

INTERFACE OPERATOR (.PLUS.)

FUNCTION RATIONAL_PLUS (L, R)
USE RATIONAL_MODULE
TYPE (RATIONAL), INTENT (IN) = L, R
TYPE (RATIONAL) : RATIONAL_PLUS
END FUNCTION RATIONAL_PLUS

FUNCTION LOGICAL_PLUS (L, R)

LOGICAL, INTENT (IN) == L, R

LOGICAL o LOGICAL_PLUS
END FUNCTION LOGICAL_PLUS

END INTERFACE

specifies that the function RATIONAL_PLUS provides the interpretation of this
operation.

Rules and restrictions:

1. A defined operation is declared using a function with one or two dummy
arguments. (Note that the function may be an entry in an external or
module function.)

2. The dummy arguments to the function represent the operands of the
operation; if there is only one, the operation is a unary operation, and
otherwise it is a binary operation. For a binary operation, the first
argument is the left operand and the second is the right operand.

3. There must be an interface block for the function with the generic specifier
of the form OPERATOR (defined-operator).

4. The types and kind type parameters of the operands in the expression
must be the same as those of the dummy arguments of the function.

5. The rank of the operands in the expression must match the ranks of the
corresponding dummy arguments of the function.

6. Either one of the dummy arguments must be of a derived type, or both are
of intrinsic type but do not match the types and kind type parameters for
intrinsic operations as specified in Table 7-3.
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The requirement that the shapes of the dummy arguments and operands match
implies that the defined operators are never elemental; that is, if a defined
operation is specified for a scalar operator, it does not apply to array operands
of the same shape as is the case for intrinsic operations. Thus, user-defined
elemental procedures (functions or subroutines) are not allowed. Note also that
the operands of a defined operation need not be in shape conformance as is
required for the intrinsic operations.

As with the intrinsic operations, the type, type parameters, and interpretation
of a defined operation are independent of the context of the larger expression
in which the defined operation appears. The interpretation of the same defined
operation in different contexts is the same; however, the results may be
different because the results of the procedure being invoked may depend on
values that are not operands and that are different for each invocation.

The relational operators ==, /=, >, >=, <, and <= are synonyms for the
operators .EQ., .NE., .GT., .GE., .LT., and .LE., even when they are defined
operators. It is invalid, therefore, to have an interface block for both == and
.EQ., for example, for which the order, types, type parameters, and rank of the
dummy arguments of two functions are the same.

Defined operations are either unary or binary. An existing unary operator (that
is, one that has the same name as an intrinsic operator) cannot be defined as a
binary operator unless it is also a binary operator. Similarly, an existing binary
operator cannot be defined as a unary operator unless it is also a unary
operator. However, a defined operator, .PLUS. say, (that is, one that does not
have a name that is the same as an intrinsic operator) can be defined as both a
unary and binary operator.

7.4 Evaluation of Expressions

284

The form of the expression and the meaning of the operations establish the
interpretation; once established, the compiler evaluates the expression in any
way that provides the same interpretation with one exception; parentheses
specify an order of evaluation that cannot be modified. This applies to both
intrinsic operations and defined operations. For defined operations, it is more
difficult to determine whether an alternative evaluation scheme provides the
same interpretation.

There are essentially two sorts of alternative evaluations that are permitted.
They are:
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® the rearrangement of an expression that yields an equivalent expression;
for example, A + B + C can be evaluated equivalently as A + (B + C) and
would improve the efficiency of the compiled program if B + C were a
subexpression whose value had already been computed.

® the partial evaluation of an expression because the value of the
unevaluated part can be proven not to affect the value of the entire
expression. For example, once one operand of a disjunction (.OR.
operator) is known to be true, the other operand need not be evaluated to
determine the result of the operation. To be specific, the operand
A OB < C need not be evaluated in the expression
A <B .OR. AOB < CifA < Bistrue.

This freedom for the compiler to use alternative equivalent evaluations permits
the compiler to produce code that is more optimal in some sense (for example,
fewer operations, array operations rather than scalar operations, or a reduction
in the use of registers or work space), and thereby produce more efficient
executable code.

7.4.1 Possible Alternative Evaluations

Before describing in more detail the possible evaluation orders, four basic
issues need to be addressed, namely, definition of operands, well-defined
operations, functions (and defined operations) with side effects, and equivalent
interpretations.

Definition status is described in detail in Section 14.4. For the purpose of
evaluation of expressions, it is required that each operand is defined, including
all of its parts, if the operand is an aggregate (an array, a structure, or a string).
If the operand is a subobject (part of an array, structure, or string), only the
selected part is required to be defined. If the operand is a pointer, it must be
associated with a target that is defined. An integer operand must be defined
with an integer value rather than a statement label.

For the numeric intrinsic operations, the operands must have values for which
the operation is well-defined. For example, the divisor for the division
operation must be nonzero, and the result of any of the numeric operations
must be within the exponent range for the result data type; otherwise, the
program is not standard conforming. Other cases include limitations on the
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operands of the power operation [T1 for example, a zero-valued first operand
must not be raised to a nonpositive second operand; and a negative-valued
first operand of type real cannot be raised to a real power.

The third issue is functions with side effects. In Fortran, functions are allowed
to have side effects; that is, they are allowed to modify the state of the program
so that the state is different after the function is invoked than before it is
invoked. This possibility potentially affects the equivalence of two schemes for
evaluating an expression (see below), particularly if the function modifies
objects appearing in other parts of the expression. However, Fortran outlaws
the formation of statements with these kinds of side effects. That is, a function
(or defined operation) within a statement is not permitted to change any entity
in the same statement. Exceptions are those statements that have statements
within them, for example, an IF statement or a WHERE statement. In these
cases, the evaluation of functions in the logical expressions in parentheses after
the IF keyword or WHERE keyword are allowed to affect objects in the
statement following the closing right parenthesis. For example, if F and G
below are functions that change their actual argument I, the statements

F(F @) A=l
WHERE (G (I)) B = I

are valid, even though I is changed when the functions are evaluated.
Examples of invalid statements are;

A@0=F(@
Y =G () + I

because F and G change |, which is used elsewhere in the same statement.

In case the reader is wondering, it is also illegal for there to be two function
references in a statement, if each causes a side effect and the order in which the
functions are invoked yields a different final status, even though nothing in the
statement is changed.

The fourth issue is equivalent interpretation. For the numeric intrinsic
operations, the definition of equivalent interpretation is defined as being
mathematical equivalence of the expression, not computational equivalence.
Mathematical equivalence assumes exact arithmetic (no rounding errors and
infinite exponent range) and thus assumes the rules of commutativity,
associativity, and distributivity as well as other rules that can be used to
determine equivalence (except that the order of operations specified by
parentheses must be honored). Under these assumptions, two evaluations are
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mathematically equivalent if they yield the same values for all possible values
of the operands. A + B + C and A + (B + C) are thus mathematically equivalent
but are not necessarily numerically equivalent because of possible different
rounding errors. On the other hand, | / 2 and 0.5 OI (where | is an integer) is a
mathematical difference because of the special Fortran definition of integer
division.

For example, Table 7-9 gives examples of equivalent evaluations of expressions
where A, B, and C are operands of type real or complex, and X, Y, and Z are of
any numeric type. All of the variables are assumed to be defined and have
values that make all of the operations in this table well-defined.

Table 7-9  Equivalence evaluations for numeric intrinsic

operations
Expression Equivalent evaluations
X+Y Y +X
X*Y Y * X
-X+Y Y-X
X+Y+Z X+ (Y +2)
X-Y+Z X=(Y -2
XOA/lZ XOA2)
X0y -X0z X O -2)
AIBI/C A/ (BOC)
A/5.0 0.20A

Table 7-10 provides examples of invalid alternative evaluations that are not
mathematically equivalent to the original expression. In addition to the
operands of the same names used in Table 7-9, Table 7-10 uses | and J as
operands of type integer. Recall that when both operands of the division
operator are of type integer, a Fortran integer division truncates the result
toward zero to obtain the nearest integer quotient.
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Table 7-10 Nonequivalent evaluations of numeric expressions

Expression Prohibited evaluations
/2 0.501

Xar/d XagrJ)

1/J1A I/ (JOA)

X+Y)+Z X+ (Y +2)

(X OY) - (X 02) X O(Y - 2)

X O(Y = 2) X0OY-X0z

7.4.2 Partial Evaluations

For character, relational, and logical intrinsic operations, the definition of the
equivalence of two evaluations is that, given the same values for their
operands, each evaluation produces the same result. The definition for
equivalence of two evaluations of the same defined operation also requires the
results to be the same; note that this definition is more restrictive than for the
numeric intrinsic operations, because only mathematical equivalence need be
preserved for numeric operations. As described for numeric intrinsic
operations, the compiler may choose any evaluation scheme equivalent to that
provided by the interpretation. Table 7-11 gives some equivalent schemes for
evaluating a few example expressions. For these examples, | and J are of type
integer; L1, L2, and L3 are of type logical; and C1, C2, and C3 are of type
character of the same length. All of the variables are assumed to be defined.

Table 7-11  Equivalent evaluations of other expressions

Expression Equivalent evaluations

| .GT. J (1-J) .GT. 0

L1 .OR. L2 .OR. L3 L1 .OR. (L2 .OR. L3)

L1 .AND. L1 L1

C3=cC1l//C2 C3 = C1(C1, C2, C3 all of the same length)
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These rules for equivalent evaluation schemes allow the compiler to not
evaluate any part of an expression that has no effect on the resulting value of
the expression. Consider the expression X OF(Y), where F is a function and X
has the value 0. The result will be the same regardless of the value of F(Y);
therefore, it need not be evaluated. This shortened evaluation is allowed in all
cases, even if F(Y) has side effects. In this case every data object that F could
affect is considered to be undefined after the expression is evaluated—that is, it
does not have a predictable value.

The execution of an array element, an array section, or a character substring
reference requires, in most cases, the evaluation of the expressions that are the
subscripts, strides, or substring ranges. The type or type parameters of an
expression are not affected by the evaluation of such expressions. It is not
necessary for these expressions to be evaluated, if the array section can be
shown to be zero-sized or the substring can be shown to be of a zero-length by
other means. For example, in the expression A (1:0) + B (expr, :expr,), expry
and expr, need not be evaluated as the conformance rules for intrinsic
operations require that the section of B be zero-sized.

In contrast, and in apparent contradiction to the rule above, the standard states
that the appearance of an array constructor requires the evaluation of all
elements of the constructor. This rule also requires the evaluation of any
implied-DO parameters. It is the authors’ opinion that the general rule above
overrides this special treatment of array constructors.

The type and type parameters, if any, of the constructor are not affected by the
evaluation of any of the expressions within the constructor.

Parentheses within the expression must be honored. This is particularly
important for computations involving numeric values where rounding errors
or range errors may occur or for computations involving functions with side
effects. Of course, if there is no computational difference between two
evaluation schemes where parentheses are provided, the compiler can violate
the parentheses integrity because no one can tell the difference. For example,
the expression (1.0/3.0)(B.0 must be evaluated by performing the division first
because of the explicit parentheses. Evaluating the expression as 1.0 would be
valid if the value obtained by performing the division first and then the
multiplication produced a result that is equal to 1.0 despite rounding errors.
Although this sort of rearrangement might be possible in theory, it is not a
practical option in general, unless all of the operands are constants as in the
above example.
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7.5 Assignment

The most common use of the result of an expression is to give a value to a
variable. This is done with an assignment statement. For example,

RUG = BROWN + 2.34 / TINT
An assignment statement has three parts:

® the variable being assigned a value
® the assignment symbol (= or =>)
® the computation (an expression)

Assignment establishes a value for the variable on the left of the assignment
symbol in an assignment statement. Execution of the assignment statement
causes the expression to be evaluated (by performing the computation
indicated), and then the value of the expression is assigned to the variable. If
the variable has subscripts, section subscripts, or a substring range, the
execution of the assignment statement must behave as if they were evaluated
before any part of the value is assigned.

There are four forms of the assignment statement: intrinsic assignment, defined
assignment, pointer assignment, and masked array assignment. All but the first
are new in Fortran 90 and apply specifically to new entities in Fortran. In
addition, intrinsic assignment has been extended to arrays, pointers, and
structure objects.

The form of intrinsic assignment, defined assignment, and masked array
assignment (R735) is the same, namely:

variable = expression
An assignment statement is a defined assignment if:

1. there is a subroutine subprogram with an assignment interface of the form
ASSIGNMENT (=)

2. the types, kind type parameters, and ranks (if arrays) of the variable and
expression match in order the dummy arguments of the subroutine with
the assignment interface
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An assignment statement is a masked array assignment if it appears in a
WHERE construct or WHERE statement. Otherwise, it is an intrinsic or defined
assignment.

The form of the pointer assignment statement is similar to the assignment
statement except that the assignment operator is => instead of =.

The rules and restrictions for each of these forms of assignment are different
and are described in the subsections below for each form of assignment.

Examples of the four forms of assignment are:

X=X+1 Intrinsic assignment for reals
CHAR (1:4) = "A123" Intrinsic assignment for characters

STUDENT = B_JONES Intrinsic assignment for structures

STRING = "Brown" Defined assignment for varying string structure
WHERE (Z /= 0.0)
A=B/Z Masked array assignment
END WHERE
PTR => X Pointer assignment

7.5.1 Intrinsic Assignment

Intrinsic assignment may be used to assign a value to a nonpointer variable of
any type or to the target associated with a pointer variable. The assignment
statement defines or redefines the value of the variable or the target, as
appropriate. The value is determined by the evaluation of the expression on
the right-hand side of the equal sign.

Rules and restrictions:

1. The types and kind parameters of the variable and expression in an
intrinsic assignment statement must be of the types given in Table 7-12.

2. If the variable is an array, the expression must either be a scalar or an array
of the same shape as the variable. If the variable is a scalar, the expression
must a scalar. The shape of the variable may be specified in specification
statements if it is an explicit-shape array; it may be determined by the
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Table 7-12  Types of the variable and expression in an intrinsic

assignment

Type of the variable Type of the expression

Integer Integer, real, complex

Real Integer, real, complex

Complex Integer, real, complex
Character Character with the same I_(ind
type parameter as the variable

Logical Logical
Derived type Same derived type as the variable

section subscripts in the variable, by an actual argument if it is a assumed-
shape array, or by an ALLOCATE statement or a pointer assignment
statement if it is a deferred-shape array. It must not be an assumed-size
array unless there is a vector subscript, a scalar subscript, or a section
subscript containing an upper bound in the last dimension of the array.
The shape of the expression is determined by the shape of the operands,
the operators in the expression, and the functions referenced in the
expression. A complete description of the shape of an expression appears
in Section 7.2.8.3.

If the variable is a pointer, it must be associated with a target; the
assignment statement assigns the value of the expression to the target of
the pointer. The pointer may be associated with a target that is an array;
the pointer determines the rank of the array, but the extents in each
dimension are that of the target.

. The evaluation of the expression on the right-hand side of the equal sign,

including subscript and section subscript expressions that are part of the
expression and part of the variable, must be performed before any portion
of the assignment is performed. Before the assignment begins, any
necessary type conversions are completed if the variable has a different
numeric type or type parameter from the expression. The conversion is the
same as that performed by the conversion intrinsic functions INT, REAL,
CMPLX, and LOGICAL, as specified in Table 7-13.
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Table 7-13  Conversion performed on an expression before assignment

Type of

the variable Value assigned

Integer INT (expression, KIND (variable) )

Real REAL (expression, KIND (variable) )
Complex CMPLX (expression, KIND (variable) )
Logical LOGICAL (expression, KIND (variable) )

5. An expression may use parts of the variable that appear on the left side of
an assignment statement. (Note that this is not allowed in Fortran 77.) For
example, in evaluating a character string expression on the right-hand side
of an assignment, the values in the variable on the left-hand side may be
used, as in

DATE (2:5) = DATE (1:4)

6. If the variable and expression are of character type, they must have the
same Kkind type parameter value.

7. If the variable and expression are of character type with different lengths,
the assignment occurs as follows: if the length of the variable is less than
that of the expression, the value of the expression is truncated from the
right; if the length of the variable is greater than the expression, the value
of the expression is filled with blanks on the right. The character used as
the blank character for default character type is the blank character
specified in Section 3.1.1 and otherwise is a blank padding character
specified by the processor for nondefault character types.

8. The evaluation of expressions in the variable on the left-hand side, such as
subscript expressions, has no affect on, nor is affected by, the evaluation of
the expression on the right-hand side, which is evaluated completely first.
(As usual, this requirement that the expression on the right be evaluated
first is specifying the semantics of the statement and does not imply that an
implementation must perform the computation in this way if there is an
equivalent order that computes the same result.)

9. When a scalar is assigned to an array, the assignment behaves as if the
scalar is broadcast to an array of the shape of the variable; it is then in
shape conformance with the variable. In the example:

Expressions and Assignment 293

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



294

REAL A (10)
A =10

all ten elements of the array A are assigned the value 1.0.

10. Array assignment is element-by-element but the order is not specified. If A
and B are real arrays of size 10, and the whole array assignment were:

A=B

the first element of B would be assigned to the first element of A, the
second element of B would be assigned to the second element of A, and
this would continue element-by-element for 10 elements. The assignment
of elements, however, may be performed in any order, as long as the effect
is as if all elements were assigned simultaneously.

11. For derived-type intrinsic assignment, the derived types of the variable
and the expression must be the same. Derived-type intrinsic assignment is
performed component-by-component following the above rules, except
when a component is a pointer. For pointer components, pointer
assignment between corresponding components is used.

7.5.2 Defined Assignment

Defined assignment is an assignment operation provided by a subroutine with
an assignment interface ASSIGNMENT (=)—see Section 12.6.5. When the
variable and expression in the assignment statement are of intrinsic types and
do not satisfy the type matching rules in Table 7-12 or are of derived type, a
defined assignment operation will be used, provided the assignment interface
and subroutine are accessible. For example, a defined assignment may apply
when character objects of different kinds are to be assigned, provided a
subroutine with a generic assignment interface is accessible. Assignment thus
may be extended to types other than the intrinsic types or may replace the
usual assignment operation for derived types, if the programmer defines the
rules for this assignment in a subroutine.

Rules and restrictions:

1. An assighment operation is declared using a subroutine with two dummy
arguments. (Note that the subroutine may be an entry in an external or
module subroutine.)
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2. The dummy arguments to the subroutine represent the variable and the
expression, in that order.

3. There must be an interface block for the subroutine with the generic
specifier of the form ASSIGNMENT (=).

4. The types and kind type parameters of the variable and expression in the
assignment statement must be the same as those of the dummy arguments.

5. The rank of the variable and the expression in the assignment must match
the ranks of the corresponding dummy arguments.

6. Either one of the dummy arguments must be of a derived type, or both are
of intrinsic type but do not match the types and kind type parameters for
intrinsic assignment as specified in Table 7-12.

Example:

INTERFACE ASSIGNMENT (=)

SUBROUTINE RATIONAL_TO_REAL (L, R)
USE RATIONAL_MODULE
TYPE (RATIONAL), INTENT (IN) = R
REAL, INTENT(OUT) oL
END SUBROUTINE RATIONAL_TO_REAL

SUBROUTINE REAL_TO_RATIONAL (L, R)
USE RATIONAL_MODULE
REAL, INTENT(IN) o R
TYPE (RATIONAL), INTENT (OUT) :: L
END SUBROUTINE REAL_TO_RATIONAL

END INTERFACE

The above interface block specifies two defined assignments for two
assignment operations in terms of two external subroutines, one for
assignment of objects of type RATIONAL to objects of type real and other for
assignment of objects of type real to objects of type RATIONAL. With this
interface block, the following assignment statements are defined:

REAL R_VALUE
TYPE (RATIONAL) RAT_VALUE

R_VALUE = RATIONAL (1, 2)
RAT_VALUE = 3.7
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The effect of the defined assignment on variables in the program is determined
by the referenced subroutine. The variable being assigned may be a pointer, or
the expression on the right may yield a pointer. How such pointers are used is
determined by the declarations and uses of the corresponding dummy
arguments of the subroutine.

7.5.3 Pointer Assignment

Recall that a pointer is a variable that points to another object. The term
(pointer) association is used for the concept of “pointing to” and the term
target is used for the object associated with a pointer.

A pointer assignment associates a pointer with a target, unless the target is
disassociated or undefined. If the target is disassociated or undefined, the
pointer becomes disassociated or undefined according to the status of the
target. Once a pointer assignment has been executed, the association status of
the pointer remains unchanged, until another pointer assignment or
ALLOCATE, DEALLOCATE, or NULLIFY statement is executed redefining the
pointer.

The form of a pointer assignment statement (R736) is:
pointer-object => target
where a pointer object (R630) has one of the forms:

variable-name
structure-component

and a target (R737) is of one of the forms:

variable
expression

The form of the expression permitted as a target is limited severely—see
item 12 of the rules and restrictions below.

Rules and restrictions:

1. If the pointer object is a variable name, the name must have the POINTER
attribute. If the pointer object is a structure component, the component
must have the POINTER attribute.

2. If the target is a variable, then
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a. it must have the TARGET attribute

b. it must be the component of a structure, the element of an array
variable, or the substring of a character variable that has the TARGET
attribute, or

c. it must have the POINTER attribute

The type, type parameters (kind and length, if character), and rank of the
target must be the same as the pointer object.

If the variable on the right of => has the TARGET attribute, the pointer
object on the left of => becomes associated with this target.

If the variable on the right of => has the POINTER attribute and is
associated, the pointer object on the left of => points to the same data that
the target points to after the pointer assignment statement is executed.

If the variable on the right of => has the POINTER attribute and is
disassociated, the pointer object on the left of => becomes disassociated.

If the variable on the right of => has the POINTER attribute and has an
undefined association status, the association status of the pointer object on
the left of => becomes undefined.

A pointer assignment statement terminates any previous association for
that pointer and creates a new association.

If the pointer object is a deferred-shape array, the pointer assignment
statement establishes the extents for each dimension of the array, unless the
target is a disassociated or undefined pointer. Except for the case of a
disassociated or undefined pointer, the extents are those of the target. For
example, if the following statements have been processed:

INTEGER, TARGET : T (11:20)
INTEGER, POINTER : P1 (1), P2 ()
P1L =>T

P2 => T ()

the extents of P1 are those of T, namely 11 and 20, but those of P2 are 1 and
10, because T (:) has a section subscript list (7.2.8.4).

The target must not be a variable that is an assumed-size array. If it is an
array section of an assumed-size array, the upper bound for the last
dimension must be specified.
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11. If the target is an array section, it must not have a vector subscript.

12. If the target is an expression, it must deliver a pointer result. This implies
that the expression must be a user-defined function reference or defined
operation that returns a pointer (there are no intrinsic operations or
functions that return results with the POINTER attribute).

13. If the target of a pointer may not be referenced or defined, the pointer must
not be referenced or defined.

14. If a structure has a component with the POINTER attribute and the
structure is assigned a value using an intrinsic derived-type assignment,
pointer assignment is used for each component with the POINTER
attribute. Also, defined assignment may cause pointer assignment between
some components of a structure.

Note that, when a pointer appears on the right side of => in a pointer
assignment, the pointer on the left side of => is defined or redefined to be
associated with the target on the right side of the =>; neither the pointer on the
right nor its target are changed in any way.

Examples:

MONTH => DAYS (1:30)
PTR => X (;, 5)
NUMBER => JONES % SOCSEC

An example where a target is another pointer is:

REAL, POINTER :: PTR, P
REAL, TARGET : A
REAL B

A =10

P=>A

PTR => P

B = PTR + 2.0

The previous program segment defines A with the value 1.0, associates P with
A; then PTR is associated with A as well (through P). The value assigned to B
in the regular assignment statement is 3.0, because the reference to PTR in the
expression yields the value of the target A which is the value 1.0. An example
in which the target is an expression is:

INTERFACE
FUNCTION POINTER_FCN (X)
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REAL X
REAL, POINTER :: POINTER_FCN
END FUNCTION
END INTERFACE

REAL, POINTER :: P
REAL A

P => POINTER_FCN (A)

In this example, the function POINTER_FCN takes a real argument and returns
a pointer to a real target. After execution of the pointer assignment statement,
the pointer P points to this real target.

Pointers may become associated using the ALLOCATE statement instead of a
pointer assignment statement. Pointers may become disassociated using the
DEALLOCATE or NULLIFY statements, as well as with the pointer assignment
statement.

A pointer may be used in an expression (see Section 7.3.1.4 for the details).
Briefly, any reference to a pointer in an expression, other than in a pointer
assignment statement, or in certain procedure references, yields the value of
the target associated with the pointer. When a pointer appears as an actual
argument corresponding to a dummy argument that has the pointer attribute,
the reference is to the pointer and not the value. Note that a procedure must
have an explicit interface (12.6.1), if it has a dummy argument with a pointer
attribute.

7.5.4 Masked Array Assignment

Sometimes, it is desirable to assign only certain elements of one array to
another array. To invert the elements of an array element-by-element, for
example, one has to avoid elements that are 0. The masked array assignment is
ideal for such selective assignment, as the following example using a WHERE
construct illustrates:

REAL A(10,10)

WHERE( A /= 0.0 )
RECIP_A =10/ A I Assign only where the
! elements are nonzero
ELSEWHERE
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754.1

RECIP_A = 1.0 ! Use the value 1.0 for
! the zero elements.
END WHERE

The first array assignment statement is executed for only those elements where
the mask A /= 0.0 is true. Next, the second assignment statement (after the
ELSEWHERE statement) is executed for only those elements where the same
mask is false. If the values of RECIP_A where A is 0 are never used, this
example can be simply written using the WHERE statement rather than the
WHERE construct as follows:

WHERE( A /= 0.0 ) RECIP.A = 1.0 / A

A masked array assignment is an intrinsic assignment statement in a WHERE
block, an ELSEWHERE block, or a WHERE statement for which the variable
being assigned is an array. The WHERE statement and WHERE construct
appear to have the characteristics of a control statement or construct such as
the IF statement and IF construct. But there is a major difference; every
assignment statement in a WHERE construct is executed, whereas at most one
block in the IF construct is executed. Similarly, the assignment statement
following a WHERE statement is always executed. For this reason, WHERE
statements and constructs are discussed here under assignment rather than
under control constructs.

In a masked array assignment, the assignment is made to certain elements of
an array based on the value of a logical array expression serving as a mask for
picking out the array elements. The logical array expression acts as an array-
valued condition on the elemental intrinsic operations, functions, and
assignment for each array assignment statement in the WHERE statement or
WHERE construct.

As in an intrinsic array assignment, a pointer to an array may be used as the
variable, and a pointer to a scalar or an array may be used as a primary in the
expression. In case the target of the pointer is an array, the target array is
masked in the same manner as a nonpointer array used in a masked array
assignment.

WHERE Statement
The form of the WHERE statement (R738) is:

WHERE (logical-expression ) array-intrinsic-assignment-statement
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7.5.4.2

The logical expression is evaluated resulting in a logical array, which is treated
as a mask. The mask array must conform with the variable on the right side in
the array intrinsic assignment statement. Each element of the array on the left
side of the array assignment statement is assigned a value from the expression
on the right, if the corresponding element in the mask is true. Where the mask
is false, the array elements are not assigned a value. Any elemental intrinsic
operations or functions within the expression are evaluated only for the
selected elements.

The expression in the array assignment statement may contain nonelemental
function references. Nonelemental function references are references to any
function or operation defined by a subprogram, or any intrinsic function that is
a transformational or an inquiry function. If it does, all elements of the
arguments of such functions and returned results (if arrays) are evaluated in
full. If the result of the nonelemental function is an array and is an operand of
an elemental operation or function, then only the selected elements are used in
evaluating the remainder of the expression.

Example:

WHERE( TEMPERATURES > 90.0 ) HOT_TEMPS = TEMPERATURES
WHERE( TEMPERATURES < 32.0 ) COLD_TEMPS = TEMPERATURES

WHERE Construct
The form of the WHERE construct (R739) is:

WHERE (logical-expression )

[ array-intrinsic-assignment-statement ] ...
[ ELSEWHERE

[ array-intrinsic-assignment-statement ] ... ]
END WHERE

The WHERE block is the set of assignments between the WHERE construct
statement and the ELSEWHERE statement (or END WHERE statement, if the
ELSEWHERE statement is not present). The ELSEWHERE block is the set of
assignment statements between the ELSEWHERE and the END WHERE
statements.

Rules and restrictions:
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The logical expression is evaluated resulting in a logical array, which is
treated as a mask. The mask array must conform with the variables on the
right side in all of the array assignment statements in the construct.

Each assignment in the WHERE block assigns a value to each element of
the array that corresponds with an element of the mask array that is true.

Each assignment in the ELSEWHERE block assigns a value to each element
of the array that corresponds with an element of the mask array that is
false.

The ELSEWHERE block is optional; when it is not present, no assignment
is made to elements corresponding to mask array elements that are false.

. All of the assignment statements are executed in sequence as they appear

in the construct (in both the WHERE and ELSEWHERE blocks).

Except as indicated by the following rule, any elemental intrinsic operation
or function within the expression is evaluated only for the selected
elements. For example:

REAL A (10, 20)

WHEREA > 0.0 )
SQRT_A = SQRT (A)
END WHERE

the square roots are taken only of the elements of A that are positive.

Nonelemental function references, including defined operations, in the
array assignment statements are completely evaluated, even though all
elements of the resulting array may not be used. For example:

REAL A (2, 3), B (3, 10), C (2, 10), D (2, 10)
INTRINSIC MATMUL

WHERED < 0.0 )
C = MATMUL(A, B)
END WHERE

the matrix product A x B is performed, yielding all elements of the
product, and only for those elements of D that are negative are the
assignments to the corresponding elements of C made.
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7.5.4.3

7.6 Summary

8. An elemental function reference is evaluated independently for each
element, and only those elements needed in the array assignment are
referenced. Elemental function references are only those intrinsic functions
classified as elemental functions, such as ABS, INT, and COS.

9. In a WHERE construct, only the WHERE construct statement may be a
branch target statement.

Example:

WHERE( VALUES > 0.0 )
A = VALUES
ELSEWHERE
A = 0.0
END WHERE

Differences hetween the WHERE Construct and Control Constructs

One major difference between the WHERE construct and control constructs has
been described in Section 7.5.4. Another difference is that no transfers out of
WHERE or ELSEWHERE blocks are possible (except by a function reference)
because only intrinsic assignment statements are permitted within these
blocks. Note that the execution of statements in the WHERE block can affect
variables referenced in the ELSEWHERE block (because the statements in both
blocks are executed).

7.6.1 Expression

An expression is formed using operands, operators, and parentheses. When
evaluated, an expression produces a value. An expression has a type, type
parameters when of intrinsic type, and a shape. Operands may be scalars,
arrays, pointers, or structures of derived type. When a pointer is used in an
expression, the value of the target is used.

7.6.2 Scalar Expression

The result of a scalar expression is a scalar value.

X + 1.
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7.6.3 Array Expression

The result of an array expression is an array value.

A (1110 ) = B (1110 ) + C (2:11)

7.6.4 Constant Expression

A constant expression is constructed from values that can be determined at
compile time. These include constants, references to intrinsic functions with
constant arguments, and references to certain other intrinsic functions whose
values can be evaluated at compile time.

10/2+7
SIZE (X) + K

7.6.5 Specification Expression

A specification expression is a scalar expression of type integer that can be
evaluated on entry to a program before any executable statement in the
program unit is executed. Specification expressions are used to specify array
bounds and character length parameter values in specification statements.

7.6.6 Initialization Expressions

Initialization expressions are restricted forms of constant expressions. The
restrictions are essentially that the exponentiation operator is limited to integer
powers, and no intrinsic functions that use or return values of type real,
logical, or complex are allowed. This excludes many of the transformational
intrinsic functions such as SUM, ALL, and SPREAD, and many of the floating
point and logical elemental intrinsic functions such as CONJG, COS, DBLE,
SQRT, LGE, LOGICAL, EXPONENT, and SCALE.

Expressions are limited to initialization expressions in only a few contexts. In
brief, these contexts include the initialization of named constants and variables
in declaration statements, kind type parameter values in all contexts, case
values in CASE statements, and subscript and subrange expressions in
EQUIVALENCE statements.
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7.6.7 Expressions Resulting in Scalar and Array Values

Constants, variables, structures, and functions may be used as operands in
expressions. Each of these forms may be a scalar or an array. If all operands are
scalars, the operations are performed on scalar values. If both operands are
arrays, the operations are performed on all the elements of the arrays named as
operands. If one operand is a scalar and the other is an array in a binary
operation, the scalar is broadcast to an array of the appropriate shape, that is,
the scalar is repeated as many times as there are elements in the array.

Example:
X+ 1. Scalar expression
Y + 1.0 Array expression
W+ Z Array expression

where X is a scalar variable, Y is a one-dimensional array of size 100, and W
and Z are two 10 x 100 arrays.

In the first example, the single value of X is added to 1.0. In the second
example, each of the 100 elements of Y is added to 1.0. The scalar 1.0 is
broadcast 100 times, once for each element of Y. In the third example, the
arrays are “conformable” (both have 1000 elements) and the operation is
performed element-by-element for all elements W and Z.

7.6.8 Assignment

The outcome of an assignment replaces a value for a variable on the left of an
equal sign (the assignment symbol) with the result of evaluating the expression
on the right-hand side of the equal sign. The variable may be a scalar, an array,
a pointer, or a structure.

X=Y*2Z/ (23 - U)

X is assigned a value obtained by evaluating the expression Y 0Z / (2.3 - U).
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7.6.9 Intrinsic Assignment

Intrinsic assignment is an assignment operation (using the equal sign) that is
understood by the Fortran processor; it is built in. Intrinsic assignment applies
to all intrinsic and derived types, provided the types of the variable and
expression in the assignment satisfy the requirements for intrinsic assignment
specified in Table 7-12.

X =X+ 10
L = CHAR (3:4) == C1 (1.2

7.6.10 Defined Assignment

A defined assignment statement is not built into Fortran. The program must
define the assignment in a subroutine subprogram for which an interface block
with an assignment generic specifier is provided.

7.6.11 Masked Array Assignment

The variable on the left of the equal sign and the elemental operations on the
right are controlled by a mask. Elements of an array are assigned values based
on an array of logical values, serving as the mask. The array assignment

statements must be controlled by a WHERE statement or a WHERE construct.

WHERE (I == J)
X = 1.0
ELSEWHERE
X = 0.0
END WHERE
WHERE (I >= 0) X = 3.0

7.6.12 Pointer Assignment

A pointer assignment statement associates a pointer with a target. The target is
either a variable or a function that returns a pointer. The pointer may be a
scalar or an array. If it is an array, it must be of deferred shape and the pointer
assignment statement establishes the extents of the array. In the example

REAL, POINTER : PTR, ARRAY_PTR (;, )
REAL, TARGET : A (10, 100)

PTR => A (7, 6)

Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



\l
1]

ARRAY_PTR => A

after the pointer assignment statements are executed, the pointer PTR points to
the element A (7, 6), and the pointer ARRAY_PTR points to the entire array
and has the shape (10, 100).
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Controlling Execution 8

A program performs its computation by executing the statements in sequence
from beginning to end. Control constructs and statements modify this normal
sequential execution of a program. The modification may select blocks of
statements and constructs for execution or repetition, or may transfer control to
another statement in the program. Repetition occurs until some condition is
met and a branch to some other statement in the program occurs.

As outlined in Chapter 2, the statements and constructs making up a program
are of two sorts—nonexecutable and executable. The nonexecutable
statements “set the stage” or establish the environment under which the
program runs. In particular, they determine the properties and attributes for
data and consist mostly of those statements described in Chapters 4 and 5. The
executable statements and executable constructs, some of which are action
statements, perform computations, assign values, perform input/output
operations, or control the sequence in which the other executable statements
and constructs are executed. This chapter describes the latter group of
executable statements—the control statements and control constructs.

Control constructs and control statements alter the usual sequential execution
order of statements and constructs in a program. This execution order is called
the normal execution sequence. The control constructs are block constructs
and consist of the IF construct, the DO construct, and the CASE construct.
Individual statements that alter the normal execution sequence include the
CYCLE and EXIT statements which are special statements for DO constructs,
branch statements such as arithmetic IF statements, various forms of GO TO
statements, and the statements that cause execution to cease such as the STOP
and PAUSE statements.
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With any of the block constructs, construct names may be used to identify the
constructs and also to identify which DO constructs, particularly in a nest of
DO constructs, are being terminated or cycled when using the EXIT or CYCLE
statements. Construct names are described in the introductory material for
blocks (8.2) and also with each construct and statement that uses them.

8.1 The Execution Sequence

There is an established execution sequence for action statements in a Fortran
program. Normally, a program or subprogram begins with the first executable
statement in that program or subprogram and continues with the next
executable statement in the order in which these statements appear. However,
there are executable constructs and statements that cause statements to be
executed in an order that is different from the order in which they appear in
the program. These are either control constructs or branching statements.

There are two basic ways to affect the execution sequence. One is to use an
executable construct that selects a block of statements and constructs for
execution. The second is to execute a statement that branches to a specific
statement in the program. In almost all cases, the use of constructs will result
in programs that are more readable and maintainable, so constructs are
discussed first, followed by branching statements.

8.2 Blocks and Executable Constructs

310

A control construct consists of one or more blocks of Fortran statements and
constructs and the control logic that explicitly or implicitly encloses these
blocks. Based on a control condition, a block of statements and constructs is
selected for execution. A block (R801) is a sequence of zero or more statements
and constructs, and has the form:

[ execution-part-construct ] ...

A block of statements and constructs is treated as a whole. Either the block as
a whole is executed or it is not executed. Whether or not the block is executed
is determined by expressions in the control logic of the construct. Note that not
every statement or construct in the block need be executed; for example, a
branch statement early in the block may prevent subsequent statements in the
block from being executed. This is still considered a complete execution of the
block.
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An executable construct consists of one or more blocks of statements
surrounded by control statements. The construct usually contains an initial
statement before a block and a terminal statement after the block. There are
constructs that contain more than one block. The construct includes conditions
that determine which block in the construct is executed. Some of the constructs
contain additional statements between blocks that may determine which block
is chosen. The DO construct determines how many times a block will be
executed. An example of an executable construct controlling a block of
statements is:

IF (I <= 1) THEN ! Initial statement of the IF construct

X =12 *| I First statement of the block
Y = COS (X) I Final statement of the block
END IF I Terminal statement of the IF construct

There are three executable constructs that contain blocks:
1. IF construct

2. CASE construct

3. DO construct

There is also a construct called the WHERE construct that controls array
assignment for individual elements (masked array assignment) as opposed to
controlling flow of the program statements. Even though it looks like a control
construct, it really is a construct for unconditional but masked array
assignment. Every statement in the construct is executed independent of the
control conditions; the condition is used to determine how much of each array
assignment in the blocks is executed. This construct is discussed in detail in
Section 7.5.4.

Naming a construct is a new option in Fortran 90; the name, if used, must
appear on the same line as the initial statement of the construct and a matching
name must appear on the terminal statement of the construct.

The IF construct is in Fortran 77. The CASE construct is new in Fortran 90.
Extensions have been made to the Fortran 77 DO loop, which permit more
flexible control of blocks.

Some of the general rules and restrictions that apply to blocks and control of
blocks follow.

Rules and restrictions:
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1. The first statement or construct of a block is executed first. The statements
of the block are executed in order unless there is a control construct or
statement within the block that changes the sequential order.

2. A block, as an integral unit, must be completely contained within a
construct. A block may be empty; that is, it may contain no statements or
constructs at all.

3. A branching or control construct within a block that transfers to a
statement or construct within a block is permitted.

4. Exiting from a block may be done from anywhere within the block.

5. Branching to a statement or construct within a block from outside the block
is prohibited. (Even branching to the first executable statement within a
block from outside the block is prohibited.)

6. References to procedures are permitted within a block.

7. Constructs may have construct names.

IF Construct and IF Statement

An IF construct selects at most one block of statements and constructs within
the construct for execution. It was introduced in Fortran 77. The IF statement
controls the execution of only one statement; formerly it was called the logical
IF statement and was present in Fortran 66. The arithmetic IF statement, the
only IF statement in the original Fortran, is not the same as the IF statement; it
is a branching statement that is designated as obsolescent and is discussed in
Section 8.7.2.

8.3.1 The IF Construct

The IF construct contains one or more executable blocks; at most one block is
executed, and it is possible for no block to be executed when there is no ELSE
statement. The logical expression determining whether a particular block is
executed appears prior to the block except the block following the ELSE
statement. These expressions are evaluated in turn until one of them is true.
The block immediately following the control statement containing the first true
logical expression is executed. If none of the expressions is true, the block
following the ELSE statement, if present, is executed. If there is no ELSE
statement, the IF construct terminates. At most one block is chosen for
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8.3.1.1

execution, after which the IF construct is completed and it terminates. If more
than one logical expression is true, only the block following the first one is
executed.

Form of the IF Construct

The form of the IF construct (R802) is:

[ if-construct-name : ] IF ( scalar-logical-expression ) THEN
block

[ ELSE IF ( scalar-logical-expression ) THEN [ if-construct-name ]
block ] ...

[ ELSE [ if-construct-name ]
block ]

END IF [ if-construct-name ]

Rules and restrictions:

1.

At most one of the blocks in the construct is executed. It is possible that no
block is executed.

ELSE IF statements cannot follow an ELSE statement.
Branching to an ELSE IF or an ELSE statement is prohibited.

Branching to an END IF is allowed from any block within the IF construct.
Branching to an END IF from outside the IF construct is allowed but is
designated as an obsolescent feature.

If a construct name appears on the IF-THEN statement, the same name
must appear on the corresponding END IF statement.

The construct names on the ELSE IF and ELSE statements are optional, but
if present, must be the same name as the one on the IF-THEN statement. If
one such ELSE IF or ELSE statement has a construct name, the others are
not required to have a construct name.

The same construct name must not be used for different named constructs
in the same scoping unit; thus, two IF blocks must not be both named
INNER in the same executable part, for example.
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8.3.1.2 Execution of the IF Construct

The logical expressions are evaluated in order until one is found to be true. The
block following the first true condition is executed, and the execution of the IF
construct terminates. Subsequent true conditions in the construct have no
effect. There may be no logical expressions found to be true in the construct. In
this case, the block following the ELSE statement is executed if there is one;
otherwise, no block in the construct is executed.

Figure 8-1 indicates the execution flow for an IF construct.

Example:

IF (I < J) THEN
X =Y + 50

ELSE IF (I > 100) THEN
X =0.0
Y = -1.0

ELSE
X =-1.0
Y =00

END IF

If | is less than J, the statement X = Y + 5.0 is executed and execution proceeds
following the END IF statement. If | is not less than J and if | is greater than
100, the two statements following the ELSE IF statement are executed and
execution proceeds following the END IF statement. If neither of these
conditions is true, the block after the ELSE statement is executed.

8.3.2 The IF Statement

The IF statement is the logical IF statement of Fortran 77.

8.3.2.1 Form of the IF Statement

The form of the IF statement (R807) is:
IF ( scalar-logical-expression ) action-statement

Example:

IF(S<T)S =00
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Figure 8-1 Execution flow for an IF construct
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8.3.2.2 Execution of the IF Statement

The scalar logical expression is evaluated. If true, the action statement is
executed. If false, the action statement is not executed, and control passes to
the next statement in the program.

Rules and restrictions:

1. The action statement must not be an IF statement or an END statement for
a program, function, or subroutine.

2. If the logical expression contains a function reference, its evaluation may
have side effects that modify the action statement. This is permitted.

A complete list of the action statements can be found in Section 2.6.
Fundamentally, action statements change the definition state of variables or the
condition of the input/output system, or are control statements. Examples of
action statements are the assignment, WRITE, and GO TO statements.
Specification statements such as type declaration statements, FORMAT
statements, and ENTRY statements are not action statements. Note that
constructs are not action statements.

8.4 The CASE Construct

316

The CASE construct is a new feature in Fortran 90. It, like the IF construct,
consists of a number of blocks, of which at most one is selected for execution.
The selection is based on the value of the scalar expression in the SELECT
CASE statement at the beginning of the construct; the value of this expression
is called the case index. The case selected is the one for which the case index
matches a case selector value in a CASE statement. Case selector values must
not overlap. There is an optional default case that, in effect, matches all values
not matched by any other CASE statement in the construct.

8.4.1 Form of the CASE Construct

The form of the CASE construct (R808) is:

[ case-construct-name : ] SELECT CASE (case-expression )
[ CASE ( case-value-range-list ) [ case-construct-name ]
block ] ...
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[ CASE DEFAULT] case-construct-name ]
block ]
END SELECT[ case-construct-name ]

where case expression is a scalar expression. The forms of a case value range
(R814) are:

case-value
case-value :

case-value
case-value : case-value

where each case value is a scalar initialization expression of the same type as
the case expression. Recall that an initialization expression is an expression that
can be evaluated at compile time; that is, a constant expression, essentially. The
types of the case expression and case values are limited to the “discrete”
intrinsic types, namely integer, character, and logical.

The statement containing the keywords SELECT CASE is called the SELECT
CASE statement. The statement beginning with the keyword CASE is called
the CASE statement. The statement beginning with the keywords END
SELECT is called the END SELECT statement. A case value range list enclosed
in parenthesis or the DEFAULT keyword is called a case selector.

Rules and restrictions:

1. If a construct name is present on a SELECT CASE statement, it must also
appear on the END SELECT statement.

2. Any of the case selector statements may or may not have a construct name.
If one does, it must be the same name as the construct name on the
SELECT CASE statement.

3. A CASE statement with the case selector DEFAULT is optional; if it is
present, the general form (R808) of the CASE construct does not require
that such a CASE statement be the last CASE statement.

4. Within a particular CASE construct, the case expression and all case values
must be of the same type. If the character type is used, different character
lengths are allowed. But, the kind type parameter values must be the same
for all of these expressions.
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5. The colon forms of the case values expressing a range may be used for
expressions in the construct of type integer and character (but not logical).
For example, a CASE statement of the form

CASE (BOOK'’DOG’)

would select all character strings that collate between BOOK and DOG
inclusive, using the processor-dependent collating sequence for the default
character type.

6. After expression evaluation, there must be no more than one case selector
that matches the case index. In other words, overlapping case values and
case ranges are prohibited.

An example of the CASE construct is:

FIND_AREA: & ! Compute the area with a formula
! appropriate for the shape of the object
SELECT CASE (OBJECT)
CASE (CIRCLE) FIND_AREA
AREA = Pl * RADIUS ** 2
CASE (SQUARE) FIND_AREA
AREA = SIDE * SIDE
CASE (RECTANGLE) FIND_AREA
AREA = LENGTH * WIDTH
CASE DEFAULT FIND_AREA
END SELECT FIND_AREA

8.4.2 Execution of the CASE Construct

The case index (the scalar expression) in the SELECT CASE statement is
evaluated in anticipation of matching one of the case values preceding the
blocks. The case index must match at most one of the selector values. The block
following the case matched is executed, the CASE construct terminates, and
control passes to the next executable statement or construct following the END
SELECT statement of the construct. If no match occurs and the CASE
DEFAULT statement is present, the block after the CASE DEFAULT statement
is selected. If there is no CASE DEFAULT statement, the CASE construct
terminates, and the next executable statement or construct following the END
SELECT statement of the construct is executed. If the case value is a single
value, a match occurs if the index is equal to the case value (determined by the
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rules used in evaluating the equality or equivalence operator [see Section
7.3.1.2]). If the case value is a range of values, there are three possibilities to
determine a match depending on the form of the range:

Case value range Condition for a match

case-value; < case-index < case-
case-value; : case-value,

value,
case-value : case-value < case-index
. case-value case-value = case-index

Rules and restrictions:

1.
2.

Overlapping case ranges are not allowed.

The execution of the construct concludes with the execution of the block
selected, if there is one. At most one block is executed. There must not be a
case value that would select more than one block.

If there is no match and no default case, the CASE construct terminates.
None of the blocks within the construct is executed.

Branching to the END SELECT statement is allowed only from within the
construct.

Branching to a CASE statement is prohibited; branching to the SELECT
CASE statement is allowed, however.

Figure 8-2 illustrates the execution of a CASE construct.

Example:

INDEX = 2
SELECT CASE (INDEX)
CASE (1)

X =10
CASE (2)

X = 20
CASE DEFAULT

X = 99.0
END SELECT
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Figure 8-2  Execution flow for a CASE construct

The case expression INDEX has the value 2. The block following the case value
of 2 is executed; that is, the statement X = 2.0 is executed, and execution of the
CASE construct terminates.

Example:

COLOR = 'GREEN’
SELECT CASE (COLOR)
CASE ('RED’)

STOP
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CASE ('YELLOW’)

CALL STOP_IF_YOU_CAN_SAFELY
CASE ('GREEN’)

CALL GO_AHEAD
END SELECT

This example uses selectors of type character. The expression COLOR has the
value GREEN, and therefore the procedure GO_AHEAD is executed. When it
returns, the execution of the CASE statement terminates, and the executable
statement after the END SELECT statement executes next.

8.5 The DO Construct

The DO construct contains zero or more statements and constructs that are
repeated under control of other parts of the construct. More specifically, the
DO construct controls the number of times a sequence of statements and
constructs within the range of a loop is executed. There are three steps in the
execution of a DO construct:

1. First, if execution of the DO construct is controlled by a DO variable, the
expressions representing the parameters that determine the number of
times the range is to be executed are evaluated (step 1 of Figure 8-3).

2. Next, a decision is made as to whether the range of the loop is to be
executed (step 2 of Figure 8-3).

3. Finally, if appropriate, the range of the loop is executed (step 3a of Figure
8-3); the DO variable, if present, is updated (step 3b of Figure 8-3); and step
2 is repeated.

In Fortran 77, execution of a DO loop is controlled by a DO variable that is
incremented a certain number of times as prescribed in the initial DO
statement. In Fortran 90, this option remains available, but there are two
additional ways of controlling the loop; one is the DO WHILE and the other is
the simple DO, sometimes called “DO forever”. The execution of the simple
DO construct must be terminated by executing a statement, such as an EXIT
statement, that transfers control out of the DO range.

There are two basic forms of the DO construct—the block DO and the nonblock
DO. Modern programming practice favors the block DO form and therefore the
block DO form is the recommended construct. The nonblock DO form is there
for compatibility with Fortran 77. The block DO contains all of the
functionality of the nonblock DO and vice versa. Indeed, both forms of DO
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Figure 8-3  Execution flow for a DO construct

construct permit the DO WHILE and DO forever forms of loops. The feature
distinguishing the two forms is that the block DO construct is always
terminated by an END DO or CONTINUE statement whereas the nonblock DO
construct either terminates with an action statement or construct or shares a
termination statement with another DO construct.

An example of a block DO construct is:
DO 1 =1, N

SUM = SUM + A ()
END DO
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An example of a nonblock DO construct to perform the same computation is:

DO 10 | = 1, N
10 SUM = SUM + A ())

8.5.1 Form of the Block DO Construct

The block DO construct is a DO construct that terminates with an END DO
statement or a CONTINUE statement that is not shared with another DO
construct. The form of a block DO construct (R817) is:

[ do-construct-name : ] DO label ] [ loop-control ]
[ execution-part-construct ] ...
[ label ] end-do

where the forms of the loop control (R821) are:

[ , ] scalar-variable-name = scalar-numeric-expression , &
scalar-numeric-expression [ , scalar-numeric-expression ]
[, ] WHILE ( scalar-logical-expression )

and the forms of the end-do (R824) are:

END DO[ do-construct-name ]
CONTINUE

The statement beginning with the keyword DO after the optional construct
name is called a DO statement. The statement beginning with the keywords
END DO is called an END DO statement. The statement beginning with the
keyword CONTINUE is called a CONTINUE statement.

Rules and restrictions:

1. The DO variable must be a scalar named variable of type integer, default
real, or double precision real. (This excludes scalar variables that are array
elements, arrays, and components of structures.) The use of a real or
double precision DO variable is obsolescent.

2. Each scalar numeric expression in the loop control must be of type integer,
default real, or double precision real. The use of numeric expressions of
type real or double precision real for the DO loop parameters is
obsolescent.
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3.

If the DO statement of a block DO construct has a construct name, the
corresponding end-do must be an END DO statement that has the same
construct name. If the DO statement of a block DO construct does not have
a construct name, the corresponding end-do must not have a construct
name.

If the DO statement does not contain a label, the corresponding end-do
must be an END DO statement. If the DO statement does contain a label,
the corresponding end-do must be identified with the same label. Note that
a block DO construct can never share its terminal statement with another
DO construct, even if it is a labeled statement. If a DO construct does share
its terminal statement with another DO construct, it is a nonblock DO
construct.

Examples:

SUM + X (I) * 2

FOUND = .FALSE
=0
DO WHILE (.NOT. FOUND .AND | < LIMIT )
IF (KEY == X (I)) THEN
FOUND = .TRUE.
ELSE
l=1+1
END IF
END DO

NO_ITERS = 0
DO
! F and F_PRIME are functions
X1 = X0 - F (X0) / F_PRIME (X0)
IF (ABS(X1-X0) < SPACING (X0) .OR. &
NO_ITERS > MAX_ITERS ) EXIT
X0 = X1
NO_ITERS = NO_ITERS + 1
END DO

INNER_PROD = 0.0
DO 10 | = 1, 10
INNER_PROD = INNER_PRD + X () * Y (I)
10 CONTINUE
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LOOP: DO | = 1, N
YO =A*X O +Y(®
END DO LOOP

Although a DO construct can have both a label and a construct name, use of
both is not in the spirit of modern programming practice where the use of
labels is minimized.

8.5.2 Form of the Nonblock DO Construct

The nonblock DO construct is a DO construct that either shares a terminal
statement with another DO construct, or the terminal statement is a construct
or an action statement. The nonblock DO construct always uses a label to
specify the terminal statement of the construct. The two forms for a nonblock
DO construct (R826) are:

action-terminated-do-construct
outer-shared-do-construct

where the form of an action terminated DO construct (R827) is:

[ do-construct-name : ] DO label [ loop-control ]
[ execution-part-construct ] ...
label action-statement

and the form of an outer shared DO construct (R830) is:

[ do-construct-name : ] DO label [ loop-control ]
[ execution-part-construct ] ...
label shared-termination-do-construct

where the forms of a shared termination DO construct (R831) are:

outer-shared-do-construct
inner-shared-do-construct

An inner shared DO construct (R832) is:

[ do-construct-name : ] DO label [ loop-control ]
[ execution-part-construct ] ...
label action-statement

The action statement terminating an action terminated DO construct is called a
DO terminated action statement. The action statement terminating an inner
shared DO construct is called a DO terminated shared statement. The DO
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terminated action statement, DO terminated shared statement, or shared
terminated DO construct at the end of a nonblock DO construct is called the
DO termination or the terminal statement of that construct.

Rules and restrictions:

1. A DO terminated action statement must not be a CONTINUE statement, a
GO TO statement, a RETURN statement, a STOP statement, an EXIT
statement, a CYCLE statement, an END statement for a program or
subprogram, an arithmetic IF statement, or an assigned GO TO statement.

2. The DO terminated action statement must be identified with a label and
the corresponding DO statement must refer to the same label.

3. A DO terminated shared statement must not be a GO TO statement, a
RETURN statement, a STOP statement, an EXIT statement, a CYCLE
statement, an END statement for a program or subprogram, an arithmetic
IF statement, or an assigned GO TO statement.

4. The DO terminated shared statement must be identified with a label and
all DO statements of the shared terminated DO construct must refer to the

same label.

Examples:

10

DO 10 J =
10

FOUND =
I =0

HILBERT (

1.0 / REAL (I + J)

.FALSE.

DO 10 WHILE (.NOT. FOUND .AND | < LIMIT)

I=1+1

10

DO 20 | =
DO 20 J
T=A
CONTINUE

1,
(

20
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8.5.3 Range of a DO Construct

The range of a DO construct consists of all statements and constructs following
the DO statement, bounded by and including the terminal statement. The DO
range may contain constructs, such as an IF construct, a CASE construct, or
another DO construct, but the inner construct or constructs must be entirely
enclosed within the nearest outer construct. If the range of a DO construct
contains another DO construct, the DO constructs are said to be nested.

Although a nest of DO constructs sharing a terminal statement is obsolescent
and is earmarked for removal in the next revision of the standard, it is still
permitted. A branch to a statement within a DO construct range from outside
the DO construct is prohibited.

8.5.4 Active and Inactive DO Constructs

A DO construct is either active or inactive. A DO construct becomes active
when the DO statement is executed. A DO construct becomes inactive when
any one of the following situations occurs:

1. the iteration count is zero at the time it is tested
2. the WHILE condition is false at the time it is tested

3. an EXIT statement is executed that causes an exit from the DO construct or
any DO construct containing the DO construct

4. a CYCLE statement is executed that causes cycling of any DO construct
containing the DO construct

5. there is a transfer of control out of the DO construct
6. a RETURN statement in the DO construct is executed

7. the program terminates for any reason

8.5.5 Execution of DO Constructs

There are essentially three forms of DO constructs, each with their own rules
for execution. These forms are: a DO construct with an iteration count, a DO
WHILE construct, and a simple DO construct. Each form of the DO construct
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8.55.1

may contain executable statements that alter the sequential execution of the
DO range (8.5.6); in addition, some render the DO construct inactive as
described in Section 8.5.4.

DO Construct with an Iteration Count

In this case, an iteration count controls the number of times the range of the
loop is executed.

The form of a DO statement (R818) using an iteration count is:

DO[ label ][, 1 &
do-variable = expression; , expression, [ , expressionz ]

The DO variable and the expressions may be of any arithmetic type, except
complex, but the use of any type except integer is considered obsolescent.
Examples of the DO statement are:

DO 10 1 = 1, N
DO, J -N, N
DO K N, 1, -1

The Iteration Count. An iteration count is established for counting the number
of times the program executes the range of the DO construct. This is done by
evaluating the expressions expressiony, expression,, and expressionsz, and
converting these values to the type of the DO variable. Let m;, m,, and m, be
the values obtained. The value of m; must not be zero. If expressions is not
present, m, is given the value 1. Thus:

m, is the initial value of the DO variable
m,, is the terminal value the DO variable may assume
m, is an optional parameter, specifying the DO variable increment

The iteration count is calculated from the formula:
MAX (INT ((m, - m; + mg) / my), 0)
Note that the iteration count is 0 if:
m;, >m, and m;>0

or

m, <m, and m3<0

1

Controlling Execution of the Range of the DO Construct. The steps that
control the execution of the range of the DO construct are:
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1. The DO variable is set to m,, the initial parameter (step 1 of Figure 8-3).

2. The iteration count is tested (step 2 of Figure 8-3). If it is 0, the DO
construct terminates.

3. If the iteration count is not 0, the range of the DO construct is executed
(step 3a of Figure 8-3). The iteration count is decremented by 1, and the DO
variable is incremented by m, (step 3b of Figure 8-3). Steps 2 and 3 are
repeated until the iteration count is 0.

After termination, the DO variable retains its last value, the one that it had
when the iteration count was tested and found to be 0.

The DO variable must not be redefined or become undefined during the
execution of the range of the DO construct. Note that changing the variables
used in the expressions for the loop parameters during the execution of the DO
construct does not change the iteration count; it is fixed each time the DO
construct is entered.

Example:

= 10

UM = 0.0

0O21=1 N

SUM = SUM + X (I)
N=NG+1

2 CONTINUE

N
S
D

The loop is executed 10 times; after execution | = 11 and N = 20.

Example:
X = 20.
DO 411 =1, 2
DO 40J =15
X=X+10
40 CONTINUE
41 CONTINUE

The inner loop is executed 10 times. After completion of the outer DO
construct, J =6, | = 3, X = 30.

If the second DO statement had been

DO 40 J =51
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8.5.5.2

8.5.5.3

the inner DO construct would not have executed at all; X would remain equal
to 20; J would equal 5, its initial value; and | would be equal to 3. Note that
labels in DO constructs can be used in both free and fixed source forms.

The DO WHILE Construct

The DO WHILE form of the DO construct provides the ability to repeat the DO
range while a specified condition remains true.

The form of the DO WHILE statement is:
DOJ label 1 [, ] WHILE ( scalar-logical-expression )
Examples of the DO WHILE statement are:

DO WHILE( K >= 4 )
DO 20 WHILE( .NOT. FOUND )
DO, WHILE( A(l) /= 0 )

The DO range is executed repeatedly as follows. Prior to each execution of the
DO range, the logical expression is evaluated. If it is true, the range is
executed; if it is false, the DO WHILE construct terminates.

SUM = 0.0

=0

DO WHILE (I < 5)
l=1+1
SUM = SUM + |

END DO

The loop would execute 5 times, after which SUM =15.0 and | = 5.

The Simple DO Construct

A DO construct without any loop control provides the ability to repeat
statements in the DO range until the DO construct is terminated explicitly by
some statement within the range. When the end of the DO range is reached,
the first executable statement of the DO range is executed next.

The form of the simple DO statement is:

DO [ label ]
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Example:

DO
READ * DATA
IF (DATA < 0) STOP
CALL PROCESS (DATA)
END DO

The DO range executes repeatedly until a negative value of DATA is read, at
which time the DO construct (and the program, in this case) terminates. The
previous example, rewritten using a label, is:

DO 100
READ * DATA
IF (DATA < 0) STOP
CALL PROCESS (DATA)
100 CONTINUE

8.5.6 Altering the Execution Sequence within the Range of a DO Construct

8.5.6.1

There are two special statements that may appear in the range of any DO
construct that alter the execution sequence in a special way. One is the EXIT
statement; the other is the CYCLE statement. Other statements, such as branch
statements, RETURN statements, and STOP statements also alter the execution
sequence but are not restricted to DO constructs as are the EXIT and CYCLE
statements.

EXIT Statement

The EXIT statement immediately causes termination of the DO construct. No
further action statements within the range of the DO construct are executed. It
may appear in either the block or nonblock form of the DO construct, except
that it must not be the DO termination action statement or DO termination
shared statement of the nonblock form.

The form of the EXIT statement (R835) is:
EXIT [ do-construct-name ]
Rules and restrictions:

1. The EXIT statement must be within a DO construct.
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8.5.6.2

2. If the EXIT statement has a construct name, it must be within the DO
construct with the same name; when it is executed, the named DO
construct is terminated as well as any DO constructs containing the EXIT
statement and contained within the named DO construct.

3. If the EXIT statement does not have a construct name, the innermost DO
construct in which the EXIT statement appears is terminated.

Example:

LOOP_8 : DO
IF (TEMP == INDEX) EXIT LOOP_8
END DO LOOP_8

The DO construct has a construct name, LOOP_8; the DO range is executed
repeatedly until the condition in the IF statement is met, when the DO
construct terminates.

CYCLE Statement

In contrast to the EXIT statement, which terminates execution of the DO
construct entirely, the CYCLE statement interrupts the execution of the DO
range and begins a new cycle of the DO construct, with appropriate
adjustments made to the iteration count and DO variable, if present. It may
appear in either the block or nonblock form of the DO construct, except it must
not be the DO termination action statement or DO termination shared
statement of the nonblock form. When the CYCLE statement is in the nonblock
form, the DO termination action statement or DO termination shared statement
is not executed.

The form of the CYCLE statement (R834) is:
CYCLE[ do-construct-name ]
Rules and restrictions:

1. The CYCLE statement must be within a DO construct.
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8.6 Branching

2. If the CYCLE statement has a construct name, it must be within the DO
construct with the same name; when it is executed, the execution of the
named DO construct is interrupted, and any DO construct containing the
CYCLE statement and contained within the named DO construct is
terminated.

3. If the CYCLE statement does not have a construct name, the innermost DO
construct in which the CYCLE statement appears is interrupted. The
CYCLE statement may be used with any form of the DO statement and
causes the next iteration of the DO range to begin, if permitted by the
condition controlling the loop.

4. Upon interruption of the DO construct, if there is a DO variable, it is
updated and the iteration count is decremented by 1. Then, in all cases, the
processing of the next iteration begins.

Example:
DO
iN.DI.EX = ...
I (lINDEX < 0) EXIT
IF (INDEX == 0) CYCLE
END DO

In the above example, the loop is executed as long as INDEX is nonnegative. If
INDEX is negative, the loop is terminated. If INDEX is 0, the latter part of the
loop is skipped.

Branching is a transfer of control from the current statement to another
statement or construct in the program unit. A branch alters the execution
sequence. This means that the statement or construct immediately following
the branch is usually not executed. Instead, some other statement or construct
is executed, and the execution sequence proceeds from that point. The terms
branch statement and branch target statement are used to distinguish between
the transfer statement and the statement to which the transfer is made.
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An example of branching is provided by the GO TO statement. It is used to
transfer to a statement in the execution sequence that is usually not the next
statement in the program, although this is not prohibited.

The statements that may be branch target statements are those classified as
action statements plus the IF-THEN statement, SELECT CASE statement, a DO
statement, a WHERE statement, and a few additional statements in limited
situations. However, it is not permitted to branch to a statement within a block
from outside the block. The additional statements that may be branch targets in
limited contexts are:

1. an END SELECT statement, provided the branch is taken from within the
CASE construct

2. an END DO statement provided the branch is taken from within the DO
construct

3. an END IF statement provided the branch is taken from within the IF
construct; also from outside the IF construct, but this use is designated as
obsolescent

4. an END DO statement, a DO termination action statement, or a DO
termination shared statement, provided the branch is taken from within
the DO construct, but this use is also designated as obsolescent

8.6.1 Use of Labels in Branching

A statement label is a means of identifying the branch target statement. Any
statement in a Fortran program may have a label. However, if a branch
statement refers to a statement label, some statement in the program unit must
have that label, and the statement label must be on an allowed branch target
statement (8.6).

As described in Section 3.2.5, a label is a string of from one to five decimal
digits; leading zeros are not significant. Note that labels can be used in both
free and fixed source forms.

8.6.2 The GO TO Statement

The GO TO statement is an unconditional branching statement altering the
execution sequence.
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8.6.2.1 Form of the GO TO Statement
The form of the GO TO statement (R836) is:
GO TO label
Rules and restrictions:

1. The label must be a branch target statement in the same scoping unit as the
GO TO statement (that is, in the same program unit, excluding labels on
statements in internal procedures, derived-type definitions, and interface
blocks).

8.6.2.2 Execution of the GO TO Statement

When the GO TO statement is executed, the next statement that is executed is
the branch target statement identified with the label specified. Execution
proceeds from that point. For example:

GO TO 200 I This is an unconditional branch and
! always goes to 200.

X =1.0 I Because this statement is not labeled
I and follows a GO TO statement, it is
I not reachable.

GO TO 10
GO TO 010 1 10 and 010 are the same label.

8.6.3 The Computed GO TO Statement

The computed GO TO statement transfers to one of a set of the branch target
statements based on the value of an integer expression, selecting the branch
target from a list of labels. The CASE construct provides a similar functionality
in a more structured form.

8.6.3.1 Form of the Computed GO TO Statement
The form of the computed GO TO statement (R837) is:

GO TO (labellist ) [, ] scalar-integer-expression
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Examples:

GO TO ( 10, 20 ), SWITCH

GO TO ( 100, 200, 3, 33 ), 2*I-J
Rules and restrictions:

1. If there are n labels in the list and the expression has one of the values
from 1 to n, the value identifies a statement label in the list: the first,
second, ..., or nth label. A branch to the statement with that label is

executed.

2. If the value of the expression is less than 1 or greater than n, no branching
occurs and execution continues with the next executable statement or
construct following the computed GO TO statement.

3. Each label in the list must be the label of a branch target statement in the
same scoping unit as the computed GO TO statement.

4. A label may appear more than once in the list of target labels.

Example:
SWITKH = . . .
GO TO (10, 11, 10) SWITCH
Y =Z
10 X =Y + 2.
11 X =Y

If SWITCH has the value 1 or 3, the assignment statement labeled 10 is
executed; if it has the value 2, the assignment statement labeled 11 is executed.
If it has a value less than 1 or greater than 3, the assignment statement Y = Z is
executed, because it is the next statement after the computed GO TO statement,
and the statement with label 10 is executed next.

8.6.4 The CONTINUE Statement
The form of the CONTINUE statement (R841) is:

CONTINUE

336 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



8

Normally, the statement has a label and is used for DO termination; however, it
may serve as some other place holder in the program or as a branch target
statement. It may appear without a label. The statement by itself does nothing
and has no effect on the execution sequence or on program results. Examples
are:

100 CONTINUE
CONTINUE

8.6.5 The STOP Statement

This statement terminates the program whenever and wherever it is executed.
The forms of the STOP statement (R842) are:

STOP [ scalar-character-constant ]
STOP digit [ digit [ digit [ digit [ digit 1] ] ]

Rules and restrictions:

1. The character constant or list of digits identifying the STOP statement is
optional and is called a stop code.

2. The character constant must be of default character type.

3. When the STOP code is a string of digits, leading zeros are not significant;
10 and 010 are the same STOP code.

The stop code is accessible following program termination. This might mean
that the processor prints this code to identify where the program stopped if
there are multiple STOP statements. Using a stop code is dependent on the
local termination procedures used by the processor. Examples are:

STOP
STOP ’Error #823'
STOP 20

8.7 Obsolescent Control Statements

Three Fortran 77 control facilities have been declared obsolescent and may be
removed from the next revision of the standard. These are, however, part of the
current standard, but their use is discouraged because of their potential
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removal after the next revision of the standard. These statements are the
ASSIGN and the assigned GO TO statements, the arithmetic IF statement, and
the PAUSE statement.

8.7.1 The ASSIGN and Assigned GO TO Statements

8.7.1.1

The ASSIGN statement gives an integer variable a statement label. During
program execution, the variable may be assigned labels of branch target
statements, providing a dynamic branching capability in a program. The
unsatisfactory property of these statements is that the integer variable name
may be used to hold both a label and an ordinary integer value, leading to
errors that are hard to discover and programs that are difficult to read.

A frequent use of the ASSIGN statement and assigned GO TO statement is to
simulate internal procedures, using the ASSIGN statement to record the return
point after a reusable block of code has completed. The new internal procedure
mechanism of Fortran 90 provides this capability. A second use of these
constructs is to simulate dynamic format specifications by assigning labels
corresponding to different format statements to an integer variable and using
this variable in input/output statements as a format specifier. This use can be
accomplished in a clearer way by using character strings as format
specifications. Thus, it is no longer necessary to use the ASSIGN statement and
assigned GO TO statement.

Execution of an ASSIGN statement assigns a label to an integer variable.
Subsequently, this value may be used by an assigned GO TO statement or by
an input/output statement to reference a FORMAT statement.

Execution of the assigned GO TO statement causes a transfer of control to the
branch target statement with the label that had previously been assigned to the
integer variable.

Form of the ASSIGN and Assigned GO TO Statements
The form of the ASSIGN statement (R838) is:

ASSIGN label TO scalar-integer-variable
Rules and restrictions:

1. The variable must be a named variable of default integer type. That is, it
must not be an array element, an integer component of a structure, or an
object of nondefault integer type.
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2. The label must be the label of a branch target statement or the label of a
FORMAT statement in the same scoping unit as the ASSIGN statement.

3. When defined with an integer value, the integer variable may not be used
as a label.

4. When assigned a label, the integer variable must not be used as anything
other than a label.

5. When the integer variable is used in an assigned GO TO statement, it must
be assigned a label.

6. The variable may be redefined during program execution with either
another label or an integer value.

Example:

ASSIGN 100 TO K
The form of the assigned GO TO statement (R839) is:

GO TO scalar-integer-variable [ [ , ] ( label-list ) ]
Rules and restrictions:

1. The variable must be a named variable of default integer type. That is, it
must not be an array element, an integer component of a structure, or an
object of nondefault integer type.

2. The variable must be assigned the label of a branch target statement in the
same scoping unit as the assigned GO TO statement.

3. If the label list appears, the variable must have been assigned a label value
that is in the list.

Example:

GO TO K
GO TO K (10, 20, 100)

8.7.2 Arithmetic IF Statement

The arithmetic IF statement is a three-way branching statement based on an
arithmetic expression.
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The form of the arithmetic IF statement (R840) is:
IF ( scalar-numeric-expression ) label , label , label
Rules and restrictions:

1. The same label may appear more than once in the same arithmetic IF
statement.

2. The numeric expression must not be of type complex.

3. Each statement label must be the label of a branch target statement in the
same scoping unit as the arithmetic IF statement itself.

The execution begins with the evaluation of the expression. If the expression is
negative, the branch is to the first label; if zero, to the second label; and if
positive, to the third label.

8.7.3 PAUSE Statement

The execution of the PAUSE statement suspends the execution of a program
until the operator or system starts the execution again. This is now redundant,
because a WRITE statement may be used to send a message to any device
(such as the operator console or terminal) and a READ statement may be used
to wait for and receive a message from the same device.

The forms of the PAUSE statement (R844) are:

PAUSE[ scalar-character-constant ]
PAUSE digit [ digit [ digit [ digit [ digit 117 ]

The character constant or list of digits identifying the PAUSE statement is
called the pause code and follows the same rules as those for the stop code
(8.6.5). The pause code, as with the stop code, is accessible following program
suspension and may be printed as a code to identify where the program has
been suspended. Using a pause code is dependent on the local termination
procedures used by the processor. Examples are:

PAUSE
PAUSE 'Wait #823'
PAUSE 100
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8.8 Summary

8.8.1 IF Construct

If the logical expression in the IF-THEN statement is true, the block following
that statement is executed and the construct completes. If the logical expression
is not true, the block is not executed. If there is an ELSE IF statement, its logical
expression is evaluated and, if it is true, the block following it is executed, and
the construct terminates. There may be several ELSE IF statements with a block
following each one of them. At most one block in the construct is executed. An
ELSE statement is optional, and the optional block following it is executed if
none of the logical expressions in the IF-THEN or ELSE IF statements is true.
The construct may be named with a construct name. Recall that the blocks may
be empty; that is, they may contain no executable statements or constructs.

SUM = S
SUMXY : IF (X > Y) THEN
SUM = SUM + X
ELSE
SUM = SUM + Y
END IF SUMXY

8.8.2 |IF Statement

An action statement is executed if the logical expression in the IF statement is
true. If it is not true, the next statement in the execution sequence is executed
and the action statement is not executed.

IF(==J X=X+10

8.8.3 CASE Construct

The case index is evaluated and compared with all case selectors. If there is a
match, the block following the matched case is executed. There may be a
default case that is executed when no match occurs. At most one block in the
construct is executed. The construct may be named with a construct name. The
case index is limited to an expression of type integer, character, or logical.
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8.8.4 DO Construct

The DO construct is used to repeat zero or more times a sequence of statements
and constructs that constitute its range. The DO construct includes the Fortran
77 DO loop as well as the new iterated DO construct, the DO WHILE, and the
simple DO loop. The repetition of the DO construct range may be controlled by
an iteration count or a logical condition. A DO construct may contain EXIT and
CYCLE statements. The construct may be named with a construct name.

8.8.5 Simple DO Loop

The range of the loop is repeated until it is terminated explicitly by a statement
within the range.

DO
S (K)
K=...
IF (K < LIMIT) THEN

K=0
EXIT
END IF

END DO

8.8.6 DO Loop with Iteration Count

The range of the DO construct is executed as many times as the iteration count.
The iteration count is determined initially from the expressions in the DO
statement and decremented until the count is zero. The DO construct may
contain EXIT and CYCLE statements.
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(@)
(@)
0 %

R * X(I))
8.8.7 DO WHILE Loop

The range of the DO WHILE construct is executed while the value of a logical
expression in the DO statement is true.

DO WHILE (J < K)

X (J) = COS (Y (3) *J)
J=J+2
END DO

8.8.8 GO TO Statement

The statement branches unconditionally to the statement with the label
referenced.

GO TO 100
8.8.9 Computed GO TO Statement

A transfer to a branch target statement takes place based on the value of a
scalar integer expression.

GO TO (1, 2, 99) SWITCH

If the scalar integer expression has the value i, there is a transfer to the branch
target statement with the ith label in the list.

8.8.10 STOP Statement

A program terminates unconditionally when a STOP statement is executed. A
stop code is optional.

STOP

Controlling Execution

343
Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



1]l
0]

8.8.11 ASSIGN and Assigned GO TO Statements

An integer variable may be given a label by execution of an ASSIGN statement.
Subsequently, the variable may be used in an assigned GO TO statement to
designate a branch target. The label of a FORMAT statement also may be
assigned and used in an input/output statement to designate the format to be
used.

ASSIGN 100 TO FORMAT_SPEC
WRITE (6, FORMAT_SPEC) X

ASSIGN 98 TO ERROR_HANDLER

GO TO ERROR_HANDLER
100 FORMAT(3A5)

8.8.12 Arithmetic IF Statement

The arithmetic IF statement provides a three-way branch based on whether the
value of an expression is negative, zero, or positive.

IF (IOSTAT_RESULT) 10, 20, 30

The branch is to the first label if it is negative, the second label if it is zero, and
the third label if it is positive.
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Many programs need data to begin a calculation. After the calculation is
completed, often the results need to be printed, displayed graphically, or saved
for later use. During execution of a program, sometimes there is a large
amount of data produced by one part of the program that needs to be saved for
use by another part of the program, and the amount of data is too large to store
in variables, such as arrays. Also, the editing capabilities of the data transfer
statements for internal files are so powerful that they can be used for
processing character strings. Each of these tasks is accomplished using Fortran
input/output statements described in this chapter.

The input/output statements are:

READ
PRINT
WRITE
OPEN
CLOSE
INQUIRE
BACKSPACE
ENDFILE
REWIND

The READ statement is a data transfer input statement and provides a means
for transferring data from an external media to internal storage or from an
internal file to internal storage through a process called reading. The WRITE
and PRINT statements are both data transfer output statements and provide a
means for transferring data from internal storage to an external media or from
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internal storage to an internal file. This process is called writing. The OPEN
and CLOSE statements are both file connection statements. The INQUIRE
statement is a file inquiry statement. The BACKSPACE, ENDFILE, and
REWIND statements are all file positioning statements.

The first part of this chapter discusses terms and concepts needed to gain a
thorough understanding of all of the input/output facilities. These include
internal and external files, formatted and unformatted records, sequential and
direct access methods for files, advancing and nonadvancing input/output for
the sequential formatted access method, file and record positions, units, and
file connection properties. Following the concepts are descriptions of the
READ, WRITE, and PRINT data transfer statements and the effect of these
statements when they are executed. A model for the execution of data transfer
statements and a description of the possible error and other conditions created
during the execution of data transfer statements are provided next. Following
the model are the descriptions of the OPEN, CLOSE, and INQUIRE statements
that establish respectively the connection properties between units and files,
that disconnect units and files, and that permit inquiry about the state of the
connection between a unit and file. Lastly, file position statements are
specified, which include the BACKSPACE and REWIND statements, followed
by the description of the ENDFILE statement that creates end-of-file records.

The reader should keep in mind that the processor is not required to perform
any input/output operation that cannot be supported by the processor. This
and other restrictions are described in Section 9.9. For example, the processor is
not required to skip a page when the output unit is connected to a nonprinting
device, because skipping a page has no meaning for a file connected to a card
punch. This statement is the “way out” for implementations in the
input/output area and is sometimes referred to as the “cop-out clause”.

The chapter concludes with a summary of the terms, concepts, and statements
used for input and output processing and some examples.

9.1 Records, Files, Access Methods, and Units

346

Collections of data are stored in files. The data in a file is organized into
records. Fortran treats a record, for example, as a line on a computer terminal,
a line on a printout, or a logical record on a magnetic tape or disk file.
However, the general properties of files and records do not depend on how the
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properties are acquired or how the files and records are stored. This chapter
discusses the properties of records and files, and the various kinds of data
transfer.

A file is a sequence of records that can be represented schematically with each
box representing a record as shown in Figure 9-1. Before discussing further the
general properties of files, we will discuss the properties of records.

Figure 9-1 Schematic representations of records in a file

9.1.1 Records

There are two kinds of records: data and end-of-file. A data record is a
sequence of values; thus, it can be represented schematically as a collection of
small boxes, each containing a value, as shown in Figure 9-2.

Figure 9-2 Schematic representations of the values in a record
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The values in a data record may be represented in one of two ways: formatted
or unformatted. Formatted data consists of characters that are representable by
the processor and are viewable on some medium. For example, a record may
contain the four character values “6”, “,”, “1”, and *“1” that are intended to
represent the two numbers, 6 and 11. In this case, the record might be
represented schematically as shown in Figure 9-3. Unformatted data consists
of values represented usually just as they are stored in computer memory. For
example, if integers are stored using a binary representation, an unformatted
record, consisting of two integer values, 6 and 11, might look like Figure 9-4.

Figure 9-3 A formatted record with four character values

00000110 00001011

Figure 9-4 An unformatted record with two integer values

The values in a data record are either all formatted or all unformatted. A
formatted record is one that contains only formatted data. It may be created by
a person typing at a terminal or by a Fortran program that converts values
stored internally into character strings that form readable representations of
those values. When formatted data is read into the computer, the characters
must be converted to the computer’s internal representation of values, which is
often a binary representation. Even character values may be converted from
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one character representation in the record to another internal representation.
The length of a formatted record is the number of characters in it; the length
may be zero.

An unformatted record is one that contains only unformatted data.
Unformatted records usually are created by running a Fortran program,
although with the knowledge of how to form the bit patterns correctly, they
could be created by other means. Unformatted data often requires less space on
an external device. Also, it is usually faster to read and write because no
conversion is required. However, it is not as suitable for reading by humans
and usually it is not suitable for transferring data from one computer to
another because the internal representation of values is machine dependent.
The length of an unformatted data record depends on the number of values in
it, but is measured in some processor-dependent units; it may be zero. The
length of an unformatted record that will be produced by a particular output
list may be determined by the INQUIRE statement (9.7.1).

In general, a formatted record is read and written by a formatted data transfer
input/output statement, and an unformatted record is read and written by an
unformatted data transfer input/output statement.

The other kind of record is the end-of-file record; it has no value and has no
length. There can be at most one end-of-file record in a file and it must be the
last record of a file. It is used to mark the end of a file. It may be written
explicitly for files connected for sequential access by using the ENDFILE
statement; it may be written implicitly with a file positioning statement
(REWIND or BACKSPACE statement), by closing the file (CLOSE statement),
or by the normal termination of the program.

9.1.2 Kinds of Files

The records of a file must be either all formatted or all unformatted, except that
the file may contain an end-of-file record as the last record. A file may have a
name, but the length of a file name and the characters that may be used in a file
name depend on the processor.

A distinction is made between files that are located on an external device like a
disk, and files in memory accessible to the program. The two kinds of files are:

1. external files

2. internal files
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91.21

9.1.2.2

The use of these files is illustrated schematically in Figure 9-5.

Compter /\

External file
memory >\—/<
- _ <
Data value .

—
~

Character string ~d——— Internal file

Figure 9-5 Internal and external files

External Files

External files are located on external devices such as tapes, disks, or computer
terminals. For each external file, there is a set of allowed access methods, a set
of allowed forms, a set of allowed actions, and a set of allowed record lengths.
How these characteristics are established is not described by the standard, but
usually is determined by a combination of requests by the user of the file and
by actions of the operating system. Each of these characteristics will be
discussed later in this chapter. An external file connected to a unit has the
position property; that is, the file is positioned at the current record (at the
beginning or end), and in some cases, is positioned within the current record.

Internal Files

The contents of internal files are stored as values of variables of type default
character. The character values may be created using all the usual means of
assigning character values, or they may be created with an output statement
specifying the variable as an internal file. Data transfer to and from internal
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files is described in detail in Section 9.2.9. Such data transfer to and from an
internal file must use formatted sequential access input/output statements,
including list-directed data transfer, but not namelist data transfer.

File connection, file positioning, and file inquiry must not be used with internal
files. If the variable representing the internal file is a scalar, the file has just one
record; if the variable is an array, the file has one record for each element of the
array. The order of the records is the order of the elements in the array. The
length of each record is the length of one array element.

9.1.2.3 Existence of Files

Certain files are made known to the processor for any executing program, and
these files are said to exist at the time the program begins executing. On the
other hand, a file may not exist because it is not anywhere on the disks
accessible to a system. A file may not exist for a particular program because the
user of the program is not authorized to access the file. For example, Fortran
programs usually are not permitted to access special system files, such as the
operating system or the compiler, in order to protect them from user
modification.

In addition to files that are made available to programs by the processor for
input, output, and other special purposes, programs may create files needed
during and after program execution. When the program creates a file, it is said
to exist, even if no data has been written into it. A file no longer exists after it
has been deleted. Any of the input/output statements may refer to files that
exist for the program at that point during execution. Some of the input/output
statements (INQUIRE, OPEN, CLOSE, WRITE, PRINT, REWIND, and
ENDFILE) may refer to files that do not exist. A WRITE or PRINT statement
may create a file that does not exist and put data into that file, unless an error
condition occurs.

An internal file always exists.

9.1.3 File Position

Each file being processed by a program has a position. During the course of
program execution, records are read or written, causing the file position to
change. Also, there are other Fortran statements that cause the file position to
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change; an example is the BACKSPACE statement. The action produced by the
input/output statements is described in terms of the file position, so it is
important that file position be discussed in detail.

The initial point is the point just before the first record. The terminal point is
the point just after the last record. If the file is empty, the initial point and the
terminal point are the same. Initial and terminal points of a file are illustrated
in Figure 9-6. A file position may become indeterminate, in particular, when an
error condition occurs. When the file position becomes indeterminate, the
programmer cannot rely on the file being in any particular position.

Initial point —— »

Terminal point
p »

Figure 9-6 Initial and terminal points of a file

A file may be positioned between records. In the example pictured in Figure
9-7, the file is positioned between records 2 and 3. In this case, record 2 is the
preceding record and record 3 is the next record. Of course, if a file is
positioned at its initial point, there is no preceding record, and there is no next
record if it is positioned at its terminal point.

There may be a current record during execution of an input/output statement
or after completion of a nonadvancing input/output statement as shown in
Figure 9-8, where record 2 is the current record. If the file is positioned within
a current record, the preceding record is the record immediately previous to
the current record, unless the current record is also the initial record, in which
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Figure 9-7 A file positioned between records

case there is no preceding record. Similarly, the next record is the record
immediately following the current record, unless the current record is also the
final record in which case there is no next record.

Current record
—

Figure 9-8 A file positioned with a current record
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When there is a current record, the file is positioned at the initial point of the
record, between values in a record, or at the terminal point of the record as
illustrated in Figure 9-9.

.

At initial point  Between values At ter,minal point
Figure 9-9 Positions within a record of a file

An internal file is always positioned at the beginning of a record just prior to
data transfer.

Advancing input/output is record oriented; completion of such an operation
always positions a file at the end of a record or between records, unless an
error condition occurs. In contrast, nonadvancing input/output is character
oriented; after reading and writing, the file may be positioned between
characters within the current record.

The position of a nonadvancing file is never changed following a data transfer,
unless an error, end-of-file, or end-of-record condition occurs while reading the
file. The file position is indeterminate following an error condition when
reading a file.

When a nonadvancing input operation is performed, the file can be positioned
after the last character of the file and before the logical or physical end of
record. A subsequent nonadvancing input operation causes an end-of-record
condition to occur, regardless of whether this record is the last record of the
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file. If another read operation is executed after the end-of-record condition
occurs and the record is the last record of the file, an end-of-file condition
occurs.

9.1.4 File Access Methods

9141

There are two access methods:
1. sequential access
2. direct access

Some files may be accessed by both methods; other files may be restricted to
one access method or the other. For example, a magnetic tape may be accessed
only sequentially. While each file is connected, it has a set of permissible access
methods, which usually means that it may be accessed either sequentially or
directly. However, a file must not be connected for both direct and sequential
access simultaneously; that is, if a file is connected for direct access, it must be
disconnected with a CLOSE statement and/or reconnected with an OPEN
statement specifying sequential access before it can be referenced in a
sequential access data transfer statement, and vice versa.

The actual file access method used to read or write the file is not a property of
the file itself, but is indicated when the file is connected to a unit or when the
file is created, if the file is preconnected. The same file may be accessed
sequentially by a program, then disconnected, and then later accessed directly
by the same program, if both types of access are permitted for the file.

Sequential Access

Sequential access to the records in the file begins with the first record of the file
and proceeds sequentially to the second record, and then to the next record,
record-by-record. The records are accessed serially as they appear in the file. It
is not possible to begin at some particular record within the file without
reading down to that record in sequential order, as illustrated in Figure 9-10.
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| record 1 |

| record 2 |

| record 3 |

| record n

Figure 9-10 Sequential access

When a file is being accessed sequentially, the records are read and written
sequentially. For example, if the records are written in any arbitrary order
using direct access (see below) and then read using sequential access, the
records are read beginning with record number 1 of the file, regardless of when
it was written.

9.1.4.2 Direct Access

When a file is accessed directly, the records are selected by record number.
Using this identification, the records may be read or written in any order.
Therefore, it is possible to write record number 47 first, then number 13. In a

356 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



9

9.1.5 Units

new file, this produces a file represented by Figure 9-11. Reading or writing
such records is accomplished by direct access data transfer input/output
statements. Either record may be written without first accessing the other.

13 [ |

47 [ |

Figure 9-11 A file written using direct access

A file can be accessed using both the direct and sequential access methods (but
not both at the same time). However, direct access reads are restricted to
records that have been written, and direct access writes are restricted to files
connected for direct access (9.2.6). If a file contains an end-of-file record and is
connected for direct access, the end-of-file record is not considered part of the
file. If the sequential access method is not an allowed access method between
the unit and the file, the file must not contain an end-of-file record.

Input/output statements refer to a particular file by providing an input/output
unit. An input/output unit is either an external unit or an internal unit. An
external unit is either a nonnegative integer or an asterisk (0. When an
external file is a nonnegative integer, it is called an external file unit. The
number of units and their numbering are processor-dependent. On most
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9.15.1

9.15.2

systems, an asterisk in an input data transfer statement is the same as one of
the numbered units, usually 5, and in an output data transfer statement, an
asterisk is the same as another numbered unit, usually 6.

An internal unit is a default character variable. The name of an internal file
also is called a unit. A unit number identifies one and only one external unit in
all program units in a Fortran program.

File positioning, file connection, and inquiry statements must use an external
unit.

Unit Existence

The collection of unit numbers that can be used in a program for external files
is determined by the processor and the operating system. The unit numbers
that may be used are said to exist. Some unit nhumbers on some processors are
always used for data input (for example, unit 5), others are always used for
output (for example, unit 6). There may be certain unit numbers that are never
allowed for user files because they are restricted by the operating system.
Input/output statements must refer to units that exist, except for those that
close a file or inquire about a unit.

Establishing a Connection to a Unit

In order to transfer data to or from an external file, the file must be connected
to a unit. An internal file is always connected to the unit that is the name of the
character variable. There are two ways to establish a connection between a unit
and an external file:

1. execution of an OPEN statement in the executing program
2. preconnection by the operating system

Only one file may be connected to a unit at any given time and vice versa. If
the unit is disconnected after its first use on a file, it may be reconnected later
to another file or to the same file. A file that is not connected to a unit must not
be used in any statement, except the OPEN, CLOSE, or INQUIRE statements.

Some units may be preconnected to files for each Fortran program by the
operating system without any action necessary by the program. For example,
on most systems, units 5 and 6 are always preconnected to the default input
and default output files, respectively. Preconnection of units also may be done
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by the operating system when requested by the user in the operating system
command language. In either of these cases, the user program does not require
an OPEN statement to connect the file; it is preconnected.

Once a file has been disconnected, the only way to reference it is by its name
using an OPEN or INQUIRE statement. There is no means of referencing an
unnamed file once it is disconnected.

9.2 Data Transfer Statements

When a unit is connected, either by preconnection or execution of an OPEN
statement, data may be transferred by reading and writing to the file associated
with the unit. The transfer may occur to or from internal or external files.

The data transfer statements are the READ, WRITE, and PRINT statements.
The general form of the data transfer statements is presented first, and then
they are followed by the forms that specify the major uses of data transfer
statements.

9.2.1 General Form for Data Transfer Statements

There are three general forms for data transfer statements:

® the READ statement (R909) in two forms

READ ( io-control-spec-list ) [ input-item-list ]
READ format [ , input-item-list ]

* the WRITE statement (R910)
WRITE ( io-control-spec-list ) [ output-item-list ]
® the PRINT statement (R911)

PRINT format [ , output-item-list ]
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9.2.11

The forms of input and output items are given in Section 9.2.2.1. The form of
the item format is described as part of the FMT= specifier in Section 9.2.2. The
format item is called a format specifier.

The Input/Output Control Specifiers
The forms of the input/output control specifier (R912) are:

[ UNIT = ] io-unit

[ FMT =] format

[ NML =] namelist-group-name

ADVANCE =scalar-default-character-expression

END = label
EOR =label
ERR =label

IOSTAT = scalar-default-integer-variable
REC = scalar-integer-expression
SIZE = scalar-default-integer-variable

The UNIT= specifier, with or without the keyword UNIT, is called a unit
specifier; the FMT= specifier, with or without the keyword FMT, is called a
format specifier; and the NML= specifier, with or without the keyword NML,
is called a namelist specifier.

The data transfer statement is called a formatted input/output statement if a
format or namelist group name specifier is present; it is called an unformatted
input/output statement if neither is present. If a namelist group name specifier
is present, it is also called a namelist input/output statement. It is called a
direct access input/output statement if a REC= specifier is present; otherwise,
it is called a sequential access input/output statement.

Rules and restrictions:

1. The input/output control specification list must contain a unit specifier
and may contain any of the other input/output control specifiers (but none
can appear more than once). A FMT= and NML= specifier may not both
appear in the list.
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There are many additional rules describing the valid combinations of the
input/output control specifiers. These rules are covered in the descriptions of
each specifier in Section 9.2.2, where appropriate, and in terms of
straightforward forms specifying the various kinds of data transfer statements
(see Sections 9.2.3 t0 9.2.9).

9.2.2 Specifiers for Data Transfer Statements

This section describes the form and effect of the control information specifiers
that are used in the data transfer statements. The NML=, ADVANCE=, END=,
EOR=, REC=, and SIZE= specifiers are each unique to one of the forms of the
data transfer statements, whereas the other specifiers are used in more than
one form. In particular, NML= is used in the namelist data transfer statement;
the ADVANCE=, EOR=, and SIZE= specifiers are used in input data transfer
statements to specify nonadvancing formatted sequential data transfer; and the
REC= specifier is used for direct access data transfer.

[UNIT=] input/output unit (R901)
scalar integer expression  indicates an external unit (R902)

O indicates a processor-dependent external unit.
It is the same unit number that the processor
would define if a READ or PRINT statement
appeared without the unit number. The
external unit used for a READ statement
without a unit specifier or a READ statement
with an asterisk unit specifier need not be the
same as that used for a PRINT statement or
WRITE statement with an asterisk unit
specifier

default character variable
indicates an internal unit (R903)

Rules:

1. If a scalar integer expression is used as an input/output unit, it must
be nonnegative.

2. A unit specifier is required.
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3. A unit number identifies one and only one external unit in all program
units in a Fortran program.

4. If the UNIT keyword is omitted, the input/output unit must be first. In
this case, the keyword FMT or NML may be omitted from the format
or namelist specifier and either item must be second in the list.

5. The unit specified by an asterisk may be used only for formatted
sequential access.

[FMT=] format

default character expression provides the format specification
(10.1.1) in the form of a character
string, indicating formatted

input/output
O indicates list-directed formatting
label provides the statement label of a

FORMAT statement containing the
format specification (10.1.1), indicating
formatted input/output.

scalar default integer variable provides an integer variable that has
been assigned the label of a FORMAT
statement, using an ASSIGN statement
(8.7.1), and indicates formatted
input/output

Rules:

1. The keyword FMT= may be omitted if the format specifier is the
second specifier in the control information list; otherwise, it is required.

2. If a format specifier is present, a namelist specifier (NML=) must not be
present.

3. A format specifier may appear in a PRINT statement and the short
form of the READ statement.

4. The scalar default character expression must be a valid format
specification (10.1.1). If the expression is an array, it is treated as if all
elements of the array were concatenated together in array element
order and must be a valid format specification.
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5. If a label or a variable with a label value is used, the label must be the
label of a FORMAT statement in the same scoping unit as the data
transfer statement.

6. The use of a scalar default integer variable is considered obsolescent.
[NML=] namelist group name

name is the name of a namelist group declared in a
NAMELIST statement

Rules:

1. The namelist group name identifies the list of data objects to be
transferred by the READ or WRITE statement with the NML= specifier.

2. If a namelist specifier is present, a format specifier must not be present.
ADVANCE-= scalar default character expression

NO indicates nonadvancing formatted sequential
data transfer

YES indicates advancing formatted sequential data
transfer

Rules:
1. The default value is YES.

2. Trailing blanks in the scalar default character expression are ignored.
The value of the specifier is without regard to case (upper or lower);
that is, the value no is the same as NO.

3. If an ADVANCE-= specifier appears in the control information list, the
data transfer must be a formatted sequential data transfer statement
connected to an external unit. List-directed or namelist input/output is
not allowed and neither is data transfer to or from an internal unit.

4. If the EOR= or SIZE= specifier appears in the control information list,
an ADVANCE= specifier must also appear with the value NO.

END= label
label is the label of a branch target statement taken
when an end-of-file condition occurs
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Rules:

1. The END= specifier may appear only in a sequential access READ
statement; note that the END= specifier must not appear in a WRITE
statement.

2. If an IOSTAT= specifier is present, an end-of-file condition occurs, and
no error condition occurs, the IOSTAT variable specified becomes
defined with a processor-dependent negative value.

3. If the file is an external file, it is positioned after the end-of-file record.

4. If an end-of-file condition occurs and no error condition occurs during
the execution of the READ statement, the program branches to the
label in the END= specifier. The label must be a branch target in the
same scoping unit as the READ statement.

EOR= label
label is the label of a branch target statement taken
when an end-of-record condition occurs
Rules:

1. The program branches to the labeled statement specified by the EOR=
specifier if an end of record is encountered for a nonadvancing READ
statement. The label must be a branch target in the same scoping unit
as the statement containing the EOR= specifier.

2. The EOR= specifier may appear only in a READ statement with an
ADVANCE-= specifier with a value of NO, that is, a nonadvancing
READ statement.

3. If an end-of-record condition occurs and no error condition occurs
during the execution of the READ statement:

a. The file is positioned after the current record.

b. The variable given in the IOSTAT= specifier, if present, becomes
defined with a processor-dependent negative value.

c. If the connection has been made with the PAD= specifier of YES,
the record is padded with blanks to satisfy the input item list and
the corresponding data edit descriptor that requires more
characters than are provided in the record.

364 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



9

d. The variable given in the SIZE= specifier, if present, becomes
defined with an integer value (9.2.2) equal to the number of
characters read from the input record; however, blank padding
characters inserted because the PAD= specifier is YES are not
counted.

e. Execution of the READ statement terminates, and the program
branches to the label in the EOR= specifier.

ERR= label
label is the label of a branch target statement taken
when an error condition occurs
Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. The program branches to the label in the ERR= specifier if an error
occurs in a data transfer statement. The label must be a branch target in
the same scoping unit as the data transfer statement.

3. If an IOSTAT= specifier is also present and an error condition occurs,
the IOSTAT variable specified becomes defined with a processor-
dependent positive value.

4. If the data transfer statement is a READ statement, contains a SIZE=
specifier, and an error condition occurs, then the variable specified by
the SIZE= specifier becomes defined with an integer value equal to the
number of characters read from the input record; however, blank
padding characters inserted because the PAD= specifier is YES are not
counted.

IOSTAT= scalar default integer variable
positive integer indicates an error condition occurred

negative integer indicates an end-of-file or end-of-record
condition occurred

0 indicates that no error, end-of-file, or end-of-
record condition occurred

Rules:
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1. The negative value indicating the end-of-file condition must not be the
same as the negative value indicating the end-of-record condition.

2. The IOSTAT= specifier applies to the execution of the data transfer
statement itself.

3. The variable specified in the IOSTAT= specifier must not be the same
as or associated with any entity in the input/output item list or in the
namelist group or with the variable specified in the SIZE= specifier, if
present.

4. If the variable specified in the IOSTAT= specifier is an array element,
its subscript values must not be affected by the data transfer, by any
implied-do item or processing, or with the definition or evaluation of
any other specifier in the control specifier list.

REC= scalar integer expression

integer indicates the record number to be read or
written

Rules:

1. The REC= specifier may appear only in a data transfer statement with
a unit that is connected for direct access.

2. If the REC= specifier is present in a control information list, the data
transfer is for a unit connected for direct access, and an END=,
namelist, or format specifier with an asterisk (for list-directed data
transfer) must not be specified in the same control information list.

SIZE= scalar default integer variable
nonnegative integer indicates the number of characters read
Rules:

1. The SIZE= specifier applies to the execution of the READ statement
itself and can appear only in a READ statement with an ADVANCE=
specifier with the value NO.

2. Blanks inserted as padding characters when the PAD= specifier is YES
for the connection (see Section 9.5.5) are not counted.
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3. The variable specified in the SIZE= specifier must not be the same as or
associated with any entity in the input/output item list or in the
namelist group or with the variable specified in the IOSTAT= specifier,
if present.

4. If the variable specified in the SIZE= specifier is an array element, its
subscript values must not be affected by the data transfer, by any
implied-do item or processing, or with the definition or evaluation of
any other specifier in the control specifier list.

9.2.2.1 The Input/Output Item List

The input/Zoutput item list consists basically of lists of variables in a READ
statement and lists of expressions in a WRITE or PRINT statement. In addition,
in any of these statements, the input/output item list may contain an
input/output implied-do list, containing a list of variables or expressions
indexed by the DO variables.

The forms of an input item (R914) are:

variable
io-implied-do

and the forms of an output item (R915) are:

expression
io-implied-do

where the form of an input/output implied-do (R916) is:
( io-implied-do-object-list , io-implied-do-control )
and the forms of an input/output implied-do object (R917) are:

input-item
output-item

and the form of an input/output DO control (R918) is:

do-variable = scalar-numeric-expression , &
scalar-numeric-expression [ , scalar-numeric-expression ]
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Rules and restrictions:

1.

The DO variable must be a scalar integer or real variable. If it is real, it
must be default real or double precision real; the use of real DO variables is
considered obsolescent.

Each scalar numeric expression must be of type integer or real. If it is of
type real, each must be of type default real or default double precision; the
use of such real expressions is considered obsolescent. They need not be all
of the same type nor of the type of the DO variable.

The DO variable must not be one of the input items in the implied-do; it
must not be associated with an input item either.

Two nested implied-do must not have the same (or associated) DO
variables.

An implied-do object, when it is part of an input item, must itself be an
input item; that is, it must be a variable or an implied-do object whose
objects are ultimately variables. Similarly, an implied-do object, when it is
part of an output item, must itself be an output item; that is, it must be an
expression or an implied-do object whose objects are ultimately
expressions.

For an input/output implied-do, the loop is initialized, executed, and
terminated in the same manner as for the DO construct (8.5.5). Its iteration
count is established at the beginning of processing of the items that
constitute the input/output implied-do.

An array appearing without subscripts in an input/output list is treated
the same as if all elements of the array appeared in array-element order.
For example, if UP is an array of shape (2,3),

READ *, UP
is the same as

READ * UP(1,1), UP(2,1), UP(1,2), &
UP(2,2), UP(1,3), UP(2,3)

When a subscripted array is an input item, it is possible that when a value
is transferred from the file to the variable, it might affect another part of
the input item. This is not permitted. Consider the following READ
statements, for example:

368 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



O
1]

10.

11.

12.

13.

14.

INTEGER A(100), V(10)

I Suppose V's elements are defined with values in the
I range 1 to 100.

READ * A(A)
READ * A(A(1):A(9))
READ * A(V)

All three READ statements are invalid because the data values read affect
other parts of the array A.

Assumed-size arrays may not appear in input/output lists, unless a
subscript, a section subscript specifying an upper bound, or a vector
subscript appears in the last dimension.

In formatted input/output, a structure is treated as if, in place of the
structure, all components were listed in the order of the components in the
derived-type definition. For example, if FIRECHIEF is a structure of type
PERSON defined in Section 4.6,

READ *, FIRECHIEF
is the same as
READ *, FIRECHIEF % AGE, FIRECHIEF % NAME

In unformatted input/output, a structure is treated as a single object and
its components are arranged in some processor-dependent order; it is not
necessarily processed as if all components appeared in the order given in
the derived-type definition, even if it is of a sequence type.

All components of a structure in an input/output list must be accessible in
that scoping unit.

A pointer may be an input/output list item but it must be associated with
a target at the time the data transfer statement is executed. For an input
item, the data in the file is transferred to the associated target. For an
output item, the target associated with the pointer must be defined, and
the value of the target is transferred to the file.

No structure with an ultimate component that is a pointer may appear in
an input/output list.
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15. An input or output list item must not be of nondefault character type if the
data transfer statement specifies an internal file.

16. A constant or an expression with operators, parentheses, or function
references may not appear as an input list item, but may appear as an
output list item. A function reference in an output list must not cause
execution of another input/output statement.

17. An input list item, or an entity associated with it, must not contain any
portion of an established format specification.

18. On output, every entity whose value is to be written must be defined.

9.2.3 Explicitly Formatted Advancing Sequential Access Data Transfer

For formatted input and output, the file consists of characters. These characters
are converted into representations suitable for storing in the computer memory
during input and converted from an internal representation to characters on
output. When a file is accessed sequentially, records are processed in the order
in which they appear in the file.

Explicitly formatted advancing sequential access data transfer statements have
the forms:

READ ([ UNIT = ] io-unit &
, [ FMT =] format &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label | &
[, END = label ] &
[ , ADVANCE = 'YES' ] &
) [ input-item-list ]

READformat [ , input-item-list ]

WRITE ( [ UNIT = ] io-unit &
, [ FMT =] format &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label | &
[ . ADVANCE = 'YES' ] &
) [ output-item-list ]

PRINT format [ , output-item-list ]
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Rules and restrictions:

1.

The input/output unit is either a scalar integer expression with a
nonnegative value indicating a formatted sequential access external unit or
an asterisk () indicating a processor-dependent formatted sequential
access external unit, usually a preconnected external unit.

The format must not be an asterisk (0, if an ADVANCE= specifier is
present.

When an advancing input/output statement is executed, reading or
writing of data begins with the next character in the file. If a previous
input/output statement was a nonadvancing statement, the next character
transferred may be in the middle of a record, even if the statement being
executed is an advancing statement. The essential difference between
advancing and nonadvancing sequential data transfer is that an advancing
input/output statement always leaves the file positioned at the end of the
record.

During the data transfer, data are transferred with editing between the file
and the entities specified by the input/output list. Format control is
initiated and editing is performed as described in Chapter 10. The current
record and possibly additional records are read or written.

For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

For input data transfer, the file must be positioned so that the record read
is a formatted record or an end-of-file record.

For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters
than the record contains, unless the PAD= specifier is specified as NO in
the OPEN statement. If the PAD= specifier is NO, the input list and format
specification must not require more characters from the record than the
record contains. The action of the processor at this point is processor
dependent; it may report this erroneous condition by setting the variable of
the IOSTAT= specifier, if it is present, or it may terminate execution of the
program.
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8. For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the
record size for an external file is specified by a RECL= specifier in the
OPEN statement.

9. If the file is connected for formatted input/output, unformatted data
transfer is prohibited.

10. Execution of an advancing sequential access data transfer statement
terminates when:

a.

b.

C.

format processing encounters a data or colon edit descriptor, and there
are no remaining elements in the input item list or output item list

on input, an end-of-file condition is encountered

an error condition is encountered

Examples of formatted reading are:

I Assume that FMT_5 is a character string
I whose value is a valid format specification.
READ (5, 100, ERR = 99, END = 200) &
A, B, (C (), | =1, 40)

READ (9, IOSTAT = IEND, FMT = FMT_5) X, Y
READ (FMT = "(5E20.0)", UNIT = 5, &

ADVANCE = "YES") (Y (I) , | = 1, KK)
READ 100, X, Y

Examples of formatted writing are:

I Assume FMT_103 is a character string with a valid
I format specification.

WRITE (9, FMT_103, IOSTAT = IS, ERR = 99) A, B, C, S
WRITE (FMT = 105, ERR = 9, UNIT = 7) X

WRITE (*, "(F10.5)") X

PRINT "(A, E146)" ,"Y =" Y

In free source form, blank characters are required in some contexts and are not
allowed in others. A blank is not required to separate the name of the specifier
and its value from the equal sign. For example, the following statement uses
blanks in various places adjacent to the equal sign and is a correct WRITE
statement:

WRITE (FMT=105, IOSTAT =IST,ERR = 9 , UNIT=7)
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9.2.4 Unformatted Sequential Access

For unformatted sequential input and output, the file consists of values stored
using a representation that is close to or the same as that used in program
memory. This means that little or no conversion is required during input and
output. Sequential access processes records in the order in which the records
appear in the file.

Unformatted sequential access data transfer statements are the READ and
WRITE statements with no format specifier or namelist group name specifier.
The forms are:

READ ([ UNIT = ] scalar-integer-expression &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label | &
[, END = label ] &
) [ input-item-list ]
WRITE ( [ UNIT = ] scalar-integer-expression &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
) [ output-item-list ]

Rules and restrictions:

1. Data are transferred without editing between the current record and the
entities specified by the input/output list. Exactly one record is read or
written.

2. Objects of intrinsic or derived types may be transferred through an
unformatted data transfer statement.

3. For input data transfer, the file must be positioned so that the record read
is an unformatted record or an end-of-file record.

4. For input data transfer, the number of values required by the input list
must be less than or equal to the number of values in the record. Each
value in the record must be of the same type as the corresponding entity in
the input list, except that one complex value may correspond to two real
list entities or two real values may correspond to one complex list entity.
The type parameters of the corresponding entities must be the same. Note
that if an entity in the input list is of type character, the character entity
must have the same length and the same kind type parameter as the
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character value. Also note that if two real values correspond to one
complex entity or one complex value corresponds to two real entities, all
three must have the same kind type parameter values.

5. On output, if the file is connected for unformatted sequential access data
transfer, the record is created with a length sufficient to hold the values
from the output list. This length must be one of the set of allowed record
lengths for the file and must not exceed the value specified in the RECL=
specifier, if any, of the OPEN statement that established the connection.

6. Execution of an unformatted sequential access data transfer statement
terminates when:

a. the input item list or output item list is exhausted
b. on input, an end-of-file condition is encountered

c. an error condition is encountered

7. If the file is connected for unformatted input/output, formatted data
transfer is prohibited.

Examples of unformatted sequential access reading are:

READ (5, ERR = 99, END = 100) A, B, (C () , | = 1, 40)
READ (IOSTAT = IEND, UNIT = 9) X, Y
READ (5) Y

Examples of unformatted sequential access writing are:

WRITE (9, IOSTAT = IS, ERR = 99) A, B, C, S
WRITE (ERR = 99, UNIT = 7) X
WRITE (9) X

If the access is sequential, the file is positioned at the beginning of the next
record prior to data transfer and positioned at the end of the record when the
input/output is finished, because nonadvancing unformatted input/output is
not permitted.

9.2.5 Nonadvancing Formatted Sequential Data Transfer

Nonadvancing formatted sequential input/output provides the capability of
reading or writing part of a record. It leaves the file positioned after the last
character read or written, rather than skipping to the end of the record.
Processing of nonadvancing input continues within a current record, until an
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end-of-record condition occurs. Nonadvancing input statements can read
varying-length records and determine their lengths. Nonadvancing
input/output is sometimes called partial record or stream input/output. It
may be used only with explicitly formatted, external files connected for
sequential access.

The forms of the nonadvancing input/output statements are:

READ ([ UNIT = ] io-unit &
, [ FMT =] format &
, ADVANCE = 'NO' &
[ , SIZE = scalar-default-integer-variable ] &
[, EOR = label ] &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
[, END = label | &
) [ input-item-list ]

WRITE ( [ UNIT = ] io-unit &
, [ FMT =] format &
, ADVANCE = 'NO’ &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
) [ output-item-list ]

Rules and restrictions:

1. The input/Zoutput unit is either a scalar integer expression with a
nonnegative value, indicating a formatted sequential access external unit,
or an asterisk (0, indicating a processor-dependent formatted sequential
access external unit, usually a preconnected external unit.

2. The format must not be an asterisk (O.

3. During the data transfer, data are transferred with editing between the file
and the entities specified by the input/output list. Format control is
initiated and editing is performed as described in Chapter 10. The current
record and possibly additional records are read or written.

4. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.
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5.

10.

11.

For input data transfer, the file must be positioned at the beginning of, end
of, or within a formatted record or at the beginning of an end-of-file record.

For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters
than the record contains, unless the PAD= specifier is specified as NO in
the OPEN statement. If the PAD= specifier is NO, the input list and format
specification must not require more characters from the record than the
record contains, except in the presence of an ADVANCE-= specifier with the
value NO and either the EOR= or IOSTAT= specifier. In the exceptional
cases during nonadvancing input, the actions and execution sequence are
described in Section 9.4.

For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the
record size for an external file is specified by a RECL= specifier in the
OPEN statement.

The variable in the SIZE= specifier is assigned the number of characters
read on input. Blanks inserted as padding characters when the PAD=
specifier is YES are not counted.

The program branches to the label given by the EOR= specifier, if an end-
of-record condition is encountered during input. The label must be the
label of a branch target statement in the same scoping unit as the data
transfer statement.

Execution of a nonadvancing formatted sequential access data transfer
statement terminates when:

a. format processing encounters a data or colon edit descriptor, and there
are no remaining elements in the input item list or output item list

b. on input, an end-of-file or end-of-record condition is encountered

c. an error condition is encountered

Unformatted data transfer is prohibited.

Examples: If N has the value 7, the statements

WRITE (*, '(A), ADVANCE = "NO") "The answer is "
PRINT (11, N
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produce the single output record:
The answer is 7

If SSN is a rank-one array of size 9 with values (1, 2, 3,0, 0, 9, 8, 8, 6), the
following statements

DOl =1, 3
WRITE (*, '(I1), ADVANCE = "NO") SSN(l)
ENDDO
WRITE (*, '("-"y, ADVANCE = "NO")
DO | =4, 5
WRITE (*, '(I1), ADVANCE = "NO") SSN(l)
ENDDO
WRITE (*, (A1), ADVANCE = "NO") ™'
DO | =6, 9
WRITE (*, '(I1), ADVANCE = "NO") SSN(l)
ENDDO

produce the record:

123-00-9886
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9.2.6 Direct Access Data Transfer

9.2.6.1

In direct access data transfer, the records are selected by record number. The
record number is a scalar integer expression whose value represents the record
number to be read or written. The records may be written in any order, but all
records must be of the length specified by the RECL= specifier in an OPEN
statement.

If a file is connected using the direct access method, then nonadvancing, list-
directed, and namelist input/output is prohibited. Also, an internal file must
not be accessed using the direct access method.

It is not possible to delete a record using direct access. However, records may
be rewritten so that a record can be erased by writing blanks into it.

Formatted Direct Access Data Transfer

For formatted input and output, the file consists of characters. These characters
are converted into representations suitable for storing in computer memory
during input and converted from an internal representation to characters on
output. When a file is accessed directly, the record to be processed is given by
reference to the record number.

Formatted direct access data transfer statements are READ and WRITE
statements with a REC= specifier and a format specifier. The forms for
formatted direct access data transfer statements are:

READ ([ UNIT = ] scalar-integer-expression &
, [ FMT =] format &
, REC = scalar-integer-expression &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
) [ input-item-list ]
WRITE ( [ UNIT = ] scalar-integer-expression &
, [ FMT =] format &
, REC = scalar-integer-expression &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
) [ output-item-list ]
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Rules and restrictions:
1. The format must not be an asterisk (0.

2. On input, an attempt to read a record of a file connected for direct access
that has not previously been written causes all entities specified by the
input list to become undefined.

3. During the data transfer, data are transferred with editing between the file
and the entities specified by the input/output list. Format control is
initiated and editing is performed as described in Chapter 10. The current
record and possibly additional records are read or written.

4. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

5. For input data transfer, the file must be positioned so that the record read
is a formatted record or an end-of-file record.

6. For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters
than the record contains, unless the PAD= specifier was specified as NO in
the OPEN statement. If the PAD= specifier is NO, the input list and format
specification must not require more characters from the record than the
record contains. The action of the processor at this point is processor
dependent; it may report this erroneous condition by setting the variable of
the IOSTAT= specifier, if it is present, or it may terminate execution of the
program.

7. For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the
record size for an external file is specified by a RECL= specifier in the
OPEN statement.

8. If the format specification specifies another record (say, by the use of the
slash edit descriptor), the record number is increased by one as each
succeeding record is read or written by that input/output statement.

9. For output data transfer, if the number of characters specified by the
output list and format do not fill a record, blank characters are added to fill
the record.
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9.2.6.2

10. Execution of a formatted direct access data transfer statement terminates
when:

a. format processing encounters a data or colon edit descriptor, and there
are no remaining elements in the input item list or output item list

b. an error condition is encountered

11. If the file is connected for formatted input/output, unformatted data
transfer is prohibited.

12. Note the above forms are intentionally structured so that the unit cannot be
an internal file, and the END=, ADVANCE=, and namelist specifiers cannot
appear.

Examples of formatted direct access input/output statements are;

READ (7, FMT_X, REC = 32, ERR = 99) A
READ (IOSTAT = IO_ERR, REC = 34, &

FMT = 185, UNIT = 10, ERR = 99) A, B, D
WRITE (8, "(2F155)", RE C =N + 2) X, Y

Unformatted Direct Access Data Transfer

For unformatted input and output, the file consists of values stored using a
representation that is close to or the same as that used in program memory.
This means that little or no conversion is required during input and output.
When a file is accessed directly, the record to be processed is given by reference
to the record number.

Unformatted direct access data transfer statements are READ and WRITE
statements with a REC= specifier and no format specifier. The forms for
unformatted direct access data transfer statements are:

READ ([ UNIT = ] scalar-integer-expression &
, REC = scalar-integer-expression &
[ , IOSTAT = scalar-default-integer-variable 1 &
[, ERR = label ] &
) [ input-item-list ]
WRITE ( [ UNIT = ] scalar-integer-expression &
, REC = scalar-integer-expression &
[ , IOSTAT = scalar-default-integer-variable ] &
[, ERR = label ] &
) [ output-item-list ]
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Rules and restrictions:

1. Oninput, an attempt to read a record of a file connected for direct access
that has not previously been written causes all entities specified by the
input list to become undefined.

2. The number of items in the input list must be less than or equal to the
number of values in the input record.

3. Data are transferred without editing between the current record and the
entities specified by the input/output list. Exactly one record is read or
written.

4. Objects of intrinsic or derived types may be transferred.

5. For input data transfer, the file must be positioned so that the record read
is an unformatted record or an end-of-file record.

6. For input data transfer, the number of values required by the input list
must be less than or equal to the number of values in the record. Each
value in the record must be of the same type as the corresponding entity in
the input list, except that one complex value may correspond to two real
list entities or two real values may correspond to one complex list entity.
The type parameters of the corresponding entities must be the same. Note
that if an entity in the input list is of type character, the character entity
must have the same length and the same kind type parameter as the
character value. Also note that if two real values correspond to one
complex entity or one complex value corresponds to two real entities, all
three must have the same kind type parameter values.

7. The output list must not specify more values than can fit into the record. If
the file is connected for direct access and the values specified by the output
list do not fill the record, the remainder of the record is undefined.

8. Execution of an unformatted direct access data transfer statement
terminates when:

a. the input item list or output item list is exhausted

b. an error condition is encountered

9. If the file is connected for unformatted direct access input/output,
formatted data transfer is prohibited.
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10. Note the above forms are intentionally structured so that the unit cannot be
an internal file, and the FMT=, END=, ADVANCE=, and namelist specifiers

cannot appear.
Examples of unformatted direct access input/output statements are:

READ (7, REC = 32, ERR = 99) A
READ (IOSTAT = MIS, REC = 34, UNIT = 10, ERR = 99) A, B, D
WRITE (8, REC = N + 2) X, Y

9.2.7 List-Directed Data Transfer

List-directed formatting may occur only with files connected for sequential
access; however, the file may be an internal file. The input/output data transfer
must be advancing. The records read and written are formatted.

List-directed data transfer statements are any data transfer statement, for
which the format specifier is an asterisk (0). The forms of the list-directed data

transfer statements are:

READ ([ UNIT = ] io-unit &
[ FMT =1+ &
[ , IOSTAT = scalar-default-integer-variable ] &
[, END = label | &
[, ERR = label ] &
) [ input-item-list ]

READO [ , input-item-list ]

WRITE ( [ UNIT = ] io-unit &
, [FMT =1+ &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
) [ output-item-list ]

PRINT * [, output-item-list ]
Rules and restrictions:

1. During the data transfer, data are transferred with editing between the file
and the entities specified by the input/output list. The rules for formatting
the data transferred are discussed in Section 10.10. The current record and
possibly additional records are read or written.
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2. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

3. For input data transfer, the file must be positioned so that the record read
is a formatted record or an end-of-file record.

4. For output data transfer, the output list and list-directed formatting must
not specify more characters for a record than the record size; recall that the
record size for an external file is specified by a RECL= specifier in the
OPEN statement.

5. If the file is connected for list-directed data transfer, unformatted data
transfer is prohibited.

6. Execution of a list-directed data transfer statement terminates when:
a. the input item list or the output item list is exhausted

b. on input, an end-of-file is encountered, or a slash (/) is encountered as
a value separator

c. an error condition is encountered

7. Note the above forms are intentionally structured so that the ADVANCE=
and namelist specifiers cannot appear.

Examples of list-directed input and output statements are:

READ (5, *, ERR = 99, END = 100) A, B, (C (I) , | =1, 40)
READ (FMT = * UNIT = 5) (Y () , | = 1, KK)

READ * X, Y

WRITE (*, *) X

PRINT *, "Y =" Y

9.2.8 Namelist Data Transfer

Namelist input/output uses a group name for a list of variables that are
transferred. Before the group name can be used in the transfer, the list of
variables must be declared in a NAMELIST statement, a specification
statement. Using the namelist group name eliminates the need to specify the
list of variables in the sequence for a namelist data transfer. Namelist
input/output is convenient for initializing the same variables with different
values in successive runs. It is also convenient for changing the values of a few
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variables among a large list of variables that are given default initial values.
The formatting of the input or output record is not specified in the program; it
is determined by the contents of the record itself or the items in the namelist
group. Conversion to and from characters is implicit for each variable in the
list.

9.2.8.1 Form of a Namelist Group Declaration

All namelist input/output data transfer statements use a namelist group name,
which must be declared. As described in Section 5.9, the form of a namelist
group name declaration (R543) is:

NAMELIST / namelist-group-name / &
variable-name [ , variable-name ] ... &

[ [, ]/ namelist-group-name / &
variable-name [ , variable-name ] ... ] ...

Examples are:

NAMELIST / GOAL / G, K, R
/

NAMELIST / XLIST / A, B/ YLIST /Y, YY, YU

9.2.8.2 Forms of Namelist Input and Output Statements

Namelist input and output data transfer statements are READ and WRITE
statements with a namelist specifier. The forms for namelist data transfer
statements are:

READ ([ UNIT = ] io-unit &
[ NML =] namelist-group-name &

[ , IOSTAT = scalar-default-integer-variable | &
[, END = label | &

[, ERR = label ] &

)

WRITE ( [ UNIT = ] io-unit &

, [ NML =] namelist-group-name &

[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label | &
)
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Rules and restrictions:

1. The input/output unit is either a scalar integer expression with a
nonnegative value indicating a formatted sequential access external unit or
an asterisk () indicating a processor-dependent formatted sequential
access external unit, usually a preconnected externa unit.

2. During namelist data transfer, data are transferred with editing between
the file and the entities specified by the namelist group name. Format
control is initiated and editing is performed as described in Section 10.11.
The current record and possibly additional records are read or written.

3. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

4. For namelist input data transfer, the file must be positioned so that the
record read is a formatted record or an end-of-file record.

5. For namelist output data transfer, the output list and namelist formatting
must not specify more characters for a record than the record size; recall
that the record size for an external file is specified by a RECL= specifier in
the OPEN statement.

S

If an entity appears more than once within the input record for a namelist
input data transfer, the last value is the one that is used.

7. For namelist input data transfer, all values following a name= part within
the input record are transmitted before processing any subsequent entity
within the namelist input record.

8. Execution of a namelist data transfer statement terminates when:

a. on input, an end-of-file is encountered, or a slash (/) is encountered as
a value separator

b. on input, the end of a namelist input record is reached and a name-
value subsequence has been processed for every item in the namelist
group object list

c. on output, the namelist group object list is exhausted

d. an error condition is encountered
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9. If the file is connected for namelist data transfer, unformatted data transfer
is prohibited.

10. Note the above forms are intentionally structured so that the unit cannot be
an internal file. Also, the REC=, FMT=, and ADVANCE= specifiers cannot
appear, and there must be no input or output item list.

Examples of namelist data transfer statements are:

READ (NML = NAME_LIST_23, IOSTAT = KN, UNIT = 5)
WRITE (6, NAME_LIST_23, ERR = 99)

9.2.9 Data Transfer on Internal Files

Transferring data from machine representation to characters or from characters
back to machine representation can be done between two variables in an
executing program. A formatted sequential access input or output statement,
including list-directed formatting, is used. The format is used to interpret the
characters. The internal file and the internal unit are the same character
variable.

With this feature, it is possible to read in a string of characters without
knowing its exact format, examine the string, and then interpret it according to
its contents.

Formatted sequential access data transfer statements on an internal file have
the forms:

READ ([ UNIT = ] default-character-variable &
, [ FMT =] format &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
[, END = label ] &
) [ input-item-list ]
WRITE ( [ UNIT = ] default-character-variable &
, [ FMT =] format &
[ , IOSTAT = scalar-default-integer-variable | &
[, ERR = label ] &
) [ output-item-list ]

Examples of data transfer on internal files are:

READ (CHAR_124, 100, IOSTAT = ERR) MARY, X, J, NAME
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WRITE (FMT = *, UNIT = CHAR_VAR) X

Rules and restrictions:

1.

The unit must be a default character variable that is not an array section
with a vector subscript.

Each record of an internal file is a scalar character variable of default
character kind.

If the character variable is an array or an array section, each element of the
array or section is a scalar character variable and thus a record. The order
of the records is array element order. The length, which must be the same
for each record, is the length of one array element.

If the character variable is an array or part (component, element, section, or
substring) of an array that has the allocatable attribute, the variable must
be allocated before its use as an internal file. It must be defined if it is used
as an internal file in a READ statement.

If the character variable is a pointer, it must be associated with a target.
The target must be defined if it is used as an internal file in a READ
statement.

During data transfer, data are transferred with editing between the file and
the entities specified by the input/output list. Format control is initiated
and editing is performed as described in Chapter 10. The current record
and possibly additional records are read or written.

For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the
record size for an internal file is the length of the character variable
representing the internal file. The format specification must not be part of
the internal file or associated with the internal file or part of it.

If the number of characters written is less than the length of the record, the
remaining characters are set to blank.
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10.

11.

12.

13.

14.

15.

16.
17.

18.

The records in an internal file are defined when the record is written. An
input/output list item must not be in the internal file or associated with
the internal file. An internal file also may be defined by a character
assignment statement, or some other means, or may be used in expressions
in other statements. For example, an array element may be given a value
with a WRITE statement and then used in an expression on the right-hand
side of an assignment statement.

In order to read a record in an internal file, the scalar character object must
be defined.

Before a data transfer occurs, an internal file is positioned at the beginning
of the first record (that is, before the first character, if a scalar, and before
the first character of the first element, if an array). This record becomes the
current record.

Only formatted sequential access, including list-directed formatting, is
permitted on internal files. Namelist formatting is prohibited.

On input, an end-of-file condition occurs when there is an attempt to read
beyond the last record of the internal file.

During input processing, all nonleading blanks in numeric fields are
treated as if they were removed, right justifying all characters in the field
(as if a BN edit descriptor were in effect [10.8.6]). In addition, records are
blank padded when an end of record is encountered before all of the input
items are read (as if PAD=YES were in effect [9.5.5]).

For list-directed output, character values are not delimited (10.10.2).

File connection, positioning, and inquiry must not be used with internal
files.

Execution of a data transfer statement on an internal file terminates when:

a. format processing encounters a data or colon edit descriptor, and there
are no remaining elements in the input item list or output item list

b. if list-directed processing is specified, the input item list or the output
item list is exhausted; or on input, a slash (/) is encountered as a value
separator

c. on input, an end-of-file condition is encountered

d. an error condition is encountered
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9.2.10 Printing of Formatted Records

Sometimes output records are sent to a device that interprets the first character
of the record as a control character. This is usually the case with line printers. If
a formatted record is transferred to such a device, the first character of the
record is not printed, but instead is used to control vertical spacing. The
remaining characters of the record, if any, are printed on one line beginning at
the left margin. This transfer of information is called printing.

The first character of such a record must be of default character type and
determines vertical spacing as specified in Table 9-1.

Table 9-1  Interpretation of the first character for printing control

Character Vertical spacing before printing
Blank One line (single spacing)
0 Two lines (double spacing)
1 To first line of next page (begin new page)
+ No advance (no spacing—print on top of previous line)

If there are no characters in the record, a blank line is printed. If the first
character is not a blank, 0, 1, or +, the interpretation is processor dependent;
usually the character is treated as a blank.

The PRINT statement does not imply that printing will occur actually on a
printer, and the WRITE statement does not imply that printing will not occur.
Whether printing occurs depends on the device connected to the unit number.

9.3 Execution Model for Data Transfer Statements

When a data transfer statement is executed, these steps are followed in the
order given:

1. Determine the direction of data transfer. A READ statement indicates that
data is to be transferred from a file to program variables. A WRITE or
PRINT statement indicates that data is to be transferred from program
variables to a file.
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Identify the unit. The unit identified by a data transfer input/output
statement must be connected to a file when execution of the statement
begins. Note that the file may be preconnected.

Establish the format, if one is specified. If specified, the format specifier is
given in the data transfer statement and implies list-directed, namelist, or
formatted data transfer.

Position the file prior to transferring the data. The position depends on the
method of access (sequential or direct) and is described in Section 9.3.2.

. Transfer data between the file and the entities specified by the

input/output item list (if any). The list items are processed in the order of
the input/Zoutput list for all data transfer input/output statements, except
namelist input data transfer statements which are processed in the order of
the entities specified within the input records. For namelist output data
transfer, the output items are specified by the namelist when a namelist
group name is used.

Determine if an error, end-of-record, or end-of-file condition exists. If one
of these conditions occurs, the status of the file and the input/output items
is specified in Section 9.4.

Position the file after transferring the data (9.3.3). The file position depends
on whether one of the conditions in step 6 above occurred or if the data
transfer was advancing or nonadvancing.

Cause the variables specified in the IOSTAT= and SIZE= specifiers, if
present, to become defined. See the description of these specifiers in the
READ and WRITE data transfer statements in Section 9.2.2.

If ERR=, END=, or EOR= specifiers appear in the statement, transfer to the
branch target corresponding to the condition that occurs. If an IOSTAT=
specifier appears in the statement and the label specifier corresponding to
the condition that occurs does not appear in the statement, the next
statement in the execution sequence is executed. Otherwise, the execution
of the program terminates. See the descriptions of these label specifiers in
Section 9.2.2.
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9.3.1 Data Transfer

Data are transferred between records in the file and entities in the
input/output list or namelist. The list items are processed in the order of the
input/output list for all data transfer input/output statements except namelist
data transfer statements. The list items for a namelist formatted data transfer
input statement are processed in the order of the entities specified within the
input records. The list items for a namelist data transfer output statement are
processed in the order in which the data objects (variables) are specified in the
namelist group object list.

The next item to be processed in the input or output item list is the next
effective item, which is used to determine the interaction between the
input/output item list and the format specification (see Section 10.3).

Zero-sized arrays and implied-do lists with zero iteration counts are ignored in
determining the next effective item.

Before beginning the input/output processing of a particular list item, all
values needed to determine which entities are specified by the list item are
evaluated first. For example, the subscripts of a variable in an input/output list
are evaluated before any data is transferred.

The value of an item that appears early in an input/output list may affect the
processing of an item that appears later in the list. In the example,

READ (N) N, X (N)

the old value of N identifies the unit, but the new value of N is the subscript
of X.

9.3.2 File Position Prior to Data Transfer

The file position prior to data transfer depends on the method of access:
sequential or direct.

For sequential access on input, if there is a current record, the file position is
not changed; this will be the case if the previous data transfer was
nonadvancing. Otherwise, the file is positioned at the beginning of the next
record and this record becomes the current record. Input must not occur if
there is no next record (there must be an end-of-file record at least) or if there
is a current record and the last data transfer statement accessing the file
performed output.
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If the file contains an end-of-file record, the file must not be positioned after
the end-of-file record prior to data transfer. However, a REWIND or
BACKSPACE statement may be used to reposition the file.

For sequential access on output, if there is a current record, the file position is
not changed; this will be the case if the previous data transfer was
nonadvancing. Otherwise, a new record is created as the next record of the file;
this new record becomes the last and current record of the file and the file is
positioned at the beginning of this record.

For direct access, the file is positioned at the beginning of the record specified.
This record becomes the current record.

9.3.3 File Position After Data Transfer

If an error condition exists, the file position is indeterminate. If no error
condition exists, but an end-of-file condition exists as a result of reading an
end-of-file record, the file is positioned after the end-of-file record.

If no error condition or end-of-file condition exists, but an end-of-record
condition exists, the file is positioned after the record just read. If no error
condition, end-of-file condition, or end-of-record condition exists, and the data
transfer was a nhonadvancing input or output statement, the file position is not
changed. In all other cases, the file is positioned after the record just read or
written, and that record becomes the preceding record.

9.4 Error and Other Conditions in Input/Output Statements

392

In step 6 of the execution model in Section 9.3, the data transfer statements
admit the occurrence of error and other conditions during the execution of the
statement. The same is true for the OPEN, CLOSE, INQUIRE, and file
positioning statements.

The set of error conditions is processor dependent. Whenever an error
condition is detected, the variable of the IOSTAT= specifier is assigned a
positive value, if it is present. Also, if the ERR= specifier is present, the
program transfers to the branch target specified by the ERR= specifier upon
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completion of the input/output statement. Note, then, that the set of
conditions that set the variable of the IOSTAT= specifier or cause a transfer to
the branch target specified by the ERR= specifier is processor dependent.

In addition, two other conditions described below must be detected by the
processor: end-of-file and end-of-record. For each of these conditions, error
branches may be provided using the END= and EOR= specifiers in a READ
statement to which the program branches upon completion of the READ
statement. Also, the variable of the IOSTAT= specifier, if present, is set to a
unique negative integer value, indicating which condition occurred.

An end-of-file condition occurs when either an end-of-file record is
encountered during a sequential READ statement, or an attempt is made to
read beyond the end of an internal file. An end-of-file condition may occur at
the beginning of the execution of an input statement or during the execution of
a formatted READ statement when more than one record is required by the
interaction of the format specification and the input item list.

An end-of-record condition occurs when a nonadvancing input statement
(9.2.5) attempts to transfer data from beyond the end of the record.

Two or more conditions may occur during a single execution of an
input/output statement. If one or more of the conditions is an error condition,
one of the error conditions takes precedence, in the sense that the IOSTAT=
specifier is given a positive value designating the particular error condition
and the action taken by the input/output statement is as if only that error
condition occurred.

In summary, an error condition may be generated by any of the input/output
statements, and an end-of-file or end-of-record condition may be generated by
a READ statement. The IOSTAT=, END=, EOR=, and ERR= specifiers allow the
program to recover from such conditions rather than terminate execution of the
program. In particular, when any one of these conditions occurs, the following
actions are taken:

1. If an end-of-record condition occurs and if the connection has been made
with the PAD= specifier of YES, the record is padded, as necessary, with
blanks to satisfy the input item list and the corresponding data edit
descriptor. See Section 9.3.3 for the file position.

2. Execution of the input/output statement terminates.
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If an error condition occurs, the position of the file becomes indeterminate;
if an end-of-file condition occurs, the file is positioned after the end-of-file
record; if an end-of-record condition occurs, the file is positioned after the
current record.

If the statement also contains an IOSTAT= specifier, the variable specified
becomes defined with a processor-dependent nonzero integer value; the
value is positive if an error condition occurs and is negative if either an
end-of-file or end-of-record condition occurs.

If the statement is a READ statement with a SIZE= specifier and an end-of-
record condition occurs, then the variable specified by the SIZE= specifier
becomes defined with an integer value equal to the number of characters
read from the input record; blank padding characters inserted because the
PAD= specifier is YES are not counted. See Section 9.3.3 for the file
position.

. Any implied-do variables in the input/output statement become

undefined; if an error or end-of-file condition occurs during execution of a
READ statement, all list items become undefined; if an error condition
occurs during the execution of an INQUIRE statement, all specifier
variables except the IOSTAT= variable become undefined.

If an END= specifier is present and an end-of-file condition occurs,
execution continues with the statement specified by the label in the END=
specifier; if an EOR= specifier is present and an end-of-record condition
occurs, execution continues with the statement specified by the label in the
EOR= specifier; if an ERR= specifier is present and an error condition
occurs, execution continues with the statement specified by the label in the
ERR= specifier; if none of the above cases applies, but the input/output
statement contains an IOSTAT= specifier, the normal execution sequence is
resumed; if there is no IOSTAT=, END=, EOR=, or ERR= specifier and an
error or other condition occurs, the program terminates execution.

The following program segment illustrates how to handle end-of-file and error
conditions.

READ (FMT = "(E8.3)", UNIT=3, IOSTAT = I0SS) X
IF (10SS < 0) THEN

! PERFORM END-OF-FILE PROCESSING ON THE
I FILE CONNECTED TO UNIT 3.
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CALL END_PROCESSING
ELSE IF (I0SS > 0) THEN

! PERFORM ERROR PROCESSING
CALL ERROR_PROCESSING

END IF

The procedure END_PROCESSING is used to handle the case where an end-of-
file condition occurs and the procedure ERROR_PROCESSING is used to
handle all other error conditions, because an end-of-record condition cannot
occur.

9.5 The OPEN Statement

The OPEN statement establishes a connection between a unit and an external
file and determines the connection properties. In order to perform data
transfers (reading and writing), the file must be connected with an OPEN
statement or preconnected by the processor. It may also be used to change
certain properties of the connection between the file and the unit, to create a
file that is preconnected, or create a file and connect it.

The OPEN statement may appear anywhere in a program, and once executed,
the connection of the unit to the file is valid in the main program or any
subprogram for the remainder of that execution, unless a CLOSE statement
affecting the connection is executed.

If a file is already connected to one unit, it must not be connected to a different
unit.

9.5.1 Connecting a File to a Unit

In what is probably the most common situation, the OPEN statement connects
an external file to a unit. If the file does not exist, it is created. If a unit is
already connected to a file that exists, an OPEN statement referring to that unit
may be executed. If the FILE= specifier is not included, the unit remains
connected to the file. If the FILE= specifier names the same file, the OPEN
statement may change the connection properties as described in Section 9.5.3.
If it specifies a different file by name, the effect is as if a CLOSE statement
without a STATUS= specifier is executed on that unit and the OPEN statement
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is then executed. (The default value of the STATUS= specifier is KEEP, unless
the prior status of the file was SCRATCH, in which case the default value is
DELETE.)

9.5.2 Creating a File on a Preconnected Unit

If a unit is preconnected to a file that does not exist, the OPEN statement
creates the file and establishes properties of the connection.

9.5.3 Changing the Connection Properties

Execution of an OPEN statement may change the properties of a connection
that is already established. The properties that may be changed are those
indicated by BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers. If new
values for DELIM=, PAD=, and BLANK= specifiers are specified, these will be
used in subsequent data transfer statements; otherwise, the old ones will be
used. However, the values in ERR= and IOSTAT= specifiers, if present, apply
only to the OPEN statement being executed; after that, the values of these
specifiers have no effect. If no ERR= or IOSTAT= specifier appears in the new
OPEN statement, error conditions will terminate the execution of the program.

9.5.4 Form of the OPEN Statement
The form of the OPEN statement (R904) is:
OPEN ( connection-spec-list )
where the forms of a connection specifier (R905) are:

[ UNIT = ] scalar-integer-expression
ACCESS =scalar-default-character-expression
ACTION = scalar-default-character-expression
BLANK = scalar-default-character-expression
DELIM = scalar-default-character-expression
ERR = label

FILE = file-name-expression

FORM =scalar-default-character-expression
IOSTAT = scalar-default-integer-variable
PAD = scalar-default-character-expression
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POSITION = scalar-default-character-expression
RECL = scalar-integer-expression
STATUS = scalar-default-character-expression

Rules and restrictions:

1. A unit specifier is required. If the keyword UNIT is omitted, the scalar
integer expression must be the first item in the list.

2. A specifier must not appear more than once in an OPEN statement.

3. The character expression established for many of the specifiers must
contain one of the permitted values from the list of alternative values for
each specifier described in Section 9.5.5. For example, OLD, NEW,
REPLACE, UNKNOWN, or SCRATCH are permitted for the STATUS=
specifier; any other combination of letters is not permitted. Trailing blanks
in any specifier are ignored. If a processor is capable of representing both
uppercase and lowercase letters, the value specified is without regard to
case.

4. Note that the form Ofor the unit specifier is not permitted in the OPEN
statement. However, in cases where the default external unit specified by
an asterisk also corresponds to a nonnegative unit specifier (such as unit
numbers 5 and 6 on many systems), inquiries about these default units and
connection properties are possible.

5. If the last data transfer to a unit connected for sequential access to a
particular file is an output data transfer statement, an OPEN statement for
that unit connecting it to a different file writes an end-of-file record to the
original file.

Examples are:

OPEN (STATUS = "SCRATCH", UNIT

= 9)
OPEN (8, FILE = "PLOT_DATA", RECL =

80, ACCESS = "DIRECT")
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9.5.5 The Connection Specifiers

The OPEN statement specifies the connection properties between the file and
the unit, using keyword specifiers, which are described in this section. Table
9-2 indicates the possible values for the specifiers in an OPEN statement and
their default values when the specifier is omitted.

Table 9-2  Values for keyword specifier variables in an OPEN statement
Specifier Possible values Default value
ACCESS= DIRECT, SEQUENTIAL SEQUENTIAL
ACTION= READ, WRITE, READWRITE Processor
dependent
BLANK= NULL, ZERO NULL
DELIM= APOSTROPHE, QUOTE, NONE NONE
ERR= Label No default
_ . Processor
FILE= Character expression determined
FORMATTED FORMATTED for
FORM= sequential access
UNFORMATTED UNFQRMATTED
for direct access
IOSTAT= Scalar default integer variable No default
PAD= YES, NO YES
POSITION= ASIS, REWIND, APPEND ASIS
_ . . . Processor
RECL= Positive scalar integer expression dependent
_ OLD, NEW, UNKNOWN,
STATUS= REPLACE, SCRATCH UNKNOWN
UNIT= Scalar integer expression No default
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[UNIT=] scalar integer expression
Rules:
1. The value of the scalar integer expression must be nonnegative.

2. A unit specifier with an external unit is required. If the keyword UNIT
is omitted, the unit specifier must be the first item in the list.

3. A unit number identifies one and only one external unit in all program
units in a Fortran program.

ACCESS= scalar default character expression

DIRECT specifies the direct access method for data
transfer

SEQUENTIAL specifies the sequential access method for data
transfer

Rules:

1. The default value is SEQUENTIAL.

2. If the file exists, the method specified must be an allowed access
method for the file.

3. If the file is new, the allowed access methods given for the file must
include the one indicated.

4. If the ACCESS= specifier is DIRECT, a RECL= specifier must be
present.

ACTION= scalar default character expression

READ indicates that WRITE, PRINT, and ENDFILE
statements are prohibited

WRITE indicates that READ statements are prohibited

READWRITE indicates that any input/output statement is
permitted

Rules:

1. The default value is processor dependent.
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2. If READWRITE is an allowed ACTION= specifier, READ and WRITE
must also be allowed ACTION= specifiers.

3. For an existing file, the specified action must be an allowed action for
the file.

4. For a new file, the value of the ACTION= specifier must be one of the
allowed actions for the file.

BLANK-= scalar default character expression

NULL ignore all blanks in numeric fields

ZERO interpret all blanks except leading blanks as
zeros

Rules:

1. The default value is NULL.
2. A field of all blanks evaluates to zero in both cases.

3. The BLANK= specifier may be specified for files connected only for
formatted input/output.

DELIM= scalar default character expression

APOSTROPHE use the apostrophe as the delimiting character
for character constants written by a list-
directed or namelist formatted data transfer
statement

QUOTE use the quotation mark as the delimiting
character for character constants written by a
list-directed or namelist-formatted data
transfer statement

NONE use no delimiter to delimit character constants
written by a list-directed or namelist-formatted
data transfer statement

Rules:

1. The default value is NONE.
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2. If the DELIM= specifier is APOSTROPHE, any occurrence of an
apostrophe within a character constant will be doubled; if the DELIM=
specifier is QUOTE, any occurrence of a quote within a character
constant will be doubled.

3. The specifier is permitted only for a file connected for formatted
input/Zoutput; it is ignored for formatted input.

ERR= label
label is the label of a branch target statement taken
when an error condition occurs
Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. If an IOSTAT= specifier is present and an error condition occurs, the
IOSTAT variable specified becomes defined with a processor-
dependent positive value.

3. The program branches to the label in the ERR= specifier if an error
occurs in the OPEN statement. The label must be a branch target in the
same scoping unit as the OPEN statement.

FILE= scalar default character expression

expression indicates the name of the file to be connected. It
is called the file name expression

Rules:

1. If the name is omitted, the connection can be made to a processor-
determined file.

2. Trailing blanks in the name are ignored.
3. The name must be a file name allowed by the processor.

4. If the processor allows uppercase and lowercase letters in file names,
the interpretation of the case of the letters is processor dependent; for
example, the processor may distinguish file names by case or it may
interpret the name all in uppercase or lowercase letters.
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5. The FILE= specifier must appear if the STATUS= specifier is OLD,
NEW, or REPLACE; the FILE= specifier must not appear if the
STATUS= specifier is SCRATCH.

6. If the FILE= specifier is omitted and the unit is not already connected
to a file, the STATUS= specifier (see below) must have the value
SCRATCH; in case the unit is not already connected, the unit becomes
connected to a processor-dependent file.

FORM= scalar default character expression

FORMATTED indicates that all records are formatted
UNFORMATTED indicates that all records are unformatted
Rules:

1. The default value is UNFORMATTED, if the file is connected for direct
access and the FORM= specifier is absent.

2. The default value is FORMATTED, if the file is connected for
sequential access and the FORM= specifier is absent.

3. If the file is new, the allowed forms given for the file must include the
one indicated.

4. If the file exists, the form specified by the FORM= specifier must be
one of the allowed forms for the file.

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred
0 indicates that no error condition occurred
Rules:

1. The IOSTAT= specifier applies to the execution of the OPEN statement
itself. Note that the value cannot be negative.

PAD= scalar default character expression

YES use blank padding when the input item list and
format specification require more data than the
record contains
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NO requires that the input record contains the data
indicated by the input list and format
specification

Rules:
1. The default value is YES.

2. The specifier is permitted only for a file connected for formatted
input/output; it is ignored for formatted output.

3. The blank padding character used for nondefault character types is
processor dependent.

4. If this specifier has the value YES and an end-of-record condition
occurs, the data transfer behaves as if the record were padded with
sufficient blanks to satisfy the input item and the corresponding data
edit descriptor.

POSITION= scalar default character expression

ASIS indicates the file position is to remain
unchanged for a connected file and is
unspecified for a file that is not connected

REWIND indicates the file is to be positioned at its initial
point
APPEND indicates the file is to be positioned at the

terminal point or just before an end-of-file
record, if there is one

Rules:

1. The default value is ASIS, permitting an OPEN statement to change
other connection properties of a file that is already connected without
changing its position.

2. The file must be connected for sequential access.

3. If the file is new, it is positioned at its initial point, regardless of the
value of the POSITION= specifier.
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RECL= scalar integer expression

positive value specifies the length of each record if the access

method is direct, or the maximum length of a
record if the access method is sequential

Rules:

1. The default value is processor dependent, if the RECL= specifier is
absent for a file connected for sequential access.

2. The RECL= specifier must be present for a file connected for direct
access.

3. If the file is connected for formatted input/output, the length is the
number of characters.

4. If the file is connected for unformatted input/output, the length is
measured in processor-dependent units. In this case, the length may be
the number of computer words, for example.

5. If the file exists, the length of the record specified must be an allowed
record length.

6. If the file does not exist, the file is created with the specified length as

an allowed length.

STATUS= scalar default character expression

OLD requires that the file exist
NEW requires that the file not exist
UNKNOWN indicates that the file has a processor-

dependent status

REPLACE requires that, if the file does not exist, the file is

created and given a status of OLD; if the file
does exist, the file is deleted, a new file is
created with the same name, and the file is
given a status of OLD
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SCRATCH indicates that an unnamed file is to be created
and connected to the specified unit; it is to exist
either until the program terminates or a CLOSE
statement is executed on that unit

Rules:
1. The default value is UNKNOWN.

2. Scratch files must be unnamed; that is, the STATUS= specifier must not
be SCRATCH when a FILE= specifier is present. The term scratch file
refers to this temporary file.

3. Note that, if the STATUS= specifier is REPLACE, the specifier in this
statement is not changed to OLD; only the file status is considered to
be OLD when the file is used in subsequently executed input/output
statements, such as a CLOSE statement.

9.6 The CLOSE Statement

Execution of a CLOSE statement terminates the connection of a file to a unit.
Any connections not closed explicitly by a CLOSE statement are closed by the
operating system when the program terminates, unless an error condition has
terminated the program. The form of the CLOSE statement (R907) is:

CLOSE ( close-spec-list )
where the forms of a close specifier (R908) are:

[ UNIT = ] scalar-integer-expression
IOSTAT = scalar-default-integer-variable
ERR =label

STATUS = scalar-default-character-expression

Rules and restrictions:

1. A unit specifier is required. If the keyword UNIT is omitted, the scalar
integer expression must be the first item in the list.

2. A specifier must not appear more than once in a CLOSE statement.

3. A CLOSE statement may appear in any program unit in an executing
program.
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4. A CLOSE statement may refer to a unit that is not connected or does not
exist, but it has no effect.

5. When an executing program terminates, all files are closed, unless the
program has been terminated by an error condition.

6. If the last data transfer to a file connected for sequential access is an output
data transfer statement, a CLOSE statement for a unit connected to this file
writes an end-of-file record to the file.

7. After a unit has been disconnected by a CLOSE statement, it may be
connected again to the same or a different file. Similarly, after a file has
been disconnected by a CLOSE statement, it may also be connected to the
same or a different unit, provided the file still exists.

Examples are:

CLOSE (ERR = 99, UNIT = 9)
CLOSE (8, IOSTAT = IR, STATUS = "KEEP")

9.6.1 The CLOSE Specifiers

This section describes the form and effect of the specifiers that may appear in a
CLOSE statement.

[UNIT=] scalar integer expression
Rules:
1. The value of the scalar integer expression must be nonnegative.

2. A unit specifier is required. If the keyword UNIT is omitted, a scalar
integer expression unit must be the first item in the list.

3. A unit number identifies one and only one external unit in all program
units in a Fortran program.

ERR= label
label is the label of a branch target statement taken
when an error condition occurs
406 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



O
1]

Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. If an IOSTAT= specifier is present and an error condition occurs, the
IOSTAT variable specified becomes defined with a processor-
dependent positive value.

3. The program branches to the label in the ERR= specifier if an error
occurs in the CLOSE statement. The label must be a branch target in
the same scoping unit as the CLOSE statement.

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred
0 indicates that no error condition occurred
Rules:

1. The IOSTAT= specifier applies to the execution of the CLOSE statement
itself. Note that the value cannot be negative.

STATUS= scalar default character expression

KEEP indicates that the file is to continue to exist
after closing the file

DELETE indicates that the file will not exist after closing
the file

Rules:

1. The default value is DELETE, if the unit has been opened with a
STATUS= specifier of SCRATCH.

2. The default value is KEEP, if the unit has been opened with any other
value of the STATUS= specifier.

3. KEEP must not be specified for a file whose file status is SCRATCH.

4. If KEEP is specified for a file that does not exist, the file does not exist
after the CLOSE statement is executed.
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9.7 Inquiring about Files

408

An inquiry may be made about a file’s existence, connection, access method, or
other properties. For each property inquired about, a scalar variable of default
kind is supplied; that variable is given a value that answers the inquiry. The
variable may be tested and optional execution paths may be selected based on
the answer returned. The inquiry specifiers are determined by keywords in the
INQUIRE statement. The only exception is the unit specifier, which, if no
keyword is specified, must be the first specifier. A file inquiry may be made by
unit number, file name, or an output item list. When inquiring by an output
item list, an output item list that might be used in an unformatted direct access
output statement must be present.

9.7.1 The INQUIRE Statement

There are three kinds of INQUIRE statements (R923): inquiry by unit, by name,
and by an output item list. The first two kinds use the first form of the
INQUIRE statement below, whereas the third kind uses the second form below.
Inquiry by unit uses a unit specifier, whereas inquiry by file uses a file specifier
with the keyword FILE=. The form of an inquiry by unit or file is:

INQUIRE ( inquiry-spec-list )
The form of an inquiry by an output item list is:

INQUIRE ( IOLENGTH = scalar-default-integer-variable ) output-item-list
The forms of an inquiry specifier (R924) are:

[ UNIT = ] scalar-integer-expression
ACCESS =scalar-default-character-variable
ACTION = scalar-default-character-variable
BLANK = scalar-default-character-variable
DELIM = scalar-default-character-variable
DIRECT = scalar-default-character-variable
ERR =label

EXIST = scalar-default-logical-variable
FILE = scalar-default-character-expression
FORM =scalar-default-character-variable
FORMATTED =scalar-default-character-variable
IOSTAT = scalar-default-integer-variable
NAME =scalar-default-character-variable
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NAMED =scalar-default-logical-variable
NEXTREC =scalar-default-integer-variable
NUMBER =scalar-default-integer-variable
OPENED =scalar-default-logical-variable

PAD = scalar-default-character-variable
POSITION = scalar-default-character-variable
READ =scalar-default-character-variable
READWRITE =scalar-default-character-variable
RECL = scalar-default-integer-variable
SEQUENTIAL = scalar-default-character-variable
UNFORMATTED scalar-default-character-variable
WRITE = scalar-default-character-variable

Rules and restrictions:

1.

An INQUIRE statement with an inquiry specifier list must have a unit
specifier or a FILE= specifier, but not both. If the keyword UNIT is omitted,
a scalar integer expression must be the first item in the list and must have
a nonnegative value.

No specifier may appear more than once in a given inquiry specifier list.

For an inquiry by an output item list, the output item list must be a valid
output list for an unfromatted direct access output statement. The length
value returned in the scalar default integer variable must be a value that is
acceptable when used as the value of the RECL= specifier in an OPEN
statement. This value may be used in a RECL= specifier to connect a file
whose records will hold the data indicated by the output list of the
INQUIRE statement.

The value taken by a variable given in an inquiry specifier is the value that
would be obtained if the specified value were assigned to the variable
using an intrinsic assignment statement.

An INQUIRE statement may be executed before or after a file is connected
to a unit. The specifier values returned by the INQUIRE statement are
those current at the time at which the INQUIRE statement is executed.

A variable appearing in a keyword specifier or any entity associated with it
must not appear in another specifier in the same INQUIRE statement if
that variable can become defined or undefined as a result of executing the
INQUIRE statement. That is, do not try to assign two inquiry results to the
same variable!
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7. Except for the NAME-= specifier, the processor must return character
values in uppercase, even if it can process both uppercase and lowercase.
For the NAME-= specifier, the allowed characters used in the value
returned are processor determined. For the same reason, the allowed
characters for the value for the FILE= specifier are processor dependent.

8. If an error condition occurs during the execution of an INQUIRE
statement, all the inquiry specifier variables become undefined except the
IOSTAT= specifier.

Examples of the INQUIRE statement are:
INQUIRE (9, EXIST = EX)

INQUIRE (FILE = "T123", OPENED = OP, ACCESS = AC)
INQUIRE (IOLENGTH = IOLEN) X, Y, CAT

9.7.2 Specifiers for Inquiry by Unit or File Name

This section describes the form and effect of the inquiry specifiers that may
appear in the inquiry by unit and file forms of the INQUIRE statement.

[UNIT=] scalar integer expression
expression indicates an external unit (R902)
Rules:
1. The value of the scalar integer expression must be nonnegative.

2. A unit specifier is required. If the keyword UNIT is omitted, a scalar
integer expression must be the first item in the list.

3. A unit number identifies one and only one external unit in all program
units in a Fortran program.

4. The file is the file connected to the unit, if one is connected; otherwise,
the file does not exist.

ACCESS= scalar default character variable

SEQUENTIAL indicates the file is connected for sequential
access
DIRECT indicates the file is connected for direct access
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UNDEFINED indicates the file is not connected
ACTION= scalar default character variable

READ indicates the file is connected with access
limited to input only

WRITE indicates the file is connected with access
limited to output only

READWRITE indicates the file is connected for both input
and output
UNDEFINED indicates the file is not connected

BLANK= scalar default character variable

NULL indicates null blank control is in effect
ZERO indicates zero blank control is in effect
UNDEFINED indicates the file is not connected for formatted

input/output or the file is not connected at all
Rules:

1. See the BLANK= specifier for the OPEN statement in Section 9.5.5 for
the meaning of null and zero blank control.

DELIM= scalar default character variable

APOSTROPHE indicates an apostrophe is used as the delimiter
in list-directed and namelist-formatted output

QUOTE indicates the quotation mark is used as the
delimiter in list-directed and namelist-
formatted output

NONE indicates there is no delimiting character in list-
directed and namelist-formatted output

UNDEFINED indicates the file is not connected or the file is
not connected for formatted input/output
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DIRECT= scalar default character variable

YES indicates direct access is an allowed access
method

NO indicates direct access is not an allowed access
method

UNKNOWN indicates the processor does not know if direct
access is allowed

ERR= label

label is the label of a branch target statement taken
when an error condition occurs

Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. If an IOSTAT= specifier is present and an error condition occurs, the
IOSTAT variable specified becomes defined with a processor-
dependent positive value. All other inquiry specifier variables become
undefined.

3. The program branches to the label in the ERR= specifier if there is an
error in the execution of the INQUIRE statement itself. The label must
be a branch target in the same scoping unit as the INQUIRE statement.

EXIST= scalar default logical variable

true indicates the file or unit exists

false indicates the file or unit does not exist
FILE= scalar default character expression

expression indicates the name of the file

Rules:

1. The value of the scalar default character expression must be a file name
acceptable to the processor. Trailing blanks are ignored. If the processor
can represent both uppercase and lowercase letters, the interpretation
is processor dependent.
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2. The file name may refer to a file not connected or to one that does not
exist.

FORM= scalar default character variable

FORMATTED indicates the file is connected for formatted
input/output

UNFORMATTED indicates the file is connected for unformatted
input/output

UNDEFINED indicates the file is not connected

FORMATTED= scalar default character variable

YES indicates formatted input/output is an allowed
form for the file

NO indicates formatted input/output is not an
allowed form for the file

UNKNOWN indicates the processor cannot determine if
formatted input/output is an allowed form for
the file

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred
0 indicates no error condition occurred
Rules:

1. The IOSTAT= specifier applies to the execution of the INQUIRE
statement itself. Note that the value cannot be negative.

NAME-= scalar default character variable

file name indicates the name of the file connected to the
unit, if the file has a name

undefined value indicates the file does not have a name or no
file is connected to the unit
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Rules:

1. The processor may return a name different from the one specified in
the FILE= specifier by the program, because a user identifier or some
other processor requirement for file names may be added.

2. Whatever the name returned, it must be acceptable for use as a FILE=
specifier in an OPEN statement.

3. The interpretation of the case (upper or lower) of letters used and
allowed in a file name is determined by the processor.

NAMED= scalar default logical variable

true indicates the file has a name

false indicates the file does not have a name
NEXTREC= scalar default integer variable

last record number + 1 indicates the next record number to be read or
written in a file connected for direct access. The
value is one more than the last record number
read or written

1 indicates no records have been processed

undefined value indicates the file is not connected for direct
access or the file position is indeterminate
because of a previous error condition

Rules:
1. This inquiry is used for files connected for direct access.

NUMBER= scalar default integer variable

unit number indicates the number of the unit connected to
the file
-1 indicates there is no unit connected to the file

OPENED-= scalar default logical variable

true indicates the file or unit is connected (that is,
opened)

414 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener



9

false indicates the file or unit is not connected (that
is, not opened)

PAD= scalar default character variable

NO indicates the file or unit is connected with the
PAD= specifier set to NO

YES indicates the file or unit is connected with the
PAD= specifier other than NO, or the file or
unit is not connected

POSITION= scalar default character variable

REWIND indicates the file is connected with its position
at the initial point

APPEND indicates the file is connected with its position
at the terminal point

ASIS indicates the file is connected without changing
its position

UNDEFINED indicates the file is not connected or is

connected for direct access
Rules:

1. If any repositioning has occurred since the file was connected, the
value returned is processor dependent, but it is not equal to REWIND
unless positioned at the initial point, and it is not equal to APPEND
unless positioned at the terminal point.

READ-= scalar default character variable

YES indicates READ is one of the allowed actions
for the file

NO indicates READ is not one of the allowed
actions for the file

UNKNOWN indicates the processor is unable to determine
whether READ is one of the allowed actions for
the file
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READWRITE= scalar default character variable

YES indicates READWRITE is an allowed action for
the file

NO indicates READWRITE is not an allowed action
for the file

UNKNOWN indicates the processor is unable to determine
whether READWRITE is an allowed action for
the file

RECL= scalar default integer variable

maximum record length  indicates an integer value which is the record
length of a file connected for sequential access
and the length of each record of a file
connected for direct access

undefined value indicates the file does not exist
Rules:

1. For a formatted file that contains only default characters, the length is
the number of characters for all records.

2. For a formatted file containing nondefault characters or for an
unformatted file, the length is in processor-dependent units.

SEQUENTIAL= scalar default character variable

YES indicates sequential access is an allowed access
method
NO indicates sequential access is not an allowed

access method

UNKNOWN indicates the processor does not know whether
sequential access is allowed

UNFORMATTED-= scalar default character variable

YES indicates unformatted input/output is an
allowed form for the file
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NO

UNKNOWN

indicates unformatted input/output is not an
allowed form for the file

indicates the processor cannot determine
whether unformatted input/output is an
allowed form for the file

WRITE= scalar default character variable

YES

NO

UNKNOWN

indicates WRITE is an allowed action for the
file

indicates WRITE is not an allowed action for
the file

indicates the processor is unable to determine
whether WRITE is an allowed action for the file

9.7.3 Table of Values Assigned by the INQUIRE Statement

Table 9-3 summarizes the values assigned to the various variables by the
execution of an INQUIRE statement.

9.8 File Positioning Statements

Execution of a data transfer statement usually changes the file position. In
addition, there are three statements whose main purpose is to change the file
position. Changing the position backwards by one record is called backspacing
and is performed by the BACKSPACE statement. Changing the position to the
beginning of the file is called rewinding and is performed by the REWIND
statement. The ENDFILE statement writes an end-of-file record and positions
the file after the end-of-file record.

The forms of the BACKSPACE statement (R919) are:

BACKSPACEscalar-integer-expression
BACKSPACE (position-spec-list )

The forms of the REWIND statement (R920) are:

REWIND scalar-integer-expression
REWIND ( position-spec-list )
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Table 9-3  Values for keyword specifier variables in an INQUIRE statement
INQUIRE by file INQUIRE by unit
Specifier Unconnected Connected Connected Unconnected
ACCESS= UNDEFINED SEQUENTIAL or DIRECT UNDEFINED
ACTION= UNDEFINED READ, WRITE, or READWRITE UNDEFINED
BLANK= UNDEFINED NULL, ZERO, or UNDEFINED UNDEFINED
DELIM= UNDEFINED APOSTROPHE, QUOTE, NONE, or UNDEFINED UNDEFINED
DIRECT= UNKNOWN YES, NO, or UNKNOWN UNKNOWN
EXIST= . TRUE. if file exi§ts, . TRUE. if unit ex?sts,
.FALSE. otherwise .FALSE. otherwise
FORM= UNDEFINED FORMATTED or UNFORMATTED UNDEFINED
FORMATTED= UNKNOWN YES, NO, or UNKNOWN UNKNOWN
IOSTAT= 0 for no error, a positive integer for an error
NAME= Filename (may not be sam as FILE= value) | Filenam if named else undefined | Undefined
NAMED= .TRUE. 'T_E:LES'E'T zlﬁe”rivr?:ed' .FALSE.
NEXTREC= Undefined If direct access, next record #; else undefined Undefined
NUMBER= -1 Unit number -1
OPENED= .FALSE. « TRUE. .FALSE.
PAD= YES YES or NO YES
POSITION= UNDEFINED ARSE;NIOI:IBNA[EEFEIEED UNDEFINED
READ= UNKNOWN YES, NO, or UNKNOWN UNKNOWN
READWRITE= UNKNOWN YES, NO, or UNKNOWN UNKNOWN
RECL= Undefined If direct access, record length; Undefined
else maximum record length
SEQUENTIAL= UNKNOWN YES, NO, or UNKNOWN UNKNOWN
UNFORMATTED= UNKNOWN YES, NO, or UNKNOWN UNKNOWN
WRITE= UNKNOWN YES, NO, or UNKNOWN UNKNOWN
IOLENGTH= RECL= value for output-item-list
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The forms of the ENDFILE statement (R921) are:

ENDFILE scalar-integer-expression
ENDFILE ( position-spec-list )

The forms of a position specifier (R922) are (none may be repeated in a position
specifier list):

[ UNIT = ] scalar-integer-expression
ERR =label
IOSTAT = scalar-default-integer-variable

Rules and restrictions:

1. The scalar integer expression in the first form of each file positioning
statement is a unit specifier and must have a nonnegative value. A unit
specifier in the second form of each file positioning statement is required,
and its scalar integer expression must have a nonnegative value. Thus, the
BACKSPACE, REWIND, and ENDFILE statements are used only to
position external files.

2. The files must be connected for sequential access.

3. If the last data transfer to a file connected for sequential access is an output
data transfer statement, a BACKSPACE or REWIND statement for a unit
connected to this file writes an end-of-file record to the file.

Example file positioning statements are:
BACKSPACE 9
BACKSPACE (UNIT = 10)
BACKSPACE (ERR = 99, UNIT = 8, IOSTAT = STATUS)
REWIND (ERR = 102, UNIT = 10)

ENDFILE (10, I0STAT = IERR)
ENDFILE (11)

9.8.1 Specifiers for File Position Statements

This section describes the form and effect of the position specifiers that may
appear in the file positioning statements.

[UNIT=] scalar integer expression

expression indicates an external unit (R902)
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Rules:
1. The value of the scalar integer expression must be nonnegative.
2. A unit specifier is required.

3. There must be a file connected to the unit, and the unit must be
connected for sequential access.

4. If the keyword UNIT is omitted, the scalar integer expression must be
the first item in the position specifier list.

5. A unit number identifies one and only one external unit in all program
units in a Fortran program.

ERR= label
label is the label of a branch target statement taken
when an error condition occurs
Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. If an IOSTAT= specifier is present and an error condition occurs, the
IOSTAT variable specified becomes defined with a processor-
dependent positive value.

3. The program branches to the label in the ERR= specifier if there is an
error in the execution of the particular file positioning statement itself.
The label must be a branch target label in the same scoping unit as the
file positioning statement.

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred
0 indicates no error condition occurred
Rules:

1. The IOSTAT= specifier applies to the execution of the file positioning
statement itself. Note that the value cannot be negative.
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9.8.2 The BACKSPACE Statement

Execution of a BACKSPACE statement causes the file to be positioned before
the current record if there is a current record, or before the preceding record if
there is no current record. If there is no current record and no preceding record,
the file position is not changed. If the preceding record is an end-of-file record,
the file becomes positioned before the end-of-file record. If a BACKSPACE
statement causes the implicit writing of an end-of-file record and if there is a
preceding record, the file becomes positioned before the record that precedes
the end-of-file record.

If the file is already at its initial point, a BACKSPACE statement has no effect.
If the file is connected, but does not exist, backspacing is prohibited.
Backspacing over records written using list-directed or namelist formatting is
prohibited.

Examples of BACKSPACE statements are:

BACKSPACE ERROR_UNIT ! ERROR_UNIT is an
! integer variable.
BACKSPACE (10, & I STAT is an integer variable
IOSTAT = STAT) ! of default type.

9.8.3 The REWIND Statement

A REWIND statement positions the file at its initial point. Rewinding has no
effect on the file position when the file is already positioned at its initial point.
If a file does not exist, but it is connected, rewinding the file is permitted, but
has no effect. Examples of REWIND statements are:

REWIND INPUT_UNIT I INPUT_UNIT is an integer variable.
REWIND (10, ERR = 200) ! 200 is a label of branch target
! in this scoping unit.

9.8.4 The ENDFILE Statement

The ENDFILE writes an end-of-file record as the next record and positions the
file after the end-of-file record written. Writing records past the end-of-file

record is prohibited. After executing an ENDFILE statement, it is necessary to
execute a BACKSPACE or REWIND statement to position the file ahead of the
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end-of-file record before reading or writing the file. If the file is connected but
does not exist, writing an end-of-file record creates the file. Examples of
ENDFILE statements are:

ENDFILE OUTPUT_UNIT I OUTPUT_UNIT is an integer variable.

ENDFILE (10, & I 200 is a label of a branch target
ERR = 200, & ! in this scoping unit. ST is a
IOSTAT = ST) ! default scalar integer variable.

A file may be connected for sequential and direct access, but not for both
simultaneously. If a file is connected for sequential access and an ENDFILE
statement is executed on the file, only those records written before the
ENDFILE statement is executed are considered to have been written.
Consequently, when the file is subsequently connected for direct access, only
those records before the end-of-file record may be read.

9.9 Restrictions: I/O Specifiers, List Items, and Statements

422

Any function reference appearing in a keyword specifier value or in an
input/output list must not cause the execution of another input/output
statement. Note that such function references also must not have side effects
that change any object in the same statement (7.4.1). For example:

WRITE (10, FMT = "(10I5)", REC = FCN(l) ) X(FCN@)), I, J

The function FCN must not contain an input/output statement and must not
change its argument, because | and J are also output list items.

A unit or file may not have all of the properties (for example, all access
methods or all forms) required for it by execution of certain input/output
statements. If this is the case, such input/output statements must not refer to
files or units limited in this way. For example, if unit 5 cannot support
unformatted sequential files, the following OPEN statement must not appear
in a program:

OPEN (UNIT = 5, IOSTAT = IERR, &
ACCESS = "SEQUENTIAL", FORM = "UNFORMATTED")
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9.10 Summary

9.10.1 Fortran Files

A Fortran file consists of records. Files may be internal or external.

9.10.2 Record

Data records are sequences of data values. End-of-file records are processor
determined.

9.10.3 Formatted and Unformatted Data

Records of formatted data may not be mixed with unformatted data.
Formatted data is converted to characters according to the editing in a format
statement, or by namelist or list-directed editing. Unformatted data is not
converted.

9.10.4 File Positioning

The file position determines the data record to be processed. The file may be at
the initial point, the terminal point, between data records, within a record, or
be undetermined.

9.10.5 Backspacing

The BACKSPACE statement positions the file ahead of the previous record.

BACKSPACE 9

9.10.6 Rewinding

The REWIND statement positions the file at the initial point.

REWIND (10, ERR = 99)
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9.10.7 Ending a File

The ENDFILE statement writes an end-of-file record and the file is positioned
after the end-of-file record. Reading or writing beyond an end-of-file record is
prohibited.

ENDFILE 8

9.10.8 Unit

A unit number is a nonnegative integer that identifies a file. The valid unit
numbers are processor dependent. On any system, the files that exist for
connection to a unit are processor determined.

REWIND (UNIT = 9)

A unit may also be a character variable in the program. In this case, an internal
file is being specified, and the internal file is the character variable.

CHARACTER (100) INTERNAL_FILE
READ (UNIT = INTERNAL_FILE, FMT = '(215)) I, J

9.10.9 File Connection

File connection, preconnection, and disconnection apply to external files and a
unit number. Internal files are always connected.

9.10.10 Opening Files

The OPEN statement connects a file to a unit and determines file connection
characteristics.

OPEN (UNIT = 10, IOSTAT = IERR, &
ACCESS = "DIRECT", RECL = 100)

9.10.11 Closing Files

The CLOSE statement disconnects a file from a unit.

CLOSE (10, ERR = 99, STATUS = "KEEP")
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9.10.12 Unformatted Sequential Access Input/Output

Data is transferred without any format conversion. The transfer proceeds
sequentially from the current file position to the next data record.

READ (9, IOSTAT = IER) X, Y
WRITE (10) A

9.10.13 Formatted Sequential Access Input/Output

Data is transferred with format conversion. The transfer proceeds sequentially
from the current file position to the next data record.

READ (9, 100, IOSTAT = IER) X, Y
WRITE (10, 101) A

9.10.14 Namelist Input/Output

Variables are established in a list with a group name. Conversion takes place
implicitly without a format specification. The data transfer uses the group
name rather than the list of variables.

NAMELIST / GROUP_NAME / A, B, C
READ (9, NML = GROUP_NAME, ERR = 99)

WRITE (19, NML = GROUP_NAME)

9.10.15 List-Directed Input/Output

Data is converted without a format specification. The data consists of
sequences of values edited implicitly. Sequential access is required. An asterisk
as the format specification indicates list-directed data transfer.

READ (9, *, ERR = 99) X
WRITE (UNIT = 8, FMT = *, IOSTAT = IERR) Y
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9.10.16 Nonadvancing Input/Output
Nonadvancing reading and writing is character oriented. Positioning is after
the last character read or written. Nonadvancing data transfer is indicated by

an ADVANCE-= specifier with the value NO.

READ (9, 100, ADVANCE = "NO", &
SIZE = NCOUNT, EOR 200) CHAR
"NO", UNIT = 8, IOSTAT = K) NAME

WRITE (FMT = 12, ADVANCE

9.10.17 Data Transfer on Internal Files
The transfer is memory to memory using a format specification for conversion
to or from characters. Only formatted sequential access is allowed. The unit is

a character variable.

READ (CHAR, FMT = 103) X, Y, KK
WRITE (UNIT = CH, FMT = 104, ERR = 99) A, I, J

9.10.18 Unformatted Direct Access Input/Output
Access is by record number. The records in the file are all unformatted. Direct
access data transfer is indicated by a REC= specifier in the data transfer

statement.

READ (9, IOSTAT = IERR, REC = 64) X, Y
WRITE (UNIT = 8, ERR = 99, REC = 30) Z

9.10.19 Formatted Direct Access Input/Output
Access is by record number. The records in the file are all formatted.

= 64) X, Y

READ (9, 100, IOSTAT = IERR, REC
99, REC = 30) Z

WRITE (UNIT = 8, FMT = 105, ERR
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Data usually are stored in memory as the values of variables in some binary
form. For example, the integer 6 may be stored as 0000000000000110, where the
0s and 1s represent binary digits. On the other hand, formatted data records in
a file consist of characters. Thus, when data is read from a formatted record, it
must be converted from characters to the internal representation. When data is
written to a formatted record, it must be converted from the internal
representation into a string of characters.

A format specification provides the information necessary to determine how
these conversions are to be performed. The format specification is basically a
list of edit descriptors, of which there are three general types: data edit
descriptors, control edit descriptors, and string edit descriptors. There is a data
edit descriptor for each data value in the input/output list of the data transfer
statement. Control edit descriptors specify the spacing and position within a
record, new records, interpretation of blanks, and plus sign suppression. String
edit descriptors transfer strings of characters represented in format
specifications to output records.

The format reference that indicates where to find the format may be a
statement label that identifies a FORMAT statement, or it may be a character
expression giving the format directly. Using either method is called explicit
formatting.

There are two other cases where formatting of a different sort applies. These
are list-directed and namelist formatting. Formatting (that is, conversion)
occurs without specifically providing the editing information usually
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contained in a format specification. In these cases, the editing or formatting is
implicit; that is, the details about the width of fields, forms of output values,
and location of output fields within the records is determined by the processor.

This chapter describes the two methods of specifying explicit formatting,
namely, using a FORMAT statement and using a character expression
representing a format specification. It then lists and subsequently describes in
detail the three kinds of edit descriptors that determine the conversion,
location, and transfer of data values to and from input and output records. An
algorithm is given that describes the correspondence of the data edit
descriptors and items in the data item list of the data transfer statement. Next,
the two methods of implicit formatting—Iist-directed and namelist
formatting—are described. Finally, the chapter concludes with a brief summary
of the formatting methods available in Fortran 90.

Tables 10-1, 10-2, and 10-3 list all of the edit descriptors—control, data, and
string edit descriptors—and provide a brief description of each.

Table 10-1 Summary of control edit descriptors

Descriptor Description

BN Ignore nonleading blanks in numeric input fields
BZ Treat nonleading blanks in numeric input fields as zeros
S Printing of optional plus sign is processor dependent
SP Print optional plus sign
SS Do not print optional plus sign
T Tab to specified position
TL Tab left the specified number of positions
TR Tab right the specified number of positions
X Tab right the specified number of positions
End current record and move to beginning of next record

Stop format processing when no further input/output list
items

P Interpret certain real numbers with a specified scale factor
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Table 10-2 Summary of data edit descriptor

Descriptor

Description

A
B

EN
ES

L
O
Z

Convert data of type character

Convert data of type integer to/from a binary base
Convert data of type real—same as E edit descriptor
Convert data of type real with an exponent

Convert data of type real to engineering notation
Convert data of type real to scientific notation
Convert data of type real with no exponent on output
Convert data of all intrinsic types

Convert data of type integer

Convert data of type logical

Convert data of type integer to/from an octal base

Convert data of type integer to/from a hexadecimal base

Table 10-3 Summary of string edit descriptors

Descriptor

Description

H
text’

"text"

Transfer of text to output record
Transfer of a character literal constant to output record

Transfer of a character literal constant to output record

10.1 Explicit Formatting

As indicated above, explicit formatting information may be:

1. contained in a FORMAT statement

WRITE (6, 100) LIGHT, AND, HEAVY

100 FORMAT (F10.2, 15, E16.8)
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2. given as the value of a character expression

WRITE (6,'(F10.2, 15, E16.8)' ) LIGHT, AND, HEAVY

10.1.1 The FORMAT Statement

The form of the FORMAT statement (R1001) is:
FORMAT ([ format-item-list ] )

A format specification (R1002) consists of the parentheses and the format item
list (10.2).

The FORMAT statement must be labeled. The label is used in the input/output
statement to reference a particular FORMAT statement.

There may be many FORMAT statements in a program—as many as one for
each input/output statement; or, FORMAT statements may be used repeatedly
in different input/output statements.

10.1.2 Character Expression Format Specifications

A character expression may be used in the input/output statement as a format
specification. The leading part of the character expression must be a valid
format specification including the parentheses; that is, the value of the
expression must be such that the first nonblank character is a left parenthesis,
followed by a list of valid format items, followed by a right parenthesis.

Rules and restrictions:

1. All variables in the character expression must be defined when the
input/output statement is executed.

2. Characters may appear following the last right parenthesis in the character
expression; they have no effect.

3. If the expression is a character array, the format is scanned in array element
order. For example, the following format specification is valid (where A is
a character array of length at least 6 and size at least 2):

A (1) = '(1X,13,
A @2 =17, 19y
PRINT A, MUTT, AND, JEFF
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4. If the expression is an array element, the format must be entirely contained
within that element.

5. If the expression is a character variable, it or any part of it must not be
redefined or become undefined during the execution of the input/output
statement.

6. If the expression is a character constant delimited by apostrophes, two
apostrophes must be written to represent each apostrophe in the format
specification. If a format specification contains, in turn, a character constant
delimited by apostrophes, there must be two apostrophes for each of the
apostrophe delimiters, and each apostrophe within the character constant
must be represented by four apostrophes (see the example below). If
guotes are used for the string delimiters and quotes are used within the
string, a similar doubling of the quote marks is required. One way to avoid
problems is to use delimiters different from the characters within the
format specification, if possible. The best way to avoid the problem is to
put the character expression in the input/output list instead of the format
specification as shown in the second line of the following example.

PRINT ("l can”"t hear you”)'
PRINT "(A16)", "I can’t hear you"

where Al6 is a character edit descriptor specifying a field width of 16
positions.

The last example can be written without a field width (character count) as
in:

PRINT "(A)", "I can’t hear you"

When a character expression is used as a format specification, the processor is
not required to detect at compile-time any syntax or constraint violations in the
format specification. The reason for relaxing the requirements for detection of
such errors is that the format specification may not be complete or known until
the data transfer statement is executed and therefore cannot be checked for
validity until execution time. The same relaxation on the requirements for error
detection also applies to the use of deleted, obsolescent, and extended features
used in format specifications.
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10.2 Format Specifications

432

Each item in the format item list of a format specification is an edit descriptor,
which may be a data edit descriptor, control edit descriptor, or character string
edit descriptor. Each data list item must have a corresponding data edit
descriptor; other descriptors specify spacing, tabulation, scale factors for real
data, and printing of optional signs.

Blanks may be used freely in format specifications without affecting the
interpretation of the edit descriptors, both in the free and fixed source forms.
Named constants are not allowed in format specifications because they would
create ambiguities in the interpretation of the format specifications. For
example, if N12 were a named integer constant with value 15, the engineering
format edit descriptor E N12.4 could be interpreted as the edit descriptor
EN12.4 or E15.4.

The forms of a format item (R1003) are:

[ r ] data-edit-descriptor
control-edit-descriptor
character-string-edit-descriptor
[r]( format-item-list )

where r is a default integer literal constant and is called a repeat factor. If a
repeat factor is optional and is not present, it is as if it were present with the
value of 1.

Rules and restrictions:
1. r must not have a kind value specified for it.

2. The comma between edit descriptors may be omitted in the following
cases:

a. between the scale factor (P) and the numeric edit descriptors F, E, EN,
ES, D, or G

b. before a new record indicated by a slash when there is no repeat factor
present

c. after the slash for a new record

d. before or after the colon edit descriptor
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3. Blanks may be used as follows:
a. before the first left parenthesis

b. anywhere in the format specification except within a character string;
the blanks have no effect on the formatting. It is recommended that
blanks be used to enhance the readability of the format specification

4. r must be a positive integer.

5. Edit descriptors may be nested within parentheses and may be preceded
by a repeat factor indicating that the edit descriptor is repeated; a
parenthesized list of edit descriptors may also be preceded by a repeat
factor, indicating that the entire list is to be repeated.

The following examples illustrate many of the edit descriptors that are
described in detail in the next sections.

100 FORMAT (2(5E10.1, 110) / (1X, SP, 17, ES15.2))
110 FORMAT (110, F14.1, EN10.2)

120 FORMAT (TR4, L4, 15X, A20)

130 FORMAT (9HMORE SNOW)

140 FORMAT (9X, 3A5, 7/ 10X, 3L4)

10.2.1 Data Edit Descriptor Form

Data edit descriptors specify the conversion of values to and from the internal
representation to the character representation in the formatted record of a file.
The forms of the data edit descriptors (R1005) are:

I wl[. m]
Bw[. m]
Owl[. m]
Zw[. m]
Fw. d

Ew. d[Ee]
ENw. d[Ee]
ESw. d[Ee]
Gw. d[Ee]
Lw

Alw]

Dw. d
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where w, m, d, and e are default integer literal constants, and
w is the width of the field
m is the least number of digits in the field
d is the number of decimal digits in the field
e is the number of digits in the exponent
Rules and restrictions:
1. w, m, d, and e must not have a kind value specified for them.
2. w and e must be positive.
3. The values of m, d, and e must not exceed the value of w.
4. Thel,B, O, Z, F E, EN, ES, G, L, A, and D edit descriptors indicate the
manner of editing.
The detailed meanings of the data edit descriptors are described in Sections
10.5 through 10.7.
10.2.2 Control Edit Descriptor Form
Control edit descriptors determine the position, form, layout, and
interpretation of characters transferred to and from formatted records in a file.
The forms of a control edit descriptor (R1010) are:
Tn
TLn
TRn
n X
[r]/
S
SP
SS
k P
BN
BZ
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where n and r are default integer literal constants, k is a signed default integer
literal constant, and

k is a scale factor

is a position in the record to move to, relative to the left tab

: limit for descriptor T
n is the number of spaces to move for descriptors X, TR, and TL
r is a repeat factor

The control edit descriptors T, TL, TR, and X are called position edit
descriptors (R1012). The control edit descriptors S, SP, and SS are called sign
edit descriptors (R1014). The control edit descriptors BN and BZ are called
blank interpretation edit descriptors (R1015).

Rules and restrictions:
1. n must be positive.
2. n, k, and r must not have a kind value specified for them.

In kP, k is called the scale factor. T, TL, TR, X, slash, colon, S, SP, SS, P, BN, and
BZ indicate the manner of editing and are described in detail in Section 10.8.

10.3 Character String Edit Descriptor Form

Character string edit descriptors specify character strings to be transmitted to
the formatted output record of a file. The forms of the character string edit
descriptor (R1016) are:

character-literal-constant
n Hrepresentable-character [ representable-character ] ...

where n is a default integer literal constant and is a character count.
Rules and restrictions:
1. n must not have a kind value specified for it.

2. n must be positive.
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3. If the edit descriptor is a character literal constant, it must not have a kind
value specified for it.

The character string edit descriptors are described in detail in Section 10.9.

10.4 Formatted Data Transfer

The format specification indicates how data are transferred by READ, WRITE,
and PRINT statements. The data transfer typically involves a conversion of a
data value. The particular conversion depends on the next data input or output
item, along with the current edit descriptor in the format specification.

Examples:

READ (*, (A7, 110, E16.8) ) X, Y, Z
WRITE (*, 100) X, Y, Z
100 FORMAT (A7, 110, E16.3)

An empty format specification () is restricted to input/output statements with
no items in the input/output data item list or a list of items all of which have
zero size. On the other hand, a scalar zero-length character string requires an A
edit descriptor.

The effect on input and output of an empty format specification depends on
whether the data transfer is advancing or nonadvancing, and on whether there
is a current record. The effect is described by the following eight cases:

1. The data transfer is advancing:
a. if there is no current record, then:
i. on input, skip the next record
ii. on output, write an empty record
b. if there is a current record, then:
i. on input, skip to the end of the current record
ii. on output, terminate the current record
2. The data transfer is honadvancing:
a. if there is no current record, then:

i. on input, move to the initial point of the next record
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ii. on output, create an empty record and move to its initial point
b. if there is a current record, then:
i. on input, there is no effect

ii. on output, there is no effect
Example:

DOl =1 N

READ (5, (A1), ADVANCE='NO’) (CHARS(I)(J:J) ,J =1, M)
ENDDO
READ (5, ()’ ADVANCE = 'YES)

The above program segment reads N character strings, each of length M, from
a single record and then advances to the beginning of the next record.

The data and the edit descriptors are converted in a left-to-right fashion, except
for repeated items, which are repeated until either the data items are exhausted
or the repeat number is reached. A complex data item requires two data edit
descriptors for data items of type real; that is, two of the edit descriptors E, F,
D, ES, EN, or G (they may be different).

Control edit descriptors and character edit descriptors do not require a
corresponding data item in the list. The effect is directly on the record
transferred. When the data items are completed, no further change is made to
record on output, and no change is made to the position in the file on input.

10.4.1 Parentheses Usage

The effect of parentheses in a format specification depends on the nesting level
of the parentheses.

Rules and restrictions:

1. When the rightmost right parenthesis of a complete format specification is
encountered and there are no more data items, the input/output data
transfer terminates. Remember that the format specification may be given
by a character string expression. In such a case, the right parenthesis
matching the leftmost left parenthesis may be followed by any characters,
including parentheses. None of these trailing characters are relevant to the
rules and restrictions in this section. For example, the following character
string
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'(15,E16.8,A5) (This part is ignored)’

may be used as a format specification in a character string, and the part
after the first right parenthesis is ignored.

2. When the rightmost right parenthesis is encountered and there are more
data items, format control continues beginning at the left parenthesis
corresponding to the last preceding right parenthesis in the specification, if
there is one, with an implied slash (/) to cause a new record to begin. If
there is no preceding right parenthesis, the reversion is to the beginning of
the format.

3. If there is a repeat factor encountered when reverting, the repeat before the
parenthesis is reused.

4. Reversion does not affect the scale factors, the sign control edit descriptor,
or blank interpretation. These remain in effect for the duration of the
format action.

Example:
CHR_FMT = '(I5, 4(3F10.2, 10X), E20.4y

If the above character string were used in a formatted output data transfer
statement, the first output data item must be an integer. The remaining items
must be of type real (or complex): 13 real values are printed on the first line
after the integer, and then the next real values are printed on each new line, 13
at a time, until the data items are exhausted. All but the last line will have 13
real values printed, 3 real values using the F10.2 edit descriptor, 10 blanks,
followed by 3 more real values and 10 blanks repeated 4 times in total,
followed by a real value using the E20.4 edit descriptor. This behavior is
described in more detail in the next section.

10.4.2 Correspondence between a Data-Edit Descriptor and a List Item

The best way to describe how this correspondence is determined is to think of
two markers, one beginning at the first item of input/output data item list and
the other beginning at the first left parenthesis of the format specification.
Before describing how each marker proceeds through each list, the
input/output data item list is considered to be expanded by writing out each
element of an array, each component of a structure, each part (real and
imaginary) of each item of type complex, and each iteration of each implied-do
list. The expanded item list is called the effective data item list, and each item
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in the list is called an effective item. Note that zero-sized arrays yield no
effective items, but zero-length character objects yield effective items. Also, the
format specification is considered expanded for each repeat factor preceding
any (data or slash) edit descriptor but not a parenthesized format item list. If
the data item list is nonempty, there must be at least one data edit descriptor in
the format specification. Given the effective data item list and expanded format
specification, the markers proceed as follows:

1. The marker proceeds through the format specification until the first data
edit descriptor or right parenthesis is encountered. Any control edit
descriptor or string edit descriptor encountered before the first data edit
descriptor is encountered is interpreted according to its definition, each
possibly changing the position within the record or the position within the
file, or changing the interpretation of data in the record or conversion of
data to the record.

2. If a data edit descriptor is encountered first, the effective data item pointed
to by the marker in the data item list is transferred and converted
according to the data edit descriptor, and the marker in the data item list
proceeds to the next effective data item.

3. If aright parenthesis is encountered and the right parenthesis is not the
outermost one of the format specification, the repeat factor in front of the
matching left parenthesis is reduced by one. If the reduced factor is
nonzero, the marker scans right from this left parenthesis, looking for a
data edit descriptor as above. If the repeat factor becomes zero, the format
specification marker then proceeds right from the right parenthesis, again
looking for a data edit descriptor. If the right parenthesis is the outermost
right parenthesis, the marker reverts to the left parenthesis corresponding
to the last preceding right parenthesis, if there is one; if there is no
preceding right parenthesis, it reverts to the first left parenthesis of the
format specification. Upon reversion, a slash edit descriptor is interpreted
implicitly, and the format marker proceeds right from this left parenthesis,
honoring any repeat factor in front of it.

4. If no effective data item remains when a data edit descriptor is
encountered or when a colon edit descriptor is encountered, the
input/output operation terminates.

To illustrate how this works, consider the following example:
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INTEGER A(3)

COMPLEX C

TYPE RATIONAL
INTEGER N, D

END TYPE

TYPE (RATIONAL) R

WRITE (*, &
"CA and C appear on line 1, R appears on line 2" &
/ (AX, 315, 2F5.2) )*) A, C, R

The data item list is first expanded as described above. The expanded data
item list becomes:

A1), A@2), A@3), REAL(C), AIMAG(C) ,R% N, R % D
The format specification is also expanded and becomes:

(A and C appear on line 1, R appears on line 2° &
[ (AX, 15, 15, 15, F5.2, F5.2) )

A marker is established in the data item list, which initially points at the item
A(1). A marker is also established in the format specification and initially
points to the first left parenthesis. The marker in the format specification
proceeds right to the first edit descriptor, which is the first 15. In so doing, it
sees the string edit descriptor which is transferred to the output record, the
slash edit descriptor which causes the previous record to terminate and to
begin a new record, and the position edit descriptor which positions the record
at the second character, blank filling the record. The item A(1) is then
converted according to the I5 specification and the converted value is
transferred to the output record. The marker in the data item list is moved to
A(2). The format specification marker is moved left to the second I5 edit
descriptor, and A(2) is converted and transferred to the output record.
Similarly, A(3), the real part of C, and the imaginary part of C are converted
and transferred to the output record. At this point, the data item list marker is
pointing at R % N, and the format specification marker begins scanning after
the second F5.2 edit descriptor looking for the next edit descriptor. The first
right parenthesis is encountered and the scan reverts back to the corresponding
left parenthesis. The repeat factor in front of this parenthesis is 1 by default and
is reduced by 1 to 0. The marker in the format specification proceeds right from
the first right parenthesis, encountering the outermost right parenthesis and
then reverts to the left parenthesis before the edit descriptor 1X. As a result, an
implicit slash edit descriptor is interpreted, causing the previous output record
to be completed and a new record to be started. The format specification
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marker scans right looking for a data edit descriptor, which is the first 15. In the
process of the scan right, the position edit descriptor is interpreted, which
positions the file at the second character of the next record (and blank fills the
skipped characters). Finally, the N and D components of R are converted and
transferred to the output record, using the first two 15 edit descriptors. The
data item list marker finds no further items, and the output operation
terminates.

An example of writing a zero-sized array and zero-length character string
using formatted output data transfer is:

REAL A(10)
CHARACTER(4) CHR

WRITE( 6, '()) ) A(1:0)

WRITE( 6, '(Ad) ) CHR(4:3)
An empty format specification is allowed for the first WRITE statement,
because the array to be printed is a zero-sized array section. The format
specification in the second WRITE statement is required to have at least one A
edit descriptor, because the effective data item is a zero-length character string,
not a zero-sized array. In the first case, an empty record is written, and, in the
second case, a record consisting of four blank characters is written (see Section
10.7).

10.5 File Positioning by Format Control

There is a current record being processed. After each data edit descriptor is
used, the file position within that record is following the last character read or
written by the particular edit descriptor. On output, after a string edit
descriptor is used, the file is positioned within that record following the last
character written. (See the description of the control edit descriptors T, TL, TR,
and X for any special positioning within the current record; see the description
of the slash edit descriptor for special positioning within the file.) The
remaining control edit descriptors do not affect the position within a record or
within the file; they affect only the interpretation of the input characters or the
form of the output character string or how subsequent edit descriptors are
interpreted. The interpretation of the edit descriptors is not affected by
whether the operation is an advancing or nonadvancing input/output
operation.
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10.6 Numeric Editing

There are seven edit descriptors that cover numeric editing: I, F, E, EN, ES, D,
and G. The following rules apply to all of them.

Rules and restrictions:

On input:

1. Leading blanks are never significant.

2. Plus signs may be omitted in the input data.

3. A blank field is considered to be zero, regardless of the BN edit descriptor
or the BLANK= specifier in effect.

4. Within a field, blanks are interpreted in a manner that depends on the
BLANK-= specifier default for preconnected files, the BLANK= specifier
provided in an OPEN statement for the unit, and any BN or BZ blank edit
descriptor in effect.

5. In numeric fields that have a decimal point and correspond to F, E, EN, ES,
D, or G edit descriptors, the decimal point in the input field overrides the
placement of the decimal point specified by the edit descriptor
specification.

6. Data input is permitted to have more digits of significance than the
processor can use to represent a number.

7. If the processor is capable of representing both uppercase and lowercase
letters in input records, the lowercase exponent letters e and d are
equivalent to the corresponding uppercase exponent letters.

8. The constants in the input records may have kind parameters specified for
them, but the kind parameters are restricted to integer literal constants;
named constants are prohibited.

On output:

1. A positive or zero value may have a plus sign, depending on the sign edit
descriptors used.
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2. Negative values must have a negative sign, unless the printed value would
be zero (because of the conversion rules). Negative zero must never be
produced. For example, suppose the variable SMALL has the value
—0.000314. On output, the characters transferred to output unit 6 by the
statements

WRITE(6,10) SMALL
10 FORMAT(F5.2)

must not contain a negative sign, and may be either
b0.00 or bb.00
because a negative zero must not be printed.
3. The number is right justified in the field. Leading blanks may be inserted.

4. If the number or the exponent is too large for the field width specified in
the edit descriptor, the entire output field is filled with asterisks.

5. The processor must not produce asterisks when the optional characters can
be omitted and the output character string fits in the output field.

10.6.1 Integer Editing

The input/output list item corresponding to an integer edit descriptor must be
of type integer, except for the G edit descriptor.

The integer edit descriptors are:

I w[. m]
Bw[. m]
Oowl[. m]
Zw[. m]
Gw. d[Ee]

where:

w is the field width

m is the minimum number of digits in the constant

Rules and restrictions:
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On both input and output:
1. The value of m must not exceed the value of w.

2. For an integer input/output list item, the edit descriptor Gw.d[Ee] is the
same as the Iw for the given value of w.

On input:
1. m has no effect on an input field.

2. For the | edit descriptor, the character string in the file must be an
optionally signed integer constant.

3. For the B, O, or Z edit descriptors, the character string must be a string of
blanks and digits of binary, octal, or hexadecimal base, respectively. For
example, the character string corresponding to a B edit descriptor must not
contain digits 2 through 9. The character string corresponding to an O edit
descriptor must not contain the digits 8 or 9. The character string
corresponding to a Z edit descriptor may consist only of the blank
character, the digits 0 through 9, and the letters A through F (or
equivalently the letters a through f if the processor supports lowercase
letters).

Example:

READ (5, 100) K, J