
Fortran 90 Handbook
Complete ANSI / ISO Reference

Jeanne C. Adams
Walter S. Brainerd

Jeanne T. Martin
Brian T. Smith

Jerrold L. Wagener

Intertext Publications
McGraw-Hill Book Company

Library of Congress Catalog Card Number 91-77211

Copyright © 1992 by Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener. All rights
reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of
this book may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system without the
prior written permission of the authors and the publisher.

10 9 8 7 6 5 4 3 2 1

ISBN 0-07-000406-4

Intertext Publications/Multiscience Press, Inc. One Lincoln Plaza New York, NY 10023
McGraw-Hill Book Company 1221 Avenue of the Americas New York, NY 10020

Composition by UNICOMP

iii

Preface

The Fortran 90 Handbook is a definitive and comprehensive guide to Fortran 90
and its use. Fortran 90, the latest standard version of Fortran, has many
excellent new features that will assist the programmer in writing efficient,
portable, and maintainable programs. The Fortran 90 Handbook is an informal
description of Fortran 90, developed to provide not only a readable
explanation of features, but also some rationale for the inclusion of features
and their use. In addition, “models” give the reader better insight as to why
things are done as they are in the language.

This handbook is intended for anyone who wants a comprehensive survey of
Fortran 90, including those familiar with programming language concepts but
unfamiliar with Fortran. Experienced Fortran 77 programmers will be able to
use this volume to assimilate quickly those features in Fortran 90 that are not
in Fortran 77 (Fortran 90 is a superset of Fortran 77).

Chapter 0 provides a brief overview of several of the most important features
that are new in Fortran 90. Chapters 1–14 correspond to Sections 1–14 in the
standard. (The standard is the complete official description of the language,
but it is written in a legally airtight, formal style without tutorial material and
can be difficult to understand in places.) The handbook and the standard can
be examined in parallel for insights into the Fortran language. This makes it
feasible to use this handbook to “decipher” the standard, and this is an ideal
use of this book.

Although the handbook is written for use in conjunction with the standard, it
is also designed as a practical stand-alone description of Fortran 90. In the
interest of readability, a few of the more obscure aspects of the standard may

iv FORTRAN User’s Guide

not be treated rigorously; any such cases should not impact the usefulness of
this handbook in describing Fortran 90. On the other hand, in places where the
standard is not completely clear, a reasonable interpretation is often given,
together with ways to implement and program that will avoid potential
problems due to misinterpretation of the standard. Of course, if information is
being sought to understand a fine point of compiler implementation, settle a
bet, resolve a court case, or determine the answer to a Fortran trivia question,
the standard itself should be considered the final authority.

The syntactic features of the language are described completely in the
appendices, and these can serve as continual concise references for Fortran 90.

Other Sources of Information
Other parts of the book can be used to help find information.

• Each of the intrinsic functions is described in detail in Appendix A,
although a general discussion of the intrinsic functions is included in
Chapter 13.

• The complete syntax of Fortran 90 may be found in Appendix B. The syntax
rules are numbered exactly as they are in the Fortran standard. There is a
cross reference that lists, for each nonterminal syntactic term, the number of
the rule in which it is defined, and all rules in which it is referenced.

• Appendix C contains a listing of the obsolescent features.
• The index is unusually comprehensive.
• There is an index of examples, giving the location of program examples that

illustrate the use of many Fortran 90 features.

For an informal and tutorial approach to learning Fortran 90, the book,
Programmers Guide to Fortran 90, Second Edition, by Brainerd, Goldberg, and
Adams (Unicomp, Albuquerque, NM, 1993) is more appropriate.

Style of the Programming Examples
In order to illustrate many features of the language and as many uses of these
features as possible, no single particular style has been used when writing the
examples. In many cases, the style illustrated is not necessarily one that the
authors recommend.

v

Acknowledgments
Material in the appendices of this book was developed by the ANSI committee
X3J3 and the ISO committee SC22/WG5 for inclusion in the Fortran 90
standard ISO/IEC 1539 : 1991. This material is reprinted with the permission of
the International Standards Organization.

Comments provided by Charles Goldberg have increased the accuracy and
readability of this book enormously.

Copyright
Fortran 90 Handbook is reproduced herein with the permission of McGraw-
Hill, Inc., Copyright 1992, by Walter S. Brainerd, Jeanne C. Adams, Jeanne T.
Martin, Brian T. Smith, and Jerrold L. Wagener. All rights reserved.

Printed Copies
Printed copies of this book may be obtained by ordering from

Unicomp, Inc.
1874 San Bernardino Ave NE
Albuquerque, NM 87122 USA
+1-505-275-0800
+1-505-856-1501 (fax)

Visit the Fortran market: http://www.fortran.com/fortran

The home page includes how to order this book in hard copy.

Jeanne C. Adams

Walter S. Brainerd, walt@fortran.com

Jeanne. T. Martin

Brian T. Smith

Jerrold L. Wagener

January 1992

vi FORTRAN User’s Guide

vii

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Table of Contents

Preface. iii

Sneak Preview . 1

1. Introduction . 13

1.1 History . 13
1.2 Why a New Standard? . 15
1.3 Why Not Use Another Language? 17
1.4 Development of Fortran 90 . 18
1.5 Fortran 77 Compatibility . 19
1.6 Extensibility. 20
1.7 Intrinsic and Standard Modules . 20
1.8 The Fortran 90 Language Standard 21
1.9 References . 24

2. Fortran Concepts and Terms . 27

2.1 Scope and Association . 27
2.2 Program Organization . 35
2.3 Data Environment . 39
2.4 Program Execution . 43
2.5 Terms . 46
2.6 Summary of Forms . 52
2.7 Ordering Requirements . 57

viii Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2.8 Example Fortran 90 Program . 59
2.9 Summary . 59

3. Language Elements
and Source Form . 65

3.1 The Processor Character Set . 66
3.2 Lexical Tokens. 69
3.3 Source Form . 73
3.4 Rules for Fixed/Free Source Form 82
3.5 The INCLUDE Line . 83
3.6 Low-Level Syntax . 84
3.7 Summary . 84

4. Data Types . 89

4.1 Building the Data Environment for a Problem Solution . 91
4.2 What Is Meant by “Type” in Fortran? 96
4.3 Intrinsic Data Types . 99
4.4 Derived Types . 110
4.5 Structure Constructors . 121
4.6 Array Constructors. 124
4.7 Summary . 127

5. Declarations . 131

5.1 Type Declaration Statements. 134
5.2 Implicit Typing . 142
5.3 Array Properties . 144
5.4 Pointer Properties . 152
5.5 Value Attributes . 155
5.6 Object Accessibility and Use . 161
5.7 Procedure Properties . 171
5.8 Automatic Data Objects . 174
5.9 NAMELIST Statement . 175

5.10 Storage Association . 176
5.11 Summary . 186

Table of Contents ix

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6. Using Data . 197

6.1 Constants and Variables . 199
6.2 Substrings . 201
6.3 Structure Components . 203
6.4 Arrays . 205
6.5 Pointers and Allocatable Arrays. 215
6.6 Summary . 222

7. Expressions and Assignment . 227

7.1 Introduction to Fortran 90 Expressions 228
7.2 Formation of Expressions . 234
7.3 Interpretation of Expressions . 276
7.4 Evaluation of Expressions . 284
7.5 Assignment . 290
7.6 Summary . 303

8. Controlling Execution . 309

8.1 The Execution Sequence . 310
8.2 Blocks and Executable Constructs 310
8.3 IF Construct and IF Statement . 312
8.4 The CASE Construct. 316
8.5 The DO Construct. 321
8.6 Branching. 333
8.7 Obsolescent Control Statements . 337
8.8 Summary . 341

9. Input and Output Processing . 345

9.1 Records, Files, Access Methods, and Units 346
9.2 Data Transfer Statements. 359
9.3 Execution Model for Data Transfer Statements 389
9.4 Error and Other Conditions in Input/Output Statements 392
9.5 The OPEN Statement . 395
9.6 The CLOSE Statement . 405
9.7 Inquiring about Files . 408
9.8 File Positioning Statements . 417

x Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.9 Restrictions: I/O Specifiers, List Items, and Statements . 422
9.10 Summary . 423

10. Input and Output Editing . 427

10.1 Explicit Formatting. 429
10.2 Format Specifications . 432
10.3 Character String Edit Descriptor Form 435
10.4 Formatted Data Transfer . 436
10.5 File Positioning by Format Control 441
10.6 Numeric Editing . 442
10.7 Logical Editing . 455
10.8 Character Editing . 456
10.9 Control Edit Descriptors . 457

10.10 List-Directed Formatting . 465
10.11 Namelist Formatting . 471
10.12 Summary . 480

11. Program Units . 483

11.1 Overview . 483
11.2 Main Program . 485
11.3 Internal Procedures . 489
11.4 Host Association. 491
11.5 External Subprograms . 496
11.6 Modules . 498
11.7 Block Data Program Units . 515
11.8 Summary . 516

12. Using Procedures . 521

12.1 Procedure Terms and Concepts . 522
12.2 Subroutines . 530
12.3 Functions . 535
12.4 Procedure-Related Statements . 543
12.5 Argument Association . 548
12.6 Procedure Interfaces. 573
12.7 Summary . 587

Table of Contents xi

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13. Intrinsic Procedures . 593

13.1 Intrinsic Procedure Terms and Concepts 594
13.2 Representation Models . 596
13.3 Inquiry and Numeric Manipulation Functions 598
13.4 Transfer and Conversion Functions 601
13.5 Computation Functions . 602
13.6 Array Functions . 604
13.7 Intrinsic Subroutines . 606
13.8 Alphabetical List of All Intrinsic Procedures 606
13.9 Specific Names for Generic Intrinsic Procedures 612

13.10 Summary . 615

14. Scope, Association, and Definition . 617

14.1 The Use of Names. 619
14.2 Scope . 620
14.3 Association . 629
14.4 Definition Status . 637

A. Intrinsic Procedures . 645

B. Fortran 90 Syntax. 727

B.1 The Form of the Syntax . 727
B.2 Syntax Rules and Constraints . 731
B.3 Cross References . 758

C. Decremental Features . 777

C.1 Deleted Features . 777
C.2 Obsolescent Features . 777

Index of Examples. 781

Index . 789

0 Fortran 90 Handbook

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Source Form
Control Structures

Numeric Processing

Array Processing

Pointers

Data Structures

User-Defined Types and
User-Defined Operations

Procedures

Modules

Input/Output Features

Obsolescent Features

Fortran 77

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener.

Sneak Preview 0

This is Chapter 0. Fortran programmers, particularly old-timers, are
accustomed to starting at 1. Prior to Fortran 77, a DO loop had to be executed
at least once, and array subscripts started with one. Even though these
restrictions were eliminated in Fortran 77, arrays had to have at least one
element. In Fortran 90, the programmer can create strings of length zero and
arrays of size zero. So this Chapter 0 will help Fortran 90 programmers get
accustomed to other possibilities for the number 0. Seriously, though, the main
reason for starting with Chapter 0 is that the remaining chapters of this book
correspond with the fourteen chapters of the Fortran standard and are
numbered 1–14 as they are in the standard. Chapter 0 provides the opportunity
for a brief introduction to some of the exciting new features of Fortran 90.

The pie chart on the opposing page illustrates how Fortran 90 is made up of
Fortran 77 plus several new features. The relative sizes of the slices are
determined from the detailed syntax rules in Appendix B—each pie slice is
roughly proportional to the number of syntax rules describing that part of
Fortran 90. Thus the pie gives one measure of the relative complexity of the
different parts of Fortran 90. It only indicates structural (syntactic) complexity,
however, and should not be taken as an indication of conceptual (semantic)
complexity; structural and conceptual complexity may or may not be related. It
also should not be taken as an indication of implementation effort (which also
may or may not be related). In fact, the cost pattern of implementation may be
somewhat machine–architecture dependent or dependent upon the particular
design strategy. Although this measure is crude, it shows clearly that the
majority of statements in Fortran 90 are already familiar to Fortran 77
programmers.

2 Fortran 90 Handbook

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Despite these caveats, the structure of a language is an important part of
learning it and using it; therefore, the pie chart provides useful information
about Fortran 90. The main purpose of this sneak preview is to provide a brief
introduction to each new feature slice of the Fortran pie. Just a glance at the
names of the new features should be enough to convince anyone that they will
become very important to Fortran programmers.

Fortran always has been considered the premier language in scientific and
engineering fields requiring numeric computations. The new features of
Fortran 90 continue to enhance Fortran for these applications and also to
extend the language in significant ways to other areas now very important in
scientific and engineering programming. This chapter is a sneak preview of
some of these features, illustrating briefly why it will be important to master
and use these facilities.

Fortran 77
One of the most important features of Fortran 90 is that it contains all of the
features of Fortran 77. There are four relatively obscure things that are
processor dependent in Fortran 77, but completely specified in Fortran 90;
these are described in Section 1.5. If a program uses one of these features and it
was done differently on a particular implementation than the way chosen for
Fortran 90, this program could behave differently under Fortran 90. Otherwise,
all standard-conforming Fortran 77 programs should run using a Fortran 90
compiler and produce equivalent results.

Source Form and Names
In Fortran 90 there is a new source form for which particular positions have no
special meaning, names may have up to 31 characters and use the underscore
character, blanks have significance in some circumstances, a semicolon may be
used to separate multiple statements on one line, and comments may occur on
any line following an exclamation (!). The old source form is still available and
most of these new features are also available when using the old source form.
SWAP_INTEGERS is a simple example of a subroutine written using the new
source form.

3

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SUBROUTINE SWAP_INTEGERS (ARG_A, ARG_B)
INTEGER, INTENT (INOUT) :: ARG_A, ARG_B
INTEGER :: TEMP ! New form of declaration
TEMP = ARG_A; ARG_A = ARG_B; ARG_B = TEMP

END

If the above code were written so that each line began in position 7 or beyond,
it would also be acceptable as old source form.

Control Structures
Control structures have not been neglected; Fortran now has a complete suite
of modern control structures. A CASE construct has been added. The DO
construct has been improved significantly and now may utilize the CYCLE and
EXIT statements. In addition, the DO construct can have a WHILE control
clause, an iterative control clause, or no control clause. The DO, IF, and CASE
constructs may have construct names to help identify the constructs, which is
especially useful when constructs are nested. The following example illustrates
a CASE construct and a DO construct that contains an IF construct and an EXIT
statement.

SEARCH_LOOP: DO I = 1, TABLE_SIZE
IF (ITEM == TABLE (I)) THEN

LOCATION = I
EXIT SEARCH_LOOP

END IF
END DO SEARCH_LOOP

SELECT CASE (COLOR (LOCATION))
CASE ("RED")

STOP
CASE ("YELLOW")

PRINT *, "Look out!"
CALL CAUTION

CASE ("GREEN")
CALL GO

END SELECT

Numeric Processing
One of the most difficult aspects of porting Fortran programs is the
specification of numeric precision. Fortran 90 contains new features that allow
the programmer to specify precision in a more portable manner and to inquire

4 Fortran 90 Handbook

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

about properties of the precision used by a processor. It is possible to declare
that real variables R1 and R2 have at least 10 decimal digits and a range
extending to at least by using the declaration

REAL (SELECTED_REAL_KIND (10, 30)) :: R1, R2

The values of R1 and R2 may be represented using single precision on some
machines and double precision on others.

The actual precision and range of any real variables can be determined using
intrinsic functions provided for this purpose. Other intrinsic functions allow
the programmer to manipulate the components of a real value in a portable
manner. For example, the intrinsic function SPACING can be used to determine
the convergence of an iterative process.

CONVERGED = (ABS (X0 - X) < 2 * SPACING (X))

It is also possible to indicate a minimum required range of an integer value in
a declaration, as illustrated by the following example.

INTEGER (SELECTED_INT_KIND (5)) :: I1, I2

In this case, the Fortran system must select an integer representation (if one is
available) that allows the integer variables I1 and I2 to have all integer values
between and ; if the programmer limits values assigned to I1 and I2 to
this range, portability is guaranteed.

Array Processing
Many Fortran programs process arrays of data. These programs usually are full
of DO loops that process array elements one at a time. In fact, the more natural
way to think of the process is that it performs some operation on the whole
array. Allowing the programmer to manipulate arrays of data in this manner is
perhaps the single most important enhancement in Fortran 90. This reflects not
only the benefit of expressing array computations in a more natural manner,
but also the development of computers having array processing hardware to
achieve high processing speeds.

In Fortran 90 it is possible to treat a whole array as a single object. For
example, suppose A, B, and C are 10 × 10 arrays of real values. For each
element of B, the statement

A = 2 * B + C

1030

10– 5 105

5

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

doubles its value, adds it to the corresponding element of C, and places the
result in the corresponding element of A.

Parts of an array may be referenced. For example,

PRINT *, A (3, :), B (:, 1:99:2)

prints the third row of the array A and the odd-numbered columns of B. A
section of an array may be given another name with the use of a pointer, but
that is another story.

There is a rich set of new intrinsic functions to process arrays. Users may
define array-valued functions, and arrays may be allocated dynamically. This
last feature alone will be a tremendous aid to programmers who have had to
jump through hoops and often use nonstandard (and nonportable) features in
an attempt to manage storage allocation. One use of dynamic allocation is
illustrated by a simple example in which an array’s size is determined as the
program is executing.

REAL, ALLOCATABLE :: A (:,:)
. . .

READ *, N
ALLOCATE (A (N,N))

There are many other new features designed to assist in array processing, such
as the WHERE construct and the use of arrays with pointers.

Pointers
The pointer features of Fortran 90 permit data to be accessed and processed
dynamically.

REAL, POINTER :: A (:,:)
. . .

READ *, N
ALLOCATE (A (N,N))

Note that, except for the replacement of the keyword “ALLOCATABLE” with
the keyword “POINTER”, this example is identical to the previous one in the
section on arrays. Everything that can be done with allocatable arrays can also
be done with pointers, but allocatable arrays can be used in simple situations
where pointer concepts are not required. Any object may have the pointer
attribute; it is not limited to arrays.

6 Fortran 90 Handbook

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In addition, the effect of assignment can be achieved without the movement of
data; and dynamic structures, such as linked lists and trees, can be created and
processed.

In most cases, a pointer may be thought of as an alias to some data object. For
example, a pointer may “point to” or “alias” a row of an array, a simple
variable, a component of a structure, or an entire data structure.

REAL, TARGET :: A (100,100)
REAL, POINTER :: ITH_ROW (:), CORNERS (:,:), INNER (:,:)

. . .
ITH_ROW => A (I, :)
CORNERS => A (1:100:99, 1:100:99)
INNER => A (2:99, 2:99)

In Fortran 90, pointers may point only to objects having the target attribute.
This is to allow all optimization techniques in those cases that do not involve
pointers.

Data Structures
In the past, scientific and engineering programs typically involved large
amounts of computation; if there were a large amount of data, it usually was
organized in very simple ways. However, contemporary applications often
process large and complex data structures, both numeric and nonnumeric.
Fortran 90 provides the programmer with better tools to deal with such data by
including data structures in the language. Unlike an array, the components of a
Fortran 90 data structure do not have to be of the same data type. Data
structures are introduced into a program with a type definition, such as the
following:

TYPE EMPLOYEE
! An employee’s name may have up to 20 characters.
CHARACTER (LEN = 20) :: NAME
! A social security number (SSN) has nine digits.
INTEGER (SELECTED_INT_KIND (9)) :: SSN
! SALARY may be up to $1M and is kept to the penny.
REAL (SELECTED_REAL_KIND (8, 6)) :: SALARY

END TYPE EMPLOYEE

Variables declared to be type EMPLOYEE have three components, NAME,
SSN, and SALARY, each of a different data type. In the following example
LARRY, MOE, and CURLY are structures of type EMPLOYEE.

7

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

TYPE (EMPLOYEE) :: LARRY, MOE, CURLY

An entire structure can be referenced by using its name, such as MOE.
Individual components can be manipulated as follows:

MOE % SSN = 123456789

User-Defined Types and Operators
Programmers may extend the Fortran 90 built-in facilities in two ways. New
data types may be built from the intrinsic types, and the programmer may
extend the built-in operators, such as + and //, to other data types. In
addition, new operators may be defined for any data types. These facilities
allow the programmer to define abstract data types and facilitate the utilization
of the object-oriented programming paradigm in Fortran. For example, it is
possible to define a new type called MATRIX and extend the operator ∗ to
mean matrix multiplication between two variables declared to be type
MATRIX.

TYPE (MATRIX) :: M1, M2, M3
. . .

M3 = M1 * M2

For this example, it is assumed that the type MATRIX has been defined as the
type EMPLOYEE was defined in the example in "Data Structures" in this
chapter. The form of each defined type must be a structure; in this case, it
could be a structure with one component—a two-dimensional array of reals,
for example, or it could be some sort of linked structure representing a sparse
matrix. The operation (∗) representing matrix multiplication is defined by a
function with an operator interface.

Procedures
There are several new features in Fortran 90 that facilitate the use of
procedures. Functions can extend existing operators and define new ones.
Subroutines are used to redefine assignment for user-defined types, if desired.
Procedure arguments may be made optional and keywords may be used when
calling procedures, allowing them to be listed in any order. Default values may
be specified for missing optional arguments.

SUBROUTINE CONCERT (LOCATION, TIME, BAND, BACKUP)
INTEGER, OPTIONAL :: LOCATION, TIME, BAND, BACKUP

8 Fortran 90 Handbook

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

. . .

With this declaration any of the following could be used to call the subroutine:

CALL CONCERT (1, 2, 3, 4)
CALL CONCERT (1, BACKUP=4)
CALL CONCERT (TIME=2, LOCATION=1)

A procedure interface block is used to describe the characteristics of an
external procedure and its arguments, give a procedure a generic name, define
a new operator or extend an old one, or define a new form of assignment.

Procedure interface blocks are necessary in some cases to allow the correct
procedure call to be generated; their use also will permit the compiler to check
that procedure calls are correct, particularly to check that argument types
match. This provides the capability to guarantee the integrity of a procedure
call and to guard against errors.

The programmer may define generic procedures in Fortran 90. Here are the
subprograms and the interface blocks that create a generic function
CUBE_ROOT that will find the cube root of either a real or double precision
value.

INTERFACE CUBE_ROOT

FUNCTION S_CUBE_ROOT(X)
REAL :: S_CUBE_ROOT
REAL, INTENT(IN) :: X

END FUNCTION S_CUBE_ROOT

FUNCTION D_CUBE_ROOT(X)
DOUBLE PRECISION, INTENT(IN) :: X
DOUBLE PRECISION :: D_CUBE_ROOT

END FUNCTION D_CUBE_ROOT

END INTERFACE

FUNCTION S_CUBE_ROOT(X)
REAL, INTENT(IN) :: X
REAL :: S_CUBE_ROOT

S_CUBE_ROOT = ...

END FUNCTION S_CUBE_ROOT

9

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

FUNCTION D_CUBE_ROOT(X)
DOUBLE PRECISION, INTENT(IN) :: X
DOUBLE PRECISION :: D_CUBE_ROOT

D_CUBE_ROOT = ...

END FUNCTION D_CUBE_ROOT

Fortran 90 also has recursion.

RECURSIVE SUBROUTINE QUICK_SORT (NUMBERS, START, END)
. . .
NEW_START = . . .
NEW_END = . . .
IF (START <= END - 10) THEN

CALL QUICK_SORT (NUMBERS, NEW_START, NEW_END)
. . .

ELSE
CALL SMALL_SORT (NUMBERS, NEW_START, NEW_END)

. . .
END IF
. . .

Modules
Modules can declare global data. This use of modules provides more power
and is much less error-prone than the use of common blocks. Modules also
may be used to collect related items, such as data, procedures, and procedure
interfaces. A module can make a type definition widely accessible, an
important functionality not provided by common blocks. To access the
information in a module from another program unit, a USE statement is
provided. The following simple example illustrates the use of a module to
replace a common block.

MODULE T_FORD
REAL, DIMENSION (100,100) :: A, B, C
INTEGER :: I1, I2

END MODULE T_FORD
. . .

SUBROUTINE SOUP
USE T_FORD
A = 0

. . .

10 Fortran 90 Handbook

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SUBROUTINE NUTS
USE T_FORD
B = 0

. . .

Packaging with a module can be used to hide information. Objects can be kept
inaccessible outside the module with a PRIVATE declaration. This provides
some protection against inadvertent misuse or corruption, thereby improving
program reliability. Packaging also can make the logical structure of a program
more apparent by hiding complex details at lower levels. Programs are
therefore easier to comprehend and less costly to maintain.

It is possible to place in a module the definitions needed to define the type
MATRIX and its operations discussed in "User-Defined Types and Operators"
in this chapter. The representation of the matrices—using arrays for dense
matrices or linked lists for sparse matrices—can be hidden from the user so
that the implementation can be modified without requiring changes in
programs that use the module. Similarly, it is possible to hide the method used
to implement operations such as matrix multiplication.

Input/Output Features
There are some additional input/output features, such as additional clauses for
the OPEN and INQUIRE statements and namelist formatting. Perhaps the most
significant input/output feature is nonadvancing or “stream” character-
oriented input/output. For example, nonadvancing input/output makes it
easier to write a program that counts the number of characters in a file.

PROGRAM CHAR_COUNT
USE IO_PARAMETERS, ONLY : END_OF_RECORD, END_OF_FILE
INTEGER :: IOS, COUNT = 0
CHARACTER :: C
DO

READ (*, "(A)", ADVANCE = "NO", IOSTAT = IOS) C
IF (IOS == END_OF_RECORD) CYCLE
IF (IOS == END_OF_FILE) EXIT
COUNT = COUNT + 1

END DO
PRINT *, "The file contains ", COUNT, " characters."

END PROGRAM CHAR_COUNT

11

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Language Architecture
Everyone recognizes that there are features of Fortran (and other programming
languages, too) that do not represent good programming practice. Modern
features of the language may be used to achieve the same functionality more
effectively. On the other hand, economics dictate that a language evolve slowly.
There is a tremendous investment in Fortran programs; it must be possible to
continue to run these programs, even as they are being revised and updated
using more modern programming techniques. There is also a large investment
in training programmers and perfecting their skill at Fortran programming.
Ideally, it should be possible for a programmer to learn new features of
Fortran 90 as they are needed and at a comfortable pace.

It is expected that most revisions of a programming language standard will
include new features. One of the most significant, and perhaps controversial,
concepts in Fortran 90 involves the attempt to identify features that are
obsolescent and that should be phased out over time. The evolutionary scheme
incorporated into Fortran 90 uses the concepts of incremental and
decremental features. The decremental features are listed in Appendix C.

It is straightforward to recognize the incremental features. They are the new
features added since the previous standard, Fortran 77. The handling of the
decremental features is more complicated and controversial. In the Fortran 90
standard, there is an attempt to identify those features that should not be in the
language, except for the fact that they were there in previous versions.
Identifying these features in the standard gives notice to the programmer that
they might be removed from the next version of the standard. Therefore, the
programmer should avoid using these features when revising old programs or
creating new ones. For each of the features indicated as decremental in
Fortran 90, there was already a better equivalent facility in Fortran 77,
although some of the features have even better replacements in Fortran 90.

If a feature is removed from the next standard, there is the possibility that it
might get removed from some implementations; however, it is expected that
obsolescent features will exist in most implementations for many generations
in order to meet requirements for processing older programs that use them.

12 Fortran 90 Handbook

0

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Introduction 1

For a programming language, Fortran has been around a long time. It was one
of the first widely used “high-level” languages, as well as the first
programming language to be standardized. It is still the premier language for
scientific and engineering computing applications.

The purpose of this handbook is to describe the latest version of this language,
Fortran 90. This chapter gives some history of the development and
standardization of Fortran and describes the notation used to specify the
syntax of Fortran 90.

1.1 History

1.1.1 Initial Development of Fortran

In 1954 a project was begun under the leadership of John Backus at IBM to
develop an “automatic programming” system that would convert programs
written in a mathematical notation to machine instructions for the IBM 704
computer. Many were skeptical that the project would be successful because, at
the time, it was felt that computer memories were so small and expensive and
execution time so valuable that it was necessary for the program produced by
the compiler to be almost as efficient as that produced by a good assembly
language programmer.

14 Fortran 90 Handbook

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

This project produced the first Fortran compiler, which was delivered to a
customer in 1957. It was a great success by any reasonable criterion. The
efficiency of the code generated by the compiler surprised even some of its
authors. A more important achievement, but one that took longer to realize,
was that programmers could express their computations in a much more
natural way. This increased productivity and permitted the programmer to
write a program that could be maintained and enhanced much more easily
than an assembly language program.

About one year after the introduction of the first Fortran compiler, IBM
introduced Fortran II. One of the most important changes in Fortran II was the
addition of subroutines that could be compiled independently. Thus, Fortran
changed substantially even during its first year; it has been changing
continually ever since.

1.1.2 Standardization

By the early 1960s, many computer vendors had implemented a Fortran
compiler. They all included special features not found in the original IBM
compiler. These features usually were included to meet needs and requests of
the users and thus provide an inducement for the customer to buy computer
systems from the vendor providing the best compiler. Because the language
was very young, a special added feature could be tested to see if it was a good
long-term addition to the language. Unfortunately, the profusion of dialects of
Fortran prevented programs written for one computer from being transported
to a different computer system.

At about this time, the American Standards Association (ASA), later to become
the American National Standards Institute (ANSI), began a project of
standardizing many aspects of data processing. Someone had the daring idea
of standardizing programming languages. A committee was formed to develop
a standard for Fortran under the auspices of the Business Equipment
Manufacturers Association (BEMA), later to become the Computer and
Business Equipment Manufacturers Association (CBEMA). This standard was
adopted in 1966; after the adoption of Fortran 77, it became known as
Fortran 66 to distinguish the two versions.

The language continued to develop after 1966, along with general knowledge
in the areas of programming, language design, and computer design. Work on
a revision of Fortran 66 was completed in 1977 (hence the name Fortran 77)
and officially published in 1978. The most significant features introduced in

Introduction 15

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

this version were the character data type, the IF-THEN-ELSE construct, and
many new input/output facilities, such as direct access files and the OPEN
statement. Except for the character data type, most of these features had been
implemented in many compilers or preprocessors. During this revision,
Hollerith data was removed because the character data type is a far superior
facility. Although this idea of removing features did not seem very
controversial when Fortran 77 was introduced, it proved to be controversial
later—so much so that no Fortran 77 features have been removed in Fortran 90.

As soon as the technical development of Fortran 77 was completed, ANSI X3J3
and International Standards Organization (ISO) WG5 turned their attention to
the next revision, which is now called Fortran 90 and is the subject of this book.

The work on Fortran 90 began so soon after the adoption of Fortran 77 because,
contrary to the pronouncements of some that “Fortran is dead”, the huge
volume of public comments on the proposed standard indicated that there was
a tremendous interest in the further development of the language. In fact,
many of the public comments on Fortran 77 contained suggestions that have
been adopted in Fortran 90.

Fortran is still the most widely used programming language for scientific and
engineering applications, and the new standard version, Fortran 90, should
continue this tradition.

1.2 Why a New Standard?
There are several reasons why Fortran or any other programming language
needs to change over a period of years. Computing technology and
programming methodology are evolving at a very rapid pace. Thus, the most
obvious reason that programming languages must evolve is that, to be
effective, a programmer must have a language that incorporates this new
methodology. We now know how to incorporate certain features into a
language better than we did ten, twenty, or thirty years ago. A good example is
provided by control structures. In the 1970s a lot of effort was put into
determining the best possible set of control structures that a language should
have; this was done mainly from the point of view of providing facilities that
encourage good program design and ease of program maintenance. In this
area, Fortran’s early lack of modern design was actually a benefit, because a
very good set of control structures has been added to Fortran 90 without
severely impacting the few older control mechanisms already in Fortran 77.

16 Fortran 90 Handbook

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Another area in which both an awareness of the problem and the concomitant
technology to cope with it have advanced is that of portability. As the cost of
software maintenance increases and a wider variety of computing systems
become available, it is increasingly important to be able to port Fortran
programs from one system to another. The main purpose of a standard is to
permit portability of programs; in spite of this, several features of each
standard Fortran have been nonportable. Each time the standard is revised,
features are added to enhance portability and replace features that do not port
easily. Perhaps the most obvious example of this in Fortran 77 concerns
numeric precision. The precision of real and double precision values varies
greatly from one computer system to the next; when moving from a machine
with many digits precision for reals to one with a smaller number of digits, it is
often necessary to change many declarations from REAL to DOUBLE
PRECISION. This problem was partially addressed in Fortran 77 by adding
generic intrinsic functions so that function references in the program could
remain unchanged; in Fortran 90 numeric quantities can be given a kind
parameter that allows a programmer to specify numeric precision requirements
in a portable way.

Another reason to change a programming language is that implementation
techniques improve over time. Language features that required special
implementation techniques, such as stack or heap storage management, were
avoided because of their implementation cost and the possibility of reducing
execution efficiency. Experience with these features in other languages over a
long period of time has removed them from the category of features that are
difficult to implement efficiently.

Advances in computer architecture also have an effect on language design.
Increases in speed and decreases in the cost of hardware mitigate some
concerns about efficiency. With decreases in computing costs have come
increases in personnel costs. The economics of these trends indicate that there
should be more features in a language that increase programmer productivity,
even if they involve some decrease in machine efficiency.

Another important aspect of computer hardware that affects language design
involves the changes in architecture that open up entirely new techniques for
solving problems. Probably the most important recent development of this sort
in the world of scientific and engineering computing is the use of synchronous
parallel processing, or vector processing. Some of the fastest machines now
available have this sort of architecture. For many algorithms to execute
efficiently on these machines, the computations that can be vectorized or

Introduction 17

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

performed in parallel must be recognized either by the programmer or by
software. There has been a lot of improvement in the ability of software to
detect parallelism in old Fortran programs, but there are still many cases where
it is necessary for the programmer to indicate these situations. Also, many
algorithms involve parallel computations and these are expressed most
naturally in a language like Fortran 90 that has special provisions, such as the
new array processing facilities.

1.3 Why Not Use Another Language?
Many have suggested that we simply abandon Fortran and move on to a more
modern language. They cite the peculiarities of the language present since its
origins in the 1950s and the lack of features found in other programming
languages. However, there are several reasons not to do this.

There is nothing that can be done about a few of the Fortran features. They
always have been there and a change would cause an incompatibility with the
previous standard and existing code. Some of the truly obsolescent features
have been identified in the Fortran 90 standard and are candidates for removal
from the next version of the standard. No new Fortran program need ever use
these older peculiar features; Fortran 90 provides better ways of accomplishing
the same thing.

Even if nothing were ever removed from standard Fortran, there are three
compelling reasons not to switch to another programming language. The first
and most important reason is that, although many programming languages
have features superior to Fortran in various ways, it is by no means obvious
that any language is sufficiently better than Fortran to justify making the
switch. In fact, the ways many things are done in Fortran are now recognized
as being superior to that of many other programming languages. One example
involves the methods used to create and access global data. For a few years,
the Algol/Pascal method involving block structure was considered superior,
but now computer scientists think the Fortran model, particularly with the
Fortran 90 module feature, is better.

The second reason is that there is a huge investment in Fortran programs. A
switch to another programming language would mean rewriting many
programs at great expense.

18 Fortran 90 Handbook

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The third reason is a little more subtle: switching to another programming
language would involve retraining a lot of programmers. This would have a
particularly severe impact on those scientists and engineers who do not
consider themselves primarily programmers, but just use Fortran to solve their
problems. However, it is possible for a Fortran programmer to learn the new
features of Fortran 90 gradually, picking features to master when the effort is
justified by the improved problem-solving tools that are made available.

For these reasons, Fortran may well be the programming language of choice
for scientists and engineers for many years.

1.4 Development of Fortran 90
During the period that the public reviewed the proposed Fortran 77 standard,
many comments were received that contained good ideas. Some, like the IF
construct, were adopted, but others would have required too much
developmental work to enable them to be incorporated into the standard at
that time. The quality and quantity of these proposed changes and the general
interest in Fortran exhibited by the large number of comments indicated that
there should be another revision of the standard.

Work on Fortran 90 began just as soon as the technical work on Fortran 77 was
completed. Detailed proposals were put aside temporarily while the committee
responsible for the standardization attempted to get a better idea of the overall
requirements needed in a programming language used for scientific and
engineering problem solving in the 1990s. To accomplish this, existing Fortran
implementations were studied, features of other programming languages were
examined carefully, and surveys were taken to determine the users’ own
perceptions of their needs in such a language.

During the years from 1978 to 1981, the committee heard many tutorials about
general features thought desirable to be included in Fortran 90. These were
presented by both members of the committee and outside experts. Between
1979 and 1985, most of the technical changes were presented as detailed
proposals and were discussed and voted on by the committee.

Much of the technical work was in place by 1985. The last few years of the
committee’s work primarily involved polishing these proposals and creating a
document that reflected the technical proposals developed and passed by the
committee. The proposed standard was presented for public review and
comment in the fall of 1987. Public comments were then reviewed and changes

Introduction 19

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

made as a result of these comments. The technical work was finished in 1990,
and the language became known as “Fortran 90”. It took until 1991 for it to
become an official international standard (ISO/IEC 1539 : 1991) and it took
until 1992 to become a U. S. national standard (ANSI X3.198-1992).

1.5 Fortran 77 Compatibility
Because of the large investment in existing software written in Fortran, the
Fortran standards committee decided to include the entire previous standard
(Fortran 77) in Fortran 90. Even though the standard describes a category
called “deleted” features, there aren’t any; as mentioned earlier, no Fortran 77
feature has been removed.

Fortran 90 restricts the behavior of some features that are processor dependent
in Fortran 77. Therefore, a standard-conforming Fortran 77 program that uses
any of these processor-dependent features may conform to the Fortran 90
standard and yet behave differently than with some Fortran 77 systems. In the
following situations, the Fortran 90 interpretation may be different from that of
Fortran 77.

1. Fortran 90 has more intrinsic functions than does Fortran 77 and has a few
intrinsic subroutines. Therefore, a standard-conforming Fortran 77
program may have a different interpretation under this standard if it
invokes an external procedure having the same name as one of the new
standard intrinsic procedures, unless that procedure is specified in an
EXTERNAL statement as recommended for nonintrinsic functions. Also, a
program that used a nonstandard, vendor-supplied intrinsic function
might behave differently if the function is one of the new intrinsic
functions in Fortran 90. The chances of this happening are minimal,
because most of the new intrinsic functions have names longer than six
characters.

2. If a named variable that is not in a common block is initialized in a DATA
statement, it has the SAVE attribute in Fortran 90. In Fortran 77, if the value
of the variable is changed or becomes undefined, its value on re-entry into
a procedure is processor dependent.

20 Fortran 90 Handbook

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. In Fortran 77, an input list must never require more characters than are
present in a record during formatted input. In Fortran 90, this restriction
has been removed when the PAD= specifier is YES; in this case, the input
record is padded with as many blanks as necessary to satisfy the input
item and the corresponding format.

4. Fortran 77 permits a processor to supply extra precision for a real constant
when it is used to initialize a DOUBLE PRECISION data object in a DATA
statement. Fortran 90 does not permit this.

1.6 Extensibility
New data types, new operators, and new meanings for the existing operators
and assignment provide ways for the programmer to extend Fortran. These
facilities allow the programmer to create abstract data types by defining new
types and the operations to be performed on them. Modules have been
introduced into Fortran as a convenient way to package these new data types
and their operations. Modules can be used by the same user in different
applications or may be distributed to a number of users on the same or
different projects. This provides effective practical support for object-oriented
programming, as well as enhancing both economy and efficiency.

1.7 Intrinsic and Standard Modules
An intrinsic module is one that is defined within the standard. There are no
intrinsic modules in Fortran 90.

A standard module is one that might be standardized as a separate but related
(collateral) standard in the revision cycle period between new standard
releases, often a period of ten or more years. At this time, there are no standard
modules, although a module for a varying length string data type has been
proposed.

1.7.1 Syntax Forms

In this book, a simplified form is used to describe the syntax of Fortran 90
programs. The forms consist of program text in the same font used to display
program examples (such as END DO) and syntactic terms that must be replaced
with correct Fortran source for those terms, which are printed using a sans
serif font (such as input-item-list). Optional items are enclosed in brackets; items

Introduction 21

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

enclosed in brackets followed by ellipses (...) may occur any number (including
zero) of times. The ampersand (&) is used to continue a line, just as it is used
to continue a line in a Fortran 90 program. Use of one of the syntactic forms
always produces a syntactically correct part of a Fortran 90 program. These
syntactic forms indicate how to construct most of the correct Fortran 90
statements, but may not be complete in that they do not describe all of the
possible forms.

For example, the following syntax form occurs in Chapter 9. It describes one
form that can be used to construct a direct access formatted WRITE statement.
The general syntax for the WRITE statement is quite complex and gives no hint
as to which options are allowed for direct access formatting. On the other
hand, this rule is overly restrictive in that it indicates a particular order for the
options, which is not required by the standard. Nevertheless, using this form
always will produce a correct WRITE statement.

WRITE ([UNIT =] unit-number &

, FMT = format &

, REC = record-number &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [output-item-list]

Another property of the syntactic forms is that the terms used are descriptive
and informal, and they are not necessarily defined precisely anywhere in the
book. If you need to know the precise syntax allowed, refer to Appendix B,
which contains all of the syntax rules of the Fortran 90 standard.

1.8 The Fortran 90 Language Standard
The Fortran 90 standard (ISO/IEC 1539 : 1991) describes the syntax and
semantics of a programming language. However, the standard addresses
certain aspects of the Fortran processing system, but does not address others.
When specifications are not covered by the standard, the interpretation is
processor dependent; that is, the processor defines the interpretation, but the
interpretation for any two processors need not be the same. Programs that rely
on processor-dependent interpretations typically are not portable.

The specifications that are included in the standard are:

1. the syntax of Fortran statements and forms for Fortran programs

22 Fortran 90 Handbook

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. the semantics of Fortran statements and the semantics of Fortran programs

3. specifications for correct input data

4. appearance of standard output data

The specifications that are not defined in the standard are:

1. the way in which Fortran compilers are written

2. operating system facilities defining the computing system

3. methods used to transfer data to and from peripheral storage devices and
the nature of the peripheral devices

4. behavior of extensions implemented by vendors

5. the size and complexity of a Fortran program and its data

6. the hardware or firmware used to run the program

7. the way values are represented and the way numeric values are computed

8. the physical representation of data

9. the characteristics of tapes, disks, and various storage media

The Fortran standard is a technical and legal specification that describes the
Fortran language. It is often used as the basis of procurement contracts; for
example, Fortran compilers that are sold to government agencies often must
pass a validation suite based on the Fortran standard.

1.8.1 Program Conformance

A program conforms to the standard if the statements are all syntactically
correct, execution of the program causes no violations of the standard (such as
dividing by zero), and the input data is all in the correct form. A program that
uses a vendor extension is not standard conforming.

1.8.2 Processor Conformance

In the Fortran 90 standard, the term “processor” means the combination of a
Fortran compiler and the computing system that executes the code. A
processor conforms to the standard if it processes any standard-conforming

Introduction 23

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

program, provided the Fortran program is not too large or complex for the
computer system in question. Except for certain restrictions in format
specifications, the processor must be able to flag any nonstandard syntax used
in the program. This includes the capability to flag any extensions available in
the vendor software and used in the program. The standard now requires that
certain other things be flagged, and that the reason they are flagged be given.
These things are:

1. obsolescent features

2. kind values not supported

3. violations of any syntax rules and their accompanying constraints

4. characters not permitted by the processor

5. illegal source form

6. violations of the scope rules for names, labels, operators, and assignment
symbols

These six conformance requirements were not present in previous Fortran
standards.

Rules for the form of the output are less stringent than for other features of the
language in the sense that the processor may have some options about the
format of the output and the programmer may not have complete control over
which of these options is used.

A processor may include extensions not in the standard; if it processes
standard-conforming programs according to the standard, it is considered to be
a standard-conforming processor.

1.8.3 Portability

One of the main purposes of a standard is to describe how to write portable
programs. However, there are some things that are standard conforming, but
not portable. An example is a program that computes a very large number like

. Certain computing systems will not accommodate a number this large.
Thus, such a number could be a part of a standard-conforming program, but
may not run on all systems and thus may not be portable. Another example is
a program that uses a deeper nesting of control constructs than is allowed by a
particular compiler.

1050

24 Fortran 90 Handbook

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

1.8.4 A Permissive Standard

The primary purpose of the Fortran standard is to describe a language with the
property that, if a programmer uses the language, the difficulties of porting
programs from one computer system to another will be minimized. But to
handle the somewhat contradictory goal of permitting experimentation and
development of the language, the standard is permissive; that is, a processor can
conform to the standard even if it allows features that are not described in the
standard. This has its good and bad aspects.

On the positive side, it allows implementors to experiment with features not in
the standard; if they are successful and prove useful, they can become
candidates for standardization during the next revision. Thus, a vendor of a
compiler may choose to add some features not found in the standard and still
conform to the standard by correctly processing all of the features that are
described in the standard.

On the negative side, the burden is on the programmer to know about and
avoid these extra features when the program is to be ported to a different
computer system. The programmer is given some help with this problem in
that a Fortran 90 processor is required to recognize and warn the programmer
about syntactic constructs in a program that do not conform to the Fortran 90
standard. A good Fortran programmer’s manual also will point out
nonstandard features with some technique, such as shading on the page. But
there is no real substitute for knowledge of the standard language itself. This
handbook should help provide this knowledge.

1.9 References
1. American National Standards Institute, American National Standard

Programming Language FORTRAN, ANSI X3.9-1978, New York, 1978.

2. Brainerd, Walter S., Fortran 77, Communications of the ACM, Vol. 21, No. 10,
October 1978, pp. 806–820.

3. Brainerd, Walter S., Charles H. Goldberg, and Jeanne C. Adams,
Programmer’s Guide to Fortran 90, McGraw-Hill, New York, 1990.

4. Greenfield, Martin H., History of FORTRAN standardization, Proceedings of
the 1982 National Computer Conference, AFIPS Press, Arlington, VA, 1982.

Introduction 25

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. International Standards Organization, ISO/IEC 1539 : 1991, Information
technology—Programming languages—Fortran, Geneva, 1991.

6. A programming language for information processing on automatic data
processing systems, Communications of the ACM, Vol. 7, No. 10, October
1964, pp. 591–625.

26 Fortran 90 Handbook

1

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

27

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Fortran Concepts and Terms 2

The features of Fortran 90 provide considerable power and expressiveness. In
order to use these features effectively, it is necessary to become familiar with
the basic concepts of the language. This is the first goal of this chapter.

Because terms are used in a precise way to describe a programming language,
the second goal of this chapter is to introduce the fundamental terms needed to
understand Fortran 90.

One of the major concepts involves the organization of a Fortran program. This
topic is introduced in this chapter by presenting the high-level syntax rules for
a Fortran program, including the principal constructs and statements that form
a program. This chapter also describes the order in which constructs and
statements must appear in a program and concludes with an example of a
short, but complete, Fortran 90 program.

While there is some discussion of language features here to help explain
various terms and concepts, Chapters 3–14 contain the complete description of
all language features.

2.1 Scope and Association
In examining the basic concepts in Fortran, it helps to trace some of the
important steps in its evolution. The results of the first few steps are familiar to
Fortran programmers, but the later ones become relevant only when the new
features of Fortran 90 are used.

28 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The first version of Fortran produced in the late 1950s did not have user-
defined subroutines or functions, but there were intrinsic functions, such as
SINF and ABSF. Thus, while there were no tools to help organize a program,
there were also no worries about such things as naming variables and sharing
values between subprograms, except that a variable could not have the same
name as an intrinsic function without the F (for example, a variable name
could not be SIN or ABS) and there could not be an array ending with F with
four or more characters in the name. Variables could not be typed explicitly, so
the implicit typing rules for real and integer types applied to all variables.
Then, as now, keywords such as IF and READ could be used as variable
names, although this practice did not produce any more readable programs
then than it does now.

To provide an example for this narrative, consider the problem of computing
the sum 1 + 2 + + 100. (Supposedly this is an arithmetic exercise given to
Gauss as a young child; he solved it in a very few minutes, discovering the
formula

for summing an arithmetic series in the process.) The following program to
compute this sum the hard way would have run on the first Fortran compiler.

M = 0
DO 8 I = 1, 100

M = M + I
8 CONTINUE

WRITE (6, 9) M
9 FORMAT (I10)

STOP

Early in the development of Fortran, it was recognized as a good idea to isolate
definitive chunks of code into separate units. These were (and are) known as
function and subroutine subprograms. This not only provided a mechanism for
structuring a program, but permitted subprograms to be written once and then
be called more than once by the same program or even be used by more than
one program. Equally important, they could be compiled separately, saving
hours of compilation time.

With this powerful tool come complications. For example, if both the main
program and a subprogram use the variable named “X”, what is the connection
between them? The designers of the subprogram concept had the brilliance to
answer that question by saying there is, in general, no connection between X in

…

i
i 1=

n

∑ n n 1+()
2

----------------------- 1= =

…

Fortran Concepts and Terms 29

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the main program and X in a subprogram. Of course, the same answer is
obtained as a result of the fact that subprograms are separately compilable; an
X in a different subprogram is not even known at compile time, so the simplest
thing to do is have no connection between variables with the same name in
different program units. Whatever the reason that led to this decision, it is a
good one because if it is desirable to build a program by incorporating several
subprograms, there is no need to worry about two or more subprograms using
the same name. Thus, if two different programmers work on the different
program units, neither needs to worry about names picked by the other. This
idea is described by saying that the two Xs have different scope.

A subroutine could be written to do the summation and print the result of
summing the first hundred integers, just in case someone else might want to
take advantage of this mighty achievement. This one is written in Fortran 66,
and would have been a legal Fortran II program.

SUBROUTINE TOTAL
M = 0
DO 8 I = 1, 100

M = M + I
8 CONTINUE

WRITE (6, 9) M
9 FORMAT (I10)

RETURN
END

With this subroutine available, the main program can be:

CALL TOTAL
STOP
END

Suppose now it is decided that the subroutine would be more generally useful
if it just computed the sum, but did not print it.

SUBROUTINE TOTAL
M = 0
DO 8 I = 1, 100

M = M + I
8 CONTINUE

RETURN
END

A first attempt to use this subroutine might produce the following erroneous
program.

30 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

CALL TOTAL
WRITE (6, 9) M

9 FORMAT (I10)
STOP
END

Of course, this does not work, because the variable M in the subroutine has
nothing to do with the variable M in the main program. This is a case where
there should be a connection between the two values. So, when subroutines and
functions were introduced, two schemes were provided to communicate values
between them and the main program. These are procedure arguments and
common blocks. Here are two complete programs that do work and use a
subroutine to compute the sum 1 + 2 + + 100; one uses a subroutine
argument and the other uses a common block to communicate values. Because
the names in the different program units identify completely separate
variables, yet their values are communicated from one to the other by using
either arguments or common blocks, the name of the variable holding the sum
in the subroutine has been changed. This example Fortran 77 program uses a
subroutine argument.

PROGRAM ARGSUM
CALL TOTAL (M)
WRITE (6, 9) M

9 FORMAT (I10)
END

SUBROUTINE TOTAL (ITOTAL)
ITOTAL = 0
DO 8 I = 1, 100

ITOTAL = ITOTAL + I
8 CONTINUE

END

A common block is used in the following Fortran 77 program COMSUM,
which performs the same computation as the program ARGSUM.

PROGRAM COMSUM
COMMON / CB / M
CALL TOTAL
WRITE (6, 9) M

9 FORMAT (I10)
END

…

Fortran Concepts and Terms 31

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SUBROUTINE TOTAL
COMMON / CB / ITOTAL
ITOTAL = 0
DO 8 I = 1, 100

ITOTAL = ITOTAL + I
8 CONTINUE

END

To describe even these simple cases and appreciate how they all work already
requires the introduction of some terms and concepts. To precisely describe the
phenomenon that the variable ITOTAL in the subroutine is not known outside
the subroutine, the concept of scope is used. The scope of the variable ITOTAL
is the subroutine and does not include the main program.

It is a common misconception that the scope of a variable in a common block is
global; this is not the case. The scope of the variable ITOTAL is just the
subroutine, whereas the scope of the variable M is just the main program.
However, the scope of the common block name CB is global. It is association
that is used to describe the connection between M in the main program and
ITOTAL in the subroutine. In one case it is argument association and in the
other it is storage association.

To summarize, very roughly, the scope of a variable is that part of the program
in which it is known and can be used. Two variables may have the same name
and nonoverlapping scopes; for example, there may be two completely
different variables named X in two different subprograms. Association of
variables means that there are two different names for the same object; this
permits sharing values under certain conditions.

With arguments available, it is natural to generalize the computation
somewhat to allow the upper limit of the sum (100 in the example) to vary.
Also, a function is more natural than a subroutine, because the object of the
computation is to return a single value. These changes produce the following
Fortran 77 program.

PROGRAM PTOTAL
INTEGER TOTAL
PRINT *, TOTAL (100)
END

FUNCTION TOTAL (N)
INTEGER TOTAL
TOTAL = 0
DO 8 I = 1, N

32 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

TOTAL = TOTAL + I
8 CONTINUE

END

In this example, the scope of N is the function TOTAL, but it gets the value 100
through argument association when the function TOTAL is called from the
main program in the PRINT statement. The scope of the variable I is the
function TOTAL. The scope of the function TOTAL is the whole program, but
note that its type must be declared in the main program, because by the
implicit typing rules, TOTAL is not of type integer. Another oddity is that there
is a function named TOTAL, whose scope is global, and a variable named
TOTAL that is local to the function. The variable TOTAL is used to compute
and store the value that is returned as the value of the function TOTAL.

It is possible to rewrite the example using internal procedures introduced in
Fortran 90. How the identifier TOTAL is used determines whether it is the local
variable TOTAL or the global function name TOTAL. In the following example,
when it is used with an argument list, it is the function name; when used
inside the function subprogram defining the function TOTAL, it is the local
variable.

PROGRAM DO_TOTAL
PRINT *, TOTAL (100)

CONTAINS

FUNCTION TOTAL (N)
INTEGER TOTAL
TOTAL = 0
DO I = 1, N

TOTAL = TOTAL + I
END DO

END FUNCTION TOTAL

END PROGRAM DO_TOTAL

This looks almost like the previous example, except that the function is placed
prior to the END statement of the main program and the CONTAINS
statement is inserted to mark the beginning of any internal functions or
subroutines. In this case, the function TOTAL is not global, but is local to the
program DO_TOTAL. Also, the function statement for TOTAL and the
specifications that follow it specify TOTAL as an internal function of type
integer and with one integer argument N. Thus, the type of TOTAL must not
be declared in the specification part of the program DO_TOTAL; to do so

Fortran Concepts and Terms 33

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

would create a duplicate declaration of TOTAL. The information about the
type of the function and type of the argument is called the interface to the
internal function.

To illustrate some different rules about scoping and association related to
internal procedures, the example can be changed back to one that uses a
subroutine, but one that is now internal.

PROGRAM DO_TOTAL
INTEGER TOTAL
CALL ADD_EM_UP (100)
PRINT *, TOTAL

CONTAINS

SUBROUTINE ADD_EM_UP (N)
TOTAL = 0
DO I = 1, N

TOTAL = TOTAL + I
END DO

END SUBROUTINE ADD_EM_UP

END PROGRAM DO_TOTAL

The new twist here is that TOTAL in the internal subroutine and TOTAL in the
main program are the same variable. It does not need to be declared type
integer in the subroutine. This is the result of host association, wherein
internal procedures inherit information about variables from their host, which
is the main program in this case. Because the variable I is not mentioned in the
main program, its scope is the internal subroutine.

Data declarations and procedures may be placed in a module, a new feature of
Fortran 90. Then they may be used by other parts of the program. This scheme
is illustrated using the simple example, with the summation done by a function
again.

MODULE TOTAL_STUFF
CONTAINS
FUNCTION TOTAL (N)

INTEGER TOTAL, N, I
TOTAL = 0

34 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

DO I = 1, N
TOTAL = TOTAL + I

END DO
END FUNCTION TOTAL
END MODULE TOTAL_STUFF

PROGRAM DO_TOTAL
USE TOTAL_STUFF
PRINT *, TOTAL (100)

END PROGRAM DO_TOTAL

The module and the program could be in completely different files and
compiled at different times just like subroutines, but, unlike subroutines, the
module must be available to the compiler when the program DO_TOTAL is
compiled. The scope of the variables N and I is the function TOTAL; N gets its
value 100 by argument association. The module name TOTAL_STUFF is global
and any program can use the module, which causes the type and definition of
the function TOTAL to become available within that program. This is called
use association.

When more extensive examples are constructed using such features as internal
procedures within a procedure in a module, there is a need to have a deeper
understanding of the models underlying scope and association. These topics
are introduced briefly below and discussed in more detail in Chapter 14.

2.1.1 Scoping Units

The scope of a program entity is the part of the program in which that entity is
known, is available, and can be used. Some of the parts of a program that
constitute the scope of entities have been classified specially as scoping units.

The scope of a label is a subprogram, which is one kind of scoping unit;
however, some entities have scopes that are something other than a scoping
unit. For example, the scope of a name, such as a variable name, can be any of
the following:

1. a scoping unit

2. an executable program

3. a single statement

4. part of a statement

Fortran Concepts and Terms 35

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2.1.2 Association

Association is the concept that is used to describe how different entities in the
same program unit or different program units can share values and other
properties. It is also a mechanism by which the scope of an entity is made
larger. For example, argument association allows values to be shared between a
procedure and the program that calls it. Storage association, set up by the use
of EQUIVALENCE and COMMON statements, for example, allows two or
more variables to share storage, and hence values, under certain circumstances.
Use association and host association allow entities described in one part of a
program to be used in another part of the program. Use association makes
entities defined in modules accessible, and host association makes entities in
the containing environment available to an internal or module procedure.
Examples of association are described earlier in this section, and the complete
descriptions of all sorts of association are found in Chapter 14.

2.2 Program Organization
A collection of program units constitutes an executable program. Program
units may contain other smaller units. Information may be hidden within part
of a program or communicated to other parts of a program by various means.
The programmer may control the parts of a program in which information is
accessible.

2.2.1 Program Units

A Fortran 90 program unit is one of the following:

main program
external subprogram (subroutine or function)
module
block data

A Fortran program must contain one main program and may contain any
number of the other kinds of program units. Program units contain Fortran
constructs and statements that define the data environment and the steps
necessary to perform calculations. Each program unit has an END statement to
terminate the program unit. Each has a special initial statement as well, but the
initial statement for a main program is optional. For example, a program might
contain a main program, a subroutine, and a module:

36 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

PROGRAM MY_TASK
. . .

END PROGRAM MY_TASK

SUBROUTINE MY_CALC (X)
. . .

END SUBROUTINE MY_CALC

MODULE MY_DATA
. . .

END MODULE MY_DATA

The main program is required and could be the only program unit in a
program. If there are other program units, the main program acts as a
controller; that is, it takes charge of the program tasks and controls the order in
which they are executed.

An external subprogram (a function or a subroutine) may be used to perform a
task or calculation on entities available to the external subprogram. These
entities may be the arguments to the subprogram that are provided in the
reference, entities defined in the subprogram, or entities made accessible by
other means, such as common blocks. A CALL statement is used to invoke a
subroutine. A function is invoked when its value is needed in an expression.
The computational process that is specified by a function or subroutine
subprogram is called a procedure. An external subprogram defines a
procedure. It may be invoked from other program units of the Fortran
program. Neither a module nor a block data program unit is executable, so
they are not considered to be procedures.

A block data program unit contains data definitions only and is used to specify
initial values for a restricted set of data objects.

The program units described so far (main program, external subprogram, and
block data) are familiar to users of Fortran 77. There is a new kind of program
unit in Fortran 90—the module—and Fortran 90 provides some new things that
are similar to program units: module procedures, internal procedures, and
procedure interface blocks.

A module contains definitions that can be made accessible to other program
units. These definitions include data definitions, type definitions, definitions of
procedures known as module subprograms, and specifications of procedure

Fortran Concepts and Terms 37

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

interfaces. Module subprograms may be either subroutine or function
subprograms. A module subprogram may be invoked by another module
subprogram in the module or by other program units that access the module.

Main programs, external subprograms, and module subprograms may contain
internal subprograms, which may be either subroutines or functions. The
procedures they define are called internal procedures. Internal subprograms
must not themselves contain internal subprograms, however. The main
program, external subprogram, or module subprogram that contains an
internal subprogram is referred to as the internal subprogram’s host. Internal
subprograms may be invoked by their host or by other internal subprograms in
the same host. A Fortran 90 internal procedure may contain any number of
statements and constructs and thus is a generalization of the Fortran 77
statement function that specifies a procedure by a single statement. Of course
the statement function is permitted in Fortran 90 programs as well. Figure 2-1
illustrates the organization of a sample Fortran program.

Fortran 77 has generic intrinsic procedures, such as SIN (the sine function) that
can be referenced with a real, double precision, or complex argument. Fortran
90 has extended the concept of generic procedures and allows the programmer
to specify a generic procedure so that user-defined procedures also can be
referenced generically.

All program units, except block data, may contain procedure interface blocks.
A procedure interface block is used to describe the interface of an external
procedure; that is, the procedure name, the number of arguments, their types,
attributes, names, and the type and attributes of a function. This information is
necessary in some cases and, in others, allows the processor to check the
validity of an invocation. An interface block with a generic interface may be
used to ascribe generic properties.

Subprograms are described more fully in Chapters 11 and 12.

2.2.2 Packaging

Opportunities for applying packaging concepts are limited in Fortran 77. An
external subprogram might be thought of as a package, but it can contain only
procedures, not data declarations that can be made available to other parts of a
program. An entire Fortran 77 program can be thought of as a package made
up of program units consisting of a main program, subroutine and function
program units, and block data program units. In contrast, Fortran 90, with

38 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

internal procedures and modules, provides many more opportunities for
packaging. This makes the packaging of a fair-sized program an important
design consideration when a new Fortran application is planned.

The most important benefit of packaging is information hiding. Entities can be
kept inaccessible except where they are actually needed. This provides some
protection against inadvertent misuse or corruption, thereby improving
program reliability. Packaging can make the logical structure of a program

Module

Public data
entits

Private data
entities

Main program

Statement function

Internal procedure

Function

Subroutine

Internal procedure

Internal procedure

Subroutine Function

Internal
procedure

Internal
procedure

Function Subroutine

Figure 2-1 Example of program packaging. The large arrows represent use
association with the USE statement at the arrow tip. The small
arrows represent subprogram references with the "call” at the

Program

Fortran Concepts and Terms 39

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

more apparent by hiding complex details at lower levels. Programs are
therefore easier to comprehend and less costly to maintain. The Fortran 90
features that provide these benefits are internal procedures and modules.

Internal procedures may appear in main programs, subroutines, functions, and
module subprograms. They are known only within their host. The name of an
internal procedure must not be passed as an argument. The Fortran 90
standard further restricts internal procedures in that an internal procedure
must not itself be the host of another internal procedure. However, a statement
function may appear within an internal procedure. Thus, in some ways,
internal procedures are like external procedures and in other ways they are like
statement functions.

Modules provide the most comprehensive opportunities to apply packaging
concepts, as illustrated in Figure 2-1. In addition to several levels of
organization and hiding, the entities specified in a module (types, data objects,
procedures, interfaces, etc.) may be kept private to the module or made
available to other scoping units by use association. In Figure 2-1, the dashed
lines with arrows represent subprogram references with the arrow pointing to
the subprogram. The large solid arrows represent access by use association
with the arrow pointing to the position of a USE statement.

2.3 Data Environment
Before a calculation can be performed, its data environment must be
developed. The data environment consists of data objects that possess certain
properties, attributes, and values. The steps in a computational process
generally specify operations that are performed on operands (or objects) to
create desired results or values. Operands may be constants, variables,
constructors, or function references; each has a data type and value, if defined.
In some cases the type may be assumed by the processor; in other cases it may
be declared. A data object has attributes other than type. Chapter 4 discusses
data type in detail; Chapter 5 discusses the other attributes of program entities;
and Chapters 6 and 7 describe how data objects may be used.

2.3.1 Data Type

The Fortran 90 language provides five intrinsic data types—real, integer,
complex, logical, and character—and allows users to define additional types.
Sometimes it is natural to organize data in combinations consisting of more

40 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

than one type. For example, suppose a program is being written to monitor the
patients in a hospital. For each patient, certain information must be
maintained, such as the patient’s name, room number, temperature, pulse rate,
medication, and prognosis for recovery. Because all of this data describes one
object (a particular patient), it would be convenient to have a means to refer to
the aggregation of data by a single name. In Fortran 90, an aggregation of data
values of different types is called a structure. To use a structure, a programmer
must first define the type of the structure. Once the new type is defined, any
number of structures of that type may be declared. This mechanism may seem
slightly cumbersome if only one such structure is needed in a program, but
usually several are needed; in addition, there are other advantages to defining
a type for the structure. An example of a user-defined type with three
components is:

TYPE PATIENT
INTEGER PULSE_RATE
REAL TEMPERATURE
CHARACTER (LEN = 300) PROGNOSIS

END TYPE PATIENT

Once the type PATIENT is defined, objects (structures) of the type may be
declared. For example:

TYPE (PATIENT) JOHN_JONES, SALLY_SMITH

2.3.2 Kind

There may be more than one representation (or kind) of each of the intrinsic
types. The Fortran 90 standard requires at least two different representations
for the real and complex types that correspond to “single precision” and
“double precision”, and permits more. Fortran 90 provides portable
mechanisms for specifying precision so that numerical algorithms that depend
on at least a certain numeric precision can be programmed to produce reliable
results regardless of the processor’s characteristics. Fortran 90 permits more
than one representation for the integer, logical, and character types. Alternative
representations for the integer type permit different ranges of integers.
Alternative representations for the logical type might include a “packed
logical” type to conserve memory space and an “unpacked logical” type to
increase speed of access. The large number of characters required for
ideographic languages, such as those used in Asia with thousands of different
graphical symbols, cannot be represented as concisely as alphabetic characters
and require “more precision”. Examples of such type declarations are:

Fortran Concepts and Terms 41

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

COMPLEX (KIND = HIGH) X
INTEGER (KIND = SHORT) DAYS_OF_WEEK
CHARACTER (KIND = KANJI, LEN = 500) HAIKU

where HIGH, SHORT, and KANJI are named integer constants given
appropriate processor-dependent values by the programmer.

Type is one attribute of a data object. There are 12 others, such as DIMENSION,
POINTER, and ALLOCATABLE; they are discussed in Chapter 5. The
DIMENSION attribute permits the creation of arrays. The POINTER and
ALLOCATABLE attributes allow the declaration of dynamic objects.

2.3.3 Dimensionality

Single objects, whether intrinsic or user-defined, are scalar. Even though a
structure has components, it is technically a scalar. A set of scalar objects, all of
the same type, may be arranged in patterns involving columns, rows, planes,
and higher-dimensioned configurations to form arrays. It is possible to have
arrays of structures. An array may have up to seven dimensions. The number
of dimensions is called the rank of the array. It is declared when the array is
declared and cannot change. The size of the array is the total number of
elements and is equal to the product of the extents in each dimension. The
shape of an array is determined by its rank and its extents in each dimension.
Two arrays that have the same shape are said to be conformable. Examples of
array declarations are:

REAL COORDINATES (100, 100)
INTEGER DISTANCES (50)
TYPE (PATIENT) MATERNITY_WARD (20)

In Fortran 90, an array is treated as an object and is allowed to appear in an
expression or be returned as a function result. Intrinsic operations involving
arrays of the same shape are performed element-by-element to produce an
array result of the same shape. There is no implied order in which the element-
by-element operations are performed.

A portion of an array, such as an element or section, may be referenced as a
data object. An array element is a single element of the array and is scalar. An
array section is a subset of the elements of the array and is itself an array.

42 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2.3.4 Dynamic Data

There are three sorts of dynamic data objects in Fortran 90: pointers, allocatable
arrays, and automatic data objects.

Data objects in Fortran 90 may be declared to have the pointer attribute.
Pointer objects must be associated with a target before they can be used in any
calculation. This is accomplished by allocation of the space for the target or by
assignment of the pointer to an existing target. The association of a pointer
with a target may change dynamically as a program is executed. If the pointer
object is an array, its size and shape may change dynamically, but its rank is
fixed by its declaration. An example of pointer array declaration and allocation
is:

REAL, POINTER :: LENGTHS (:)
ALLOCATE (LENGTHS (200))

An array may be declared to have the allocatable attribute. This functionality is
exactly the same as provided by the simple use of pointers illustrated above.
Space must be allocated for the array before it can be used in any calculation.
The array may be deallocated and reallocated with a different size as the
program executes. As with a pointer, the size and shape may change, but the
rank is fixed by the declaration. An allocatable array cannot be made to point
to an existing named target; the target array is always created by an
ALLOCATE statement. An example of allocatable array declaration and
allocation is:

REAL, ALLOCATABLE :: LENGTHS (:)
ALLOCATE (LENGTHS (200))

The similarities of these examples reflect the similarity of some of the uses of
allocatable arrays and pointers, but pointers have more functionality. Pointers
may be used to create dynamic data structures, such as linked lists and trees.
The target of a pointer can be changed by reallocation or pointer assignment.
The extents of an allocatable array can be changed only by deallocating and
reallocating the array. If the values of the elements of an allocatable array are to
be preserved, a new array must be allocated and the values moved to the new
array before the old array is deallocated.

Automatic data objects, either arrays or character strings (or both), may be
declared in a subprogram. These local data objects are created on entry to the
subprogram and disappear when the execution of the subprogram completes.

Fortran Concepts and Terms 43

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

These are useful in subprograms for temporary arrays and characters strings
whose sizes are different for each reference to the subprogram. An example of
a subprogram unit with an automatic array TEMP is:

SUBROUTINE SWAP_ARRAYS (A, B)
REAL, DIMENSION (:) :: A, B
REAL, DIMENSION (SIZE (A)) :: TEMP

TEMP = A
A = B
B = TEMP

END SUBROUTINE SWAP_ARRAYS

A and B are assumed-shape array arguments; that is, they take on the shape of
the actual argument. TEMP is an automatic array that is created the same size
as A on entry to subroutine SWAP. SIZE is an intrinsic function that is
permitted in a declaration statement.

Even in Fortran 66, local variables with a fixed size could be allocated
dynamically, but this was an implementation choice and many
implementations allocated such variables statically. In Fortran 77 and
Fortran 90, a programmer can force the effect of static allocation by giving the
variable the SAVE attribute.

2.4 Program Execution
During program execution, constructs and statements are executed in a
prescribed order. Variables become defined with values and may be redefined
later in the execution sequence. Procedures are invoked, perhaps recursively.
Space may be allocated and later deallocated. Pointers may change their
targets.

2.4.1 Execution Sequence

Program execution begins with the first executable construct in the main
program. An executable construct is an instruction to perform one or more of
the computational actions that determine the behavior of the program or
control the flow of the execution of the program. It may perform arithmetic,
compare values, branch to another construct or statement in the program,
invoke a procedure, or read from or write to a file or device. When a procedure

44 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

is invoked, its execution begins with the first executable construct after the
entry point in the procedure. On normal return from a procedure invocation,
execution continues where it left off. Examples of executable statements are:

READ (5, *) Z, Y
X = (4.0 * Z) + BASE
IF (X > Y) GO TO 100
CALL CALCULATE (X)

100 Y = Y + 1

Unless a control construct is encountered, program statements are executed in
the order in which they appear in a program unit until a STOP, RETURN, or
END statement is executed. Control constructs include branch statements and
IF, CASE, and DO constructs. Branch statements specify a change in the
execution sequence and consist of the various forms of GO TO statements, a
procedure reference with alternative return specifiers, and input/output
statements with branch label specifiers, such as ERR=, END=, and EOR=
specifiers. The control constructs (IF, CASE, and DO) can cause internal
branching implicitly within the structure of the construct. Chapter 8 discusses
in detail control flow within a program.

2.4.2 Definition and Undefinition

Most variables have no value when execution begins; they are considered to be
undefined. Exceptions are variables that are initialized in DATA statements or
type declaration statements; these are considered to be defined. A variable may
acquire a value or change its current value, typically by the execution of an
assignment statement or an input statement. Thus it may assume different
values at different times, and under some circumstances it may become
undefined. This is part of the dynamic behavior of program execution. Defined
and undefined are the Fortran terms that are used to specify the definition
status of a variable. The events that cause variables to become defined and
undefined are described in Chapter 14.

A variable is considered to be defined only if all parts of it are defined. For
example, all the elements of an array, all the components of a structure, or all
characters of a character string must be defined; otherwise, the array, structure,
or string is undefined. Fortran 90 permits zero-sized arrays and zero-length
strings; these are always considered to be defined.

Fortran Concepts and Terms 45

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Pointers have both a definition status and an association status. When
execution begins, the association status of all pointers is undefined. During
execution a pointer may become nullified by the execution of a NULLIFY
statement in which case its association status becomes disassociated, or it may
become associated with a target by the execution of an ALLOCATE or pointer
assignment statement, in which case its association status becomes associated.
Even when the association status of a pointer is defined, the pointer is not
considered to be defined unless the target with which it is associated is
defined. Pointer targets become defined in the same way that any other
variable becomes defined, typically by the execution of an assignment or input
statement. When an allocatable array is allocated by the execution of an
ALLOCATE statement, it is undefined until some other action occurs that
causes it to become defined with values for all array elements.

2.4.3 Dynamic Behavior

There are new kinds of dynamic behavior that are introduced by Fortran 90:

1. recursion

2. allocation and deallocation

3. pointer assignment

Many algorithms can be expressed eloquently with the use of recursion, which
occurs when a subroutine or function references itself, either directly or
indirectly. The keyword RECURSIVE must be present in the SUBROUTINE or
FUNCTION statement if the procedure is to be referenced recursively.
Recursive subroutines and functions are described in Chapter 12.

Pointers and allocatable arrays can be declared in a program, but no space is
set aside for them until the program is executed. The rank of array pointers
and allocatable arrays is fixed by declaration, but the extents in each dimension
(and thus the size of the arrays) is determined during execution by calculation
or from input values.

The ALLOCATE and DEALLOCATE statements give Fortran programmers
mechanisms to configure objects to the appropriate shape. Only pointers and
allocatable arrays can be allocated. Only whole allocated objects can be
deallocated. It is not possible to deallocate an object unless it was previously
allocated, and it is not possible to deallocate a part of an object unless it is a
named component of a structure. It is possible to inquire whether an object is

46 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

currently allocated. Chapter 5 describes the declaration of pointers and
allocatable arrays; Chapter 6 covers the ALLOCATE and DEALLOCATE
statements; Chapter 13 and Appendix A discuss the ASSOCIATED intrinsic
inquiry function for pointers and the ALLOCATED intrinsic inquiry function
for allocatable arrays.

Pointers are more flexible than allocatable arrays, but they are more
complicated as well. In the first place, a pointer need not be an array; it may be
a scalar of any type. In the second place, a pointer need not be associated with
allocated space; any object with the TARGET attribute can become a pointer
target. A pointer assignment statement is provided to associate a pointer with
a target (declared or allocated). It makes use of the symbol pair => rather than
the single character =; otherwise, it is executed in the same way that an
ordinary assignment statement is executed, except that instead of assigning a
value it associates a pointer with a target. For example,

REAL, TARGET :: VECTOR (100)
REAL, POINTER :: ODDS (:)

. . .
ODDS => VECTOR (1:100:2)

The pointer assignment statement associates ODDS with the odd elements of
VECTOR. The assignment statement

ODDS = 1.5

defines each odd element of VECTOR with the value 1.5. Later in the execution
sequence, the pointer ODDS could become associated with a different target by
pointer assignment or allocation, as long as the target is a one-dimensional,
real array. Chapter 7 describes the pointer assignment statement.

2.5 Terms
Frequently used Fortran 90 terms are defined in this section. Some have a
meaning slightly different from the same Fortran 77 term; for example, both an
array and an array element are variables in Fortran 90, but not in Fortran 77.
Definitions of less frequently used terms may be found by referencing the
index of this handbook or Annex A of the Fortran 90 standard.

Fortran Concepts and Terms 47

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Entity This is the general term used to refer to any Fortran 90
“thing”, for example, a program unit, a common block,
a variable, an expression value, a constant, a statement
label, a construct, an operator, an interface block, a
type, an input/output unit, a namelist group, etc.

Data object A data object is a constant, a variable, or a part of a
constant or variable.

Data entity A data entity is a data object, the result of the
evaluation of an expression, or the result of the
execution of a function reference (called the function
result). A data entity always has a type.

Constant A constant is a data object whose value cannot be
changed. A named entity with the PARAMETER
attribute is called a named constant. A constant
without a name is called a literal constant.

Variable A variable is a data object whose value can be defined
and redefined. A variable may be a scalar or an array.

Subobject Portions of a data object may be referenced and defined
separately from other portions of the object. Portions of
arrays are array elements and array sections. Portions
of character strings are substrings. Portions of
structures are structure components. Subobjects are
referenced by designators and are considered to be
data objects themselves.

Name A name is used to identify many different entities of a
program such as a program unit, a variable, a common
block, a construct, a formal argument of a subprogram
(dummy argument), or a user-defined type (derived
type). A name may be associated with a specific
constant (named constant). The rules for constructing
names are given in Chapter 3.

Designator Sometimes it is convenient to reference only part of an
object, such as an element or section of an array, a
substring of a character string, or a component of a
structure. This requires the use of the name of the

48 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

object followed by a selector that selects a part of the
object. A name followed by a selector is called a
designator.

Data type A data type provides a means for categorizing data.
Each intrinsic and user-defined data type has four
characteristics—a name, a set of values, a set of
operators, and a means to represent constant values of
the type in a program.

Type parameter There are two type parameters for intrinsic types: kind
and length. The kind type parameter KIND indicates
the decimal range for the integer type, the decimal
precision and exponent range for the real and complex
types, and the machine representation method for the
character and logical types. The length type parameter
LEN indicates the length of a character string.

Derived type A derived type (or user-defined type) is a type that is
not intrinsic; it requires a type definition to name the
type and specify its components. The components may
be of intrinsic or user-defined types. An object of
derived type is called a structure. For each derived
type, a structure constructor is available to specify
values. Operations on objects of derived type must be
defined by a function with an interface and the generic
specifier OPERATOR. Assignment for derived type
objects is defined intrinsically, but may be redefined by
a subroutine with the ASSIGNMENT generic specifier.
Data objects of derived type may be used as procedure
arguments and function results, and may appear in
input/output lists.

Scalar A scalar is a single object of any intrinsic or derived
type. A structure is scalar even if it has a component
that is an array. The rank of a scalar is zero.

Array An array is an object with the dimension attribute. It is
a collected set of scalar data, all of the same type and
type parameters. The rank of an array is at least one

Fortran Concepts and Terms 49

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

and at most seven. Arrays may be used as expression
operands, procedure arguments, and function results,
and may appear in input/output lists.

Declaration A declaration is a nonexecutable statement that
specifies the attributes of a program element. For
example, it may be used to specify the type of a
variable or function or the shape of an array.

Definition This term is used in two ways. A data object is said to
be defined when it has a valid or predictable value;
otherwise it is undefined. It may be given a valid value
by execution of statements such as assignment or
input. Under certain circumstances described in
Chapter 14, it may subsequently become undefined.

Procedures and derived types are said to be defined
when their descriptions have been supplied by the
programmer and are available in a program unit.

Statement keyword A statement keyword is part of the syntax of a
statement. Each statement, other than an assignment
statement and a statement function definition, begins
with a statement keyword. Examples of these
keywords are IF, READ, and INTEGER. Statement
keywords are not “reserved”; they may be used as
names to identify program elements.

Argument keyword An argument keyword is the name of a dummy (or
formal) argument. These names are used in the
subprogram definition and may also be used when the
subprogram is invoked to associate dummy arguments
with actual arguments that can appear in any order.
Argument keywords for all of the intrinsic procedures
are specified by the standard (see Appendix A).
Argument keywords for user-supplied external
procedures may be specified in a procedure interface
block (described in Chapter 12).

50 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Sequence A sequence is a set ordered by a one-to-one
correspondence with the numbers 1, 2, through . The
number of elements in the sequence is . A sequence
may be empty, in which case it contains no elements.

Operator An operator indicates a computation involving one or
two operands. Fortran defines a number of intrinsic
operators; for example, +, –, ∗, /, ∗∗ with numeric
operands, and .NOT., .AND., .OR. with logical
operands. In addition, users may define operators for
use with operands of intrinsic or derived types.

Expression An expression is a sequence of operands, operators,
and parentheses and represents some computation. The
operands may be constants, variables, constructors,
function references, or expressions enclosed in
parentheses.

Construct A construct is a sequence of statements starting with a
CASE, DO, IF, or WHERE statement and ending with
the corresponding terminal statement.

Executable construct An executable construct is a statement (such as a GO
TO statement) or a construct (such as a DO or CASE
construct).

Control construct A control construct is an action statement that can
change the normal execution sequence (such as a GO
TO, STOP, or RETURN statement) or a CASE, DO, or IF
construct.

Procedure A procedure is defined by a sequence of statements
that expresses a computation that may be invoked as a
subroutine or function during program execution. It
may be an intrinsic procedure, an external procedure,
an internal procedure, a module procedure, a dummy
procedure, or a statement function. A subprogram may
define more than one procedure if it contains an
ENTRY statement.

n
n

Fortran Concepts and Terms 51

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Procedure interface A procedure interface is a sequence of statements that
specifies the name and characteristics of a procedure,
the name and attributes of each dummy argument, and
the generic specifier by which it may be referenced, if
any.

Reference A data object reference is the appearance of a name,
designator, or associated pointer in an executable
statement requiring the value of the object.

A procedure reference is the appearance of the
procedure name, operator symbol, or assignment
symbol in an executable program requiring execution
of the procedure.

A module reference is the appearance of the module
name in a USE statement.

Intrinsic Anything that is defined by the language is intrinsic.
There are intrinsic data types, procedures, and
operators. These may be used freely in any scoping
unit. The Fortran programmer may define types,
procedures, and operators; these entities are not
intrinsic.

Scoping unit A scoping unit is a portion of a program in which a
name has a fixed meaning. A program unit or
subprogram generally defines a scoping unit. Type
definitions and procedure interface blocks also
constitute scoping units. Scoping units are
nonoverlapping, although one scoping unit may
contain another in the sense that it surrounds it. If a
scoping unit contains another scoping unit, the outer
scoping unit is referred to as the host scoping unit of
the inner scoping unit.

Association In general, association permits an entity to be
referenced by different names in a scoping unit or by
the same or different names in different scoping units.
There are several kinds of association: the principal
ones are pointer association, argument association, host
association, use association, and storage association.

52 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2.6 Summary of Forms
The forms of the most important components of a Fortran 90 program are
given in this section. The notation used is the same as that used to show the
syntax forms in all the remaining chapters. The complete Backus-Naur form
(BNF) as given in the standard is part of Appendix B.

The form of a main program (R1101) is:

[PROGRAMprogram-name]
[specification-construct] ...
[executable-construct] ...
[CONTAINS

internal-procedure
[internal-procedure] ...]

END [PROGRAM[program-name]]

The form of a subprogram (R203) is:

procedure-heading
[specification-construct] ...
[executable-construct] ...
[CONTAINS

internal-procedure
[internal-procedure] ...]

procedure-ending

The form of a module (R1104) is:

MODULEmodule-name
[specification-construct] ...
[CONTAINS

subprogram
[subprogram] ...]

END [MODULE[module-name]]

The form of a block data program unit (R1110) is:

BLOCK DATA[block-data-name]
[specification-statement] ...

END [BLOCK DATA[block-data-name]]

Fortran Concepts and Terms 53

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The form of an internal procedure (R211) is:

procedure-heading
[specification-construct] ...
[executable-construct] ...

procedure-ending

The forms of a procedure heading (R1216, R1220) are:

[RECURSIVE] [type-spec] FUNCTION function-name &

([dummy-argument-list]) [RESULT (result-name)]
[RECURSIVE] SUBROUTINEsubroutine-name &

[([dummy-argument-list])]

The forms of a procedure ending (R1218, R1222) are:

END [FUNCTION [function-name]]
END [SUBROUTINE[subroutine-name]]

The forms of a specification construct are:

derived-type-definition
interface-block
specification-statement

The form of a derived-type definition (R422) is:

TYPE [[, access-spec] ::] type-name
[PRIVATE]
[SEQUENCE]
[type-spec [[, POINTER] ::] component-spec-list] ...

END TYPE[type-name]

The form of an interface block (R1201) is:

INTERFACE [generic-spec]
[procedure-heading

[specification-construct] ...
procedure-ending] ...
[MODULE PROCEDUREmodule-procedure-name-list] ...

END INTERFACE

54 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The forms of a specification statement are:

ALLOCATABLE[::] allocatable-array-list
COMMON[/ [common-block-name] /] common-block-object-list
DATA data-statement-object-list / data-statement-value-list /

DIMENSION array-dimension-list
EQUIVALENCEequivalence-set-list
EXTERNALexternal-name-list
FORMAT ([format-item-list])

IMPLICIT implicit-spec
INTENT (intent-spec) [::] dummy-argument-name-list
INTRINSIC intrinsic-procedure-name-list
NAMELIST / namelist-group-name / namelist-group-object-list
OPTIONAL [::] optional-object-list
PARAMETER(named-constant-definition-list)

POINTER [::] pointer-name-list
PUBLIC [[::] module-entity-name-list]
PRIVATE [[::] module-entity-name-list]
SAVE [[::] saved-object-list]
TARGET[::] target-name-list
USE module-name [, rename-list]
USE module-name , ONLY : [access-list]
type-spec [[, attribute-spec] ... ::] object-declaration-list

The forms of a type specification (R502) are:

INTEGER [([KIND=] kind-parameter)]
REAL [([KIND=] kind-parameter)]
DOUBLE PRECISION

COMPLEX[([KIND=] kind-parameter)]
CHARACTER[([KIND=] kind-parameter)]
CHARACTER ([[KIND=] kind-parameter ,] &

[LEN=] length-parameter)

LOGICAL [([KIND=] kind-parameter)]
TYPE (type-name)

The forms of an attribute specification (R503) are:

ALLOCATABLE

DIMENSION (array-spec)

EXTERNAL

INTENT (intent-spec)

Fortran Concepts and Terms 55

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

INTRINSIC

OPTIONAL

PARAMETER

POINTER

PRIVATE

PUBLIC

SAVE

TARGET

The forms of an executable construct (R215) are:

action-statement
case-construct
do-construct
if-construct
where-construct

The forms of an action statement (R216) are:

ALLOCATE (allocation-list [, STAT= scalar-integer-variable])

ASSIGN label TO scalar-integer-variable
BACKSPACEexternal-file-unit
BACKSPACE (position-spec-list)

CALL subroutine-name [([actual-argument-spec-list])]
CLOSE (close-spec-list)

CONTINUE

CYCLE [do-construct-name]
DEALLOCATE (name-list [, STAT= scalar-integer-variable])

ENDFILE external-file-unit
ENDFILE (position-spec-list)

EXIT [do-construct-name]
GO TOlabel
GO TO (label-list) [,] scalar-integer-expression
GO TOscalar-integer-variable [[,] (label-list)]
IF (scalar-logical-expression) action-statement
IF (scalar-numeric-expression) label , label , label
INQUIRE (inquire-spec-list) [output-item-list]
NULLIFY (pointer-object-list)

OPEN (connect-spec-list)

PAUSE [access-code]
PRINT format [, output-item-list]
READ (io-control-spec-list) [input-item-list]

56 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

READ format [, input-item-list]
RETURN[scalar-integer-expression]
REWINDexternal-file-unit
REWIND (position-spec-list)

STOP [access-code]
WHERE (array-logical-expression) array-assignment-statement
WRITE (io-control-spec-list) [output-item-list]
pointer-variable => target-expression
variable = expression

The form of a CASE construct (R808) is:

SELECT CASE (case-variable)

[CASE case-selector
[executable-construct] ...] ...

[CASE DEFAULT

[executable-construct] ...]
END SELECT

The forms of a DO construct (R816) are:

DO [label]
[executable-construct] ...

do-termination

DO [label] [,] loop-variable = initial-value , final-value &

[, increment]
[executable-construct] ...

do-termination

DO [label] [,] WHILE (scalar-logical-expression)

[executable-construct] ...
do-termination

The form of an IF construct (R802) is:

IF (scalar-logical-expression) THEN

[executable-construct] ...
[ELSE IF (scalar-logical-expression) THEN

[executable-construct] ...] ...
[ELSE

[executable-construct] ...]
END IF

Fortran Concepts and Terms 57

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The form of a WHERE construct (R739) is:

WHERE (array-logical-expression)

array-assignment-block
ELSEWHERE

array-assignment-block
END WHERE

Two miscellaneous forms (R1223) are:

ENTRY entry-name [([dummy-argument-list])] &

[RESULT (result-name)]

INCLUDE character-literal-constant

2.7 Ordering Requirements
Within program units and subprograms, there are ordering requirements for
statements and constructs. The syntax rules above do not fully describe the
ordering requirements. Therefore, they are illustrated in Tables 2-1 and 2-2. In
general, data declarations and specifications must precede executable
constructs and statements, although FORMAT, DATA, and ENTRY statements
may appear among the executable statements. USE statements, if any, must
appear first. Internal or module subprograms, if any, must appear last
following a CONTAINS statement.

In Table 2-1 a vertical line separates statements and constructs that can be
interspersed; a horizontal line separates statements that must not be
interspersed.

There are restrictions on the places where some statements may appear. Table
2-2 summarizes these restrictions.

58 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Table 2-1 Requirements on statement ordering

PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA statements

USE statements

IMPLICIT NONE

PARAMETER statements IMPLICIT statements

FORMAT and
ENTRY statements

PARAMETER and DATA
statements

Derived-type definitions, interface blocks type declaration statements
statement function statements and specification statements

DATA statements Executable constructs

CONTAINS statement

Internal subprograms or module subprograms

END statement

Table 2-2 Restrictions on the appearance of statements

Kind of
scoping unit

Main
program Module

Block
 data

External
subprog

Module
subprog

Internal
subprog

Interface
 body

USE statement Yes Yes No Yes Yes Yes Yes

ENTRY statement No No No Yes Yes No No

FORMAT statement Yes No No Yes Yes Yes No

Misc. declarations (see note) Yes Yes Yes Yes Yes Yes Yes

DATA statement Yes Yes Yes Yes Yes Yes No

Derived-type definition Yes Yes No Yes Yes Yes Yes

Interface block Yes Yes No Yes Yes Yes Yes

Statement function Yes No No Yes Yes Yes No

Executable statement Yes No No Yes Yes Yes No

CONTAINS Yes Yes No Yes Yes No No

Note: Misc. declarations are PARAMETER statements, IMPLICIT statements, DATA statements, type declaration
statements, and specification statements.

Fortran Concepts and Terms 59

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2.8 Example Fortran 90 Program
Illustrated below is a very simple Fortran 90 program consisting of one
program unit, the main program. Three data objects are declared: H, T, and U.
These become the loop indices in a triply-nested loop structure (8.5) containing
a logical IF statement (8.3.2) that conditionally executes an input/output
statement (9.4).

PROGRAM SUM_OF_CUBES
! This program prints all 3-digit numbers that
! equal the sum of the cubes of their digits.
INTEGER H, T, U
DO H = 1, 9

DO T = 0, 9
DO U = 0, 9

IF (100*H + 10* T + U == H**3 + T**3 + U**3) &
PRINT "(3I1)", H, T, U

END DO
END DO

END DO
END PROGRAM SUM_OF_CUBES

This Fortran 90 program is standard conforming and should be compilable and
executable on any standard Fortran 90 computing system, producing the
following output:

153
370
371
407

2.9 Summary

2.9.1 Program Units

There are five kinds of program units:

main program
external subroutine
external function
module
block data

60 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The module is new to Fortran with Fortran 90. It may contain data definitions,
type definitions, procedure definitions, and procedure interface descriptions.
Information in a module may be made available to other program units or it
may be kept private to the module. Type definitions and procedure interface
descriptions are also new to Fortran. Procedure interface descriptions are used
to describe the interfaces of external procedures and provide generic specifiers
for external and module procedures. For some new Fortran 90 features,
procedure interfaces are required for proper communication.

2.9.2 Scoping

The scope of an entity determines where it is accessible in the program. A
scope may be as large as an entire program or as small as a part of one Fortran
statement. The scope of an entity is often, but not always, a scoping unit,
which is one of the following:

1. a program unit or subprogram, excluding derived-type definitions,
procedure interface bodies, and subprograms contained within it

2. a derived-type definition

3. a procedure interface body, excluding any derived-type definitions and
procedure interface bodies contained within it

2.9.3 Association

Association allows more than one entity to share values and other properties.
Storage association and argument association establish that different entities,
possibly with different scopes, share values. Use and host association extend
the scope of entities into other procedures.

2.9.4 Packaging

Programs are made up of program units. Program units are made up of Fortran
constructs and statements and may contain other scoping units.

Internal procedures may appear in the main program and in external and
module procedures. They must not appear in internal procedures nor may the
names of internal procedures be passed as arguments.

Fortran Concepts and Terms 61

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Statement function statements may appear in the main program and in
external, internal, and module procedures.

Interface blocks may appear in the main program, in modules, and in external,
internal, and module procedures. They must not appear in a block data
program unit.

Type definitions may appear in the main program, in modules, in block data
subprograms, and in external, internal, and module procedures.

Packaging allows programs to be structured logically and information to be
hidden unless it is needed. This permits more robust programs to be created.

2.9.5 Data Type

Fortran provides five intrinsic data types:

integer
real
complex
logical
character

A standard-conforming Fortran 90 processor must support at least two kinds
(representations) of real and complex values; it may support more. It must
support one kind of integer, logical, and character representations and may
support more.

A Fortran 90 user may define new data types that are made up of components
that are of intrinsic or user-defined type. An object of one of these new types is
called a structure. It is considered to be a scalar.

2.9.6 Dimensionality

If a data object has the dimension attribute, it is an array; otherwise, it is a
scalar. Arrays are treated as variables in Fortran 90; they may appear in
expressions and be returned as function results. Either whole arrays or array
sections may be referenced. A structure may have an array component, but it is
still considered to be a scalar. Arrays of structures are permitted.

62 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2.9.7 Dynamic Data

There are three dynamic data objects in Fortran 90:

pointers
allocatable arrays
automatic data objects

Dynamic data objects do not exist until a program is executed. They are
declared, but no space is set aside by the compiler for these objects. During
execution pointers may be allocated space, in which case new space is created
for them; or they may be assigned to point to existing space. Allocatable arrays
must have space allocated for them during execution. Automatic data objects,
which may be arrays or character strings, can be declared only in subprograms.
Space is created for them when the subprogram is invoked, and they cease to
exist when execution of the subprogram completes.

2.9.8 Execution Sequence

Program execution begins with the first executable statement in the main
program. It continues with successive statements unless a statement or
construct is encountered that changes the flow of control. When a procedure is
invoked, its execution begins with the first executable statement after the entry
point in the procedure. On normal return from a procedure, execution
continues where it left off.

2.9.9 Definition and Undefinition

When program execution begins, most variables have no value. Their
definition status is considered to be undefined. If, however, the variable was
initialized by a DATA statement or a type declaration statement, its definition
status is defined. During the course of execution, a variable may acquire a
value or change its current value, which would cause its definition status to be
defined. On the other hand, some event could occur that would cause its
definition status to become undefined.

Pointers have both a definition status and an association status. Initially, the
association status of all pointers is undefined. When the pointer becomes
associated with a target, its status changes to associated. Its definition status is
defined only if it is associated with a target that is defined.

Fortran Concepts and Terms 63

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In a like manner, allocatable arrays must be both allocated and defined before
their definition status is defined.

2.9.10 Dynamic Behavior

Fortran 90 introduces some new kinds of dynamic behavior:

1. recursion

2. allocation and deallocation

3. pointer assignment

The Fortran programmer can now write subprograms that invoke themselves.
The keyword RECURSIVE must appear in the SUBROUTINE or FUNCTION
statement if this occurs.

The Fortran programmer can now control the utilization of space with
ALLOCATE and DEALLOCATE statements.

Pointers can be allocated or they can be associated with existing space with a
pointer assignment statement.

64 Fortran 90 Handbook

2

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

65

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Language Elements
and Source Form 3

This chapter describes the language elements that a Fortran statement may
contain. Language elements consist of lexical tokens, which include names,
keywords, operators, and statement labels. Rules for forming lexical tokens
from the characters in the Fortran character set are given.

The source form describes how to place these elements on a line in a Fortran
program. There are two source forms in Fortran 90. One is oriented towards
the Hollerith punched card common in the 1960s and is restricted to 80
positions. It is called fixed source form. The other is new in Fortran 90 and is
oriented towards terminal input of source code. It is called free source form.

A processor must have a character set that includes the Fortran character set
(described in the next section) but may permit other characters in certain
contexts. These characters may include control characters (which may have no
graphic representation, such as escape or newline) or may include characters
with specified graphics. The characters with specified graphics are typically
oriented towards other languages such as Greek, Arabic, Chinese, or Japanese.
Such characters are not required to be part of the character set for the default
character type, but would be part of some optional, nondefault character type,
permitted by the standard and supplied by a particular implementation.

The INCLUDE line is a new feature in Fortran that permits the inclusion of
source code from a specified file. It is a convenient way to place the same text
in several places in a program.

66 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3.1 The Processor Character Set
The processor character set contains:

• the Fortran character set with specified graphics except for the currency
symbol ($). The Fortran 90 character set includes the Fortran 77 character
set plus the characters >, <, ;, !, ?, %, _, ", and &.

• as an option, a processor-dependent set of control characters that have no
graphic representation, such as “newline” or “escape”

• as an option, a set of characters with graphics (such as Greek letters,
Japanese ideographs, or characters in the shape of a heart or a diamond)

It is recommended that the programmer consult the implementor’s
documentation describing the processor-dependent features of each particular
Fortran 90 implementation.

3.1.1 The Fortran Character Set

Characters in the Fortran character set are shown in Table 3-1.

Rules and restrictions:

1. Lowercase letters are permitted, but a processor is not required to
recognize them. If a processor does recognize them, they are considered the
same as uppercase letters except within a character constant or a quote,
apostrophe, or H edit descriptor, where uppercase and lowercase letters are
different data values. Thus, for a processor that accepts lowercase letters,
the following two statements are equivalent:

PRINT *, N
Print *, n

Whether uppercase and lowercase letters are distinguished in the FILE= or
NAME= specifier in an OPEN or an INQUIRE statement is processor
dependent.

2. The digits are assumed to be decimal numbers when used to describe a
numeric value, except in binary, octal, and hexadecimal (BOZ) literal
constants or input/output records corresponding to B, O, or Z edit
descriptors. For example, consider the following DATA statement:

DATA X, I , J / 4.89, B’1011’, Z’BAC91’ /

Language Elements and Source Form 67

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The digits of the first constant are decimal digits, those of the second
constant are binary digits, and those of the third are hexadecimal digits.

3. The underscore is used to make names more readable. For example, in the
identifier NUMBER_OF_CARS, each underscore is used to separate the
obvious English words. It is a significant character in any name. It cannot
be used as the first character of a name; however, it may be the last
character. An underscore is also used to separate the kind value from the
actual value of a literal constant (for example, 123_2).

Table 3-1 The Fortran character set

Alphanumeric characters

Letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Digits 0 1 2 3 4 5 6 7 8 9

Underscore _

Special characters

Graphic Name of character Graphic Name of character

Blank : Colon

= Equals ! Exclamation point

+ Plus "
Quotation mark or
quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ; Semicolon

(Left parenthesis < Less than

) Right parenthesis > Greater than

, Comma ? Question mark

.
Decimal point or
period

$ Currency symbol

’ Apostrophe

68 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. Except for the currency symbol ($), the graphic for each character must be
the same as in Table 3-1; however, any style, font, or printing convention
may be used.

There are twenty-one special characters used for operators like multiply and
add, and as separators or delimiters in Fortran statements. Separators and
delimiters make the form of a statement unambiguous. The special characters,
$ and ?, are not required for any Fortran statement.

Fortran’s treatment of uppercase and lowercase letters may lead to portability
problems when calling subprograms written in other languages. The problem
occurs because the standard does not specify the case of letters used for
external names. To illustrate the problem, consider the program fragment:

EXTERNAL FOO
. . .

CALL FOO
. . .

END

One Fortran processor may use FOO as the external name whereas another
Fortran system may use foo. If FOO were to be written in a programming
language such as C, which is case sensitive, the external name used in C would
then be different for different programming systems.

Undoubtedly, most implementations will use the case that makes the Fortran
90 compiled code compatible with previous Fortran implementations on the
same system. For example, Unix implementations of Fortran generally use
lowercase letters for external names in Fortran implementations, and thus can
be expected to continue to use lowercase letters for all externals. Consult your
vendor’s documentation for the specific details.

3.1.2 Other Characters

In addition to the Fortran character set, other characters may be included in the
processor character set. These are either control characters with no graphics or
additional characters with graphics. The selection of the other characters and
where they may be used is processor dependent. However, wherever they are
permitted, the other characters are restricted in use to character constants,
quote, apostrophe, and H edit descriptors, comment lines, and input/output

Language Elements and Source Form 69

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

records. All characters of the Fortran character set may be used in character
constants, quote, apostrophe, and H edit descriptors, comment lines, and
input/output records.

A processor is required to support the Fortran character set as part of a
character set referred to as the default character set. A processor is allowed to
support more than one character set, each set using a different kind value of
the intrinsic character type (4.3.5). The choice of characters in such sets is
processor dependent except that each such set must contain a character that
can be used as a blank. This specially designated character is used where blank
padding is required.

The choice of the representable characters beyond the Fortran character set is
expected to be dependent on the particular implementation. It is recommended
that the implementor’s documentation be consulted for specific details.

3.2 Lexical Tokens
A statement is constructed from low-level syntax. The low-level syntax
describes the basic language elements, called lexical tokens, in a Fortran
statement. A lexical token is the smallest meaningful unit of a Fortran
statement and may consist of one or more characters. Tokens are names,
keywords, literal constants (except for complex literal constants), labels,
operator symbols, comma, =, =>, :, ::, ;, %, and delimiters. A complex literal
(4.3.3.4) consists of several tokens. Examples of operator symbols are + and //.

Delimiters in Fortran are pairs of symbols that enclose parts of a Fortran
statement. The delimiters are slashes (in pairs), left and right parentheses, and
the symbol pair (/ and /).

/ ... /
(...)
(/ ... /)

In the statements:

DATA X, Y/ 1.0, -10.2/
CALL PRINT_LIST (LIST, SIZE)
VECTOR = (/ 10, 20, 30, 40 /)

70 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the slashes distinguish the value list from the object list in a DATA statement,
the parentheses are delimiters marking the beginning and end of the argument
list in the CALL statement, and the pairs (/ and /) mark the beginning and
end of the elements of an array constructor.

3.2.1 Statement Keywords

Statement keywords appear in uppercase letters in the syntax rules. Some
statement keywords also identify the statement, such as in the DO statement:

DO I = 1, 10

where DO is a statement keyword identifying the DO statement. Other
keywords delimit parts of a statement such as ONLY in a USE statement, or
WHILE in one of the forms of a DO construct, as, for example:

DO WHILE(.NOT. FOUND)

Others specify options in the statement such as IN, OUT, or INOUT in the
INTENT statement.

There are three statements in Fortran that have no statement keyword. They
are the assignment statement, the pointer assignment statement, and the
statement function.

Some equences of capital letters in the formal syntax rules are not statement
keywords. For example, EQ in the lexical token .EQ. and EN as an edit
descriptor are not statement keywords.

A dummy argument keyword, a different sort of keyword, is discussed in
Section 12.5.4.

3.2.2 Names

Variables, named constants, program units, common blocks, procedures,
arguments, constructs, derived types (types for structures), namelist groups,
structure components, dummy arguments, and function results are among the
elements in a program that have a name.

Language Elements and Source Form 71

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. A name must begin with a letter and consist of letters, digits, and
underscores. Note that an underscore must not be the first character of a
name—see the syntax rule for name in 3.6.

2. Fortran 90 permits up to 31 characters in names.

Examples of names:

A
CAR_STOCK_NUMBER
A__BUTTERFLY
Z_28
TEMP_

3.2.3 Constants

A constant is a syntactic notation for a value. The value may be of any intrinsic
type, that is, a numeric (integer, real, or complex) value, a character value, or a
logical value.

A value that does not have a name is a literal constant. Examples of literal
constants are:

1.23
400
(0.0, 1.0)
"ABC"
B’0110110’
.TRUE.

No literal constant can be array-valued or of derived type. The forms of literal
constants are given in more detail in Section 4.3.

A value that has a name is called a named constant and may be of any type,
including a derived type. A named constant may also be array-valued.
Examples of named constants are:

X_AXIS
MY_SPOUSE

where these names have been specified in a declaration statement as follows:

REAL, DIMENSION(2), PARAMETER :: X_AXIS = (/ 0.0, 1.0 /)
TYPE(PERSON), PARAMETER :: MY_SPOUSE = PERSON(39, ’PAT’)

72 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Note, however, that the entity on the right of the equal sign is not itself a
constant but a constant expression (7.2.9.1). The forms for defining named
constants are described in more detail in Section 5.5.2.

3.2.4 Operators

Operators are used with operands in expressions to produce other values.
Examples of language-supplied operators are:

The complete set of the intrinsic operators built into Fortran 90 is given by the
class intrinsic-operator (R310) in Appendix B.2.

Users may define operators (12.6.4) in addition to the intrinsic operators. User-
defined operators begin with a period (.), followed by a sequence of up to 31
letters, and end with a period (.), except that the letter sequence must not be
the same as any intrinsic operator or the logical constants .FALSE. or .TRUE.

3.2.5 Statement Labels

A label may be used to identify a statement. A label consists of one to five
decimal digits, one of which must be nonzero. If a Fortran statement has a
label, it is uniquely identified and the label can be used in DO constructs,
CALL statements, branching statements, and input/ output statements. In
most cases, two statements in the same program unit must not have the same
label (there are exceptions because a program unit may contain more than one
scoping unit, for example, several internal procedures). Leading zeros in a
label are not significant so that the labels 020 and 20 are the same label. The
cases in which duplicate labels can be used in the same program unit are
explained in Chapter 14 as part of the general treatment of the scope of entities.
Examples of statements with labels are:

* representing multiplication of numeric values

// representing concatenation of character values

==
representing comparison for equality (same as
.EQ.)

.OR. representing logical disjunction

.NOT. representing logical negation

Language Elements and Source Form 73

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

100 CONTINUE
21 X = X + 1.2

101 FORMAT (1X, 2F10.2)

The Fortran 90 syntax does not permit a statement with no content, sometimes
referred to as a blank statement. Such a statement is always treated as a
comment; therefore, if such a statement is created, it must not be labeled. For
example, each of the following lines is nonstandard Fortran 90:

10
X=0;101;

3.3 Source Form
A Fortran program consists of Fortran statements, comments, and INCLUDE
lines; this collection of statements, comments, and lines is called source text. A
Fortran statement consists of one or more complete or partial lines of source
text and is constructed from low-level syntax (3.6). A complete or partial line is
a sequence of characters. The following examples illustrate how statements can
be formed from partial or complete lines:

! This example is written for one of the source forms,
! called free source form (3.3.1). It uses the & on the
! continued line to indicate continuation, and ! to
! indicate the beginning of a comment.

10 FORMAT(2X, I5) ! A statement on a complete line
13 FORMAT(2X, & ! A statement on two complete

I5) ! lines

X = 5; 10 FORMAT(2X, I5) ! Two statements, each as part
! of a line

X = 5 + & ! A statement consisting of a
Y; 10 FORMAT(2X, I5) ! complete line and a partial

! line

X = 5 + &
Y; 10 FORMAT(2X, & ! A statement made up of two

I5); READ & ! partial lines
(5, 10) A, B, C

74 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The lines within a program unit (except comment lines) and the order of the
lines are in general significant (see Table 2-1), except that the order of the
subprograms following a CONTAINS statement and before the END statement
for the containing program unit is insignificant. Because all program units
terminate with their own END statement, lines following such an END
statement are never part of the preceding program unit; they are part of the
program unit that follows.

There are two source forms for writing source text: free source form, which is
new, and fixed source form, which is the traditional Fortran form.
Programmers must use either fixed or free source form throughout a program
unit, although different program units within the program may use different
source forms. Each Fortran processing system must provide a way to indicate
which source form is being used; for example, this might be indicated with a
compiler option or compiler directive, or the processor might assume one of
the forms by default. Section 3.4 describes a way to write Fortran statements so
that the source text is acceptable to both free and fixed source forms.

Characters that form the value of a character literal constant or a character
string edit descriptor (quote, apostrophe, or H edit descriptor) are said to be in
a character context. Note that the characters in character context do not include
the delimiters used to indicate the beginning and end of the character constant
or string. Also, the ampersands in free source form, used to indicate that a
character string is being continued and used to indicate the beginning of the
character string on the continued line, are never part of the character string
value and thus are not in character context—see Section 3.3.1.1.

The rules that apply to characters in a character context are different from the
rules that apply to characters in other contexts. For example, blanks are always
significant in a character context, but are never significant in other parts of a
program written using fixed source form.

CHAR = CHAR1 // "Mary K. Williams"
! The blanks within the character string
! (within the double quotes) are significant.

! The next two statements are equivalent
! in fixed source form.
DO2I=1,N
DO 2 I = 1, N

Language Elements and Source Form 75

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Comments may contain any graphic character that is in the processor character
set. For fixed source form, comments may contain, in addition, certain control
characters as allowed by the processor—see the implementor’s manual for the
specific control characters allowed.

3.3.1 Free Source Form

In free source form, there are no restrictions limiting statements to specific
positions on a Fortran line. The blank character is significant and may be
required to separate lexical tokens.

Rules and restrictions:

1. Blank characters are significant everywhere except that a sequence of blank
characters outside a character context is treated as a single blank character.
They may be used freely between tokens and delimiters to improve the
readability of the source text. For example, the two statements

SUM=SUM+A(I)
SUM = SUM + A (I)

are the same.

2. Each line may contain from 0 to 132 characters, provided that they are of
default character kind. If any character is of a nondefault character kind,
the processor may limit the number of characters to fewer than 132
characters. For example, a line such as

TEXT = GREEK_’This line has 132 characters and contains ’

may use exactly 132 graphic characters, but the implementation may
require more space to represent this source line than 132 Fortran
characters. The processor may thus limit how many graphic characters
may be used on a line if any of them are of nondefault character kind.

3. The exclamation mark (!), not in character context, is used to indicate the
beginning of a comment that ends with the end of the line. A line may
contain nothing but a comment. Comments, including the !, are ignored
and do not alter the interpretation of Fortran statements in any way. There
is no language limit on the number of comments in a program unit,
although the processor may impose such a limit. A line whose first
nonblank character is an exclamation mark is called a comment line. An
example of a Fortran statement with a trailing comment is:

α

76 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

ITER = ITER + 1 ! Begin the next iteration.

An example of a comment line is:

! Begin the next iteration.

4. An ampersand, not in character context, is a continuation symbol and can
only be followed by zero or more blanks or a comment and the end of the
line. The line following that is not a comment line is called a continuation
line. An example of a continued line and a continuation line is:

FORCE = G * MASS1 * & ! This is a continued line.
MASS2 / R**2 ! This is a continuation line.

No more than 39 continuation lines are allowed in a Fortran statement. No
line may contain an ampersand as the only nonblank character before an
exclamation mark. Comment lines cannot be continued; that is, the
ampersand as the last character in a comment is part of the comment and
does not indicate continuation. The next section gives more details on the
use of the ampersand in free source form as a continuation symbol.

5. A line with only blank characters or with no characters is treated as a
comment line.

6. More than one statement or partial statements may appear on a line. The
statement separator is the semicolon (;), provided it is not in a character
context; multiple successive semicolons on a line with or without blanks
intervening are considered as a single separator. The end of a line is also a
statement separator, but a semicolon at the end of a line that is not part of
a comment is considered as a single separator. For example:

! The semicolon is a statement separator.
X = 1.0; Y = 2.0

! However, the semicolon below at the end of a line is
! not treated as a separator and is ignored.
Z = 3.0;

! Also, consecutive semicolons are treated as one
! semicolon, even if blanks intervene.
Z = 3.0; ; W = 4.0

The effect of these rules is as if a null statement were a legal Fortran
statement.

Language Elements and Source Form 77

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7. A label may appear before a statement, provided it is not part of another
statement, but it must be separated from the statement by at least one
blank. For example:

10 FORMAT(10X,2I5) ! 10 is a label
IF (X == 0.0) 20 0 Y = SQRT(X) ! Label 200 is

! not allowed.

8. Any graphic character in the processor character set may be used in
character literal constants (4.3.5.4) and character string edit descriptors
(10.2.3). Note that this excludes control characters; it is recommended that
the implementor’s manual be consulted for the specific details.

3.3.1.1 The Ampersand as a Continuation Symbol

The ampersand (&) is used as the continuation symbol in free source form. If it
is the last nonblank character after any comments are deleted and it is not in a
character context, the statement is continued on the next line that does not
begin with a comment. If the first nonblank character on the continuing line is
an ampersand, the statement continues after the ampersand; otherwise, the
statement continues with the first position of the line. The ampersand or
ampersands used as the continuation symbols are not considered part of the
statement. For example, the following statement takes two lines (one
continuation line) because it is too long to fit on one line:

STOKES_LAW_VELOCITY = 2 * GRAVITY * RADIUS ** 2 * &
(DENSITY_1 - DENSITY_2) / (9 * COEFF_OF_VISCOSITY)

The leading blanks on the continued line are included in the statement and are
allowed in this case because they are between lexical tokens.

The double-ampersand convention must be used to continue a name, a
character constant, or a lexical token consisting of more than one character split
across lines. The following statement is the same statement as in the previous
example:

STOKES_LAW_VELOCITY = 2 * GRAVITY * RADIUS * 2 * (DEN&
&SITY_1 - DENSITY_2) / (9 * COEFF_OF_VISCOSITY)

However, splitting names across lines makes the code difficult to read and is
not recommended.

Ampersands may be included in a character constant. Only the last ampersand
on the line is the continuation symbol, as illustrated in the following example:

78 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

LAWYERS = "Jones & Clay & &
&Davis"

The value of this constant is "Jones & Clay & Davis" (provided the lines begin
in position 1). The first two ampersands are in character context; they are part
of the value of the character string.

To continue a character constant so that the continued line is indented, an
ampersand must be used as the first character of the continued line, as in:

NAME = "Mary K. W&
&illiams"

In this case, the first nonblank character on the next line (that is not a
comment) must be an ampersand because Williams is split between lines;
otherwise the blanks at the beginning of the second line will be included as
part of the character constant. The statement continues with the character
following the ampersand. The value in NAME is "Mary K. Williams". This
allows character strings (that could be quite long) to be continued.

3.3.1.2 Blanks as Separators

Blanks in free source form may not appear within tokens, such as names or
symbols consisting of more than one character, except that blanks may be
freely used in format specifications. For instance, blanks may not appear
between the characters of multicharacter operators such as ∗∗ and .NE.
Format specifications are an exception because blanks may appear within edit
descriptors such as BN, SS, or TR in format specifications. On the other hand, a
blank must be used to separate a statement keyword, name, constant, or label
from an adjacent name, constant, or label. For example, the blanks in the
following statements are required.

INTEGER SIZE
PRINT 10,N
DO I=1,N

Adjacent keywords require a blank separator in some cases (for example,
CASE DEFAULT) whereas in other cases two adjacent keywords may be
written either with or without intervening blanks (for example, BLOCK
DATA); Table 3-2 gives the situations where blank separators are optional or
mandatory. Despite these rules, blank separators between statement keywords
make the source text more readable and clarify the statements. In general, if
common rules of English text are followed, everything will be correct. For

Language Elements and Source Form 79

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

example, blank separators in the following statement make them quite
readable, even though the blank between the keywords RECURSIVE and
FUNCTION in the first statement is the only one that is required.

RECURSIVE FUNCTION F(X)
DOUBLE PRECISION X
END FUNCTION F

Table 3-2 Where blanks are optional and required separating
statement keywords

Blanks optional Blanks mandatory

BLOCK DATA CASE DEFAULT

DOUBLE PRECISION DO WHILE

ELSE IF IMPLICIT type-spec

END BLOCK DATA IMPLICIT NONE

END DO INTERFACE ASSIGNMENT

END FILE INTERFACE OPERATOR

END FUNCTION MODULE PROCEDURE

END IF RECURSIVE FUNCTION

END INTERFACE RECURSIVE SUBROUTINE

END MODULE RECURSIVE type-spec

END PROGRAM type-spec FUNCTION

END SELECT type-spec RECURSIVE

END SUBROUTINE

END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

80 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3.3.1.3 Sample Program, Free Source Form

A sample program in free source form is:

123456789.......

|PROGRAM LEFT_RIGHT
| REAL X(5), Y(5)
| ! Print arrays X and Y
| PRINT 100, X, Y
| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &
| F10.5)
| . . .
|END

3.3.2 Fixed Source Form

Fixed source form is position oriented on a line using the conventions for
position that were used historically for Fortran written on punched cards.
Currently, most programmers use Fortran systems that permit a less stilted
style of source form; this is similar to or the same as the free source form
described in the previous sections.

Rules and restrictions:

1. Fortran statements or parts of Fortran statements must be written between
positions 7 and 72. Character positions 1 through 6 are reserved for special
purposes.

2. Blanks are not significant in fixed source form except in a character context.
For example, the two statements

D O 10 I = 1, L O O P E N D
DO 10 I = 1, LOOPEND

are the same.

3. A C or ∗ in position 1 identifies a comment. In this case, the entire line is a
comment and is called a comment line. A ! in any position except position
6 and not in character context indicates that a comment follows to the end
of the line. Comments are not significant, and there is no language limit on
the number of comment lines. However, a processor may impose a limit.

Language Elements and Source Form 81

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. A line with only blank characters or with no characters is treated as a
comment line.

5. Multiple statements on a line are separated by one or more semicolons,
and semicolons may occur at the end of a line, which are ignored.

6. Any character (including ! and ;) other than blank or zero in position 6
indicates that the line is a continuation of the previous line. Such a line is
called a continuation line. The text on the continuation line begins in
position 7. There must be no more than 19 continuation lines for one
statement in fixed source form. The first line of a continued statement is
called the initial line.

7. Statement labels may appear only in positions 1 through 5. Labels may
appear only on the first line of a continued statement. Thus, positions 1
through 5 of continuation lines must contain blanks.

8. An END statement must not be continued. END also must not be an initial
line of a statement other than an END statement. For example, an
assignment statement for the variable ENDLESS may not be written as

END
+LESS = 3.0

because the initial line of this statement is identical to an END statement.

9. Any character from the processor character set (including graphic and
control characters) may be used in a character literal constant and character
edit descriptors, except that the processor is permitted to limit the use of
some of the control characters in such character contexts. Consult the
implementor’s documentation for such limitations.

3.3.3 Sample Program, Fixed Source Form

A sample program in fixed source form is:

82 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

123456789.....

| PROGRAM LEFT_RIGHT
| REAL X(5), Y(5)
|C Print arrays X and Y
| PRINT 100, X, Y
| 100 FORMAT (F10.1, F10.2, F10.3, F10.4,
| 1 F10.5)
| . . .
| END

3.4 Rules for Fixed/Free Source Form
For many purposes, such as an included file (3.5), it is desirable to use a form
of the source code that is valid and equivalent for either free source form or
fixed source form. Such a fixed/free source form can be written by obeying the
following rules and restrictions:

1. Limit labels to positions 1 through 5, and statements to positions 7 through
72. These are the limits required in fixed source form.

2. Treat blanks as significant. Because blanks are ignored in fixed source form,
using the rules of free source form will not impact the requirements of
fixed source form.

3. Use the exclamation mark (!) for a comment, but don’t place it in position
6, which indicates continuation in fixed source form. Do not use the C or *
forms for a comment.

4. To continue statements, use the ampersand in both position 73 of the line
to be continued, and in position 6 of the continuation. Positions 74 to 80
must remain blank or have only a comment there. Positions 1 through 5
must be blank. The first ampersand continues the line after position 72 in
free source form and is ignored in fixed source form. The second
ampersand indicates continuation in fixed source form and in free source
form indicates that the text for the continuation of the previous line begins
after the ampersand.

3.4.1 Sample Program, Use with Either Source Form

A sample program that is acceptable for either source form is:

Language Elements and Source Form 83

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

123456789..... 73
---.....----

| PROGRAM LEFT_RIGHT
| REAL X(5), Y(5)
|! Print arrays X and Y
| PRINT 100, X, Y
| 100 FORMAT (F10.1, F10.2, F10.3, F10.4, &
| & F10.5)
| . . .
| END

3.5 The INCLUDE Line
Source text may be imported from another file and included within a program
file during processing. An INCLUDE line consists of the keyword INCLUDE
followed by a character literal constant. For example,

INCLUDE ’MY_COMMON_BLOCKS’

The specified text is substituted for the INCLUDE line before compilation and
is treated as if it were part of the original program source text. The location of
the included text is specified by the value of the character constant in some
processor-dependent manner. A frequent convention is that the character literal
constant is the name of a file containing the text to be included. Use of the
INCLUDE line provides a convenient way to include source text that is the
same in several program units. For example, the specification of interface
blocks or objects in common blocks may constitute a file that is referenced in
the INCLUDE line.

The form for an INCLUDE line is:

INCLUDE character-literal-constant

Rules and restrictions:

1. The character literal constant used must not have a kind parameter that is
a named constant.

2. The INCLUDE line is a directive to the compiler; it is not a Fortran
statement.

3. The INCLUDE line is placed where the included text is to appear in the
program.

84 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. The INCLUDE line must appear on one line with no other text except
possibly a trailing comment. There must be no statement label.

5. INCLUDE lines may be nested. That is, a second INCLUDE line may
appear within the text to be included. The permitted level of nesting is not
specified and is processor dependent. However, the text inclusion must not
be recursive at any level; for example, included text A must not include
text B, which includes text A.

6. A file intended to be referenced in an INCLUDE line must not begin or end
with an incomplete Fortran statement.

An example of a program unit with an INCLUDE line follows:

PROGRAM MATH
REAL, DIMENSION (10,5,79) :: X, ZT
! Some arithmetic
INCLUDE ’FOURIER’
! More arithmetic

. . .
END

The Fortran source text in the file FOURIER in effect replaces the INCLUDE
line. The INCLUDE line behaves like a compiler directive.

3.6 Low-Level Syntax
The basic lexical elements of the language consist of the classes character
(R301), name (R304), constant (R305), intrinsic-operator (R310), defined-operator
(R311), and label (R313), which are defined in Appendix B.2. These items are
defined in terms of the classes letter, digit, underscore, and special-character which
are defined in Section 3.1.1.

3.7 Summary

3.7.1 The Fortran and Processor Character Sets

The Fortran character set consists of the 26 uppercase letters of the English
alphabetic, the 10 decimal digits, and 21 special characters. The processor
character set consists of the Fortran character set plus, as an option, a set of

Language Elements and Source Form 85

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

control characters with no graphics plus, as an option, a set of additional
characters with graphics. The characters of the default character type must
include the Fortran character set and may include other characters.

The processor may support other character sets, one for each nondefault
character type. Each of these additional character sets is a subset of the
processor character set and must contain a character designated as a blank
character.

The characters of the processor character set may be used in character context,
in comments, and in input/output records. (Recall that characters in a
character literal constant or in a character string edit descriptor are in character
context.) The processor may also represent and recognize lowercase letters.
However, each lowercase letter is considered the same as its corresponding
uppercase letter in all contexts except character context and input/output
records.

3.7.2 Low-Level Syntax and Lexical Tokens

A Fortran statement is constructed from low-level syntax. The lexical tokens
are the basic language elements. They are described by low-level syntax rules
in terms of the characters of the Fortran character set. The lexical tokens consist
of names, keywords, literal constants, labels, delimiters, operators, and various
other basic symbols such as =, =>, :, ::, ;, and %.

3.7.3 Source Forms

Fortran has two source forms: fixed source form and free source form.

3.7.4 Fixed Source Form

Fixed source form is oriented towards a fixed-size record of 80 characters with
positional restrictions. Labels must be in positions 1 through 5, the Fortran
statements must be in positions 7 through 72, and positions 73 through 80 are
unused. If needed, a character in position 6 indicates the line is continuing the
previous line. Any line with the letter C or an asterisk in position 1 is a
comment. An exclamation (!) in any position except 6 and not in character
context indicates that the characters to the end of the line represent a comment.
More than one statement may be written on one line with a semicolon

86 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

separating the statements. Blanks are insignificant except in a character
context; that is, they may be inserted anywhere within a statement. Of course,
they may be used to make the Fortran source text readable.

3.7.5 Free Source Form

Free source form is oriented towards variable-length records with no position
restrictions. Source records with up to 132 characters must be accepted by the
processor. Blanks are significant and must not be used within tokens,
particularly identifiers, keywords, literal constants, and multicharacter
operators. More than one statement may be written on one line with a
semicolon separating the statements. Comments begin with an exclamation (!)
and may appear on a separate line or at the end of any line. Lines are
continued by using an ampersand as the last nonblank character not in a
comment on the line to be continued and, optionally, using an ampersand as
the first character of the continued line. An ampersand may be used as the first
nonblank character on the continuation line to indicate that the continuation
line begins after the ampersand. If a character string is to be continued
between lines, ampersands can be used on both the end of the line to be
continued and at the beginning of the continued line so that no blanks are
inserted between the end of the continued line and the beginning of the
continuation line.

3.7.6 Source Form That Is Both Fixed and Free

Fortran statements can be written so that their form is acceptable for both fixed
and free source form. Briefly, the form of such statements must be that labels
appear in positions 1 through 5, statements in positions 7 through 72, blanks
are significant, the exclamation mark (!) is used to begin a comment in any
position except 6, and statements are continued by placing an ampersand in
position 73 of the continued line and in position 6 of the continuation line.

Within a given program unit, the source forms must not be mixed; that is, one
source form must be used throughout a program unit.

3.7.7 The INCLUDE Mechanism

An INCLUDE line specifies the location of text to be included in the source in
place of the INCLUDE line. The location is specified by a character string
which normally is the name of a file. The line before the INCLUDE line and the

Language Elements and Source Form 87

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

final line of the included text must not be continued. The first line of the
included text and the line after the INCLUDE line must not be continuation
lines. The included text may contain INCLUDE lines, provided that the
included text does not recurse directly or indirectly.

88 Fortran 90 Handbook

3

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

89

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Data Types 4

Fortran was designed to give scientists and engineers an easy way to solve
problems using computers. Statements could be presented that looked like
formulas or English sentences. For example:

X = B + A * C

might be performing typical numeric calculations.

CX = SQRT (CY)

might be performing a calculation in the complex domain.

I = I + 1

could be counting the number of times some calculation is performed.

IF (LIMIT_RESULTS .AND. X .GT. XMAX) X = XMAX

could specify that a certain action is to be taken based on a logical decision.

PRINT *, "CONVERGENCE REACHED"

could be used to communicate the results of a calculation to a scientist or
engineer in a meaningful way.

90 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Each of these statements performs a task that makes use of a different type of
data.

These are the five commonly needed data types, and the Fortran language
provides them. Anything provided by the language is said to be intrinsic to
the language. Other types, not intrinsic to the language, may be specified by a
programmer; this is a facility that is new in Fortran 90. The new types are built
of (or derived from) the intrinsic types and thus are called derived types. The
Fortran 90 data types are categorized in Figure 4-1.

The type of the data determines the operations that can be performed on it. For
example:

That is, the intrinsic types have the appropriate built-in (intrinsic) operations.
On the other hand, operations performed on data of user-defined type must
themselves be defined by the user.

Task Type of data

Calculating typical numeric results Real data

Calculating in the complex domain Complex data

Counting Integer data

Making decisions Logical data

Explaining Character data

Type of data Operations

Real, complex, integer
Addition, subtraction, multiplication, division,

exponentiation, negation, comparison

Logical
Negation, conjunction, disjunction,

and equivalence

Character Concatenation, comparison

User defined User defined

Data Types 91

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

This chapter discusses the data environment (the collection of necessary data
objects) for a problem solution. It explains what is meant by a data type in
Fortran 90. It then describes each of the intrinsic types. It ends with a
discussion of derived types and the facilities provided by the language that
allow users to define types and declare and manipulate objects of these types
in ways that are analogous to the ways in which objects of the intrinsic types
can be manipulated.

4.1 Building the Data Environment for a Problem Solution
When envisioning a computer solution to a problem, a scientist or engineer
usually focuses initially on the operations that must be performed and the
order in which they must be performed. It is a good idea, however, to consider
the variables that will be needed before determining all the computational

Fortran 90 data types

Derived typesIntrinsic types

Numeric types Nonnumeric types

Real ComplexInteger Logical Character

Figure 4-1 Fortran 90 data types

92 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

steps that are required. The variables that are chosen, together with their types
and attributes, sometimes determine the course of computation, particularly
when variables of user-defined type are involved.

Choosing the Type and Other Attributes of a Variable. There are a number of
decisions to make about a variable in a program. Usually, if the variable is of
an intrinsic type, the intended use of the variable will readily determine its
type, so this is an easy decision. While type is the most important attribute of a
variable, there are other attributes. Certainly it will be necessary to decide very
early whether the variable is to be a single data object (a scalar) or an array.
Fortran 90 provides many new facilities for manipulating arrays as objects,
making it possible to specify computations as straightforward array operations
that, in Fortran 77, require program loops. The fact that these facilities exist
may have some influence on the choice.

Because Fortran 90 provides allocatable arrays and pointers, it is no longer
necessary to decide at the outset how big an array must be. In fact,
determining sizes may be postponed until the finished program is executed,
when sizes may be read in as input or calculated. Setting aside space for an
array may thus be deferred until the appropriate size needed for a particular
calculation is known. Before these dynamic facilities were added to the
language, it was necessary for array declarations to specify the maximum size
that would ever be needed in any execution of the program. This frequently
caused programs to consume a great deal more memory than was actually
required for a particular calculation or, if the size estimate was insufficient,
prevented the execution of a particular calculation, at least until the program
was recompiled. Now, instead of making a decision about the size of an array,
a programmer may decide to make the array a dynamic object.

Another decision that can be made about a variable is its accessibility. Control
of accessibility is a new feature available in modules. If the variable is needed
only within the module, then it can be kept private or hidden from other
program units which prevents it from being corrupted inadvertently. This new
feature can be used to make Fortran 90 programs safer and more reliable.

In addition to type, dimensionality, dynamic determination, and accessibility,
there are other attributes that can be applied to data objects. The attributes that
are permitted depend on where and how the object is to be used; for example,
there are a number of attributes that can be applied only to subprogram
arguments. All of the attributes of data objects are described in Chapter 5.

Data Types 93

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Choosing the Kind of a Variable of Intrinsic Type. Once the type of a variable
is decided, it may be necessary for the programmer to consider which “kind”
of the type to use. “Kind” is a technical term that is new with Fortran 90. Each
of the intrinsic types may be specified with a kind parameter that selects a
processor-dependent representation of objects of that type and kind. If no kind
parameter is specified, the default kind is assumed. Fortran 77 does not have
kind parameters but it does provide two kinds for the real type: REAL and
DOUBLE PRECISION. It treats double precision real as a separate type, but it
is really a different kind of real. Fortran 90, while remaining compatible with
Fortran 77, treats it as a separate kind of real. That is, there are two ways to
declare real variables with higher precision in Fortran 90: one is with a REAL
statement specifying a nondefault kind, and the other is with a DOUBLE
PRECISION statement. Fortran 77 provides only one kind for the other four
types (integer, complex, logical, and character). Fortran 90 requires a processor
to support at least two kinds for the real and complex types and at least one
kind for the other three intrinsic types. An implementation may include any
number of additional kinds of any intrinsic type.

The Fortran 90 addition of kind parameters for each of the intrinsic types
addresses several problems that exist with Fortran 77.

1. Real. Programs with REAL and DOUBLE PRECISION declarations are not
numerically portable across machine architectures with different word
sizes. Each compiler vendor chooses a representation for the real type that
is efficient on the host machine. For example, a representation that will fit
into 32 bits is chosen on a 32-bit-word machine while a representation that
fits into 64 bits is chosen for a 64-bit-word machine. If 64 bits is required
for the numerical stability of the algorithm, DOUBLE PRECISION
declarations must be used on the 32-bit machine. When the program is
moved to a 64-bit machine, the DOUBLE PRECISION declarations must be
changed to REAL declarations because a 128-bit representation is not
needed and would degrade the performance of the program. With
Fortran 90, a programmer can use kind parameters in REAL declarations to
specify a required minimum precision. When the program is run on a 32-
bit machine, it will use two words for each real object. When the same
program (without any changes) is run on a 64-bit machine, one word will
be used. Some processors may provide more than two representations for
the real type. These could reflect different sizes or different methods of
representation such as the standard IEEE method and the native method.
Kind parameters give the Fortran 90 user access to and control over the use
of these different machine representations.

94 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. Complex. The Fortran 77 standard does not require a double precision
complex type. This is an inconsistency that is corrected by the kind
parameters specified in the Fortran 90 standard. Fortran 90 does not need a
DOUBLE PRECISION COMPLEX declarative because it uses a COMPLEX
declarative with a nondefault kind parameter to specify double precision
complex. As with the real type, more than two representations for complex
may be available on a given processor, but at least two are required.

3. Character. The character data type usually has an underlying machine
representation of a single byte (8 bits). This is adequate to represent or
256 different characters, which is more than enough for alphabetic
languages. However, ideographic languages, such as Japanese and
Chinese, have several thousand graphic symbols that require at least a
two-byte representation (16 bits). Japanese and Chinese scientists and
engineers need readable explanatory information in their printouts just as
American and European scientists and engineers do. To accommodate this
spectrum of users, Fortran 90 makes provision for (although it does not
require implementation of) different kinds of character data. Because these
additional kinds of character data are not required for standard-
conforming Fortran 90 processors, many processors intended for English-
speaking Fortran users may not support ideographic languages.
Nevertheless, the character kind mechanism allows an implementation to
support an alphabetic language or an ideographic language or both
simultaneously.

4. Logical. Because the logical data type has only two values (true and false),
it could be represented in a single bit. Fortran 77 requires that logical data
and real data be represented in the same size machine unit. This is
especially wasteful on 64-bit word machines. In Fortran 90, the default
logical type retains this requirement, but Fortran 90 permits alternative
representations of logical data; that is, a nondefault logical kind might be
represented in a byte on byte-addressable machines and in a bit on
machines that have large word sizes or small memories.

5. Integer. One motivation for alternative representations of integer data is
the same, to a lesser degree, as that for logical data: memory conservation.
An alternative representation might also provide an integer kind with a
very large range. As with the logical data type, only one representation is
required in a standard-conforming Fortran 90 processor, but more are
permitted.

28

Data Types 95

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Choosing to Define a Type for a Variable. Sometimes it is easier to think about
an essential element of a problem as several pieces of related data, not
necessarily all of the same type. Arrays can be used to collect homogeneous
data (all of the same type) into a single variable. In Fortran 90, a structure is a
collection of nonhomogeneous data in a single variable. To declare a structure,
it is first necessary to define a type that has components of the desired types.
The structure is then declared as an object of this user-defined (or derived)
type. An example of objects declared to be of user-defined type was given in
Section 2.3.1. It is repeated here. First a type, named PATIENT, is defined; then
two structures JOHN_JONES and SALLY_SMITH are declared.

TYPE PATIENT
INTEGER PULSE_RATE
REAL TEMPERATURE
CHARACTER *300 PROGNOSIS

END TYPE PATIENT

TYPE (PATIENT) JOHN_JONES, SALLY_SMITH

Type PATIENT has three components, each of a different intrinsic type (integer,
real, and character). In practice, a type of this nature probably would have
even more components, such as the patient’s name and address, insurance
company, room number in the hospital, etc. For purposes of illustration, three
components are sufficient. JOHN_JONES and SALLY_SMITH are structures (or
variables) of type PATIENT. A type definition indicates names, types, and
attributes for its components; it does not declare any variables that have these
components. Just as with the intrinsic types, a type declaration is needed to
declare variables of this type. But because there is a type definition, any
number of structures can be created that have the components specified in the
type definition for PATIENT; subprogram arguments and function results can
be of type PATIENT; there can be arrays of type PATIENT; and operations can
be defined that manipulate objects of type PATIENT. Thus the derived-type
definition can be used merely as a way to specify a pattern for a particular
collection of related but nonhomogeneous data; but, because the pattern is
specified by a type definition, a number of other capabilities are available.

96 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4.2 What Is Meant by “Type” in Fortran?
Knowing exactly what is meant by type in Fortran becomes more important
now that a user can define types in addition to the intrinsic types. A data type
provides a means to categorize data and thus determine which operations may
be applied to the data to get desired results. For each data type there is:

1. a name

2. a set of values

3. a set of operations

4. a form for constants of the type

4.2.1 Data Type Names

Each of the intrinsic types has a name supplied by the standard. The names of
derived types must be supplied in type definitions. The name of the type is
used to declare entities of the type unless the programmer chooses to let the
processor determine the type of an entity implicitly by the first character of its
name. Chapter 5 describes declarations and implicit typing.

4.2.2 Data Type Values

Each type has a set of valid values. The logical type has only two values: true
and false. The integer type has a processor-dependent set of integral numeric
values that may be positive, negative, or zero. For complex or derived types,
the set of valid values is the set of all combinations of the values of the
individual components.

The kind of an intrinsic type determines the set of valid values for that type
and kind. For example, if there are two integer data types, the default type and
a “short” integer type, the short integer type will have a set of values that is
(probably) a subset of the default integer values. There must be two kinds of
the real data type to correspond to real and double precision in Fortran 77. In
most implementations, the higher-precision real kind permits a superset of the
values permitted for the lesser-precision real kind. The kind of a type is
referred to as a “kind parameter” or “kind type parameter” of the type. The
character data type has a length parameter as well as a kind parameter. The

Data Types 97

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

length parameter specifies the number of characters in an object, and this
determines the valid values for a particular character object. Derived types do
not have parameters, even though their components may.

4.2.3 Data Type Operations

For each of the intrinsic data types, a set of operations with corresponding
operators is provided by the language. These are described in Chapter 7.

A user may specify new operators and define operations for the new operators.
The form of a new operator is an alphabetic name of the user’s choice
delimited by periods. These new operators are analogous to intrinsic operators
such as .GT., .AND., and .NEQV. For example, a user might specify and
define the operations .PLUS., .REMAINDER., and .REVERSE. In defining
the operation, the types of allowable operands must be specified. Such new
operations may apply to objects of intrinsic type and in these cases extend the
set of operations for the type. Perhaps more often a user would define
operations for objects of derived type. It is not possible to redefine an intrinsic
operation, but it is possible to define meanings for intrinsic operator symbols
when at least one operand is not of an intrinsic type or for intrinsic operands
for which the intrinsic operation does not apply. For example, consider the
expression A + B. If both A and B are of numeric type, the operation is
intrinsically defined. However, if either A or B is of derived type or
nonnumeric type, then the plus operation between A and B is not intrinsically
defined, and the user may provide a meaning for the operation. New
operations are defined by functions with the OPERATOR interface. These are
described in Chapter 12.

Assignment is defined intrinsically for each intrinsic and derived type.
Structure assignment is component-by-component intrinsic or pointer
assignment, although this may be replaced by a defined assignment. No other
intrinsically defined assignment, including array assignment, can be redefined.
Beyond this, any assignment between objects of different type may be defined
with the ASSIGNMENT interface as described in Chapter 12.

98 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4.2.4 Forms for Constants

The language specifies the syntactic forms for literal constants of each of the
intrinsic types. Syntactic mechanisms (called derived-type constructors) specify
derived-type values and named constants. The form indicates both the type
and a particular member of the set of valid values for the type (see Table 4-1).
patient

Array constructors are used to specify arrays of any type.

If a constant is not of default kind, some indication of its kind must be
included in its syntactic form. This form is the default literal constant
separated from the kind value by an underscore. Kind specifications follow
integer, real, and logical values and precede character values. Kinds are known
to the processor as integer values, but if a program is to be portable, the actual
numbers should not be used because the kind values are processor dependent.
Instead, a kind value should be assigned to a named constant, and this name
should always be used. For example,

Table 4-1 The form of a constant indicates both a type and a valid value of
the type

Syntax Type Value

1 integer 1

103.1 or 1.031E2 real 103.1

(1.0, 1.0) complex 1+ι

.TRUE. logical true

"Hello" character Hello

{PATIENT(710,99.7,"Recovering") patient

70

99.7

Recovering

Data Types 99

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where QUAD, HIGH, SHORT, BYTE, and SPANISH are named constants for
processor dependent kind values. The kind of a complex constant is
determined by the kind of its parts (see 4.3.3.4).

4.3 Intrinsic Data Types
The Fortran 77 data types are based on a storage model in which a real, integer,
and logical object each are represented in a numeric storage unit, and a
complex and double precision object each are represented in two numeric
storage units. A character in Fortran 77 is represented in a character storage
unit, which is different from a numeric storage unit. Fortran 90, while
remaining compatible with Fortran 77, extends this underlying model. The
default kinds for Fortran 90 intrinsic types conform to the Fortran 77 model.
That is, the storage units for default real kind, default integer kind, and default
logical kind must all be the same. Default complex (which is really two default
reals) requires two of these storage units, and double precision real requires
two of these storage units. Because Fortran 90 requires at least two
representations of the real type, one of these must require two storage units to
conform with the specifications for the Fortran 77 double precision type.

Beyond these requirements, Fortran 90 standard conforming processors may
provide additional representations for real, complex, integer, logical, and
character data that bear no relationship to an underlying storage model.
Variables of these other kinds may be declared. Literal constants of these other
kinds must be specified with an explicit indication of their kind.

Fortran 77 depends on COMMON statements to permit objects to be accessible
from more than one subprogram. COMMON statements depend on an
underlying storage model. Although Fortran 90 allows nondefault kinds of

real 1.3141592653589793238462643383_QUAD

complex (1.75963_HIGH, -2.0)

integer 7_SHORT

logical .FALSE._BYTE

character SPANISH_"Olé, Señor"

100 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

objects in COMMON statements, restrictions must be placed on their
appearance. Global access to any kind of object without such restrictions is
provided in Fortran 90 with modules.

Each of the intrinsic types is described below. The descriptions include a
simple statement form to show how objects of these types may be declared.
These simple forms do not give the complete story. If they are used to construct
statements, the statements will be correct, but other variations are permitted. A
complete form may be found in Section 5.1. The kind parameter that appears in
the forms is limited to a scalar integer initialization expression, which is
described in Section 7.2.9.2.

4.3.1 Integer Type

4.3.1.1 Name

The name of the integer type is INTEGER. A form that shows how integer
objects may be declared is:

INTEGER [([KIND =] kind-parameter)] &

[, attribute-list ::] entity-list

Examples are:

INTEGER X
INTEGER COUNT, K, TEMPORARY_COUNT
INTEGER (SHORT) PARTS
INTEGER, DIMENSION (0:9) :: SELECTORS, IX

4.3.1.2 Values

The integer data type has values that represent a subset of the mathematical
integers. The set of values varies from one processor to another. The intrinsic
inquiry function RANGE provides the decimal exponent range for integers of
the kind of its argument. Only one kind of integer is required by the standard,
but a processor may provide more. The intrinsic function KIND can be used to
determine the kind parameter of its integer argument.

Data Types 101

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

There is an intrinsic function, SELECTED_INT_KIND, that returns the integer
kind parameter required to represent as many decimal digits as are specified
by the function argument. If there is no such integer type available from the
processor, –1 is returned. For example:

INTEGER (SELECTED_INT_KIND (5)) I, J

declares I and J to be integer objects with a representation method that permits
at least five decimal digits; that is, it includes all integers between and

.

4.3.1.3 Operators

There are both binary and unary intrinsic operators for the integer type. Binary
operators have two operands and unary operators have only one. The binary
arithmetic operations for the integer type are: +, –, ∗, /, and ∗∗. The unary
arithmetic operations are + and –. The relational operations (all binary) are:
.LT., <, .LE., <=, .EQ., ==, .NE., /=, .GE., >=, .GT., and >. The result of an
intrinsic arithmetic operation on integer operands is an integer entity; the
result of an intrinsic relational operation is a logical entity of default logical
kind.

4.3.1.4 Form for Constant Values

An integer constant is a string of decimal digits, optionally preceded by a sign
and optionally followed by an underscore and a kind parameter.

The form of a signed integer literal constant (R403) is:

[sign] digit-string [_ kind-parameter]

where a sign is either + or – and the kind parameter is one of:

digit-string
scalar-integer-constant-name

Examples are:

42
9999999999999999999999_LONG
+64
10000000
-258_SHORT

10– 5

105

102 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where LONG and SHORT are named constants with values that are valid
integer kind parameters for the processor.

Integer constants are interpreted as decimal values. However, in a DATA
statement, it is possible to initialize an object with a value that is presented as
if it had a nondecimal base. The allowed forms are unsigned binary, octal, and
hexadecimal constants.

A binary constant (R408) has one of the forms:

B ’ digit [digit] ... ’

B " digit [digit] ... "

where a digit is restricted to 0 or 1.

An octal constant (R409) has one of the forms:

O ’ digit [digit] ... ’

O " digit [digit] ... "

where a digit is restricted to the values 0 through 7.

A hexadecimal constant (R410) has one of the forms:

Z ’ digit [digit] ... ’

Z " digit [digit] ... "

where a digit is 0 through 9 or one of the letters A through F (representing the
decimal values 10 through 15). If a processor supports lowercase letters, the
hexadecimal digits A through F may be represented by their lowercase
equivalents, a through f.

In these constants, the binary, octal, and hexadecimal digits are interpreted
according to their respective number systems. Examples (all of which have a
value equal to the decimal value 10 on a machine with a traditional
representation) are:

B"1010"
O’12’
Z"A"

The standard does not specify what these bit patterns actually represent.

Data Types 103

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4.3.2 Real Type

4.3.2.1 Name

The name of the real data type is REAL. The name DOUBLE PRECISION is
used for another kind of the real type. Forms that show how objects of real
type may be declared are:

REAL [([KIND =] kind-parameter)] &

[, attribute-list ::] entity-list
DOUBLE PRECISION[, attribute-list ::] entity-list

Examples are:

REAL X, Y
REAL (KIND = HIGH), SAVE :: XY(10, 10)
REAL, POINTER :: A, B, C
DOUBLE PRECISION DD, DXY, D

4.3.2.2 Values

The values of the real data type approximate the mathematical real numbers.
The set of values varies from processor to processor. A processor must provide
at least two approximation methods for the real type. Each method has its kind
type parameter. One of the required approximation methods is for the default
real type and the other is for the double precision real type, which must have
more precision than the default real type.

Intrinsic functions are available to inquire about the representation methods
provided on a processor. The intrinsic function KIND can be used to determine
the kind parameter of its real argument. The intrinsic functions PRECISION
and RANGE return the decimal precision and exponent range of the
approximation method used for the kind of the argument. The intrinsic
function SELECTED_REAL_KIND returns the kind value required to represent
as many digits of precision as specified by the first argument and the decimal
range specified by the optional second argument. For example:

REAL (SELECTED_REAL_KIND (5)) X

declares X to have at least five decimal digits of precision and no specified
minimum range.

REAL (SELECTED_REAL_KIND (8, 70)) Y

104 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

declares Y to have at least eight decimal digits of precision and a range that
includes values between and in magnitude.

4.3.2.3 Operators

The intrinsic binary arithmetic operators for the real type are: +, –, ∗, /, and ∗∗.
The intrinsic unary arithmetic operators are: + and –. The relational operators
are: .LT., <, .LE., <=, .EQ., ==, .NE., /=, .GE., >=, .GT., and >. The result of
an intrinsic arithmetic operation on real operands is a real entity. If one of the
operands of an arithmetic operation is an integer entity, the result is still a real
entity. The result of an intrinsic relational operation is a logical entity of default
logical kind.

4.3.2.4 Forms for Constants

A real constant is distinguished from an integer constant by containing either a
decimal point, an exponent, or both. Forms for a signed real literal constant
(R412) are:

[sign] digit-string &

exponent-letter exponent [_ kind-parameter]
[sign] whole-part . [fraction-part] &

[exponent-letter exponent] [_ kind-parameter]
[sign] . fraction-part &

[exponent-letter exponent] [_ kind-parameter]

where the exponent letter (R415) is E or D, the whole part and fraction part are
digit strings (R401), and an exponent (R416) is a signed digit string. If both a
kind parameter and an exponent letter are present, the exponent letter must be
E. If a kind parameter is present, the real constant is of that kind; if a D
exponent letter is present, the constant is of type double precision real;
otherwise the constant is of type default real. A real constant may have more
decimal digits than will be used to approximate the real number. Examples of
signed real literal constants are:

-14.78
+1.6E3
2.1
-16.E4_HIGH
0.45_LOW

10 70– 10+70

Data Types 105

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

.123
3E4
2.718281828459045D0

The parameters HIGH and LOW must have been defined and their values
must be kind parameters for the real data type permitted by the processor. If a
real literal constant has a kind parameter, it takes precedence over an exponent
letter, for example:

1.6E4_HIGH

will be represented by the method specified for HIGH, even though

1.6E4

would be represented by a different method.

4.3.3 Complex Type

4.3.3.1 Name

The name of the complex type is COMPLEX. A form for declaring objects of
this type is:

COMPLEX[([KIND =] kind-parameter)] &

[, attribute-list ::] entity-list

Examples are:

COMPLEX CC, DD
COMPLEX (KIND = QUAD), POINTER :: CTEMP (:)

4.3.3.2 Values

The complex data type has values that approximate the mathematical complex
numbers. A complex value is a pair of real values; the first is called the real
part and the second is called the imaginary part. Each approximation method
used to represent data entities of type real is available for entities of type
complex with the same kind parameter values. Therefore, there are at least two
approximation methods for complex, one of which corresponds to default real
and one of which corresponds to double precision real. When a complex entity
is declared with a kind specification, this kind is used for both parts of the
complex entity. There is no special double precision complex declaration, as

106 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

such. If no kind parameter is specified, the entity is of type default complex
which corresponds to default real. The SELECTED_REAL_KIND intrinsic
function may be used in a declaration of a complex object. For example:

COMPLEX (SELECTED_REAL_KIND (8, 70)) CX

CX must be represented by an approximation method with at least 8 decimal
digits of precision and at least a decimal exponent range between and

 in magnitude for the real and imaginary parts.

4.3.3.3 Operators

The intrinsic binary arithmetic operators for the complex type are: +, –, ∗, /,
and ∗∗. The intrinsic unary arithmetic operators are: + and –. The intrinsic
relational operators are: .EQ., ==, .NE., and /=. The arithmetic operators
specify complex arithmetic; the relationals compare operands to produce
default logical results. The result of an intrinsic arithmetic operation on
complex operands is a complex entity. If one of the operands is an integer or
real entity, the result is still a complex entity.

4.3.3.4 Form for Constants

A complex literal constant is written as two literal constants that are real or
integer, separated by a comma, and enclosed in parentheses. The form for a
complex literal constant (R417) is:

(real-part , imaginary-part)

where the real part and imaginary part may be either a signed integer literal
constant (R403) or a signed real literal constant (R412).

Examples are:

(3.0, -3.0)
(6, -7.6E9)
(3.0_HIGH, 1.6E9_LOW)

A real kind parameter may be specified for either one of the two real values. If
a different real kind parameter is given for each of the two real values, the
complex value will have the kind parameter that specifies the greater precision,
unless the kind parameters specify the same precision. In this case one part is
converted to the kind of the other part, and the choice of which part is

10 70–

1070

Data Types 107

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

converted is processor dependent. If both parts are integer, each part is
converted to default real. If one part is of integer type and the other is of real
type, the integer value is converted to the kind and type of the real value.

4.3.4 Logical Type

4.3.4.1 Name

The name of the logical type is LOGICAL. A form for declaring objects to be of
this type is:

LOGICAL [([KIND =] kind-parameter)] &

[, attribute-list ::] entity-list

Examples are:

LOGICAL IR, XT
LOGICAL (KIND = BIT), SAVE :: XMASK (3000)

4.3.4.2 Values

The logical data type has two values that represent true and false. A processor
is required to provide one logical kind, but may provide other kinds to allow
the packing of logical values; for example, one value per bit or one per byte.
(An object of default logical type must occupy the same unit of storage as an
object of default real type.) The KIND intrinsic function may be used to
determine the kind number of its argument. There is no
SELECTED_LOGICAL_KIND intrinsic function analogous to the functions
SELECTED_INT_KIND and SELECTED_REAL_KIND.

4.3.4.3 Operators

The intrinsic binary operators for the logical type are: conjunction (.AND.),
inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical
nonequivalence (or exclusive disjunction) (.NEQV.). The intrinsic unary
operation is negation (.NOT.).

108 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4.3.4.4 Form for Constants

There are only two logical literal constants. Optionally, they may be followed
by an underscore and a kind parameter. The forms for logical literal constants
(R421) are:

.TRUE. [_ kind-parameter]

.FALSE. [_ kind-parameter]

The kind parameter specified must be available on the processor. If a kind is
not specified, the type of the constant is default logical.

Examples are:

.FALSE.

.TRUE._BIT

4.3.5 Character Type

4.3.5.1 Name

The name of the character type is CHARACTER. Declarations for objects of
this type may take several different forms. One of these is:

CHARACTER [([LEN =] length-parameter &

[, [KIND =] kind-parameter])] &

[, attribute-list ::] entity-list

The length parameter length-parameter may be an asterisk or a specification
expression, which is described in Section 7.2.9.3. The various forms of the
CHARACTER statement are described in Section 5.1.6, but the following
examples use the form given above:

CHARACTER (80) LINE
CHARACTER (*, HANZI) GREETING
CHARACTER (LEN = 30, KIND = CYRILLIC), DIMENSION (10) :: C1

4.3.5.2 Values

The character data type has a set of values composed of character strings. A
character string is a sequence of characters, numbered from left to right 1, 2, ...,

, where is the length of (number of characters in) the string. Both lengthn n

Data Types 109

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

and kind are type parameters for the character type. If no length parameter is
specified, the length is 1. A character string may have length 0. The maximum
length permitted for character strings is processor-dependent.

A standard-conforming processor must support one character kind and may
support more. Each kind must contain a character designated as a blank that
can be used as a padding character in character operations and input/output
data transfer. The characters in all processor-supported character sets are
considered to be representable characters. The default character kind must
include the characters that make up the Fortran character set as described in
Section 3.1.1.

A partial collating sequence is required so that operations that compare
character objects containing only characters from the Fortran character set will
be portable across different processors. The blank must precede both the
alphabetic and numeric characters in the collating sequence. The alphabetic
characters, whether uppercase or lowercase (if lowercase is supported by the
processor), must be in the normal alphabetic sequence. The numeric characters
must be in the normal numeric sequence, 0, 1, ..., 9. Numeric characters and
alphabetic characters must not be interspersed. Other than blank, there are no
constraints on the position of the special characters and the underscore, nor is
there any specified relationship between the uppercase and lowercase
alphabetic letters. Thus, the standard does not require that a processor provide
the ASCII encoding, but does require intrinsic functions (ACHAR and
IACHAR) that convert between the processor’s encoding and the ASCII
encoding. Intrinsic functions (LGT, LGE, LLE, and LLT) provide comparisons
between strings based on the ASCII collating sequence.

4.3.5.3 Operators

The binary operation concatenation (//) is the only intrinsic operation on
character entities that has a character entity as a result. A number of intrinsic
functions are provided that perform character operations. These are described
in Chapter 13 and Appendix A. The intrinsic relational operators on objects of
type character are .LT., <, .LE., <=, .EQ., ==, .NE., /=, .GE., >=, .GT., and
>. The relational operations may be used to compare character entities, but,
because of possible processor-dependent collating sequences, care must be
taken if the results are intended to be portable.

110 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4.3.5.4 Form for Constants

A character literal constant is written as a sequence of characters, enclosed
either by apostrophes or quotation marks. Forms for character literal constants
(R420) are:

[kind-parameter _] ’ [representable-character] ... ’

[kind-parameter _] " [representable-character] ... "

where a representable character is any character in that character set kind that
the processor can represent. The use of control characters in character literal
constants may be restricted by the processor. Note that, unlike the other
intrinsic types, the kind parameter for the character literal constant precedes
the constant. The kind parameter specified must be available on the processor.
If a kind is not specified, the type of the constant is default character. If the
string delimiter character (either an apostrophe or quotation mark) is required
as part of the constant, two consecutive such characters with no intervening
blanks serve to represent a single such character in the string.

Examples are:

GREEK_"πβφ"
GERMAN_"gemütlichkeit"
"DON’T"
’DON’’T’

The last two both have the value DON’T. A zero-length character constant may
be written as "" or ’’.

4.4 Derived Types
Unlike the intrinsic types that are defined by the language, derived types must
be defined by the programmer. It is intended that these types have the same
utility as the intrinsic types. That is, for example, variables of these types may
be declared, passed as procedure arguments, and returned as function results.

A derived-type definition specifies a name for the type; this name is used to
declare objects of the type. A derived-type definition also specifies components
of the type, of which there must be at least one. A component may be of
intrinsic or derived type; if it is of derived type, it can be resolved into
components, called the ultimate components. These ultimate components are

Data Types 111

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

of intrinsic type and may be pointers. If the complex type were not provided
by the language and had to be derived, it could be defined as a derived type
with two real components.

A type definition may contain the keywords PUBLIC and PRIVATE if the type
definition appears in a module. In general, entities specified in a module may
be kept private to the module and will not be available outside the module.
This is true of data objects, module subprograms, and type definitions. By
default, entities specified in a module are available to any program unit that
accesses the module. That is, they have PUBLIC accessibility by default. This
default can be changed by inserting a PRIVATE statement ahead of the
specifications and definitions in the module. Individual entities can be
specified to have either the PUBLIC or PRIVATE attribute regardless of the
default. For a type definition, one way this may be accomplished is by an
optional PUBLIC or PRIVATE specifier in the TYPE statement of the type
definition. Actually, the keyword PRIVATE may be used in two ways in type
definitions in a module. One makes the entire type private to the module; the
other allows the type name to be known outside the module, but not the names
or attributes of its components. A separate PRIVATE statement that mentions
the type name or a PRIVATE specifier in the TYPE statement of the type
definition provides the first of these. An optional PRIVATE statement inside
the type definition provides the second. There are examples of a private type
and a public type with private components in Section 4.4.1

A type definition may contain a SEQUENCE statement. In general, no storage
sequence is implied by the order of components in a type definition. However,
if a SEQUENCE statement appears inside the type definition, the type is
considered to be a sequence type. In this case, the order of the components
specifies a storage sequence for objects of the type so that such objects may
appear in COMMON and EQUIVALENCE statements. There is an example of a
sequence type in Section 4.4.1.

A derived type has a set of values that is every combination of the permitted
values for the components of the type. The language provides a syntax for
constants of complex type; it provides a somewhat similar mechanism, called a
structure constructor, to specify values of derived types. These constructors
can be used in PARAMETER statements and type declaration statements to
define derived-type named constants; they can be used in DATA statements to
specify initial values; and they can be used as structure-valued operands in
expressions.

112 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Special functions and subroutines are used to define operations on entities of
derived type. Thus, the four properties of the intrinsic types (possession of a
name, a set of values, a set of operations, and a syntactic mechanism to specify
constants) are also provided for derived types.

4.4.1 Derived-Type Definition

A type definition gives a new type a name and specifies the types and
attributes of its components. A type definition begins with a derived-type
statement of the general form:

TYPE type-name

ends with an END TYPE statement, and has component declarations in
between. An example is the definition of type PATIENT given earlier in this
chapter:

TYPE PATIENT
INTEGER PULSE_RATE
REAL TEMPERATURE
CHARACTER *300 PROGNOSIS

END TYPE PATIENT

More precisely, the form of a type definition (R422) is:

TYPE [[, access-spec] ::] type-name
[private-sequence-statement] ...
component-definition-statement
[component-definition-statement] ...

END TYPE[type-name]

where an access specifier is either PRIVATE or PUBLIC and a private-sequence
statement is PRIVATE or SEQUENCE. A type containing a SEQUENCE
statement is called a sequence type.

A component definition statement (R426) contains a type specification (R502).
A component definition has the form:

type-spec [[, component-attribute-list] ::] &

component-declaration-list

Data Types 113

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where component attributes (R427) are limited to POINTER and DIMENSION.
A component array (R428) must be a deferred-shape array if the POINTER
attribute is present; otherwise, it must be an explicit-shape array. A component
declaration (R429) has the form:

component-name [(component-array-spec)] &

[* character-length]

Rules and restrictions:

1. The name of the derived type must not be the same as any locally
accessible name in the same class (14.2.1.2, item 4) and any intrinsic type; it
has the scope of local names declared in the scoping unit, which means
that it may be accessible by use or host association in other scoping units.
A component name has the scope of the type definition only; another type
definition in the same scoping unit may specify the same component name
(14.2.1.2, item 5).

2. If the END TYPE statement is followed by a name, it must be the name
specified in the derived-type statement.

3. A type may be defined at most once within a scoping unit.

4. A PRIVATE statement must not appear more than once in a given type
definition.

5. A SEQUENCE statement must not appear more than once in a given type
definition

6. The keywords PUBLIC and PRIVATE may appear only if the definition is
in the specification part of a module.

7. If SEQUENCE is present, all derived types specified as components must
also be sequence types.

8. There must be at least one component definition statement in a type
definition.

9. No component attribute may appear more than once in a given component
definition statement.

10. A component may be declared to have the same type as the type being
defined only if it has the POINTER attribute.

114 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11. An array component without the POINTER attribute must be specified
with an explicit-shape specification where the bounds are integer constant
expressions.

12. If a component is of type character with a specified length, the length must
be an integer constant specification expression. If the length is not
specified, it is 1.

An example of a derived-type definition with four components (three integer
and one character) is:

TYPE COLOR
INTEGER HUE, SHADE, INTENSITY
CHARACTER (LEN = 30) NAME

END TYPE COLOR

A form for declaring variables of derived type is:

TYPE (type-name) [, attribute-list ::] entity-list

For example, variables of type COLOR may be declared as follows:

TYPE (COLOR) MY_FAVORITE
TYPE (COLOR) RAINBOW (7)
TYPE (COLOR), DIMENSION (100) :: CURRENT_SELECTIONS

The object MY_FAVORITE is a structure. The objects RAINBOW and
CURRENT_SELECTIONS are arrays of structures.

Note that the initial statement of a type definition and the statement used to
declare objects of derived type both begin with the keyword TYPE. The initial
statement of a type definition is called a derived-type statement, and the
statement used to declare objects of derived type is called a TYPE statement.
The type name in a derived-type statement is not enclosed in parentheses,
whereas the type name in a TYPE statement is.

A component of a structure is referenced using a percent sign, as in the
following template:

parent-structure % component-name

For example:

MY_FAVORITE % HUE
RAINBOW (3) % NAME

Data Types 115

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Following are several examples of definitions of derived types. Each example
illustrates a different aspect of a type definition:

1. a derived type with a component of a different derived type

2. a derived type with a pointer component

3. a derived type with a pointer component of the type being defined

4. a private type definition

5. a public type definition with private components

There is an example of a sequence type later in this section.

Example 1. A derived type may have a component that is of a different derived
type. The type WEATHER in the following example has a component of type
TEMPERATURES.

TYPE TEMPERATURES
INTEGER HIGH, LOW

END TYPE TEMPERATURES

TYPE WEATHER
CHARACTER (LEN = 32) CITY
TYPE (TEMPERATURES) RANGE (1950:2050)

END TYPE WEATHER

TYPE (WEATHER) WORLDWIDE (200)

WORLDWIDE is an array of type WEATHER. Components of an element of
the array are referenced as shown below.

WORLDWIDE (I) % CITY = "Nome"
WORLDWIDE (I) % RANGE (1990) % LOW = -83

Example 2. A derived type may have a component that is a pointer.

TYPE ABSTRACT
CHARACTER (LEN = 50) TITLE
INTEGER NO_OF_PAGES
CHARACTER, POINTER :: TEXT(:)

END TYPE ABSTRACT

116 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Any object of type ABSTRACT will have three components: TITLE,
NO_OF_PAGES, and TEXT. TEXT is a pointer to an array of character strings,
each of which is of length one. The size of the array is determined during
program execution. The space for the target of TEXT may be allocated (6.5.1),
or TEXT may be pointer-assigned (7.5.3) to existing space.

Example 3. A derived type may have a pointer component that is of the type
being defined. This is useful in creating linked lists and trees. For example:

TYPE LINK
REAL VALUE
TYPE (LINK), POINTER :: PREVIOUS
TYPE (LINK), POINTER :: NEXT

END TYPE LINK

Example 4. A type definition in a module may be kept private to the module.

TYPE, PRIVATE :: FILE
INTEGER DRAWER_NO
CHARACTER (LEN = 20) FOLDER_NAME
CHARACTER (LEN = 5) ACCESS_LEVEL

END TYPE FILE

When a module containing this type definition is accessed by another scoping
unit, the type FILE is not available.

Example 5. A type definition may be public while its components are kept
private.

MODULE COORDINATES
TYPE POINT

PRIVATE
REAL X, Y

END TYPE POINT
...

END MODULE COORDINATES

In a program unit that uses module COORDINATES, variables of type POINT
may be declared; values of type POINT may be passed as arguments; and if the
program unit is a function, a value of type POINT may be returned as the
result. However, the internal structure of the type (its components) is not
available. If, at some future time, the type POINT is changed to (for example):

Data Types 117

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

TYPE POINT
PRIVATE
REAL RHO, THETA

END TYPE POINT

no other program unit that uses COORDINATES will have to be changed.

If a subprogram argument is of derived type, the corresponding actual
argument must be of the same type. There are two ways in which objects in
different scoping units may be declared to be of the same type. Two data
entities have the same type if they are declared with reference to the same type
definition. The definition may appear in a module that is accessed or, in the
case of an internal or module procedure, in the host scoping unit. For example:

MODULE SHOP
TYPE COMPONENT

CHARACTER (LEN = 20) NAME
INTEGER CATALOG_NO
REAL WEIGHT

END TYPE COMPONENT
TYPE (COMPONENT) PARTS(100)

CONTAINS
SUBROUTINE GET_PART (PART, NAME)

TYPE (COMPONENT) PART
CHARACTER (LEN = *) NAME
DO I = 1, 100

IF (NAME .EQ. PARTS(I) % NAME) THEN
PART = PARTS(I)
RETURN

END IF
END DO
PRINT *, "Part not available"
PART % NAME = "none"
PART % CATALOG_NO = 0
PART % WEIGHT = 0.0

END SUBROUTINE GET_PART
. . .

END MODULE SHOP

118 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

PROGRAM BUILD_MACHINE
USE SHOP
TYPE (COMPONENT) MOTOR(20)
TOTAL_WEIGHT = 0.0
CALL GET_PART (MOTOR(1), "VALVE")
TOTAL_WEIGHT = TOTAL_WEIGHT + MOTOR(1) % WEIGHT

. . .
END PROGRAM BUILD_MACHINE

Module procedure GET_PART has access to the type COMPONENT because
the type definition appears in its host. Program BUILD_MACHINE has access
to the type because it uses module SHOP. This allows a variable of the type,
such as MOTOR(1), to be passed as an actual argument.

The other way to declare data entities in different scoping units to be of the
same type is provided for programmers who, for some reason, choose not to
use a module. Instead of a single type definition in the module, a sequence
type may be defined in each of the scoping units that need access to the type.
Each of the type definitions must specify the same name; the SEQUENCE
property; have no PRIVATE components; and have components that agree in
order, name, and attributes. If this is the case, data entities declared in any of
these scoping units to be of the named type are considered to be of the same
type. The example for program BUILD_MACHINE above is restated to
illustrate the differences between the two ways:

PROGRAM BUILD_MACHINE
TYPE COMPONENT

SEQUENCE
CHARACTER (LEN = 20) NAME
INTEGER CATALOG_NO
REAL WEIGHT

END TYPE COMPONENT
TYPE (COMPONENT) PARTS, MOTOR(20)
COMMON /WAREHOUSE/ PARTS(100)
TOTAL_WEIGHT = 0.0
CALL GET_PART (MOTOR(1), "VALVE")
TOTAL_WEIGHT = TOTAL_WEIGHT + MOTOR(1) % WEIGHT

. . .
END PROGRAM BUILD_MACHINE

SUBROUTINE GET_PART (PART, NAME)
TYPE COMPONENT

SEQUENCE
CHARACTER (LEN = 20) NAME
INTEGER CATALOG_NO

Data Types 119

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

REAL WEIGHT
END TYPE COMPONENT
TYPE (COMPONENT) PART, PARTS
CHARACTER (LEN = *) NAME
COMMON /WAREHOUSE/ PARTS(100)
DO I = 1, 100

IF (NAME .EQ. PARTS(I) % NAME) THEN
PART = PARTS(I)
RETURN

END IF
END DO
PART % NAME = "none"
PART % CATALOG_NO = 0
PART % WEIGHT = 0.0
PRINT *, "Part not available"

END SUBROUTINE GET_PART
. . .

In this example, type COMPONENT in program BUILD_MACHINE and type
COMPONENT in subroutine GET_PART are the same because they are
sequence types with the same name; have no private components; and have
components that agree in order, name, and attributes. This allows variables of
the type to appear in COMMON and be passed as arguments. Note that this
example is less concise, particularly if there are more procedures that need
access to the type definition, and therefore may be more error prone than the
previous example.

Type COMPONENT is a sequence type because its definition contains a
SEQUENCE statement. If all of the ultimate components of a sequence type are
of type default integer, default real, double precision real, default complex, or
default logical, and are not pointers, the type is a numeric sequence type. An
object of numeric sequence type may appear in a common block that contains
only objects that occupy numeric storage units and be equivalenced to default
numeric objects without the restrictions that otherwise apply to objects of user-
defined type in COMMON and EQUIVALENCE statements. If all of the
ultimate components of a sequence type are of type default character and are
not pointers, the type is a character sequence type. An object of character
sequence type may appear in a common block that contains only objects that
occupy character storage units and be equivalenced to default character objects
without the restrictions that otherwise apply to objects of user-defined type in
COMMON and EQUIVALENCE statements.

120 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4.4.2 Derived-Type Values

The set of values of a derived type consists of all combinations of the
possibilities for component values that are consistent with the components
specified in the type definition.

4.4.3 Derived-Type Operations

Any operation on derived-type entities must be defined explicitly by a function
with an OPERATOR interface. Assignment, other than the intrinsic assignment
provided for entities of the same derived type, must be defined by a subroutine
with an ASSIGNMENT interface. These are described in Chapter 12.

A simple example is provided. Suppose it is desirable to determine the number
of words and lines in a section of text. The information is available for each
paragraph. A type named PARAGRAPH is defined as follows:

TYPE PARAGRAPH
INTEGER NO_OF_WORDS, NO_OF_LINES
CHARACTER (LEN = 30) SUBJECT

END TYPE PARAGRAPH

It is now desirable to define an operator for adding the paragraphs. An
OPERATOR interface is required for the function that defines the addition
operation for objects of type PARAGRAPH.

INTERFACE OPERATOR (+)
MODULE PROCEDURE ADDP

END INTERFACE

This definition of addition for objects of type PARAGRAPH adds the words
and lines, but does nothing with the component SUBJECT because that would
have no useful meaning.

TYPE (PARAGRAPH) FUNCTION ADDP (P1, P2)
TYPE (PARAGRAPH) P1, P2
ADDP % NO_OF_WORDS = P1 % NO_OF_WORDS + P2 % NO_OF_WORDS
ADDP % NO_OF_LINES = P1 % NO_OF_LINES + P2 % NO_OF_LINES

END FUNCTION ADDP

If the following variables were declared:

TYPE (PARAGRAPH) BIRDS, BEES

Data Types 121

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the expression BIRDS + BEES would be defined and could be evaluated in the
module subprograms as well as any program unit accessing the module.

4.4.4 Syntax for Specifying Derived-Type Constant Expressions

When a derived type is defined, a structure constructor for that type is defined
automatically. The structure constructor is used to specify values of the type. It
specifies a sequence of values, one for each of the components of the type. A
structure constructor whose values are all constant expressions is a derived-
type constant expression. A named constant of user-defined type may be given
such a value. Structure constructors are described in Section 4.5.

A component of a derived type may be an array (6.4). In this case a mechanism
called an array constructor is used to specify that component of a scalar value
of the type. An array constructor whose values are all constant expressions is
an array-valued constant expression. Such an expression may be specified for
an array component of a named constant. Array constructors have utility
beyond specifying the value of a component of a structure, however. They may
be used to specify array values for objects of any type including objects of
derived type. Array constructors are described in Section 4.6.

4.5 Structure Constructors
A structure constructor is a mechanism that is used to specify a scalar value of
a derived type by specifying a sequence of values for the components of the
type. If a component is of derived type, an embedded structure constructor is
required to specify the value of that component. A structure constructor is the
name of the type followed by a sequence of component values in parentheses.
For example, a value of type COLOR (defined in 4.4.1) may be constructed
with the following structure constructor:

COLOR (I, J, K, "MAGENTA")

The form for a structure constructor (R430) is:

type-name (expression-list)

Rules and restrictions:

1. There must be a value in the expression list for each component.

122 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. The expressions must agree in number and order with the components of
the derived type. Values may be converted to agree in type, kind, length,
and, in some cases, rank with the components. The conversions permitted
are those for intrinsic assignment where the component is the variable on
the left and the expression is the one given in the structure constructor
corresponding to the component.

3. If a component is specified as an explicit shape array, the values for it in
the expression list must agree in shape with the component.

4. If a component is a pointer, the value for it in the expression list must
evaluate to an allowable target for the pointer. A constant is not an
allowable target.

5. A structure constructor must not appear before that type is defined.

6. The structure constructor for a private type or a public type with private
components is not available outside the module in which the type is
defined.

If all of the values in a structure constructor are constants, the structure
constructor may be used to specify a named constant, for example:

PARAMETER (TEAL = COLOR (14, 7, 3, "TEAL"))
PARAMETER (NO_PART = COMPONENT ("none", 0, 0.0))

Following are several examples of structure constructors for types with
somewhat different components:

1. a type with a component that is of derived type

2. a type with an array component

3. a type with a pointer component

Example 1. A structure constructor for a type that has a derived type as a
component must provide a value for each of the components. A component
may be of derived type, in which case a structure constructor is required for
the component. In the example below, type RING has a component of type
STONE.

Data Types 123

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

TYPE STONE
REAL CARETS
INTEGER SHAPE
CHARACTER (30) NAME

END TYPE STONE

TYPE RING
REAL EST_VALUE
CHARACTER (30) INSURER
TYPE (STONE) JEWEL

END TYPE RING

If OVAL is a named integer constant, a structure constructor for a value of type
RING is:

RING (5000.00, "Lloyds", STONE (2.5, OVAL, "emerald"))

Example 2. If a type is specified with an array component, the value that
corresponds to the array component in the expression list of the structure
constructor must conform with the specified shape. For example, type
ORCHARD has an array component:

TYPE ORCHARD
INTEGER AGE, NO_OF_TREES
CHARACTER (LEN = 20) VARIETIES (10)

END TYPE

Given the declarations:

CHARACTER (LEN = 20) CATALOG (16, 12)
PARAMETER (LEMON = 3)

a structure constructor for a value of type ORCHARD is:

ORCHARD (5, ROWS * NO_PER_ROW, CATALOG (LEMON, 1:10))

Example 3. When a component of the type is a pointer, the corresponding
structure constructor expression must evaluate to an object that would be an
allowable target for such a pointer in a pointer assignment statement (7.5.3). If
the variable SYNOPSIS is declared:

CHARACTER, TARGET :: SYNOPSIS (4000)

a value of the type ABSTRACT (defined in 4.4.1) may be constructed:

ABSTRACT ("War and Peace", 1025, SYNOPSIS)

124 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A constant expression cannot be constructed for a type with a pointer
component because a constant is not an allowable target in a pointer
assignment statement.

4.6 Array Constructors
An array constructor is used to specify the value of an array. More precisely, an
array constructor is a mechanism that is used to specify a sequence of scalar
values that is interpreted as a rank-one array. Syntactically, it is a sequence of
scalar values and implied-do specifications enclosed in parentheses and
slashes. For example:

REAL VECTOR_X(3), VECTOR_Y(2), RESULT(100)
. . .

RESULT (1: 8) = (/ 1.3, 5.6, VECTOR_X, 2.35, VECTOR_Y /)

The value of the first eight elements of RESULT is constructed from the values
of VECTOR_X and VECTOR_Y and three real constants in the specified order.
If a rank-two or greater array appears in the value list, the values of its
elements are taken in array element order. If it is necessary to construct an
array of rank greater than one, the RESHAPE intrinsic function may be applied
to an array constructor.

The form for an array constructor (R431) is:

(/ ac-value-list /)

where an ac-value is either an expression (R723) or an ac-implied-do. The form
for an ac-implied-do (R433) is:

(ac-value-list , ac-do-variable = scalar-integer-expression , &

scalar-integer-expression [, scalar-integer-expression])

Rules and restrictions:

1. Each ac-value expression in the array constructor must have the same type
and type parameters, including length parameters.

2. The type and type parameters of an array constructor are those of its ac-
value expressions.

3. If there are no ac-value expressions or the ac-implied-do yields no values,
the array is a rank-one, zero-sized array.

Data Types 125

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. An ac-do-variable must be a scalar integer named variable. This variable
has the scope of this ac-implied-do.

5. If an ac-implied-do is contained within another ac-implied-do, they must
not have the same ac-do-variable.

There are three possibilities for an ac-value:

1. It may be a scalar expression as is each ac-value in:

(/ 1.2, 3.5, 1.1 /)

2. It may be an array expression as is each ac-value in:

(/ A (I, 1:3), A (I+1, 6:8) /)

3. It may be an implied-do specification as in:

(/ (SQRT (REAL (I)) , I = 1, 9) /)

Of course, the possibilities may be mixed in a single array constructor as in:

(/ 1.2, B (2:6,:), (REAL (I) , I = 1, N), 3.5 /)

If an ac-value is an array expression, the values of the elements of the
expression in array element order (6.4.7) become the values of the array
constructor. For example, the values that result from the example in possibility
2 above are:

(/ A(I,1), A(I,2), A(I,3), A(I+1,6), A(I+1,7), A(I+1,8) /)

If an ac-value is an implied-do specification, it is expanded to form a sequence
of values under control of the ac-do-variable as in the DO construct (8.5). For
example, the values that result from the example in possibility 3 above are:

(/1.0, 1.414, 1.732, 2.0, 2.236, 2.449, 2.645, 2.828, 3.0/)

If every expression in an array constructor is a constant expression, the array
constructor is a constant expression as in the example above. Such an array
constructor may be used to give a value to a named constant, for example:

REAL X(3), EXTENDED_X(4)
PARAMETER (X = (/ 2.0, 4.0, 6.0 /))
PARAMETER (EXTENDED_X = (/ 0.0, X /))

126 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Following are several examples of array constructors. Examples 1 and 2
demonstrate the construction of arrays; examples 3 and 4 demonstrate the
construction of values of derived type when the type has an array component:

1. a constructor for a rank-two array

2. a constructor for an array of derived type

3. a constructor for a value of derived type with an array component

4. a constructor for a value of derived type with a rank-two array component

Example 1. To create a value for an array of rank greater than one, the
RESHAPE intrinsic function (A.88) must be used. With this function, a one-
dimensional array may be reshaped into any allowable array shape.

Y = RESHAPE (SOURCE = (/ 2.0, (/ 4.5, 4.0 /), Z /), &
SHAPE = (/ 3, 2 /))

If Z has the value given in possibility 1 above, then Y is a 3 × 2 array with the
elements:

2.0 1.2
4.5 3.5
4.0 1.1

Example 2. It may be necessary to construct an array value of derived type.

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 40) NAME

END TYPE PERSON

TYPE (PERSON) CAR_POOL (3)

CAR_POOL = (/ PERSON (35, "SCHMITT"), &
PERSON (57, "LOPEZ"), PERSON (26, "YUNG") /)

Example 3. When one of the components of a derived type is an array, then an
array constructor must be used in the structure constructor for a scalar value of
the derived type. Suppose that the definition for type COLOR differed slightly
from that given above:

Data Types 127

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

TYPE COLOR
INTEGER PROPERTIES (3)
CHARACTER (LEN = 30) NAME

END TYPE COLOR

A value of the revised type COLOR can be constructed:

COLOR ((/ 5, 20, 8 /), "MAGENTA")

Example 4. A derived type might contain an array of rank two or greater.

TYPE LINE
REAL COORD (2, 2)
REAL WIDTH
INTEGER PATTERN

END TYPE LINE

where the values of COORD are the coordinates , and , representing
the end points of a line; WIDTH is the line width in centimeters; and PATTERN
is 1 for a solid line, 2 for a dashed line, and 3 for a dotted line. An object of
type line is declared and given a value as follows:

TYPE (LINE) SLOPE
. . .

SLOPE = LINE (RESHAPE ((/ 0.0, 1.0, 0.0, 2.0 /), &
(/ 2, 2 /)), 0.1, 1)

The RESHAPE intrinsic function is used to construct a value that represents a
solid line from (0, 0) to (1, 2) of width 0.1 centimeters.

4.7 Summary
The following are intrinsic data types in both Fortran 77 and Fortran 90:

integer
real
complex
logical
character

Type is the most important attribute of a data entity, but there are others such
as dimensionality. The other attributes are described in Chapter 5.

x1 y1 x2 y2

128 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Fortran 90 introduces two new ideas to the Fortran 77 data capabilities: kind
parameters for the intrinsic types and nonintrinsic, derived (or user-defined)
types.

The Fortran 90 standard requires a processor to provide two different kinds of
each of the real and complex types and allows a processor to provide other
kinds of real and complex types. A standard-conforming processor must
provide one kind for each of the integer, logical, and character types, and may
provide more. Examples of type declarations are:

REAL PRESSURE(500)
INTEGER (SHORT) AGE
COMPLEX (QUAD) SOLUTION

PRESSURE is a real array variable of rank one. AGE is an integer variable of
kind SHORT where SHORT is a named constant whose value is a processor-
dependent kind number for the integer type. SOLUTION is a complex variable
of kind QUAD where QUAD is a named constant whose value is a processor-
dependent kind number for the real data type.

A data type in Fortran has a name, a set of values, a set of operations, and a
means to represent constants of the type. This is the case for the intrinsic types
as well as for the new derived types.

The five intrinsic types and their various kinds may be used as components to
derive other types. A type definition specifies the name of the new type as well
as the names and attributes of its components. A component may be of derived
type and may be a pointer or an array. An example of a simple type is:

TYPE EMPLOYEE
CHARACTER (LEN = 30) NAME
INTEGER SSN
INTEGER (SHORT) EMP_NO

END TYPE EMPLOYEE

An object of user-defined type is called a structure. The name of the user-
defined type is used to declare structures of the type. For example:

TYPE (EMPLOYEE) J_JONES, W_WILLIAMS, JANITOR

Operations for the intrinsic types are provided by the language, whereas
operations for derived types must be defined in terms of functions provided by
the user. A means, called a structure constructor, is provided to specify a value
of derived type. For example:

Data Types 129

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

J_JONES = EMPLOYEE ("Jones, John", 123456789, 35)

Structure constructors may be used to create nonconstant values of derived
type as well.

Array constructors are also provided to create array-valued objects. These may
be array components in structures or arrays of any intrinsic or derived type. If
all the values specified are constant, the result is an array-valued constant
expression. For example:

PRESSURE(1:5) = (/ 80., 45.1, 100., 23.5, 60. /)

130 Fortran 90 Handbook

4

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

131

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Declarations 5

Declarations are used to specify the type and other attributes of program
entities. The attributes that an entity possesses determine how the entity may
be used in a program. Every variable and function has a type, which is the
most important of the attributes; type is discussed in Chapter 4. However, type
is only one of a number of attributes that an entity may possess. Some entities,
such as subroutines and namelist groups, do not have a type but may possess
other attributes. In addition, there are relationships among objects that can be
specified by EQUIVALENCE, COMMON, and NAMELIST statements.
Declarations are used to specify these attributes and relationships.

In general, Fortran keywords are used to declare the attributes for an entity.
The following list summarizes these keywords:

Type INTEGER
REAL (and DOUBLE PRECISION)
COMPLEX
LOGICAL
CHARACTER
TYPE (user-defined name)

Array properties DIMENSION
ALLOCATABLE

Pointer properties POINTER
TARGET

132 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The attributes are described and illustrated in turn using each of the two forms
that attribute specifications may take: entity-oriented and attribute-oriented.

In Fortran 77, it is necessary to use a different statement for each attribute
given to a variable or a collection of variables, for example:

INTEGER A, B, C
SAVE A, B, C

In Fortran 90, for objects that have a type, the other attributes may be included
in the type declaration statement. For example:

INTEGER, SAVE :: A, B, C

Collecting the attributes into a single statement is sometimes more convenient
for readers of programs. It eliminates searching through many declaration
statements to locate all the attributes of a particular object. Emphasis can be
placed on an object and its attributes (entity-oriented declaration) or on an
attribute and the objects that possess the attribute (attribute-oriented
declaration), whichever is preferred by a programmer. In both forms,
dimensionality may be specified as an attribute or as an attachment to the
object name. For example:

• entity-oriented declarations

REAL, DIMENSION(20), SAVE :: X

or

REAL, SAVE :: X(20)

Settng values
DATA
PARAMETER

Object accessibility and use

PUBLIC
PRIVATE
INTENT
OPTIONAL
SAVE

Procedure properties
EXTERNAL
INTRINSIC

Declarations 133

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• attribute-oriented declarations

REAL X
DIMENSION X(20)
SAVE X

or

REAL X (20)
SAVE X

In the following description of each attribute, the entity-oriented method of
specification is described first, followed by the attribute-oriented. In most cases
these are equivalent, but not always.

If no attributes are declared for a data object, defaults apply. In general, if an
attribute is not specified for an object, it is assumed that the object does not
possess the attribute. However, every data object has a type, and if this is not
explicitly specified, it is assumed from the first letter of its name. The
IMPLICIT statement may be used to specify any intrinsic or user-defined type
for an initial letter or a range of initial letters. The IMPLICIT NONE statement,
on the other hand, removes implicit typing and thus requires explicit type
declarations for every named data object in the scoping unit.

Fortran 90 provides new dynamic data objects that can be sized at the time a
program is executed. These include allocatable arrays and objects with the
POINTER attribute. They also include automatic data objects (arrays of any
type and character strings) that are created on entry into a procedure. Only
objects whose size may vary are called automatic.

Other declarations (NAMELIST, EQUIVALENCE, and COMMON) establish
relationships among data objects. The NAMELIST statement is used to name a
collection of objects so that they can be referenced by a single name in an
input/output statement. In Fortran 77, storage (the location of an object in a
computer’s memory) is an important concept. EQUIVALENCE is used to
reference storage by more than one name. COMMON is used to share storage
among the different units of a program. Fortran 90 provides new features that
deemphasize the concept of storage. Objects may be referenced by name, and
modules (11.6) provide shared access to named objects. In new programs, there
is no need for COMMON and EQUIVALENCE statements; they are provided
in Fortran 90 for compatibility with existing Fortran 77 programs.

134 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.1 Type Declaration Statements
A type statement begins with the name of the type, optionally lists other
attributes, then ends with a list of variables that possess these attributes. In
addition, a type declaration statement may include an initial value for a
variable. It must include the value of a named constant. The form of a type
declaration statement (R501) is:

type-spec [[, attribute-spec] ... ::] entity-declaration-list

where a type specification (R502) is one of:

INTEGER [kind-selector]
REAL [kind-selector]
DOUBLE PRECISION

COMPLEX[kind-selector]
CHARACTER[character-selector]
LOGICAL [kind-selector]
TYPE (type-name)

with a kind selector (R505) taking the form:

([KIND =] scalar-integer-initialization-expression)

and where an attribute specification (R503) is one of:

PARAMETER

access-spec
ALLOCATABLE

DIMENSION (array-spec)

EXTERNAL

INTENT (intent-spec)

INTRINSIC

OPTIONAL

POINTER

SAVE

TARGET

with an access specification being either PUBLIC or PRIVATE. An entity
declaration (R504) has one of the forms:

object-name [(array-spec)] [* character-length] &

[= initialization-expression]
function-name [(array-spec)] [* character-length]

Declarations 135

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. The type specification may override or confirm the implicit type indicated
by the first letter of the entity name according to the implicit typing rules
in effect.

2. The same attribute must not appear more than once in a given type
declaration statement.

3. An entity must not be given any attribute more than once in a scoping unit.

4. The value specified in a kind selector must be a kind type parameter
allowed for that type by the implementation.

5. The character length option may appear only when the type specification is
CHARACTER.

6. If an initialization expression appears, a double colon separator must be
used.

7. An initialization expression must be included if the PARAMETER attribute
is specified.

8. A function name must be the name of an external function, an intrinsic
function, a function dummy procedure, or a statement function.

9. An array function name must be specified as an explicit-shape array
(5.3.1.1) unless it has the POINTER attribute, in which case it must be
specified as a deferred-shape array (5.3.1.3).

There are other rules and restrictions that pertain to particular attributes; these
are covered in the sections describing that attribute. The attributes that may be
used with the attribute being described are also listed. The simple forms that
appear in the following sections to illustrate attribute specification in a type
declaration statement seem to imply that the attribute being described must
appear first in the attribute list, but this is not the case; attributes may appear
in any order. If these simple forms are used to construct statements, the
statements will be correct, but other variations are permitted. The complete
form appears earlier in this section.

Some example type declaration statements are:

REAL A(10)
LOGICAL, DIMENSION(5, 5) :: MASK_1, MASK_2
COMPLEX :: CUBE_ROOT = (-0.5, 0.867)

136 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND(4)
INTEGER(SHORT) K ! Range of -9999 to 9999
REAL, ALLOCATABLE :: A1(:, :), A2(:, :, :)
TYPE(PERSON) CHAIRMAN
TYPE(NODE), POINTER :: HEAD_OF_CHAIN, END_OF_CHAIN
REAL, INTENT(IN) :: ARG1
REAL, INTRINSIC :: SIN

5.1.1 Integer

An INTEGER statement declares the names of entities to be of type integer
(4.3.1). If a kind selector is present, it specifies the representation method. A
simple form for declaring objects of this type is:

INTEGER [([KIND =] kind-value)] [, attribute-list ::] entity-list

For example:

• entity-oriented

INTEGER, DIMENSION(:), POINTER :: MILES, HOURS
INTEGER (SHORT), POINTER :: RATE, INDEX

• attribute-oriented

INTEGER MILES, HOURS
INTEGER (SHORT) RATE, INDEX
DIMENSION MILES (:), HOURS (:)
POINTER MILES, HOURS, RATE, INDEX

5.1.2 Real

A REAL statement declares the names of entities to be of type real (4.3.2). If a
kind selector is present, it specifies the representation method. A simple form
for declaring objects of this type is:

REAL [([KIND =] kind-value)] [, attribute-list ::] entity-list

For example:

• entity-oriented

REAL (KIND = HIGH), OPTIONAL :: VARIANCE
REAL, SAVE :: A1(10, 10), A2(100, 10, 10)

Declarations 137

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• attribute-oriented

REAL (KIND = HIGH) VARIANCE
REAL A1(10, 10), A2(100, 10, 10)
OPTIONAL VARIANCE
SAVE A1, A2

5.1.3 Double Precision

A DOUBLE PRECISION statement declares the names of entities to be of type
real with a representation method that represents more precision than the
default real representation (4.3.2). DOUBLE PRECISION is not needed in
Fortran 90, as REAL with the appropriate kind parameter value is equivalent.
A kind selector is not permitted in the DOUBLE PRECISION statement. A
simple form for declaring objects of this type is:

DOUBLE PRECISION[, attribute-list ::] entity-list

For example:

• entity-oriented

DOUBLE PRECISION, DIMENSION(N,N) :: MATRIX_A, MATRIX_B
DOUBLE PRECISION, POINTER :: C, D, E, F(:, :)

• attribute-oriented

DOUBLE PRECISION MATRIX_A, MATRIX_B, C, D, E, F
DIMENSION MATRIX_A (N, N), MATRIX_B (N, N), F(:, :)
POINTER C, D, E, F

If DOUBLE is a named integer constant that has the value of the kind
parameter of the double precision real type, the entity-oriented declarations
above could be written as:

REAL (DOUBLE), DIMENSION (N,N) :: MATRIX_A, MATRIX_B
REAL (DOUBLE), POINTER :: C, D, E, F(:,:)

5.1.4 Complex

A COMPLEX statement declares the names of entities to be of type complex
(4.3.3). If a kind selector is present, it specifies the representation method. A
simple form for declaring objects of this type is:

COMPLEX[([KIND =] kind-value)] [, attribute-list ::] entity-list

138 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

For example:

• entity-oriented

COMPLEX (KIND = LOW), POINTER :: ROOTS(:)
COMPLEX, POINTER :: DISCRIMINANT, COEFFICIENTS (:)

• attribute-oriented

COMPLEX (KIND = LOW) ROOTS(:)
COMPLEX DISCRIMINANT, COEFFICIENTS (:)
POINTER ROOTS, DISCRIMINANT, COEFFICIENTS

5.1.5 Logical

A LOGICAL statement declares the names of entities to be of type logical
(4.3.4). If a kind selector is present, it specifies the representation method. A
simple form for declaring objects of this type is:

LOGICAL [([KIND =] kind-value)] [, attribute-list ::] entity-list

For example:

• entity-oriented

LOGICAL, ALLOCATABLE :: MASK_1(:), MASK_2(:)
LOGICAL (KIND = BYTE), SAVE :: INDICATOR, STATUS

• attribute-oriented

LOGICAL MASK_1(:), MASK_2(:)
LOGICAL (KIND = BYTE) INDICATOR, STATUS
ALLOCATABLE MASK_1, MASK_2
SAVE INDICATOR, STATUS

5.1.6 Character

A CHARACTER statement declares the names of entities to be of type
character (4.3.5). A simple form for declaring objects of this type is:

CHARACTER[character-selector] [, attribute-list ::] entity-list

The length of a character entity may be specified in a character selector (R506).
It has one of the forms:

Declarations 139

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

length-selector
(LEN = type-param-value , &

KIND = kind-value)

(type-param-value , &

[KIND =] kind-value)

(KIND = kind-value &

[, LEN = type-param-value])

where a length selector (R507) has one of the forms:

([LEN =] type-param-value)

* character-length [,]

and a character length (R508) has one of the forms:

(type-param-value)

scalar-integer-literal-constant

where a type parameter value (R509) is one of:

specification-expression
*

Rules and restrictions:

1. The optional comma in a length selector is permitted only if no double
colon separator appears in the type declaration statement.

2. A character type declaration that appears in a procedure or a procedure
interface and that is not a component declaration in a derived-tpe
definition may specify a character length that is a nonconstant expression.
The length is determined on entry into the procedure and is not affected by
any changes in the values of variables in the expression during the
execution of the procedure. A character object declared this way that is not
a dummy argument is called an automatic data object.

3. The length of a named character entity or a character component in a type
definition is specified by the character selector in the type specification
unless there is a character length in an entity or component declaration; if
so, the character length specifies an individual length and overrides the
length in the character selector. If a length is not specified in either a
character selector or a character length, the length is 1.

140 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. If the length parameter has a negative value, the length of the character
entity is 0.

5. The scalar integer literal constant that specifies a character length must not
include a kind parameter. (This could produce an ambiguity when fixed
source form is used.)

6. A length parameter value of ∗ may be used only in the following ways:

a. It may be used to declare a dummy argument of a procedure, in which
case the dummy argument assumes the length of the associated actual
argument when the procedure is invoked.

b. It may be used to declare a named constant, in which case the length is
that of the constant value.

c. It may be used to declare the result variable for an external function.
Any scoping unit that invokes the function must declare the function
with a length other than ∗, or it must access such a declaration by host
or use association. When the function is invoked, the length of the
result is the value specified in the declaration in the program unit
referencing the function.

Note that an implication of this rule is that a length of ∗ must not appear in
an IMPLICIT statement.

7. A function name must not be declared with a length of ∗ if the function is
an internal or module function, or if it is array-valued, pointer-valued, or
recursive.

8. The length of a character-valued statement function or statement function
dummy argument of type character must be an integer constant
expression.

Examples of character type declaration statements are:

• entity-oriented

CHARACTER (LEN = 10, KIND = KANJI), SAVE :: GREETING(2)
CHARACTER (10) :: PROMPT = "PASSWORD?"
CHARACTER (*), INTENT(IN) :: HOME_TEAM, VISITORS
CHARACTER *3, SAVE :: NORMAL_1, LONGER(9) *20, NORMAL_2
CHARACTER :: GRADE = "A"

Declarations 141

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• attribute-oriented

CHARACTER (LEN = 10, KIND = KANJI) GREETING(2)
CHARACTER (10) PROMPT
CHARACTER (*) HOME_TEAM, VISITORS
CHARACTER *3 NORMAL_1, LONGER(9) *20, NORMAL_2
CHARACTER GRADE
SAVE GREETING, NORMAL_1, LONGER, NORMAL_2
INTENT (IN) HOME_TEAM, VISITORS
DATA PROMPT / "PASSWORD?" / GRADE / "A" /

5.1.7 Derived Type

A TYPE declaration statement declares the names of entities to be of the
specified user-defined type (4.4). The type name appears in parentheses
following the keyword TYPE. A form for declaring objects of user-defined type
is:

TYPE (type-name) [, attribute-list ::] entity-list

For example, using types defined in Chapter 4:

• entity-oriented

TYPE (COLOR), DIMENSION (:), ALLOCATABLE :: HUES_OF_RED
TYPE (PERSON), SAVE :: CAR_POOL (3)
TYPE (PARAGRAPH), SAVE :: OVERVIEW, SUBSTANCE, SUMMARY

• attribute-oriented

TYPE (COLOR) HUES_OF_RED
TYPE (PERSON) CAR_POOL(3)
TYPE (PARAGRAPH) OVERVIEW, SUBSTANCE, SUMMARY
DIMENSION HUES_OF_RED (:)
ALLOCATABLE HUES_OF_RED
SAVE CAR_POOL, OVERVIEW, SUBSTANCE, SUMMARY

Rules and restrictions:

1. An object of derived type must not have the PUBLIC attribute if its type is
private.

2. A structure constructor (4.5) must be used to initialize an object of derived
type. Each component of the structure must be an initialization expression.

142 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.2 Implicit Typing
Each variable, named constant, and function has a type and a name. If the type
is not declared explicitly, it is assumed from the first letter of the name. This
method of determining type is called implicit typing. In each scoping unit,
there is in effect a mapping of each of the letters A, B, ..., Z to one of the
accessible types or to no type. IMPLICIT statements in a scoping unit may be
used to specify a mapping different from the default mapping; this makes it
easier to transform an external procedure into an internal or module
procedure. If a new mapping for a letter is not specified in an IMPLICIT
statement, the default mapping continues to apply for that letter. An IMPLICIT
NONE statement specifies that there is no mapping for any letter and thus all
variables, named constants, and functions must be declared in type declaration
statements. If the host of a scoping unit contains the IMPLICIT NONE
statement and the scoping unit contains IMPLICIT statements for some letters,
the other letters retain the null mapping. This is the only situation in which
some initial letters specify an implied type and other initial letters require
explicit declarations. A program unit is treated as if it had a host with the
mapping shown in Figure 5-1. That is, each undeclared variable or function
whose name begins with any of the letters I, J, K, L, M, or N is of type integer
and all others are of type real.

The IMPLICIT statement (R540) has two forms:

IMPLICIT type-spec (letter-spec-list)

IMPLICIT NONE

where a letter specification (R542) is:

letter [- letter]

Rules and restrictions:

1. If IMPLICIT NONE appears, it must precede any PARAMETER statements
and there must be no other IMPLICIT statements in the scoping unit.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Real Integer Real

Figure 5-1 Default implicit mapping for a program unit

Declarations 143

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. If the – letter option appears in a letter specification, the second letter must
follow the first alphabetically.

3. The same letter must not appear as a single letter or be included in a range
of letters more than once in all of the IMPLICIT statements in a scoping
unit.

4. An IMPLICIT statement may be used to specify implicit mappings for
user-defined types as well as for intrinsic types.

The IMPLICIT statement specifies that all variables, named constants, and
functions beginning with the indicated letters are implicitly given the indicated
data type (and type parameters). For example, the statement

IMPLICIT COMPLEX (A-C, Z)

indicates that all undeclared variables, named constants, and functions
beginning with the letters A, B, C, and Z are of type default complex. If this is
the only IMPLICIT statement, undeclared variables, named constants, and
functions beginning with I–N will still be of type integer; undeclared variables,
named constants, and functions beginning with D–H and O–Y will be of type
real.

The statement

IMPLICIT NONE

indicates that there is no implicit typing in the scoping unit and that each
variable, named constant, and function used in the scoping unit must be
declared explicitly in a type statement. This statement is useful for detecting
inadvertent misspellings in a program because misspelled names become
undeclared rather than implicitly declared.

An IMPLICIT statement may specify a user-defined type.

Some examples of IMPLICIT statements are:

IMPLICIT INTEGER (A-G), LOGICAL (KIND = BIT) (M)
IMPLICIT CHARACTER *10 (P, Q)
IMPLICIT TYPE (COLOR) (X-Z)

The additional complexity that implicit typing causes in determining the scope
of an undeclared variable in a nested scope is explained in Section 11.4.

144 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.3 Array Properties
An array object has the dimension attribute. An array specification determines
the array’s rank, or number of dimensions. The extents of the dimensions may
be declared or left unspecified. If they are left unspecified, the array must also
have the ALLOCATABLE or POINTER attribute, or it must be a dummy
argument.

5.3.1 Array Specifications

There are four forms that an array specification (R512) may take:

explicit-shape-spec-list
assumed-shape-spec-list
deferred-shape-spec-list
assumed-size-spec

Rules and restrictions:

1. The maximum rank of an array is 7. A scalar is considered to have rank 0.

2. An array with a deferred-shape specification list must have the POINTER
or ALLOCATABLE attribute.

3. An array with an assumed-shape specification list or an assumed-size
specification list must be a dummy argument.

5.3.1.1 Explicit-Shape Arrays

An explicit-shape array has bounds specified in each dimension. Each
dimension is specified by an explicit-shape specification (R513), which has the
form:

[lower-bound :] upper-bound

where the lower bound, if present, and the upper bound are specification
expressions (7.2.9.3).

Rules and restrictions:

1. The number of sets of bounds specified is the number of dimensions (rank)
of the array.

Declarations 145

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. If the lower bound is omitted, the default value is 1.

3. The value of a lower bound or an upper bound may be positive, negative,
or 0.

4. The subscript range of the array in a given dimension is the set of integer
values between and including the lower and upper bounds, provided the
upper bound is not less than the lower bound. If the upper bound is less
than the lower bound, the range is empty, the extent in that dimension is 0,
and the size of the array is 0.

5. The expression for a bound may involve variables that cause the
expression to have different values each time the procedure in which it is
declared is executed. If so, the array must be a dummy argument, a
function result, or an automatic array, in which case the actual bounds are
determined when the procedure is entered. The bounds of such an array
are unaffected by any redefinition or undefinition of the specification
variables during the execution of the procedure.

For example:

• entity-oriented

REAL Q (-10:10, -10:10, 2)

or in a subroutine

SUBROUTINE EX1 (Z, I, J)
REAL, DIMENSION (2:I + 1, J) :: Z

. . .

• attribute-oriented

REAL Q (-10:10, -10:10, 2)

or in a subroutine

SUBROUTINE EX1 (Z, I, J)
REAL Z
DIMENSION Z (2:I + 1, J)

. . .

146 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.3.1.2 Assumed-Shape Arrays

An assumed-shape array is a dummy argument that takes the shape of the
actual argument passed to it. An assumed-shape specification (R516) has the
form:

[lower-bound] :

Rules and restrictions:

1. The rank is equal to the number of colons in the assumed-shape
specification.

2. The lower bound of the assumed-shape array is the specified lower bound,
if present, and is 1 otherwise.

3. The upper bound is the extent of the corresponding dimension of the
associated array plus the lower bound minus 1.

4. An assumed-shape array must not have the POINTER or ALLOCATABLE
attribute.

For example:

• entity-oriented

REAL, DIMENSION (2:, :) :: X
. . .

• attribute-oriented

SUBROUTINE EX2 (A, B, X)
REAL A (:), B (0:), X
DIMENSION X (2:, :)
INTENT (IN) A, B

. . .

Suppose EX2 is called by the statement

CALL EX2 (U, V, W (4:9, 2:6))

For the duration of the execution of subroutine EX2, the dummy argument X is
an array with bounds (2:7, 1:5). The lower bound of the first dimension is 2
because X is declared to have a lower bound of 2. The upper bound is 7
because the dummy argument takes its shape from the actual argument W.

Declarations 147

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.3.1.3 Deferred-Shape Arrays

A deferred-shape array is either an array pointer or an allocatable array. An
array pointer is an array that has the POINTER attribute. Its extent in each
dimension is determined when the pointer is allocated or when a pointer
assignment statement for the pointer is executed. An allocatable array is an
array that has the ALLOCATABLE attribute. Its bounds, and thus its shape, are
determined when the array is allocated. In both cases the declared bounds are
specified by just a colon; that is, the form of a deferred-shape specification
(R517) is:

:

Rules and restrictions:

1. The rank is equal to the number of colons in the deferred-shape
specification.

2. The bounds of an allocatable array are specified in an ALLOCATE
statement when the array is allocated.

3. The lower bound of each dimension of an array pointer is the result of the
LBOUND intrinsic function applied to the corresponding dimension of the
target. The upper bound of each dimension is the result of the UBOUND
intrinsic function applied to the corresponding dimension of the target.
This means, in effect, that if the bounds are determined by allocation of the
pointer, they may be specified by the user; if the bounds are determined by
pointer assignment, there are two cases:

a. If the pointer target is a named whole array, the bounds are those
declared in the array declaration or those specified when the array was
allocated.

b. If the pointer target is an array section, the lower bound is 1 and the
upper bound is the extent in that dimension.

4. The bounds, and thus the shape, of an array pointer or allocatable array are
unaffected by any subsequent redefinition or undefinition of variables
involved in determination of the bounds.

For example:

• entity-oriented

REAL, POINTER :: D (:, :), P (:) ! array pointers

148 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

REAL, ALLOCATABLE :: E (:) ! allocatable array

• attribute-oriented

REAL D (:, :), P (:), E (:)
POINTER D, P
ALLOCATABLE E

5.3.1.4 Assumed-Size Arrays

An assumed-size array is a dummy argument array whose size is assumed
from that of the associated actual argument. Only the size is assumed—the
rank, extents, and bounds (except for the upper bound and extent in the last
dimension) are determined by the declaration of the dummy array. There are
four rules for argument association between an actual argument and an
assumed-size array.

• They have the same initial array element.

• Successive array elements are storage associated (5.10).

• Declarations for the dummy argument determine the rank. They also
determine lower bounds for all dimensions and the extents and upper
bounds for all dimensions except the last.

• The size of the actual argument determines the size of the dummy
argument as explained in rule 2 below.

The upper bound of the last dimension of an assumed-size array is an asterisk
(∗). The form of an assumed-size specification (R518) is:

[explicit-shape-spec-list ,] [lower-bound :] *

Rules and restrictions:

1. The rank of an assumed-size array is the number of explicit-shape
specifications plus one.

2. The size of an assumed-size array is determined as follows:

a. If the actual argument associated with the assumed-size dummy
argument is an array of any type other than default character, the size
is that of the actual array.

Declarations 149

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

b. If the actual argument associated with the assumed-size dummy array
is an array element of any type other than default character with a
subscript order value (6.4.7) of in an array of size , the size of the
dummy argument is .

c. If the actual argument is a default character array, default character
array element, or a default character array element substring (6.2), and
if it begins at character storage unit of an array with character
storage units, the size of the dummy array is

MAX (INT (), 0)

where is the length of an element in the dummy character array.

3. If is the rank of the array, the bounds of the first dimensions are
those specified by the explicit-shape specification list, if present. The lower
bound of the last dimension is the specified lower bound, if present, and 1
otherwise.

4. The expression for a bound may involve variables that cause the
expression to have different values each time the procedure in which it is
declared is executed. If so, the bounds are unaffected by any subsequent
redefinition or undefinition of such variables involved in the determination
of the bounds.

5. A function result must not be an assumed-size array.

6. An assumed-size array must not appear in a context where the shape of the
array is required, such as a whole array reference.

For example:

• entity-oriented

SUBROUTINE EX3 (N, S, Y)
REAL, DIMENSION (N, *) :: S
REAL Y (10, 5, *)

. . .

• attribute-oriented

SUBROUTINE EX3 (N, S, Y)
REAL S, Y (10, 5, *)
DIMENSION S (N, *)

. . .

v x
x v– 1+

t c

c t– 1+() e⁄

e

r r 1–

150 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.3.2 DIMENSION Attribute and Statement

The dimensions of an array may be specified by the appearance of a
DIMENSION attribute or by the appearance of an array specification following
the name of the array in a type declaration statement. In fact, both a
DIMENSION attribute and an array specification following the name may
appear in a type declaration statement. In this case, the array specification
following the name overrides the array specification following the
DIMENSION attribute. A form for a type declaration statement with a
DIMENSION attribute is:

type , DIMENSION (array-spec) [, attribute-list] :: entity-list

See the examples below. Other attributes that are allowed with the
DIMENSION attribute are:

initialization
ALLOCATABLE
INTENT
OPTIONAL
POINTER
PARAMETER
PRIVATE
PUBLIC
SAVE
TARGET

In addition, an array specification can appear following a name in several
different kinds of statements to declare an array. They are DIMENSION, type
specification, ALLOCATABLE, POINTER, TARGET, and COMMON
statements.

The DIMENSION statement (R525) is the statement form of the DIMENSION
attribute.

DIMENSION [::] array-name (array-spec) &

[, array-name (array-spec)] ...

For example:

• entity-oriented

INTEGER, DIMENSION (10), TARGET, SAVE :: INDICES
INTEGER, ALLOCATABLE, TARGET :: LG (:, :, :)

Declarations 151

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• attribute-oriented

INTEGER INDICES, LG (:, :, :)
DIMENSION INDICES (10)
TARGET INDICES, LG
ALLOCATABLE LG
SAVE INDICES

• with the array specification in other statements

INTEGER INDICES, LG
TARGET INDICES (10), LG
ALLOCATABLE LG (:, :, :)
SAVE INDICES

• an additional example with the array specification in a COMMON
statement

COMMON / UNIVERSAL / TIME (80), SPACE (20, 20, 20, 20)

5.3.3 ALLOCATABLE Attribute and Statement

Arrays are the only objects that can have the ALLOCATABLE attribute. An
allocatable array is one for which the bounds are determined when an
ALLOCATE statement is executed for the array. Such arrays must be deferred-
shape arrays. A form for a type declaration statement with an ALLOCATABLE
attribute is:

type , ALLOCATABLE [, attribute-list] :: entity-list

Other attributes that may be used with the ALLOCATABLE attribute are:

DIMENSION (with deferred shape)
PRIVATE
PUBLIC
SAVE
TARGET

The form of the ALLOCATABLE statement (R526) is:

ALLOCATABLE[::] array-name [(deferred-shape-spec-list)] &

[, array-name [(deferred-shape-spec-list)]] ...

152 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. The array must not be a dummy argument or function result.

2. If the array is given the DIMENSION attribute elsewhere, the bounds must
be specified as colons (deferred shape).

For example:

• entity-oriented

REAL, ALLOCATABLE :: A (:, :)
LOGICAL, ALLOCATABLE, DIMENSION (:) :: MASK1

• attribute-oriented

REAL A (:, :)
LOGICAL MASK1
DIMENSION MASK1 (:)
ALLOCATABLE A, MASK1

5.4 Pointer Properties
Most attributes, when applied to an ordinary object, add characteristics that
the object would not have otherwise. The POINTER attribute, in some sense,
takes away a characteristic that an ordinary object has. An ordinary object has
storage space set aside for it. If the object has the POINTER attribute, it has no
space initially and must not be referenced until space is associated with it. An
ALLOCATE statement creates new space for a pointer object. A pointer
assignment statement permits the pointer to borrow the space from another
object. The space that becomes associated with a pointer is called the pointer’s
target. The target may change during the execution of a program. A pointer
target is either an object or part of an object declared to have the TARGET
attribute; or it is an object or part of an object that was created by the allocation
of a pointer. A pointer may be assigned the target (or part of the target) of
another pointer. An array with the ALLOCATABLE attribute may be a pointer
target only if it also has the TARGET attribute.

Another way of thinking about a pointer is as a descriptor that contains
information about the type, type parameters, rank, extents, and location of the
pointer’s target. Thus, a pointer to a scalar object of type real would be quite
different from a pointer to an array of user-defined type. In fact, each of these
pointers is considered to occupy a different unspecified storage unit. When an
object with the POINTER attribute is declared to be in a common block, it is

Declarations 153

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

likely to be the descriptor that occupies the storage. This is why every
declaration of a common block that contains a pointer must specify the same
sequence of storage units.

5.4.1 POINTER Attribute and Statement

A form for a type declaration statement with a POINTER attribute is:

type , POINTER [, attribute-list] :: entity-list

Other attributes that may be used with the POINTER attribute are:

DIMENSION (with deferred shape)
OPTIONAL
PRIVATE
PUBLIC
SAVE

The POINTER statement (R527) also provides a means for declaring pointers.
Its form is:

POINTER [::] object-name [(deferred-shape-spec-list)] &

[, object-name [(deferred-shape-spec-list)]] ...

Rules and restrictions:

1. The target of a pointer may be a scalar or an array.

2. A pointer that is an array must be declared as a deferred-shape array.

3. A pointer must not be referenced or defined unless it is associated with a
target that may be referenced or defined. (A pointer on the right-hand side
of a pointer assignment is not considered to be a pointer reference.)

For example:

• entity-oriented

TYPE (NODE), POINTER :: CURRENT
REAL, POINTER :: X (:, :), Y (:)

• attribute-oriented

TYPE (NODE) CURRENT
REAL X (:, :), Y (:)
POINTER CURRENT, X, Y

154 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.4.2 TARGET Attribute and Statement

An object with the TARGET attribute may become the target of a pointer
during execution of a program. The sole purpose of the TARGET attribute is to
provide aid to a compiler in the production of efficient code. If an object does
not have the target attribute or has not been allocated, no part of it can be
accessed via a pointer. A form for a type declaration statement with a TARGET
attribute is:

type , TARGET [, attribute-list] :: entity-list

Other attributes that may be used with the TARGET attribute are:

data initialization
ALLOCATABLE
DIMENSION
INTENT
OPTIONAL
PRIVATE
PUBLIC
SAVE

The TARGET statement (R528) also provides a means for specifying pointer
targets. It has the form:

TARGET[::] object-name [(array-spec)] &

[, object-name [(array-spec)]] ...

For example:

• entity-oriented

TYPE (NODE), TARGET :: HEAD_OF_LIST
REAL, TARGET, DIMENSION (100, 100) :: V, W (100)

• attribute-oriented

TYPE (NODE) HEAD_OF_LIST
REAL V, W (100)
DIMENSION V (100, 100)
TARGET HEAD_OF_LIST, V, W

Declarations 155

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.5 Value Attributes
Variables may be given values before execution of the program begins; named
constant values must be specified prior to execution. The general provisions for
these two cases are:

1. A variable may be given an initial value by an entity-oriented type
declaration statement that contains an entity declaration of the form:

object-name = initialization-expression

or by a DATA statement. The value may be redefined later in the program.
This gives the programmer a convenient and efficient way to establish
initial values.

2. A named constant is declared and defined with a value by an entity-
oriented declaration statement that contains the PARAMETER attribute
and an entity declaration of the form:

object-name = initialization-expression

or by a PARAMETER statement. The value associated with the name
cannot be changed during the execution of the program. For example, PI or
E may be associated with the familiar mathematical constants to provide
more convenient access to these values. Named constants are also used to
give names to values (such as a sales tax rate) that may change at some
later time. When a change is necessary, it can be made at one place in the
program and not every place where the value is used. The program can be
recompiled to effect the change.

5.5.1 Data Initialization and the DATA Statement

The DATA statement is the only attribute specification statement for which
there is no corresponding attribute that may appear in a type declaration
statement. It is, however, possible to initialize a variable in an entity-oriented
type declaration statement. When an initialization expression appears in a
declaration for an object that does not have the PARAMETER attribute, the
object (which is a variable) is given the specified initial value. The same rules
apply to the assignment of the initial value as apply when an assignment
statement is executed. For example, if the variable is of type real but the value
is an integer value, the variable will be assigned the real equivalent of the
integer value. If the kind of the variable is different from the kind of the value,

156 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the value will be “converted” to the kind of the variable. Array constructors
may be used to initialize arrays, and structure constructors may be used to
initialize variables of user-defined type. The form of a type declaration
statement that provides an initial value for a variable is:

type [, attribute-list] :: object-name [(array-spec)] &

[* character-length] = initialization-expression

Other attributes that may be used with variable initialization are:

DIMENSION
PRIVATE
PUBLIC
SAVE
TARGET

The PARAMETER attribute may appear, but in this case the object is a named
constant.

Initialization of a variable in a type declaration statement or any part of a
variable in a DATA statement implies that the variable has the SAVE attribute
unless the variable is in a named common block. The automatically acquired
SAVE attribute may be reaffirmed by the appearance of SAVE as an attribute in
its type declaration statement or by inclusion of the variable name in a separate
SAVE statement.

The DATA statement (R529) is somewhat complicated. It has the form:

DATA data-object-list / data-value-list / &

[[,] data-object-list / data-value-list /] ...

where a data object (R531) is one of:

variable
data-implied-do

and a data value (R532) is:

[repeat-factor *] data-constant

where a repeat factor (R534) is a scalar integer constant and a data constant
(R533) is one of:

Declarations 157

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

scalar-constant
signed-integer-literal-constant
signed-real-literal-constant
structure-constructor
boz-literal-constant

The form of a data-implied do (R535) is:

(data-implied-do-object-list , scalar-integer-variable = &

scalar-integer-expression , scalar-integer-expression &

[, scalar-integer-expression])

where a data-implied-do object (R536) is one of:

array-element
structure-component
data-implied-do

Rules and restrictions:

1. If an object is of type character or logical, the constant used for
initialization must be of the same type. If an object is of type real or
complex, the corresponding constant must be of type integer, real, or
complex. If the object is of type integer, the corresponding constant must
be of type integer, real, or complex; or, if the initialization is specified in a
DATA statement, the corresponding constant may be a binary, octal, or
hexadecimal literal constant. If an object is of derived type, the
corresponding constant must be of the same type.

2. The value of the data constant or the initialization expression must be such
that its value could be assigned to the variable using an intrinsic
assignment statement. The variable becomes initially defined with the
value of the constant.

3. A variable, or the same part of a variable, must not be initialized more than
once in an executable program.

4. None of the following may be initialized:

a dummy argument
an object made accessible by use or host association
a function result
an automatic object
a pointer

158 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

an allocatable array
an object in a named common block, unless the data initialization
 is in a block data program unit
an object in a blank common block
an external or intrinsic procedure

5. For an object being initialized, any subscript, section subscript, substring
starting point, or substring ending point must be an initialization
expression.

6. Each component of a structure constructor used for initialization must be
an initialization expression.

7. A variable that appears in a DATA statement and is thereby declared and
typed implicitly may appear in a subsequent type declaration statement
only if that declaration confirms the implicit declaration. An array name,
array section, or array element appearing in a DATA statement must have
had its array properties established previously.

8. An array element or structure component that appears in a DATA
statement must not have a constant parent.

9. The DATA statement repeat factor must be positive or zero, and if it is a
named constant, the value must be specified in a prior statement in the
same scoping unit when the DATA statement is encountered.

10. A subscript in an array element of an implied-do list must contain as
operands only constants or DO variables of the containing implied-dos.

11. A scalar integer expression in an implied-do must contain as operands
only constants or DO variables and each operation must be an intrinsic
operation.

12. The data object list is expanded to form a sequence of scalar variables. An
array or array section is equivalent to the sequence of its array elements in
array element order. A data-implied-do is expanded to form a sequence of
array elements and structure components, under the control of the implied-
do variable, as in the DO construct. A zero-sized array or an implied-do
with an iteration count of zero contributes no variables to the expanded
list, but a character variable declared to have zero length does contribute a
variable to the list.

Declarations 159

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13. The data value list is expanded to form a sequence of scalar constant
values. Each value must be a constant that is known to the processor when
the DATA statement is encountered. A DATA statement repeat factor
indicates the number of times the following constant is to be included in
the sequence. If the repeat factor is zero, the following constant is not
included in the sequence.

14. Scalar variables and constant values of the expanded sequence must be in
one-to-one correspondence. Each constant specifies the initial value for the
corresponding variable. The lengths of the two expanded sequences must
be the same.

For example:

• entity-oriented

CHARACTER (LEN = 10) :: NAME = "JOHN DOE"
INTEGER, DIMENSION (0:9) :: METERS = (/ (0 , I = 1, 10) /)
TYPE (PERSON) :: ME = PERSON (21, "JOHN SMITH"), &

YOU = PERSON (35, "FRED BROWN")

REAL :: SKEW(100,100) = RESHAPE ((/ ((1.0 , K = 1,J-1), &
(0.0, K = J,100) , J = 1,100) /), (/ 100, 100 /))

• attribute-oriented

CHARACTER (LEN = 10) NAME
INTEGER METERS
DIMENSION METERS (0:9)
DATA NAME / "JOHN DOE" /, METERS / 10*0 /
TYPE (PERSON) ME, YOU
DATA ME / PERSON (21, "JOHN SMITH") /
DATA YOU % AGE, YOU % NAME / 35, "FRED BROWN" /

REAL SKEW (100, 100)
DATA ((SKEW (K, J) , K = 1, J-1) , J = 1, 100) / 4950 * 1.0 /
DATA ((SKEW (K, J) , K = J, 100) , J = 1, 100) / 5050 * 0.0 /

In both forms, the character variable NAME is initialized with the value JOHN
DOE with padding on the right because the length of the constant is less than
the length of the variable. All ten elements of the integer array METERS are
initialized to 0; an array constructor is used in the entity-oriented form; a
repeat factor is used for the attribute-oriented form. ME and YOU are
structures declared using the user-defined type PERSON defined in Section 4.6.

160 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In both forms ME is initialized using a structure constructor. In the attribute-
oriented form YOU is initialized by supplying a separate value for each
component.

In both forms, the two-dimensional array SKEW is initialized so that the lower
triangle is 0 and the strict upper triangle is 1. The RESHAPE intrinsic function
is required in the entity-oriented form because SKEW is of rank 2. Repeat
factors are used in the attribute-oriented form.

5.5.2 PARAMETER Attribute and Statement

Constants may be given a name in a type declaration statement with the
PARAMETER attribute or in a separate PARAMETER statement. A form for a
type declaration statement with a PARAMETER attribute is:

type , PARAMETER[, attribute-list] :: name = initialization-expression

More than one named constant can be specified in a single type declaration
statement; see the examples below. Other attributes that are allowed with the
PARAMETER attribute are:

initialization (must be present)
DIMENSION
PRIVATE
PUBLIC
SAVE

The named constant becomes defined with the value determined from the
initialization expression in accordance with the rules for intrinsic assignment.
Any named constant that appears in the initialization expression must have
been either: 1) defined previously in this type declaration statement or in a
previous type declaration statement, or 2) otherwise made known to the
processor (through host or use association).

The PARAMETER statement (R538) also provides a means of defining a named
constant. It takes the form:

PARAMETER (named-constant = initialization-expression &

[, named-constant = initialization-expression] ...)

Declarations 161

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. The PARAMETER attribute must not be specified for dummy arguments,
functions, or objects in a common block.

2. A named constant that appears in a PARAMETER statement and is thereby
declared and typed implicitly may appear in a subsequent type declaration
statement only if that declaration confirms the implicit declaration.

3. A named array constant appearing in a PARAMETER statement must have
had its array properties established previously.

4. A named constant must not appear in a format specification because of a
possible ambiguity.

For example:

• entity-oriented

INTEGER, PARAMETER :: STATES = 50
INTEGER, PARAMETER :: M = MOD (28, 3), &

NUMBER_OF_SENATORS = 2 * STATES

• attribute-oriented

INTEGER STATES, M, NUMBER_OF_SENATORS
PARAMETER (STATES = 50)
PARAMETER (M = MOD (28, 3), &

NUMBER_OF_SENATORS = 2 * STATES)

5.6 Object Accessibility and Use
Several attributes indicate where an object may be accessed and how it may be
used. Some of these attributes apply only to objects in a module and others
only to dummy arguments or other variables declared in a subprogram.

Entities specified in a module are generally available (PUBLIC attribute) to a
program unit that contains a USE statement for the module, or they are
restricted (PRIVATE attribute) to use in the module. The INTENT attribute
determines the use of a dummy argument within a subprogram. The
OPTIONAL attribute allows a subprogram argument to be omitted in a
particular reference to the subprogram. The SAVE attribute preserves the
values of variables between subprogram references.

162 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.6.1 PUBLIC and PRIVATE Accessibility

The PUBLIC and PRIVATE attributes control access to type definitions,
variables, functions, and named constants in a module. The PUBLIC attribute
declares that entities in a module are available outside the module by use
association; the PRIVATE attribute prevents access outside the module by use
association. The default accessibility is PUBLIC, but it can be changed to
PRIVATE.

Forms for type declaration statements with PUBLIC and PRIVATE attributes
are:

type , PUBLIC [, attribute-list] :: entity-list
type , PRIVATE [, attribute-list] :: entity-list

PUBLIC and PRIVATE specifications may also appear in the derived-type
statement of a derived-type definition to specify the accessibility of the type
definition (4.4.1).

TYPE , PUBLIC :: type-name
TYPE , PRIVATE :: type-name

Further, if a PRIVATE statement without an access-id list appears inside a type
definition, it specifies that, although the type may be accessible outside the
module, its components are private.

Other attributes that are allowed with the PUBLIC and PRIVATE attributes in
type declaration statements are:

initialization
ALLOCATABLE
DIMENSION
EXTERNAL
INTRINSIC
PARAMETER
POINTER
SAVE
TARGET

PUBLIC and PRIVATE statements provide another means for controlling the
accessibility of variables, functions, type definitions, and named constants. In
addition, PUBLIC and PRIVATE statements can control the accessibility of

Declarations 163

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

some entities that do not have a type and thus cannot appear in type
declaration statements; these are subroutines, generic specifiers, and namelist
groups. Forms for PUBLIC and PRIVATE statements (R521) are:

PUBLIC [[::] access-id-list]
PRIVATE [[::] access-id-list]

where an access-id (R522) is one of:

use-name
generic-spec

A generic specification (R1206) is one of:

generic-name
OPERATOR (defined-operator)

ASSIGNMENT (=)

Generic specifications are explained in Section 12.6. Examples of PUBLIC and
PRIVATE statements that might be used with generic specifications are:

PUBLIC HYPERBOLIC_COS, HYPERBOLIC_SIN ! generic names
PRIVATE HY_COS_RAT, HY_SIN_RAT ! specific names
PRIVATE HY_COS_INF_PREC, HY_SIN_INF_PREC ! specific names
PUBLIC :: OPERATOR (.MYOP.), OPERATOR (+), ASSIGNMENT (=)

Rules and restrictions:

1. PUBLIC and PRIVATE may appear only in a module.

2. A use name may be a variable name, procedure, derived type, named
constant, or namelist group.

3. Only one PUBLIC or PRIVATE statement with an omitted access-id list is
permitted in the scoping unit of a module. It determines the default
accessibility of the module.

4. A PRIVATE statement (but not a PUBLIC statement) may appear within a
derived-type definition to indicate that the components of a structure of
the type are not accessible outside the module.

5. A procedure that has a generic identifier that is public is accessible through
the generic identifier even if its specific name is private.

164 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6. A module procedure that has an argument of a private type or function
result of a private type must be private and must not have a generic
identifier that is public.

The default accessibility of entities defined in a module is PUBLIC. A PUBLIC
statement without an access-id list may appear in the module to confirm the
default accessibility. A PRIVATE statement without an access-id list may
appear in the module to change the default accessibility.

For example:

• entity-oriented

REAL, PUBLIC :: GLOBAL_X
TYPE, PRIVATE :: LOCAL_DATA

LOGICAL :: FLAG
REAL, DIMENSION (100) :: DENSITY

END TYPE LOCAL_DATA

• attribute-oriented

REAL GLOBAL_X
PUBLIC GLOBAL_X
TYPE LOCAL_DATA

LOGICAL FLAG
REAL DENSITY
DIMENSION DENSITY (100)

END TYPE LOCAL_DATA
PRIVATE LOCAL_DATA

• a public type with private components

TYPE LIST_ELEMENT
PRIVATE
REAL VALUE
TYPE (LIST_ELEMENT), POINTER :: NEXT, FORMER

END TYPE LIST_ELEMENT

• changing the default accessibility

MODULE M
PRIVATE
REAL R, K, TEMP (100) ! R, K, and TEMP are private
REAL, PUBLIC :: A(100), B(100) ! A and B are public

. . .
END MODULE M

Declarations 165

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.6.2 INTENT Attribute and Statement

The INTENT attribute specifies the intended use of a dummy argument. If
specified, it can help detect errors, provide information for readers of the
program, and give the compiler information that can be used to make the code
more efficient. It is particularly valuable in creating software libraries.

Some dummy arguments are referenced but not redefined within the
subprogram; some are defined before being referenced within the subprogram;
others may be referenced before being redefined. INTENT has three forms: IN,
OUT, and INOUT which correspond respectively to the above three situations.

If the intent of an argument is IN, the subprogram must not change the value
of the argument nor must the argument become undefined during the course
of the subprogram. If the intent is OUT, the subprogram must not use the
argument before it is defined, and it must be definable. If the intent is INOUT,
the argument may be used to communicate information to the subprogram and
return information; it must be defined on entry into the subprogram and must
be definable. If no intent is specified, the use of the argument is subject to the
limitations of the associated actual argument; for example, the actual argument
may be a constant (for example, 2) or a more complicated expression (for
example, N+2), and in these cases the dummy argument can only be referenced
but not defined.

A form for a type declaration statement with an INTENT attribute is:

type , INTENT (intent-spec) [, attribute-list] :: &

dummy-argument-list

where an intent specification is IN, OUT, or INOUT.

Other attributes that are allowed with the INTENT attribute are:

DIMENSION
OPTIONAL
TARGET

The INTENT statement (R519) also provides a means of specifying an intent for
an argument. It has the form:

INTENT (intent-spec) [::] dummy-argument-list

where an intent specification is one of:

166 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

IN

OUT

INOUT

Rules and restrictions:

1. The INTENT attribute may be specified only for dummy arguments.

2. An INTENT statement may appear only in the specification part of a
subprogram or interface body.

3. An intent must not be specified for a dummy argument that is a dummy
procedure because it is not possible to change the definition of a procedure.
It would not be clear whether an intent specified for a dummy pointer
applied to the pointer or to its target, so intent for a dummy pointer must
not be specified either.

For example:

• entity-oriented

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

. . .
SUBROUTINE SUB (X, Y)

INTEGER, INTENT (INOUT) :: X, Y
. . .

• attribute-oriented

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON) FROM, TO
INTENT (IN) FROM
INTENT (OUT) TO

. . .
SUBROUTINE SUB (X, Y)

INTEGER X, Y
INTENT (INOUT) X, Y

. . .

Declarations 167

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.6.3 OPTIONAL Attribute and Statement

Sometimes there are procedures that are used most frequently to perform a
special case of a more general calculation, but on occasion are called upon to
perform the fully general calculation. In the more frequent special case, there
are arguments that do not change from one invocation to the next, but in the
general case, all the arguments are different. It is inconvenient to supply the
same arguments for 90 percent of the invocations just to accommodate the 10
percent where the arguments are different. The OPTIONAL attribute allows a
procedure reference to omit arguments with this attribute. Default values can
then be used instead of the omitted arguments. The PRESENT intrinsic
function can be used to test the presence of an optional argument in a
particular invocation and this test can be used to control the subsequent
processing in the procedure. If the argument is not present, a default value
may be used or the subprogram may use an algorithm that is not based on the
presence of the argument.

A form for a type declaration statement with an OPTIONAL attribute is:

type , OPTIONAL [, attribute-list] :: dummy-argument-list

Other attributes that are allowed with the OPTIONAL attribute are:

DIMENSION
EXTERNAL
INTENT
POINTER
TARGET

The OPTIONAL statement (R520) also provides a means for specifying an
argument that may be omitted. It has the form:

OPTIONAL [::] dummy-argument-name-list

Rules and restrictions:

1. The OPTIONAL attribute may be specified only for dummy arguments.

2. An OPTIONAL statement may appear only in the scoping unit of a
subprogram or interface body.

For example:

• entity-oriented declarations (in a program fragment)

168 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

CALL SORT_X (X = VECTOR_A)
. . .

SUBROUTINE SORT_X (X, SIZEX, FAST)
REAL, INTENT (INOUT) :: X (:)
INTEGER, INTENT (IN), OPTIONAL :: SIZEX
LOGICAL, INTENT (IN), OPTIONAL :: FAST

. . .
INTEGER TSIZE

. . .
IF (PRESENT (SIZEX)) THEN

TSIZE = SIZEX
ELSE

TSIZE = SIZE (X)
END IF
IF (.NOT. PRESENT (FAST) .AND. TSIZE > 1000) THEN

CALL QUICK_SORT (X)
ELSE

CALL BUBBLE_SORT (X)
END IF

. . .

• attribute-oriented declarations (to be inserted in the same program
fragment)

SUBROUTINE SORT_X (X, SIZEX, FAST)
REAL X (:)
INTENT (INOUT) X
INTEGER SIZEX
LOGICAL FAST
INTENT (IN) SIZEX, FAST
OPTIONAL SIZEX, FAST

. . .
INTEGER TSIZE

. . .

5.6.4 SAVE Attribute and Statement

Variables with the SAVE attribute retain their value and their definition,
association, and allocation status after the subprogram in which they are
declared completes execution. Variables without the SAVE attribute cannot be
depended on to retain their value and status, although in some Fortran
implementations all local variables and common blocks are treated as if they
had the SAVE attribute. With virtual memory, multiprocessors, and modern

Declarations 169

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

operating systems, this is becoming less common. The SAVE attribute should
always be specified for an object or the object’s common block, if it is necessary
for the object to retain its value and status.

Objects declared in a module may be given the SAVE attribute, in which case
they always retain their value and status when a procedure that uses the
module completes execution.

Objects declared in recursive subprograms may be given the SAVE attribute.
Such objects are shared by all instances of the subprogram.

Any object that is data initialized (in a DATA statement or a type declaration
statement) has the SAVE attribute by default.

A form for a type declaration statement with a SAVE attribute is:

type , SAVE [, attribute-list] :: entity-list

Other attributes that are allowed with the SAVE attribute are:

initialization
ALLOCATABLE
DIMENSION
POINTER
PRIVATE
PUBLIC
TARGET

An object with the PARAMETER attribute (named constant) is always
available, so there is no need to specify the SAVE attribute for it. It is not
permitted to specify the SAVE attribute for such an object.

The SAVE statement (R523) provides a means for specifying the SAVE attribute
for objects and also for common blocks. It has the form:

SAVE [[::] saved-entity-list]

where a saved entity (R524) is either of:

data-object-name
/ common-block-name /

170 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. A SAVE statement without a saved entity list is treated as though it
contained the names of all items that could be saved in the scoping unit.
No other SAVE statements or attributes may appear in the scoping unit.

2. If SAVE appears in a main program as an attribute or a statement, it has no
effect.

3. The following objects must not be saved:

a procedure
a function result
a dummy argument
an automatic data object
an object in a common block
a namelist group

4. Variables in a common block cannot be saved individually; the entire
common block must be saved if any variables in it are to be saved.

5. If a common block is saved in one scoping unit of a program, it must be
saved in every scoping unit of the program in which it is defined (other
than the main program).

6. If a named common block is specified in a main program, it is available to
any scoping unit of the program that specifies the named common block; it
does not need to be saved.

For example:

• entity-oriented

CHARACTER (LEN = 12), SAVE :: NAME

• attribute-oriented

CHARACTER (LEN = 12) NAME
SAVE NAME

• saving objects and common blocks

SAVE A, B, / BLOCKA /, C, / BLOCKB /

Declarations 171

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.7 Procedure Properties
If an external or dummy procedure is to be an actual argument to a
subprogram, the procedure name must be declared to be EXTERNAL. (A
dummy procedure is a dummy argument that is a procedure.) If an external
procedure has the same name as an intrinsic procedure, again the name must
be declared to be EXTERNAL. When this occurs, the intrinsic procedure of that
name is no longer accessible to that program unit. If an intrinsic procedure is to
be an actual argument, the name of the procedure must be declared to be
INTRINSIC. Sections 12.4.4 and 12.4.5 discuss further the usage of these
attributes.

Because only functions, not subroutines, are declared to have a type (the type
of the result), only function names can appear in type declaration statements.
The EXTERNAL and INTRINSIC attributes in type declaration statements
therefore apply only to functions. The EXTERNAL and INTRINSIC statements
can be used to specify properties of subroutines (12.4.4, 12.4.5), and the
EXTERNAL statement can specify block data program units (11.7).

Module procedures can have an accessibility attribute. They may be accessible
outside the module (PUBLIC) or their accessibility may be restricted to the
module in which they are defined (PRIVATE). See Section 5.6.1.

5.7.1 EXTERNAL Attribute and Statement

The EXTERNAL attribute is used to indicate that a name is the name of an
external function or a dummy function and permits the name to be used as an
actual argument.

A form for a type declaration statement with an EXTERNAL attribute is:

type , EXTERNAL [, attribute-list] :: function-name-list

Other attributes that are allowed with the EXTERNAL attribute are:

OPTIONAL
PRIVATE
PUBLIC

172 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

If a function returns an array or a pointer, the interface of the function must be
explicit. Interface blocks are used to describe the interfaces of external
functions. A function described by an interface block thus has the external
attribute by default; it need not be declared explicitly.

The EXTERNAL statement (R1207) provides a means for declaring subroutines
and block data program units, as well as functions, to be external. It has the
form:

EXTERNALexternal-name-list

Rules and restrictions:

1. Each external name must be the name of an external procedure, a dummy
argument, or a block data program unit.

2. If a dummy argument is specified to be EXTERNAL, the dummy argument
is a dummy procedure.

3. An interface block specifies the external attribute (12.6.2) for all procedures
in the interface block, with the exception of module procedures specified in
MODULE PROCEDURE statements within the block. The attribute given
by an interface block may be specified redundantly in an EXTERNAL
statement.

For example:

• entity-oriented

SUBROUTINE SUB (FOCUS)
INTEGER, EXTERNAL :: FOCUS
LOGICAL, EXTERNAL :: SIN

• attribute-oriented

SUBROUTINE SUB (FOCUS)
INTEGER FOCUS
LOGICAL SIN
EXTERNAL FOCUS, SIN

FOCUS is declared to be a dummy procedure. SIN is declared to be an external
procedure. Both are functions. To declare an external subroutine, the
EXTERNAL statement or an interface block must be used because a subroutine
does not have a type, and thus its attributes cannot be specified in a type
declaration statement. The specific name SIN of the intrinsic function SIN is no
longer available to subroutine SUB.

Declarations 173

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.7.2 INTRINSIC Attribute and Statement

The INTRINSIC attribute is used to indicate that a name is the name of an
intrinsic function and permits the name to be used as an actual argument.

A form for a type declaration statement with an INTRINSIC attribute is:

type , INTRINSIC [, attribute-list] :: intrinsic-function-name-list

Other attributes that are allowed with the INTRINSIC attribute are:

PRIVATE
PUBLIC

The INTRINSIC statement (R1208) provides a means for declaring intrinsic
subroutines, as well as functions. Its form is:

INTRINSIC intrinsic-procedure-name-list

Rules and restrictions:

1. Each intrinsic procedure name must be the name of an intrinsic procedure.

2. Within a scoping unit, a name may be declared INTRINSIC only once.

3. A name must not be declared to be both EXTERNAL and INTRINSIC in a
scoping unit.

4. A type may be specified for an intrinsic function even though it has a type
as specified in Appendix A. If a type is specified for the generic name of an
intrinsic function, it does not remove the generic properties of the function
name.

5. The documentation provided with a compiler may specify intrinsic
procedures in addition to the ones required by the standard. These
procedures have the status of intrinsic procedures, but programs that use
them may not be portable to other computer systems.

For example:

• entity-oriented

REAL, INTRINSIC :: SIN, COS

174 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• attribute-oriented

REAL SIN, COS
INTRINSIC SIN, COS

Because the interfaces of intrinsic procedures are explicit (known), it is not
necessary to specify a type for them, but it is not incorrect to do so.

5.8 Automatic Data Objects
Automatic data objects are especially useful as working storage in a procedure.
These objects may be declared only in procedures or procedure interfaces; they
are created when the procedure is entered and disappear when the procedure
completes execution. They can be created the same size as an argument to the
procedure, so they can be tailored to each invocation.

There are two kinds of automatic data objects: automatic arrays of any type
and objects of type character. Note that in Fortran 90 the term “automatic
object” does not include noncharacter scalar local variables. For an array, the
extents in each dimension are determined when the procedure is entered. For a
character object, the length is determined when the procedure is entered. Apart
from dummy arguments, this is the only character object whose length may
vary. For arrays, extents may vary for allocatable arrays and array pointers as
well as dummy arguments. An automatic object is not a dummy argument, but
it is declared with a specification expression that is not a constant expression.
The specification expression may be the length of the character object or the
bounds of the array. Automatic objects cannot be saved or initialized. For
example:

SUBROUTINE SWAP_ARRAYS (A, B, A_NAME, B_NAME)
REAL, DIMENSION (:), INTENT (INOUT) :: A, B
CHARACTER (LEN = *), INTENT(IN) :: A_NAME, B_NAME

REAL C (SIZE (A))
CHARACTER (LEN = LEN (A_NAME) + LEN (B_NAME) + 17) &

MESSAGE
C = A
A = B
B = C
MESSAGE = A_NAME // " and " // B_NAME // " are swapped"
PRINT *, MESSAGE

END SUBROUTINE SWAP_ARRAYS

Declarations 175

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In the example, C is an automatic array and MESSAGE is an automatic
character object.

5.9 NAMELIST Statement
A NAMELIST statement establishes the name for a collection of objects that
can then be referenced by the group name in certain input/output statements.
The form of the NAMELIST statement (R543) is:

NAMELIST / namelist-group-name / variable-name-list &

[[,] / namelist-group-name / variable-name-list] ...

Rules and restrictions:

1. A variable in the variable name list must not be an array dummy argument
with nonconstant bounds, a variable with assumed character length, an
automatic object, a pointer, an object of a type that has a pointer
component at any level, an allocatable array, or a subobject of any of the
preceding objects.

2. If a namelist group name has the PUBLIC attribute, no item in the namelist
group object list may have the PRIVATE attribute.

3. The order in which the data objects (variables) are specified in the
NAMELIST statement determines the order in which the values appear on
output.

4. A namelist group name may occur in more than one NAMELIST statement
in a scoping unit. The variable list following each successive appearance of
the same namelist group name in a scoping unit is treated as a
continuation of the list for that namelist group name.

5. A variable may be a member of more than one namelist group.

6. A variable either must have its type, type parameters, and shape specified
previously in the same scoping unit, or must be determined by implicit
typing rules. If a variable is typed by the implicit typing rules, its
appearance in any subsequent type declaration statement must confirm
this implicit type.

Examples of NAMELIST statements are:

NAMELIST / N_LIST / A, B, C
NAMELIST / S_LIST / A, V, W, X, Y, Z

176 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.10 Storage Association
In general, the physical storage units or storage order for data objects cannot
be specified. However, the COMMON, EQUIVALENCE, and SEQUENCE
statements provide sufficient control over the order and layout of storage units
to permit data to share storage units.

In Fortran 77, the COMMON statement provides the primary means of sharing
data between program units. The EQUIVALENCE statement provides a means
whereby two or more objects can share the same storage units. These two
statements are powerful tools that can accomplish tasks for which no other
mechanisms exist in Fortran 77, but they also permit the construction of
programs that are difficult to understand and maintain.

In Fortran 90, modules, pointers, allocatable arrays, and automatic data objects
provide more effective tools for sharing data and managing storage. The
SEQUENCE statement has been introduced in Fortran 90 to define a storage
order for structures. This permits structures to appear in common blocks and
be equivalenced. The SEQUENCE statement can appear only in derived-type
definitions to define sequence types. The components of a sequence type have
an order in storage sequences that is the order of their appearance in the type
definition.

The concept of storage association involves storage units and storage sequence.
These concepts are used to explain how the COMMON and EQUIVALENCE
mechanisms work. This description does not imply that any particular memory
allocation scheme is required by a Fortran system, but the system must
function as though storage were actually managed according to these
descriptions.

5.10.1 Storage Units

In Fortran 77, there are only two kinds of storage units: numeric and character.
Fortran 90 introduces new types (the nondefault types), user-defined types,
and pointers. Objects of these types and pointers cannot be accommodated by
the two storage units allowed in Fortran 77, and, in fact, it is not desirable to
specify storage units for the space these objects occupy. Fortran 90 uses the
term “unspecified storage unit” for these objects. A new Fortran 90 object (a
pointer, an object of nondefault type, or a structure containing components that
are of nondefault types or are pointers) is said to occupy an unspecified
storage unit, but this unit is different for each different sort of object. If a

Declarations 177

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

processor provides a quadruple precision real type and a small-size logical
type, they each occupy an unspecified storage unit, but the quadruple
precision object will probably take more storage than the small-size logical
object. A pointer occupies a single unspecified storage unit that is different
from that of any nonpointer object and is different for each combination of
type, type parameters, and rank.

There are two kinds of structures, sequence structures and nonsequence
structures, depending on whether the type definition contains a SEQUENCE
statement or not. A nonsequence structure occupies a single unspecified
storage unit that is different for each type. There are three kinds of sequence
structures:

1. numeric sequence structures (containing only numeric and logical entities
of default kind)

2. character sequence structures (containing only character entities of default
kind)

3. sequence structures (containing a mixture of components including objects
that occupy numeric, character, and unspecified storage units)

Table 5-1 lists objects of various types and attributes and the storage units they
occupy.

5.10.2 Storage Sequence

A storage sequence is an ordered sequence of storage units. The storage units
may be elements in an array, characters in a character variable, components in
a sequence structure, or variables in a common block. A sequence of storage
sequences forms a composite storage sequence. The order of the storage units
in such a composite sequence is the order of the units in each constituent taken
in succession, ignoring any zero-sized sequences.

Storage is associated when the storage sequences of two different objects have
some storage in common. This permits two or more variables to share the same
storage. Two objects are totally associated if they have the same storage
sequence; two objects are partially associated if they share some storage but
are not totally associated.

178 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Table 5-1 Types and attributes and the storage units they occupy

Type and attributes of object. Storage units

Default integer 1 numeric

Default real 1 numeric

Default logical 1 numeric

Double precision 2 numeric

Default complex 2 numeric

Default character of length 1 1 character

Default character of length s s character

Nondefault integer 1 unspecified

Real other than default real
or double precision 1 unspecified

Nondefault logical 1 unspecified

Nondefault complex 1 unspecified

Nondefault character of length 1 1 unspecified

Nondefault character of length s s unspecified

Nonsequence structure 1 unspecified

Numeric sequence structure n numeric, where n is the number of numeric storage units
the structure occupies

character sequence structure n character, where n is the number of character storage
units the structure occupies

Sequence structure 1 unspecified

Any type with the pointer attribute 1 unspecified

Any intrinsic or sequence type with the
dimension attribute

The size of the array times the number of storage units for
the type (will appear in array element order)

Any nonintrinsic, nonsequence type
with the dimension attribute

Unspecified number of unspecified storage units

Any type with the pointer attribute and
the dimension attribute

1 unspecified

Declarations 179

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.10.3 EQUIVALENCE Statement

To indicate that two or more variables are to share storage, they may be placed
in an equivalence set in an EQUIVALENCE statement. If the objects in an
equivalence set have different types or type parameters, no conversion or
mathematical relationship is implied. If a scalar and an array are equivalenced,
the scalar does not have array properties and the array does not have the
properties of a scalar. The form of the EQUIVALENCE statement (R545) is:

EQUIVALENCE

(equivalence-object , equivalence-object-list) &

[, (equivalence-object , equivalence-object-list)] ...

where an equivalence object (R547) is one of:

variable-name
array-element
substring

Rules and restrictions:

1. An equivalence object must not be:

a dummy argument
a pointer
an allocatable array
a nonsequence structure
a structure containing a pointer at any level
an automatic object
a function name, result name, or entry name
a named constant
a subobject of any of the above

2. An equivalence set list must contain at least two items.

3. Any subscripts and subscript ranges must be integer initialization
expressions.

4. If an equivalence object is of type default integer, default real, double
precision real, default complex, default logical, or numeric sequence type,
all of the objects in the set must be of these types.

180 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. If an equivalence object is of type default character or character sequence
type, all of the objects in the set must be of these types. The lengths do not
need to be the same.

6. If an equivalence object is of sequence type other than numeric or character
sequence type, all of the objects in the set must be of the same type.

7. If an equivalence object is of intrinsic type other than default integer,
default real, double precision real, default complex, default logical, or
default character, all of the objects in the set must be of the same type with
the same kind type parameter value.

8. The use of an array name unqualified by a subscript list in an equivalence
set specifies the first element of the array; that is, A means the first element
of A.

9. An EQUIVALENCE statement must not specify that the same storage unit
is to occur more than once in a storage sequence. For example, the
following is illegal because it would indicate that storage for X(2) and X(3)
is shared.

EQUIVALENCE (A, X (2)), (A, X (3))

10. An EQUIVALENCE statement must not specify the sharing of storage units
between objects declared in different scoping units.

An EQUIVALENCE statement specifies that the storage sequences of the data
objects in an equivalence set are storage associated. All of the nonzero-sized
sequences in the set, if any, have the same first storage unit, and all of the zero-
sized sequences, if any, are storage associated with one another and with the
first storage unit of any nonzero-sized sequences. This causes storage
association of the objects in the set and may cause storage association of other
data objects.

For example:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

Declarations 181

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

causes the alignment illustrated below:

As a result, the fourth character of A, the first character of B, and the first
character of C(2) all share the same character storage unit.

REAL, DIMENSION (6) :: X, Y
EQUIVALENCE (X (5), Y(3))

causes the alignment illustrated below:

5.10.4 COMMON Statement

The COMMON statement establishes blocks of storage called common blocks
and specifies objects that are contained in the blocks. Two or more program
units may share this space and thus share the values of variables stored in the
space. Thus, the COMMON statement provides a global data facility based on
storage association. Common blocks may be named, in which case they are
called named common blocks, or may be unnamed, in which case they are
called blank common.

Fortran 77 restricts a common block to contain only numeric storage units or to
contain only character storage units. Fortran 90 relaxes this restriction.
Common blocks may contain mixtures of storage units and may contain
unspecified storage units; however, if a common block contains a mixture of
storage units, every declaration of the common block in the program must

A(1:1) A(2:2) A(3:3) A(4:4)

B(2:2) B(3:3) B(4:4)

C(1)(1:1) C(1)(2:2) C(1)(3:3) C(2)(1:1) C(2)(2:2) C(2)(3:3)

X(1) X(2) X(3) X(4) X(5) X(6)

Y(1) Y(2) Y(3) Y(4) Y(5) Y(6)

182 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

contain the same sequence of storage units, thereby matching types, kind type
parameters, and attributes (dimension and pointer). The form of the
COMMON statement (R548) is:

COMMON[/ [common-block-name] /] common-block-object-list &

[[,] / [common-block-name] / common-block-object-list] ...

where a common block object (R549) is:

variable-name [(explicit-shape-spec-list)]

Rules and restrictions:

1. A common block object must not be:

a dummy argument
an allocatable array
a nonsequence structure
an automatic object
a function name, result name, or entry name

2. The appearance of two slashes with no common block name between them
declares the objects in the following object list to be in blank common.

3. A common block name or an indication of blank common may appear
more than once in one or more COMMON statements in the same scoping
unit. The object list following each successive block name or blank
common indication is treated as a continuation of the previous object list.

4. A variable may appear in only one common block within a scoping unit.

5. If a variable appears with an explicit-shape specification list, it is an array,
and each bound must be a constant specification expression.

6. A nonpointer object of type default integer, default real, double precision
real, default complex, default logical, or numeric sequence type must
become associated only with nonpointer objects of these types.

7. A nonpointer object of type default character or character sequence must
become associated only with nonpointer objects of these types.

8. If an object of numeric sequence or character sequence type appears in a
common block, it is as if the individual components were enumerated in
order directly in the common block object list.

Declarations 183

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9. A nonpointer object of sequence type other than numeric or character
sequence type must become associated only with nonpointer objects of the
same type.

10. A nonpointer object of intrinsic type other than default integer, default
real, double precision real, default complex, default logical, or default
character must become associated only with nonpointer objects of the same
type with the same kind type parameter value.

11. A pointer must become associated only with pointers of the same type,
type parameters, and rank.

12. Only a named common block may be saved, not individual variables in the
common block.

For each common block, a common block storage sequence is formed. It
consists of the sequence of storage units of all the variables listed for the
common block in the order of their appearance in the common block list. The
storage sequence may be extended (on the end) to include the storage units of
any variable equivalenced to a variable in the common block. Data objects
storage associated with a variable in a common block are considered to be in
that common block. The size of a common block is the size of its storage
sequence including any extensions of the sequence resulting from equivalence
association.

Within an executable program, the common block storage sequences of all
nonzero-sized common blocks with the same name have the same first storage
unit and must have the same size. Zero-sized common blocks are permitted.
Frequently a program is written with array extents and character lengths
specified by named constants. When there is a need for a different-sized data
configuration, the values of the named constants can be changed and the
program recompiled. Allowing extents and lengths to be specified to have the
value zero, and thus possibly specifying zero-length common blocks, permits
the maximum generality. All zero-sized common blocks with the same name
are storage associated with one another. The same is true of all blank common
blocks except that because they may be of different sizes, it is possible for a
zero-sized blank common block in one scoping unit to be associated with the
first storage unit of a nonzero-sized blank common block in another scoping
unit. In this way, many subprograms may use the same storage. They may
specify common blocks to communicate global values or to reuse and thus
conserve storage.

184 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A blank common block has the same properties as a named common block
except for the following:

1. Variables in blank common must not be initially defined.

2. Blank common is always saved; a named common block is not saved
unless it is mentioned in a SAVE statement.

3. Named common blocks of the same name must be the same size in all
scoping units of a program. Blank common blocks may be of different
sizes.

For example:

SUBROUTINE FIRST

INTEGER, PARAMETER :: SHORT = 2
REAL B(2)
COMPLEX C
LOGICAL FLAG
TYPE COORDINATES

SEQUENCE
REAL X, Y
LOGICAL Z_O ! zero origin?

END TYPE COORDINATES
TYPE (COORDINATES) P
COMMON / REUSE / B, C, FLAG, P

REAL MY_VALUES (100)
CHARACTER (LEN = 20) EXPLANATION
COMMON / SHARE / MY_VALUES, EXPLANATION
SAVE / SHARE /

REAL, POINTER :: W (:, :)
REAL, TARGET, DIMENSION (100, 100) :: EITHER, OR
INTEGER (SHORT) :: M (2000)
COMMON / MIXED / W, EITHER, OR, M

. . .

SUBROUTINE SECOND

INTEGER, PARAMETER :: SHORT = 2
INTEGER I(8)
COMMON / REUSE / I

Declarations 185

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

REAL MY_VALUES (100)
CHARACTER (LEN = 20) EXPLANATION
COMMON / SHARE / MY_VALUES, EXPLANATION
SAVE / SHARE /

REAL, POINTER :: V (:)
REAL, TARGET, DIMENSION (10000) :: ONE, ANOTHER
INTEGER (SHORT) :: M (2000)
COMMON / MIXED / V, ONE, ANOTHER, M ! ILLEGAL

. . .

Common block REUSE has a storage sequence of 8 numeric storage units. It is
being used to conserve storage. The storage referenced in subroutine FIRST is
associated with the storage referenced in subroutine SECOND as shown below:

There is no guarantee that the storage is actually retained and reused because,
in the absence of a SAVE attribute for REUSE, some processors may release the
storage when either of the subroutines completes execution.

Common block SHARE contains both numeric and character storage units and
is being used to share data between subroutines FIRST and SECOND.

The declaration of common block MIXED in subroutine SECOND is illegal
because it does not have the same sequence of storage units as the declaration
of MIXED in subroutine FIRST. The array pointer in FIRST has two
dimensions; the array pointer in SECOND has only one. With common blocks,
it is the sequence of storage units that must match, not the names of variables.

5.10.5 Restrictions on Common and Equivalence

An EQUIVALENCE statement must not cause two different common blocks to
become associated and must not cause a common block to be extended by
adding storage units preceding the first storage unit of the common block.

For example:

COMMON A (5)

B(1) B(2) C FLAG X Y Z_O

I(1) I(2) I(3) I(4) I(5) I(6) I(7) I(8)

186 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

REAL B (5)
EQUIVALENCE (A (2), B (1))

is legal and results in the following alignment:

On the other hand, the following is not legal:

EQUIVALENCE (A (1), B (2))

because it would place B (1) ahead of A (1) as in the following alignment:

and a common block must not be extended from the beginning of the block.

COMMON and EQUIVALENCE statements may appear in a module. If a
common block is declared in a module, it must not also be declared in a
scoping unit that accesses the module. The name of a PUBLIC data object from
a module must not appear in a COMMON or EQUIVALENCE statement in any
scoping unit that has access to the data object.

5.11 Summary
Declarations are used to specify the attributes and relationships of the entities
in a program. Variables, functions, and named constants have a type which is
the most important of the attributes.

5.11.1 Type

Fortran 90 has five intrinsic types and permits users to define additional types.
The types are:

A(1) A(2) A(3) A(4) A(5)

B(1) B(2) B(3) B(4) B(5)

A(1) A(2) A(3) A(4) A(5)

B(1) B(2) B(3) B(4) B(5)

Declarations 187

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

integer
real
complex
logical
character
user-defined

The following are type declaration statements:

REAL (KIND = HIGH) ROOT, ANSWER
INTEGER INDEX, SELECTOR, COUNTER
TYPE (VEHICLE) CAR, BIKE, TRAIN
CHARACTER (LEN = STRING_LEN) WORK_STRING

The only character objects that may have a length that is specified as a variable
are dummy arguments and automatic character variables in a procedure. The
length is determined each time the procedure is invoked.

If there is no type declaration for a variable, named constant, or function, its
type is determined implicitly by the first letter of its name. Unless there is an
IMPLICIT NONE statement in the scoping unit, there is a default mapping for
each letter to one of the permissible types. IMPLICIT statements may be used
to change the default mapping rules. In the absence of any other mapping, it is
as if the following IMPLICIT statements defined the mapping:

IMPLICIT REAL (A-H, O-Z)
IMPLICIT INTEGER (I-M)

Entities such as subroutines, common blocks, and namelist groups do not have
a type but may possess other attributes.

5.11.2 Other Attributes

There are 12 other attributes, as well as initialization, for variables. In general,
attributes may be specified in type declaration statements (entity-oriented
form) or in separate attribute declaration statements (attribute-oriented form).
For example:

• entity-oriented

INTEGER, TARGET, SAVE :: SCORES (50)
INTEGER, POINTER :: TEAM (:)

188 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• attribute-oriented

INTEGER SCORES (50), TEAM (:)
TARGET SCORES
SAVE SCORES
POINTER TEAM

Initialization and the DATA Statement. A variable is given an initial value
(that may change during program execution) in a type declaration statement or
in a separate DATA statement. For example:

• entity-oriented

REAL :: DELTA = .01
LOGICAL, SAVE :: STATES(3) = (/.TRUE.,.FALSE.,.FALSE./)

• attribute-oriented

REAL DELTA
LOGICAL STATES(3)
SAVE STATES
DATA DELTA /.01/, STATES / .TRUE.,.FALSE.,.FALSE. /

ALLOCATABLE. An array may have the ALLOCATABLE attribute. No space
is set aside for such an array until an ALLOCATE statement, specifying the
extent of each dimension, is executed. A DEALLOCATE statement may be
executed to release the space. Such an array may be declared as:

• entity-oriented

REAL, ALLOCATABLE :: MATRIX_X (:, :), MATRIX_Y (:, :)

• attribute-oriented

REAL MATRIX_X (:, :), MATRIX_Y (:, :)
ALLOCATABLE MATRIX_X, MATRIX_Y

DIMENSION. An array has the DIMENSION attribute. There are four ways to
declare arrays:

• with explicit shape

• with assumed shape

• with deferred shape

• with assumed size

Declarations 189

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

An explicit-shape array is declared with all upper bounds specified. The only
arrays that may have a dimension specified by a variable are dummy
arguments and automatic arrays in a procedure. In these cases, the extents are
determined each time the procedure is invoked.

An assumed-shape array is a dummy argument that takes its shape from the
actual argument. The interface of the procedure in which the dummy argument
appears must be explicit in the scope of the procedure reference.

A deferred-shape array must have the POINTER or ALLOCATABLE attribute.
If an array argument or array function result has the POINTER attribute, the
interface of the procedure must be explicit in the scope of the procedure
reference.

An assumed-size array is a dummy argument with an asterisk (∗) as its last
dimension and explicit upper bounds for all other dimensions. The interface of
the procedure in which the dummy argument appears need not be explicit in
the scope of the procedure reference.

There are some limitations on appearances in a program of arrays declared in
each of these four ways. Table 5-2 gives a partial summary of the allowable
appearances.

There are several ways to specify an array. It may be specified by a
DIMENSION attribute in a type declaration statement or in a separate
DIMENSION statement; or it may be specified by attaching the dimension
specification to the array name in a type declaration, ALLOCATABLE,
COMMON, POINTER, or TARGET statement. For example:

• entity-oriented

REAL, DIMENSION(:,:), ALLOCATABLE :: MX_X, MX_Y
COMPLEX (HIGH), SAVE :: HYPER_SPACE (20,20,20,20)
LOGICAL, INTENT(IN) :: MASK1(SIZE(ARG1))

• attribute-oriented

REAL MX_X, MX_Y
COMPLEX (HIGH) HYPER_SPACE (20,20,20,20)
LOGICAL MASK1 (SIZE(ARG1))
DIMENSION MX_X (:, :), MX_Y (:, :)
ALLOCATABLE MX_X, MX_Y
SAVE HYPER_SPACE
INTENT (IN) MASK

190 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

EXTERNAL and INTRINSIC. These attributes permit the names of external or
intrinsic procedures to be actual arguments in subroutine calls and function
references. If the procedure is a subroutine, then the attribute must be specified
in an EXTERNAL or INTRINSIC statement because subroutines must not

Table 5-2 Partial summary of allowable appearances of arrays declared in
each of the four ways

An array declared with

May appear as a
Explicit
shape

Assumed
shape

Deferred
shape

Assumed
size

Primary in an expression Yes Yes Yes No

Vector subscript Yes Yes Yes No

Dummy argument Yes Yes Yes1 Yes

Actual argument Yes Yes Yes Yes

Equivalence object Yes No No No

Common object Yes No Yes1 No

Namelist object Yes2 No No No

Saved object Yes2 No Yes No

Data initialized object Yes2 No No No

I/O list item Yes Yes Yes No

Format Yes Yes Yes Yes

Internal file Yes Yes Yes No

Allocate object No No Yes No

Pointer object in
pointer assignment statement

No No Yes1 No

Target object in pointer
assignment statement

Yes Yes Yes No

1 Must have the POINTER attribute

2 Must have constant bounds

Declarations 191

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

appear in type declaration statements. The type of an intrinsic function is
known to the processor, but it may be specified in a type declaration statement
as well. For example:

• entity-oriented

REAL, EXTERNAL :: INVERT
EXTERNAL MY_SUB
COMPLEX, INTRINSIC :: CSIN, CCOS

• attribute-oriented

REAL INVERT
EXTERNAL INVERT, MY_SUB
INTRINSIC CSIN, CCOS

INTENT. The INTENT attribute specifies the intended use of a dummy
argument. There are three possible intents: IN, OUT, and INOUT. For example:

• entity-oriented

INTEGER, INTENT (IN) :: SIGNAL (N)
REAL, INTENT (OUT) :: SOLUTION
COMPLEX, INTENT (INOUT) :: CX_VAL

• attribute-oriented

INTEGER SIGNAL (N)
REAL SOLUTION
COMPLEX CX_VAL
INTENT (IN) SIGNAL
INTENT (OUT) SOLUTION
INTENT (INOUT) CX_VAL

OPTIONAL. If a dummy argument has the OPTIONAL attribute, the
corresponding actual argument may be omitted from a reference to the
procedure. The PRESENT intrinsic function may be used within the procedure
to inquire about the presence of the actual argument. Thus, it is possible to
establish defaults within a procedure that may be reset when an optional
argument is actually present. Example declarations are:

• entity-oriented

REAL, INTENT (IN), OPTIONAL :: ORIGIN (2)
CHARACTER (*), OPTIONAL :: REPLY

192 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• attribute-oriented

REAL ORIGIN (2)
CHARACTER (*) REPLY
INTENT (IN) ORIGIN
OPTIONAL ORIGIN, REPLY

PARAMETER. If an object has the PARAMETER attribute, it is a named
constant. As with any constant, its value does not change during execution.
The value of a named constant may be specified in a type declaration
statement or in a separate PARAMETER statement.

• entity-oriented

REAL, PARAMETER :: PI = 3.14159
TYPE (COLOR), PARAMETER :: &

MAUVE = COLOR (12, 22, 3, "mauve")

• attribute-oriented

REAL PI
TYPE (COLOR) MAUVE
PARAMETER (PI = 3.14159, &

MAUVE = COLOR (12, 22, 3, "mauve"))

POINTER. An object with the POINTER attribute has no space set aside for it
until an ALLOCATE statement is executed for the pointer or the pointer is
assigned to point to existing space. An object that is accessed by a pointer is
called the target of the pointer. The pointer’s target may change during
program execution. Examples of pointer declarations are:

• entity-oriented

REAL, POINTER :: BUFFER (10000)
TYPE (LINK), POINTER :: HEAD_OF_CHAIN

• attribute-oriented

REAL BUFFER (10000)
TYPE (LINK) HEAD_OF_CHAIN
POINTER BUFFER, HEAD_OF_CHAIN

PUBLIC and PRIVATE. A programmer can control the accessibility of entities
specified in a module. The default accessibility of module entities is PUBLIC,
but it can be changed to PRIVATE by the insertion of a PRIVATE statement
after the MODULE statement. Accessibility of the following entities can be
controlled:

Declarations 193

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

variables
functions
named constants
type definitions
subroutines
generic specifiers
namelist groups

There are two ways to specify accessibility individually for variables,
functions, and named constants: with PUBLIC and PRIVATE attributes in type
declaration statements or with PUBLIC and PRIVATE statements. There are
two ways to specify accessibility for a type definition: with a PUBLIC or
PRIVATE attribute in the derived-type statement of the definition or with a
PUBLIC or PRIVATE statement containing the type name. Further, the type
name may be public, but the components kept private by the insertion of a
PRIVATE statement following the derived-type statement in the type
definition. There is only one way to specify accessibility for subroutines,
genereic specifiers, and namelist groups: with a PUBLIC or PRIVATE statement
containing their names. Examples of declarations of accessibility for two
objects and for a type are:

• entity-oriented

CHARACTER (10), PUBLIC, SAVE :: ACCESS_NAME = "ALPHA"
CHARACTER (10), PRIVATE :: PASSWORD = "rosebud"
TYPE, PRIVATE :: VEHICLE

INTEGER NO_WHEELS
CHARACTER (10) FUEL
REAL WEIGHT

END TYPE VEHICLE

• attribute-oriented

CHARACTER (10) ACCESS_NAME, PASSWORD
DATA ACCESS_NAME /"ALPHA"/, PASSWORD /"rosebud"/
TYPE :: VEHICLE

INTEGER NO_WHEELS
CHARACTER (10) FUEL
REAL WEIGHT

END TYPE VEHICLE
PRIVATE PASSWORD, VEHICLE
PUBLIC ACCESS_NAME
SAVE ACCESS_NAME

194 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SAVE. Local variables and data in named common blocks are not necessarily
saved when a subprogram completes execution. To guarantee that they are, the
variables and common blocks must have the SAVE attribute. Because common
blocks have no type, the SAVE statement must be used to give the attribute to
them. Examples of such declarations are:

• entity-oriented

INTEGER, SAVE :: NO_OF_WEIGHTS, NO_OF_MEASURES

• attribute-oriented

INTEGER NO_OF_WEIGHTS, NO_OF_MEASURES
SAVE NO_OF_WEIGHTS, NO_OF_MEASURES
SAVE /BLOCK1/, /BLOCK2/

TARGET. If an object has the TARGET attribute, it may become a pointer
target. If it does not have the TARGET attribute (and is not a pointer), it can
never be referenced by a pointer. This knowledge gives the processor much
more leeway in the optimization of code. An allocatable array may have the
TARGET attribute. Example TARGET declarations are:

• entity-oriented

LOGICAL, ALLOCATABLE, TARGET :: MASK (:, :)
REAL, TARGET :: COEFFICIENTS

• attribute-oriented

LOGICAL MASK (:, :)
REAL COEFFICIENTS
ALLOCATABLE MASK
TARGET MASK, COEFFICIENTS

Attribute Compatibility. No single entity can possess all of the attributes
because some attributes are incompatible with others. For example,
OPTIONAL is an attribute that can be applied only to dummy arguments, and
dummy arguments must not have the SAVE attribute. Table 5-3 shows which
attributes may be used together to specify an entity.

5.11.3 Relationships

Other statements are used to declare relationships among objects.

Declarations 195

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.11.4 NAMELIST

A NAMELIST statement specifies a name for a list of objects so that the entire
list of objects can be referenced simply by the name in certain input/output
statements. For example:

NAMELIST /MY_GROUP/ FRIENDS, ROMANS, COUNTRYMEN

Table 5-3 Attribute compatibility. If two attributes can appear in the same
type declaration statement, a check mark appears at their
intersection in the chart. A cross indicates incompatibility.

Attribute
compatibility

Initialization

A
L

L
O

C
A

TA
B

L
E

D
IM

E
N

SIO
N

E
X

T
E

R
N

A
L

IN
T

E
N

T

IN
T

R
IN

SIC

O
P

T
IO

N
A

L

PA
R

A
M

E
T

E
R

P
O

IN
T

E
R

P
R

IV
A

T
E

P
U

B
L

IC

SA
V

E

TA
R

G
E

T

Initialization ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✖ ✔ ✔ ✔ ✔

ALLOCATABLE ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✔ ✔

DIMENSION ✔ ✔ ✖ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔

EXTERNAL ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✔ ✖ ✖

INTENT ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔

INTRINSIC ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖

OPTIONAL ✖ ✖ ✔ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✔

PARAMETER ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ ✖

POINTER ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✖ ✔ ✔ ✔ ✖

PRIVATE ✔ ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✔ ✖ ✔ ✔

PUBLIC ✔ ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✔ ✖ ✔ ✔

SAVE ✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✔ ✔

TARGET ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✔ ✔ ✔

196 Fortran 90 Handbook

5

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5.11.5 EQUIVALENCE

The EQUIVALENCE statement is used to indicate that a group of variables
share storage. For example:

EQUIVALENCE (FIRST_A, A(1,1,1)), (LAST_A, A(100,100,100))

5.11.6 COMMON

The COMMON statement is used to specify a name for a block of storage and
to declare objects that are contained in the block. Two or more program units
may declare the same named common block, and thus they can share the
values of variables contained in the block. Fortran 90 permits objects of
numeric type and objects of character type to appear in the same common
block. Fortran 90 also permits pointers, sequence structures, and objects of
nondefault type to appear in common blocks, as long as each specification of
the common block contains the same sequence of storage units. For example:

TYPE LINK
REAL VALUE
TYPE (LINK) NEXT

END TYPE LINK
CHARACTER (20) NAME_OF_SPARSE_ARRAY
LOGICAL (KIND = BIT) MASK (1000, 1000)
TYPE (LINK) HEAD_OF_CHAIN, END_OF_CHAIN

. . .
COMMON /SPARSE_ARRAY/ NAME_OF_SPARSE_ARRAY, MASK, &

HEAD_OF_CHAIN, END_OF_CHAIN

197

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Using Data 6

Chapter 5 explained how data objects are created and how their attributes are
specified. Chapter 6 goes further and explains how these objects can be used.
To use a data object, its name or designator must appear in a Fortran
statement. The appearance of the name or designator where its value is
required is a reference to the object. When an object is referenced, it must be
defined; that is, it must have a value. The reference makes use of the value. For
example:

A = 1.0
B = A + 4.0

In the first statement, the constant value 1.0 is assigned to the variable A. It
does not matter whether A was previously defined with a value or not; it now
has a value and can be referenced in an executable statement. In the second
statement, A is referenced; its value is obtained and added to the constant 4.0
to obtain a value that is then assigned to the variable B. The appearances of A
in the first statement and B in the second statement are not considered to be
references because their values are not required. The appearance of A in the
second statement is a reference.

A data object may be a constant or a variable. If it is a constant, either a literal
or a named constant, its value will not change. If it is a variable, it may take on
different values as program execution proceeds. Variables and constants may
be scalar objects (with a single value) or arrays (with any number of values, all
of the same type).

198 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Variables generally have storage space set aside for them by the compiler and
are usually found in the same place. If, however, the variable is a pointer or an
allocatable array, the compiler does not set aside any space. The programmer
must allocate space or, in the case of a pointer, the programmer might assign
existing space.

Arrays are said to be dynamic if their size as well as their position may change.
Automatic arrays were discussed in Section 5.8; they are created on entry to a
procedure and their size and location are determined at that time. Allocatable
arrays or pointer arrays may change size as well as location. The declared rank
cannot change, but the extents of the dimensions may change with each
reallocation or pointer assignment.

If a variable or constant is a portion of another object, it is called a subobject.
A subobject is one of:

an array element
an array section
a structure component
a substring

A variable is referenced by its name, whereas a subobject is referenced by a
designator. A designator indicates the portion of an object that is being
referenced. Each subobject is considered to have a parent and is a portion of
the parent. Each of the subobjects is described in this chapter; first, substrings
and structure components, and then array subobjects (array elements and array
sections) along with the use of subscripts, subscript triplets, and vector
subscripts. A number of additional aspects of arrays are covered: array
terminology, use of whole arrays, and array element order.

A reference to a variable or subobject is called a data reference. There are
guidelines for determining whether a particular data reference is classified as a
character string, character substring, structure component, array, array
element, or array section. These classifications are perhaps of more interest to
compiler writers than to users of the language, but knowing how a data
reference is classified makes it clearer which rules and restrictions apply to the
reference and easier to understand some of the explanations for the formation
of expressions. Briefly, character strings and substrings must be of type
character. Arrays have the dimension attribute. Some data references may be
classified as both structure components and arrays sections. In general, if a
data reference contains a percent, it is a structure component, but its actual
classification may be determined by other factors such as a section subscript or

Using Data 199

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the rightmost element of the reference. If a substring range appears in a data
reference, it must appear at the right end of the reference, and the reference is
considered to be a substring unless some component of the reference is an
array section, in which case the data reference is considered to be an array
section that just happens to have elements that are substrings. For a component
reference to be classified as an array element, every component must have rank
zero and a subscript list must appear at the right end of the reference. Sections
6.1 through 6.4.5 contain many examples that demonstrate how these
guidelines for classification apply.

Finally, Chapter 6 explains how pointers and allocatable arrays can be created
and released by using ALLOCATE and DEALLOCATE statements. In addition,
pointers can be disassociated from any target object by using the NULLIFY
statement.

6.1 Constants and Variables
A constant has a value that cannot change; it may be a literal constant or a
named constant (parameter). As explained in Chapter 4, each of the intrinsic
types has a form that specifies the type, type parameters, and value of a literal
constant of the type. For user-defined types, there is a structure constructor to
specify values of the type. If all of the components of a value are constants, the
resulting derived-type value is a constant expression. Array constructors are
used to form array values of any intrinsic or user-defined type. If all array
elements are constant values, the resulting array is a constant array expression.
A reference to a constant is always permitted, but a constant cannot be
redefined.

A variable has a name such as A or a designator such as B(I), and may or may
not have a value. If it does not have a value, it must not be referenced. A
variable (R601) may be one of the following:

scalar-variable-name
array-variable-name
subobject

where a subobject (R602) is one of:

array-element
array-section
structure-component
substring

200 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. Variables may be of any type. There are contexts in which a variable must
be of a certain type. In some of these cases, terms, such as logical-variable,
character-variable, or default-character-variable, provide precise limitations.

2. A subobject with a constant parent is not a variable.

A single object of any of the intrinsic or user-defined types is a scalar. A set of
scalar objects, all of the same type and type parameters, may be arranged in a
pattern involving columns, rows, planes, and higher-dimensioned
configurations to form arrays. An array has a rank between one and seven; a
Fortran processor is not required to support the processing of arrays of rank
greater than seven. A scalar has rank zero. In simple terms, an array is an
object with the DIMENSION attribute; a scalar is not an array.

For example, given the declarations:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 40) NAME

END TYPE PERSON

TYPE(PERSON) FIRECHIEF, FIREMEN(50)
CHARACTER (20) DISTRICT, STATIONS(10)

the following data references are classified as indicated by the comments on
each line.

DISTRICT ! character string
DISTRICT(1:6) ! substring
FIRECHIEF % AGE ! structure component
FIREMEN % AGE ! array of integers
STATIONS ! array of character strings
STATIONS(1) ! array element (character string)
STATIONS(1:4) ! array section of character strings

A subobject may have a constant parent, for example:

CHARACTER (*), PARAMETER :: MY_DISTRICT = "DISTRICT 13"
CHARACTER (2) DISTRICT_NUMBER
DISTRICT_NUMBER = MY_DISTRICT (10:11)

DISTRICT_NUMBER has the value "13", a character string of length 2.

Using Data 201

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6.2 Substrings
A character string consists of zero or more characters. Even though it is made
up of individual characters, a character string is considered to be scalar. As
with any data type, it is possible to declare an array of character strings, all of
the same length.

A substring is a contiguous portion of a character string that has a starting
point and an ending point within the character string. It is possible to reference
a substring of a character scalar variable or constant. The form of a substring
(R609) is:

parent-string (substring-range)

where a parent string (R610) is one of:

scalar-variable-name
array-element
scalar-structure-component
scalar-constant

and a substring range (R611) is:

[starting-position] : [ending-position]

The starting position and ending position must be scalar integer expressions.

Rules and restrictions:

1. The parent string of a substring must be of type character. The substring is
of type character.

2. A substring is the contiguous sequence of characters within the string
beginning with the character at the starting position and ending at the
ending position. If the starting position is omitted, the default is 1; if the
ending position is omitted, the default is the length of the character string.

3. The length of a character string or substring may be 0, but not negative.
Zero-length strings result when the starting position is greater than the
ending position. The formula for calculating the length of a string is:

MAX (ending-position – starting-position + 1, 0)

202 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. The first character of a parent string is at position 1 and the last character is
at position where is the length of the string. The starting position of a
substring must be greater than or equal to 1 and the ending position must
be less than or equal to the length , unless the length of the substring is 0.
If the parent string is of length 0, the substring must be of length 0.

In the following example,

CHARACTER (14) NAME
NAME = "John Q. Public"
NAME(1:4) = "Jane"
PRINT *, NAME (9:14)

NAME is a scalar character variable, a string of 14 characters, that is assigned
the value "John Q. Public" by the first assignment statement. NAME(1:4) is a
substring of four characters that is reassigned the value "Jane" by the second
assignment statement, leaving the remainder of the string NAME unchanged;
the string name then becomes "Jane Q. Public". The PRINT statement prints the
characters in positions 9 through 14, in this case, the surname, "Public".

Given the definition and declarations:

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 40) NAME

END TYPE PERSON

TYPE(PERSON) FIRECHIEF, FIREMEN(50)
CHARACTER (20) DISTRICT, STATIONS(10)

the following are all substrings:

STATIONS (1) (1:5) ! array element as parent string
FIRECHIEF%NAME (4:9) ! structure component as parent string
DISTRICT (7:14) ! scalar variable as parent string
’0123456789’ (N:N+1) ! character constant as parent string

The reference STATIONS (:) (1:5) is permitted. It is an array whose elements are
substrings, but it is not considered to be a substring reference. Even though the
entire array is indicated, this reference is considered to be an array section
reference, and the description can be found in Section 6.4.5. STATIONS (1:5)
(1:5) is also permitted. It is an array section whose elements are substrings.
Whenever an array is constructed of character strings and any part of it (other
than the whole object) is referenced, an array section subscript must appear
before the substring range specification, if any. Otherwise, the substring range

n n

n

Using Data 203

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

specification will be treated as an array section specification because the two
have the same form. STATIONS (1:5) is an array section reference that
references the entire character strings of the first five elements of STATIONS.
The last example is a substring where the parent is a constant and the starting
and ending positions are variable. This substring is considered to be neither a
constant nor a variable. It is in a category all by itself.

6.3 Structure Components
A structure is an aggregate of components of intrinsic or derived types. It is
itself an object of derived type. The types and attributes of the components are
specified in the type definition; they may be scalars or arrays. Each structure
has at least one component. There may be arrays of structures. In the example
given above, FIRECHIEF is a structure; FIREMEN is an array of structures of
type PERSON.

A component of a structure may be referenced by placing the name of the
component after the name of the parent structure, separated by a percent sign
(%). For example, FIRECHIEF % NAME references the character string
component of the variable FIRECHIEF of type PERSON.

A structure component (R614) is a data reference (R612) that has the form:

part-reference [% part-reference] ...

where a part reference (R613) has the form

part-name [(section-subscript-list)]

and a section subscript (R618) is one of:

subscript
subscript-triplet
vector-subscript

Rules and restrictions:

1. For a data reference to be considered a structure component reference,
there must be more than one part reference.

2. For a data reference to be classified as a structure component reference, the
rightmost part reference must be a part name. If the rightmost component
is of the form

204 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

part-name (section-subscript-list)

the reference is considered to be an array section or array element (the
simplest form of a section subscript list is a subscript list).

3. In a data reference, each part name except the rightmost must be of
derived type.

4. In a data reference, each part name except the leftmost must be the name of
a component of the derived-type definition of the type of the preceding
part name.

5. In a part reference containing a section subscript list, the number of section
subscripts must equal the rank of the part name.

6. It is possible to create a structure with more than one array part, but in a
data reference to the structure, there must not be more than one part
reference with nonzero rank. This is a somewhat arbitrary restriction
imposed for the sake of simplicity.

7. In a data reference, a part name to the right of a part reference with
nonzero rank must not have the POINTER attribute. It is possible to
declare an array of structures that have a pointer as a component, but it is
not possible to reference such an object as an array.

The rank of a part reference consisting of just a part name is the rank of the
part name. The rank of a part reference of the form

part-name (section-subscript-list)

is the number of subscript triplets and vector subscripts in the list. The rank is
less than the rank of the part name if any of the section subscripts are
subscripts other than subscript triplets or vector subscripts. The shape of a data
reference is the shape of the part reference with nonzero rank, if any;
otherwise, the data reference is a scalar and has rank zero.

The parent structure in a data reference is the data object specified by the
leftmost part name. If the parent object has the INTENT, TARGET, or
PARAMETER attribute, the structure component has the attribute. The type
and type parameters of a structure component are those of the rightmost part
name. A structure component is a pointer only if the rightmost part name has
the POINTER attribute.

Given the type definition and structure declarations:

Using Data 205

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

TYPE PERSON
INTEGER AGE
CHARACTER (LEN = 40) NAME

END TYPE PERSON

TYPE(PERSON) FIRECHIEF, FIREMEN(50)

examples of structure components are:

FIRECHIEF % AGE ! scalar component of scalar parent
FIREMEN(J) % NAME ! component of array element parent
FIREMEN(1:N) % AGE ! component of array section parent

If a derived-type definition contains a component that is of derived type, then
a reference to an ultimate component can contain more than two part
references as do the references in the first two PRINT statements in the
following example.

TYPE REPAIR_BILL
REAL PARTS
REAL LABOR

END TYPE REPAIR_BILL

TYPE VEHICLE
CHARACTER (LEN = 40) OWNER
INTEGER MILEAGE
TYPE(REPAIR_BILL) COST

END TYPE VEHICLE

TYPE (VEHICLE) BLACK_FORD, RED_FERRARI

PRINT *, BLACK_FORD % COST % PARTS
PRINT *, RED_FERRARI % COST % LABOR
PRINT *, RED_FERRARI % OWNER

6.4 Arrays
An array is a collection of scalar elements of any intrinsic or derived type. All
of the elements of an array must have the same type and kind parameter. There
may be arrays of structures. An object of any type that is specified to have the
DIMENSION attribute is an array. The value returned by a function may be an
array. The appearance of an array name or designator has no implications for
the order in which the individual elements are referenced unless array element
ordering is specifically required.

206 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6.4.1 Array Terminology

An array consists of elements that extend in one or more dimensions to
represent columns, rows, planes, etc. There may be up to seven dimensions in
an array declaration in a standard-conforming program. The number of
dimensions in an array is called the rank of the array. The number of elements
in a dimension is called the extent of the array in that dimension. Limits on the
size of extents are not specified in the Fortran standard. The shape of an array
is determined from the rank and the extents; to be precise, the shape is a vector
where each element of the vector is the extent in the corresponding dimension.
The size of an array is the product of the extents; that is, it is the total number
of elements in the array.

For example, given the declaration

REAL X (0:9, 2)

the rank of X is 2; X has two dimensions. The extent of the first dimension is
10; the extent of the second dimension is 2. The shape of X is 10 by 2, that is, a
vector of two values, (10, 2). The size is 20, the product of the extents.

An object is given the DIMENSION attribute in a type declaration or in one of
several declaration statements. The following are some ways of declaring that
A has rank 3 and shape (10, 15, 3):

DIMENSION A(10, 15, 3)
REAL, DIMENSION(10, 15, 3) :: A
REAL A(10, 15, 3)
COMMON A(10, 15, 3)
TARGET A(10, 15, 3)

Arrays of nonzero size have a lower and upper bound along each dimension.
The lower bound is the smallest subscript value along a dimension; the upper
bound is the largest subscript value along that dimension. The default lower
bound is 1 if the lower bound is omitted in the declaration. Array bounds may
be positive, zero, or negative. In the example:

REAL Z(-3:10, 12)

the first dimension of Z ranges from –3 to 10, that is, –3, –2, –2, 0, 1, 2, ..., 9, 10.
The lower bound is –3; the upper bound is 10. In the second dimension, the
lower bound is 1; the upper bound is 12. The bounds for array expressions are
described in Section 7.2.8.4.

Using Data 207

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6.4.2 Whole Arrays

Some arrays are named. The name is either an array variable name or the name
of a constant. If the array name appears without a subscript list or section
subscript list, all of the elements of the array are referenced and the reference is
considered to be a whole array reference. References to a single element of an
array or a section of an array are permitted. If the array has the INTENT,
TARGET, or PARAMETER attribute, an element or section of the array also has
the attribute. An element or section of an array never has the POINTER
attribute.

6.4.3 Array Elements

An array element is one of the scalar elements that make up an array. A
subscript list is used to indicate which element is referenced. If A is declared to
be a one-dimensional array:

REAL, DIMENSION (10) :: A

then A(1) refers to the first element, A(2) to the second, and so on. The number
in the parentheses is the subscript that indicates which scalar element is
referenced. If B is declared to be a seven-dimensional array:

REAL B (5, 5, 5, 5, 4, 7, 5)

then B (2, 3, 5, 1, 3, 7, 2) refers to one scalar element of B, indexed by a
subscript in each dimension. The set of numbers that indicate the position
along each dimension in turn (in this case, 2, 3, 5, 1, 3, 7, 2) is called a
subscript list.

6.4.4 Array Sections

Sometimes only a portion of an array is needed for a calculation. It is possible
to refer to a selected portion of an array as an array; this portion is called an
array section. A parent array is the whole array from which the portion that
forms the array section is selected.

An array section is specified by an array variable name and a section subscript
list that consists of subscripts, triplet subscripts, or vector subscripts. At least
one subscript must be a triplet or vector subscript; otherwise, the reference
indicates an array element, not an array. The following example uses a section
subscript to create an array section:

208 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

REAL A (10)
. . .

A (2:5) = 1.0

The parent array A has 10 elements. The array section consists of the elements
A (2), A (3), A (4), and A (5) of the parent array. The section A (2:5) is an
array itself and the value 1.0 is assigned to all four of its elements.

6.4.5 Form of Array Elements and Array Sections

The form of an array element is a data reference (R612) and the form of an
array section (R616) is a data reference followed by an optional substring range
enclosed in parentheses; the form of a substring range is found in Section 6.2.

A part name in a data reference may be followed by an optional section
subscript list. A section subscript (R618) can be any of:

subscript
subscript-triplet
vector-subscript

where a subscript triplet (R619) is:

[subscript] : [subscript] [: stride]

Subscripts and strides must be scalar integer expressions and a vector
subscript (R621) must be an integer array expression of rank one.

Rules and restrictions:

1. For a data reference to be classified as an array element, every part
reference must have rank zero and the last part reference must contain a
subscript list.

2. For a data reference to be classified as an array section, exactly one part
reference must have nonzero rank, and either the final part reference must
have a section subscript list with nonzero rank or another part reference
must have nonzero rank.

3. In an array section that is a data reference followed by a substring range,
the rightmost part name must be of type character.

4. In an array section of an assumed-size array, the second subscript must not
be omitted from a subscript triplet in the last dimension.

Using Data 209

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. A section subscript must be present for each dimension of an array. If any
section subscript is simply a subscript, the section will have a lesser rank
than its parent.

Examples of array elements and array sections are:

ARRAY_A (1,2) ! array element
ARRAY_A (1:N:2,M) ! rank-one array section
ARRAY_B (:,:,:) (2:3) ! array whose elements are

! substrings of length 2
SCALAR_A % ARRAY_C(L) ! array element
SCALAR_A % ARRAY_C(1:L) ! array section
SCALAR_B % ARRAY_D(1:N) % SCALAR_C ! array section
ARRAY_E(1:N:2) % ARRAY_F(I,J) % STRING(K)(:) ! array section

If any part of a reference is an array section, the reference is considered to be
an array section reference. In a data reference, there may be at most one part
with rank greater than zero. As mentioned earlier, this is a somewhat arbitrary
restriction imposed for the sake of simplicity.

Only the last component of a data reference may be of type character. In the
last example above, each component of the type definition is an array and the
object ARRAY_E is an array. The reference is valid because each component in
the reference is scalar. The substring range is not needed because it specifies
the entire string; however, it serves as a reminder that the last component is of
type character.

The following examples demonstrate the allowable combinations of scalar and
array parents with scalar and array components.

TYPE REPAIR_BILL
REAL PARTS (20)
REAL LABOR

END TYPE REPAIR_BILL

TYPE (REPAIR_BILL) FIRST
TYPE (REPAIR_BILL) FOR_1990 (6)

Scalar parent

1. FIRST % LABOR ! structure component

2. FIRST % PARTS (I) ! array element

3. FIRST % PARTS ! component (array-valued)

4. FIRST % PARTS (I:J) ! array section

5. FOR_1990 (K) % LABOR ! structure component

210 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6. FOR_1990 (K) % PARTS (I) ! array element

7. FOR_1990 (K) % PARTS ! component (array-valued)

8. FOR_1990 (K) % PARTS (I:J) ! array section

Array parent

9. FOR_1990 % LABOR ! component and array section

10. FOR_1990 % PARTS (I) ! array section

11. FOR_1990 % PARTS ! ILLEGAL

12. FOR_1990 % PARTS (I:J) ! ILLEGAL

13. FOR_1990 (K:L) % LABOR ! component and array section

14. FOR_1990 (K:L) % PARTS (I) ! array section

15. FOR_1990 (K:L) % PARTS ! ILLEGAL

16. FOR_1990 (K:L) % PARTS (I:J) ! ILLEGAL

References 11, 12, 15, and 16 are illegal because only one component may be of
rank greater than zero. References 3 and 7 are compact (contiguous) array
objects and are classified as array-valued structure components. References 9,
10, 13, and 14 are noncontiguous array objects and are classified as sections.
These distinctions are important when such objects are actual arguments in
procedure references.

6.4.5.1 Subscripts

In an array element reference, each subscript must be within the bounds for
that dimension. A subscript may appear in an array section reference.
Whenever this occurs, it decreases the rank of the section by one less than the
rank of the parent array. A subscript used in this way must be within the
bounds for the dimension.

6.4.5.2 Subscript Triplets

The first subscript in a subscript triplet is the lower bound; the second is the
upper bound. If the lower bound is omitted, the declared lower bound is used.
If the upper bound is omitted, the declared upper bound is used. The stride is
the increment between successive subscripts in the sequence. If it is omitted, it
is assumed to be 1. If the subscripts and stride are omitted and only the colon
(:) appears, the entire declared range for the dimension is used.

Using Data 211

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

When the stride is positive, an increasing sequence of integer values is
specified from the first subscript in increments of the stride, up to the last
value that is not greater than the second subscript. The sequence is empty if
the first subscript is greater than the second. If any subscript sequence is
empty, the array section is a zero-sized array, because the size of the array is
the product of its extents. For example, given the array declared A(5, 4, 3) and
the section A(3:5, 2, 1:2), the array section is of rank 2 with shape (3, 2) and size
6. The elements are:

A (3, 2, 1) A (3, 2, 2)
A (4, 2, 1) A (4, 2, 2)
A (5, 2, 1) A (5, 2, 2)

The stride must not be 0.

When the stride is negative, a decreasing sequence of integer values is
specified from the first subscript, in increments of the stride, down to the last
value that is not less than the second subscript. The sequence is empty if the
second subscript is greater than the first, and the array section is a zero-sized
array. For example, given the array declared B(10) and the section B (9:4:–2),
the array section is of rank 1 with shape (3) and size 3. The elements are:

B (9)
B (7)
B (5)

However, the array section B (9:4) is a zero-sized array.

A subscript in a subscript triplet is not required to be within the declared
bounds for the dimension as long as all subscript values selected by the triplet
are within the declared bounds. For example, the section B (3:11:7) is
permitted. It has rank 1 with shape (2) and size 2. The elements are:

B (3)
B (10)

6.4.5.3 Vector Subscripts

While subscript triplets specify values in increasing or decreasing order with a
specified stride to form a regular pattern, vector subscripts specify values in
arbitrary order. The values must be within the declared bounds for the
dimension. A vector subscript is a rank-one array of integer values used as a
section subscript to select elements from a parent array. For example:

212 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

INTEGER J(3)
REAL A(30)

. . .
J = (/ 8, 4, 7 /)
A(J) = 1.0

The last assignment statement assigns the value 1.0 to A(4), A(7), and A(8). The
section A(J) is a rank-one array with shape (3) and size 3.

If J were assigned (/ 4, 7, 4 /) instead, the element A(4) would be accessed in
two ways: as A(J(1)) and as A(J(3)). Such an array section is called a many-one
array section. A many-one section must not appear on the left of the equal sign
in an assignment statement or as an input item in a READ statement. The
reason is that the result will depend on the order of evaluation of the
subscripts, which is not specified by the language. The results would not be
predictable and the program containing such a statement would not be
portable.

There are places where array sections with vector subscripts must not appear:

1. as internal files

2. as pointer targets

3. as actual arguments for INTENT (OUT) or INTENT (INOUT) dummy
arguments

6.4.6 Using Array Elements and Array Sections

Subscripts, subscript triplets, and vector subscripts may be mixed in a single
section subscript list used to specify an array section. A triplet section may
specify an empty sequence (for example 1:0), in which case the resulting
section is a zero-sized array.

If B were declared:

REAL B (10, 10, 5)

then the section:

B (1:4:3, 6:8:2, 3)

consists of four elements:

Using Data 213

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

B (1, 6, 3) B (1, 8, 3)
B (4, 6, 3) B (4, 8, 3)

The stride along the first dimension is 3, resulting in a subscript-value list of 1
and 4. The stride along the second subscript is 2 resulting in a subscript-value
list of 6 and 8. In the third position there is a subscript that reduces the rank of
the section by 1. The section has shape (2, 2) and size 4.

Assume IV is declared:

INTEGER, DIMENSION (3) :: IV = (/ 4, 5, 4 /)

then the section:

B (8:9, 5, IV)

is a 2 × 3 array consisting of the six elements:

B (8, 5, 4) B (8, 5, 5) B (8, 5, 4)
B (9, 5, 4) B (9, 5, 5) B (9, 5, 4)

B (8:9, 5:4, IV) is a zero-sized array of rank 3.

6.4.7 Array Element Order

When whole arrays are used as operands in an executable statement, the
indicated operation is performed element-by-element, but no order is implied
for these elemental operations. They may be executed in any order or
simultaneously. Although there is no order of evaluation when whole array
operations are performed, there is an ordering of the elements in an array
itself. An ordering is required for the input and output of arrays and for certain
intrinsic functions such as MAXLOC. The elements of an array form a
sequence whose ordering is called array element order. This is the sequence
that occurs when the subscripts along the first dimension vary most rapidly,
and the subscripts along the last dimension vary most slowly. Thus, for an
array declared as:

REAL A (3, 2)

the elements in array element order are: A (1, 1), A (2, 1), A (3, 1), A (1, 2),
A (2, 2), A (3, 2).

214 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The position of an array element in this sequence is its subscript order value.
Element A (1, 1) has a subscript order value of 1. Element A (1, 2) has a
subscript order value of 4. Table 6-1 shows how to compute the subscript order
value for any element in arrays of rank 1 through 7.

The subscript order of the elements of an array section is that of the array
object that the section represents. That is, given the array A(10) and the section
A(2:9:2) consisting of the elements A(2), A(4), A(6), and A(8), the subscript
order value of A(2) in the array section A(2:9:2) is 1; the subscript order value
of A(4) in the section is 2 and A(8) is 4.

Table 6-1 Computation of subscript order value

Rank
Explicit shape
specifier Subscript list Subscript order value

1 :

2 : , :

3 : : :

. . . .

. . . .

. . . .

7 : :

Notes for Table 6-1:
1. = max (- + 1, 0) is the size of the th dimension.
2. If the size of the array is nonzero, for all = 1, 2, ..., 7.

j1 k1 s1 1 s1 j1–()+

j1 k1 j2 k2 s1 s2, 1 s1 j1)–(+
s2 j2) d1×–(+

j1 k1 j2, k2 j3, k3 s1 s2 s3, , 1 s1 j1)–(+
s2 s2) d2×–(+
s3 s3) d2 d1××–(+

j1 k1 … j7, , k7 s1 … s7, ,

1 s1(j1)–+
s2 j2) d1×–(+
s3 j3) d2×–(d1×+

…+
s7(j7) d6×–+
d5× … d1××

di ki ji i
ji si ki≤ ≤ i

Using Data 215

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6.5 Pointers and Allocatable Arrays
Fortran 90 provides several dynamic data objects. Automatic objects (arrays
and character strings) were discussed in Section 5.8. In addition, there are two
data attributes that can be used to specify dynamic data objects:
ALLOCATABLE and POINTER. Arrays of any type may have the
ALLOCATABLE attribute; scalars or arrays of any type may have the
POINTER attribute. Chapter 5 described how such objects are declared. This
section describes how space is created for these objects with the ALLOCATE
statement, how it may be released with the DEALLOCATE statement, and how
pointers can be disassociated from any target with the NULLIFY statement.
The association status of a pointer may be defined or undefined; initially
(when a pointer is declared), it is undefined. If it is defined, the pointer may be
associated with a target or disassociated from any target. The target is
referenced by the name of the pointer and is like any other variable in that it is
defined when it acquires a value. Figure 6-1 shows the various states that a
pointer may assume.

Section 7.5.3 describes how pointers can be associated with existing space and
how dynamic objects can acquire values.

6.5.1 ALLOCATE Statement

The ALLOCATE statement creates space for:

1. arrays with the ALLOCATABLE attribute

2. variables with the POINTER attribute

The pointer becomes associated with the newly created space.

The form of the ALLOCATE statement (R622) is:

ALLOCATE (allocation-list [, STAT = stat-variable])

where an allocation (R624) is:

allocate-object [(allocate-shape-spec-list)]

An allocate object (R625) is one of:

variable-name
structure-component

216 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

and an allocate shape specification (R626) is:

[allocate-lower-bound :] allocate-upper-bound

Rules and restrictions:

1. The STAT= variable, allocate lower bound, and allocate upper bound must
be scalar integer expressions.

2. Each allocate object must be a pointer or an allocatable array.

3. An attempt to allocate space for an allocatable array that is currently
allocated results in an error condition.

Disassociated

Undefined

Associated

25

50

100

Undefined association status
Defined association status,
 Undefined target

Defined association status,
 Defined target

Defined association status.
 Disassociated

Figure 6-1 States in the lifetime of a pointer

POINTER P(:) ALLOCATE (P(3))

NULLIFY

P = (/25,50,100/)

Associated

Using Data 217

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. If a STAT= variable appears, it must not also be allocated in the same
ALLOCATE statement. It is set to zero if the allocation is successful and is
set to a processor-dependent positive value if there is an error condition. If
there is no STAT= variable, the program terminates when an error
condition occurs.

5. An argument to an inquiry function in an ALLOCATE statement must not
appear as an allocate object in that statement. For example, the use of the
intrinsic inquiry function SIZE (A.99) in the following example is not
permitted.

REAL, ALLOCATABLE :: A(:), B(:)
ALLOCATE (A(10), B(SIZE(A)))

6. The number of allocate shape specifications must agree with the rank of
the array.

7. If the lower bound is omitted, the default is 1. If the upper bound is less
than the lower bound, the extent in that dimension is 0 and the array has
zero size.

8. An allocate object may be of type character and it may have a length of 0,
in which case no memory is allocated.

9. The values of the bounds expressions at the time an array is allocated
determine the shape of the array. If an entity in a bounds expression is
subsequently redefined, the shape of the allocated array is not changed.

6.5.1.1 Allocation of Allocatable Arrays

The rank of an allocatable array is declared. The bounds, extents, shape, and
size are determined when the array is allocated. After allocation the array may
be defined and redefined. The array is said to be currently allocated. It is an
error to allocate a currently allocated allocatable array. The intrinsic function
ALLOCATED (A.9) may be used to query the allocation status of an allocatable
array if the allocation status is defined. For example:

REAL, ALLOCATABLE :: X(:, :, :)
. . .

IF (.NOT. ALLOCATED (X)) ALLOCATE (X (-6:2, 10, 3))

218 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

X is not available for use in the program until it has been allocated space by an
ALLOCATE statement. X must be declared with a deferred-shape array
specification and the ALLOCATABLE attribute.

6.5.1.2 Allocation of Pointers

When an object with the POINTER attribute is allocated, space is created, and
the pointer is associated with that space, which becomes the pointer target. A
reference to the pointer name can be used to define or access its target. The
target may be an array or a scalar. Additional pointers may become associated
with the same target by pointer assignment (described in Section 7.5.3). A
pointer target may be an array with the ALLOCATABLE attribute if the array
also has the TARGET attribute. Allocation of a pointer creates an object that
implicitly has the TARGET attribute. It is not an error to allocate a pointer that
is currently associated with a target. In this case, a new pointer target is created
and the previous association of the pointer is lost. If there was no other way to
access the previous target, it becomes inaccessible. The ASSOCIATED intrinsic
function may be used to query the association status of a pointer if the
association status of the pointer is defined. The ASSOCIATED function (A.13)
also may be used to inquire whether a pointer is associated with a target or
whether two pointers are associated with the same target.

Pointers can be used in many ways; an important usage is the creation of
linked lists. For example,

TYPE NODE
INTEGER :: VALUE
TYPE (NODE), POINTER :: NEXT

END TYPE NODE

TYPE(NODE), POINTER :: LIST
. . .

ALLOCATE (LIST)
LIST % VALUE = 17
ALLOCATE (LIST % NEXT)

The first two executable statements create a node pointed to by LIST and put
the value 17 in the VALUE component of the node. The third statement creates
a second node pointed to by the NEXT component of the first node.

Using Data 219

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6.5.2 NULLIFY Statement

The NULLIFY statement causes a pointer to be disassociated from any target.
Pointers have an initial association status that is undefined. To initialize a
pointer to point to no target, it is necessary to execute a NULLIFY statement
for the pointer.

The form of the NULLIFY statement (R629) is:

NULLIFY (pointer-object-list)

where a pointer object (R630) is one of:

variable-name
structure-component

Rules and restrictions:

1. Each pointer object must have the POINTER attribute.

6.5.3 DEALLOCATE Statement

The DEALLOCATE statement releases the space allocated for an allocatable
array or a pointer target and nullifies the pointer. After an allocatable array or
pointer has been deallocated, it cannot be accessed or defined until it is
allocated again or, in the case of a pointer, assigned to an existing target.

In some cases the execution of a RETURN statement in a subprogram may
cause the allocation status of an allocatable array or the association status of a
pointer to become undefined. This can be avoided if the array or pointer is
given the SAVE attribute or if it is declared in a subprogram that remains
active. The main program is always active. Variables declared in modules
accessed by the main program and named common blocks specified in the
main program do not need to be given the SAVE attribute; these entities have
the attribute automatically. If the main program calls subroutine A and
subroutine A calls function B, then the main program, subroutine A, and
function B are active until a return from function B is executed, at which time
only the main program and subroutine A are active. If a recursive subprogram
becomes active, it remains active until the return from its first invocation is
executed.

220 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The form of the DEALLOCATE statement (R631) is:

DEALLOCATE (allocate-object-list [, STAT = stat-variable])

where an allocate object is (R625) one of:

variable-name
structure-component

Rules and restrictions:

1. The STAT= variable must be a scalar integer variable.

2. Each allocate object must be a pointer or an allocatable array.

3. If there is a STAT= variable and it is a pointer, it must not be deallocated in
the same DEALLOCATE statement. The STAT= variable is set to zero if the
deallocation is successful and is set to a processor-dependent positive
value if there is an error condition. If there is no STAT= variable, the
program terminates when an error condition occurs.

6.5.3.1 Deallocation of Allocatable Arrays

To be deallocated, an allocatable array must be currently allocated; otherwise,
an error condition will occur. The inquiry function ALLOCATED (A.9) may be
used to determine if an array is currently allocated.

An allocatable array may have the TARGET attribute. If such an array is
deallocated, the association status of any pointer associated with the array will
become undefined. Such an array must be deallocated by the appearance of its
name in a DEALLOCATE statement. It must not be deallocated by the
appearance of the pointer name in a DEALLOCATE statement.

When a RETURN or END statement is executed in a subprogram, allocatable
arrays become undefined and their allocation status becomes undefined unless:

1. the array has the SAVE attribute

2. the array is specified in a module that is accessed by an active subprogram

3. the array is accessed by host association

Any other allocatable arrays should be deallocated before leaving the
subprogram because if an allocatable array acquires an undefined allocation
status, it can no longer be referenced, defined, allocated, or deallocated.

Using Data 221

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

An example of the allocation and deallocation of an allocatable array is:

REAL, ALLOCATABLE :: X (:, :)
. . .

ALLOCATE (X (10, 2), STAT = IERR)
IF (IERR) .GT. 0) CALL HANDLER
X = 0.0

. . .
DEALLOCATE (X)

. . .
ALLOCATE (X (-10:10), 5), STAT = JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the
ALLOCATABLE attribute. Space is allocated for it and it is given bounds,
extents, shape, and size and then initialized to have zero values in all elements.
Later X is deallocated, and still later, it is again allocated with different bounds,
extents, shape, and size, but its rank remains as declared.

6.5.3.2 Deallocation of Pointers

Only a pointer with defined association status may be deallocated.
Deallocating a pointer with an undefined association status or a pointer
associated with a target that was not created by allocation causes an error
condition in the DEALLOCATE statement. A pointer associated with an
allocatable array must not be deallocated. (Of course, the array itself may be
deallocated.)

It is possible (by pointer assignment) to associate a pointer with a portion of an
object such as an array section, an array element, or a substring. A pointer
associated with only a portion of an object cannot be deallocated. If more than
one pointer is associated with an object, deallocating one of the pointers causes
the association status of the others to become undefined. Such pointers must
not be arguments to the ASSOCIATED inquiry function.

When a RETURN or END statement is executed in a procedure, the association
status of a pointer declared or accessed in the procedure becomes undefined
unless:

1. the pointer has the SAVE attribute

2. the pointer is specified in a module that is accessed by an active
subprogram

3. the pointer is accessed by host association

222 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. the pointer is in blank common

5. the pointer is in a named common block that is specified in an active
subprogram or has the SAVE attribute

6. the pointer is the return value of a function declared to have the POINTER
attribute

If the association status of a pointer becomes undefined, the pointer can no
longer be referenced, defined, or deallocated. It may be allocated, nullified, or
pointer assigned to a new target.

An example of the allocation and deallocation of a pointer is:

REAL, POINTER :: X (:, :)
. . .

ALLOCATE (X (10, 2), STAT = IERR)
IF (IERR .GT. 0) CALL HANDLER
X = 0.0

. . .
DEALLOCATE (X)

. . .
ALLOCATE (X (-10:10), 5), STAT = JERR)

X is declared to be a deferred-shape, two-dimensional, real array with the
POINTER attribute. Space is allocated for it and it is given bounds, extents,
shape, and size and then initialized to have zero values in all elements. Later X
is deallocated, and still later, it is again allocated with different bounds,
extents, shape, and size. This example is quite similar to the previous example
for allocatable arrays, except that, in the case of pointers, it is not necessary to
deallocate X before allocating it again. If a compiler has the ability to collect
and reuse released space, explicit deallocation may lead to more space efficient
programs.

6.6 Summary
A data object may be categorized in several ways. It may be a variable or a
constant; it may be a scalar or an array; it may be a whole object or part of an
object; and finally, it may be dynamic.

Using Data 223

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6.6.1 Variables and Constants

Variables must become defined with a value before they can be used
(referenced) in a program. They may have several values during program
execution. Constants may be referenced any time. They have a specified value
and cannot be redefined. There are two kinds of constants: literal and named.

6.6.2 Scalars and Arrays

A data object can be categorized by its rank. A scalar has a rank of zero and
can have only a single value from the set of values permitted for its type. An
array is a set of scalar data, all with the same type and type parameters, that is
arranged in a regular pattern. The pattern will have columns, rows, planes,
etc., depending on the rank of the array. An array may have a rank between
one and seven, inclusively. The rank is the number of dimensions in the array
declaration. The number of elements in a dimension is called the extent in that
dimension. The shape of an array is determined by the rank and the extents,
and the size of the array is the product of the extents. A constant, as well as a
variable, may be a scalar or an array.

6.6.3 Whole Objects and Parts of Objects

Fortran 90 permits several objects that are aggregations of data. Some are scalar
objects. A character string, even though it may consist of several characters, is
a scalar. It is possible to reference a substring of a character object; even a
substring of a character constant. For example:

CHARACTER (3) HIGH_THREE, ANY_THREE
CHARACTER (10) :: NUMBERS = "0123456789"

. . .
HIGH_THREE = NUMBERS (8:10)
ANY_THREE = "7302694815" (N : N + 2)

A structure, even though it may contain a component that is an array, is a
scalar. It is possible to reference a single component of a structure. For
example, if the type ADDRESS_BOOK is defined and the variable CLIENTS is
declared to be of this type:

224 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

TYPE ADDRESS_BOOK
INTEGER NO_ADDRESSES (26)
TYPE (DATE) FIRST_ENTRY, LAST_ENTRY

END TYPE ADDRESS_BOOK
. . .

TYPE (ADDRESS_BOOK) CLIENTS

then CLIENTS % NO_ADDRESSES refers to a rank-one integer array even
though CLIENTS refers to a scalar of type ADDRESS_BOOK.

It is possible to reference a scalar element of an array. For example, if X is
declared:

REAL X (40, 20, 30)

then X (3, 5, 21) refers to a scalar element. It is also possible to reference a
section of an array, for example X(1:10, 3:4, 15:30). A section is itself an array.

A whole object is referenced by its name if it is a variable or a named constant.
A part of an object is referenced by a designator which is a whole object
reference followed by a substring selector, a component selector, an array
element selector, or an array section selector.

An array section selector is a list of section subscripts, one for each dimension
of the array. There are three possibilities for section subscripts: a single
subscript, a subscript triplet, or a vector subscript.

If a single subscript appears in a section selector, it will reduce by one the rank
of the resulting array section. For example, X(1:10, 3, 15:30) is a rank-two array.

A subscript triplet selects a regularly formed section. For example, X (2:40:2, 1,
1) is a rank-one array that consists of the even-numbered elements in the first
dimension of X. A subscript triplet may be reduced to a single colon (:). In this
case, the entire range of the dimension is selected. X (:, 1, 1) references the
entire first column of X.

A vector subscript may select an irregularly formed section. If II =
(/ 3, 7, 19, 2 /), then X (II, 1, 1) is a rank-one array consisting of the elements
X (3, 1, 1), X (7, 1, 1), X (19, 1, 1), and X (2, 1, 1).

When operations on arrays are performed, no order of evaluation is required;
however, there is an order for array elements that is reflected in input and
output sequences and in certain intrinsic functions. This order is “column-
wise”; that is, the subscripts along the first dimension vary most rapidly.

Using Data 225

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6.6.4 Dynamic Data Objects

Fortran 90 introduces three new categories of data objects with dynamic
properties: automatic objects, allocatable arrays, and pointers. Automatic
objects are character objects and arrays of any type that may be declared only
in procedures or procedure interfaces. These are described in Section 5.8. The
declaration of allocatable arrays and pointers is described in Sections 5.3.3 and
5.4.1. These objects can not be referenced, however, until space is created for
them. For allocatable arrays, this can be accomplished with an ALLOCATE
statement. For pointers, it may be accomplished with an ALLOCATE statement
or the pointer may be assigned to already existing space by a pointer
assignment statement (7.5.3). A pointer may be declared as a scalar or an array.
Neither pointers nor allocatable arrays can be named constants. Allocatable
arrays and pointers are allocated as whole objects, but an element or section of
an allocatable array can be referenced. A pointer target may be any part of an
existing object including substrings, components, array elements, and array
sections. A pointer target may be the whole or part of an allocatable array if the
array has the TARGET attribute.

The ALLOCATE statement has an optional STAT= specifier that may be used to
determine whether the requested allocation was successful. For example:

REAL, ALLOCATABLE :: A (:. :), B (:, :)
. . .

ALLOCATE (A (100, 100), STAT = DID_IT)
IF (DID_IT .GT. 0) GO TO ALLOC_ERR

It is an error to allocate an already allocated allocatable array. An intrinsic
function ALLOCATED is provided to test the status of an allocatable array. For
example:

IF (.NOT. ALLOCATED (B)) ALLOCAT E (B (-10:10, 3))

It is not an error to allocate an already allocated pointer.

The ALLOCATED intrinsic function is not available for pointers; instead, there
is an ASSOCIATED intrinsic function to test the status of a pointer. Initially, a
pointer has an undefined association status. A NULLIFY statement may be
used to set its status to disassociated. For example:

TYPE (LINK), POINTER :: NEXT
NULLIFY (NEXT)

. . .
IF (.NOT. ASSOCIATED (NEXT)) ALLOCATE (NEXT)

226 Fortran 90 Handbook

6

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The DEALLOCATE statement releases space that was previously allocated. If a
pointer is deallocated, the DEALLOCATE statement nullifies the pointer. Only
whole objects may be deallocated. The DEALLOCATE statement also has an
optional status specifier STAT that may be used to determine whether the
requested deallocation was successful. For example:

DEALLOCATE (A, B, NEXT, STAT = ALL_GONE)

227

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Expressions and Assignment 7

In Fortran, calculations are specified by writing expressions. Expressions look
much like algebraic formulas in mathematics, particularly when the
expressions involve calculations on numerical values. In fact, the attempt to
give the programmer a programming language that reflects, as much as
possible, ordinary mathematical notation is what inspired the name Fortran
(Formula translation).

Expressions often involve nonnumeric values, such as character strings, logical
values, or structures; these also can be considered to be formulas—ones that
involve nonnumeric quantities rather than numeric ones.

This chapter describes how valid expressions can be formed, how they are
interpreted, and how they are evaluated. One of the major uses of expressions
is in assignment statements where the value of an expression is assigned to a
variable. The assignment statement appears in four forms: intrinsic
assignment, defined assignment, masked array assignment, and pointer
assignment. In the first three forms, a value is computed by performing the
computation specified in an expression and the value is assigned to a variable.
In the fourth form, a pointer, the object on the left side, is made to point to the
object or target on the right side. The four forms of the assignment statement
are also described in detail in this chapter.

228 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.1 Introduction to Fortran 90 Expressions
Fortran 90 extensions allow the programmer to define new data types,
operators for these types, and new operators for intrinsic types. These
additional capabilities are provided within the general Fortran 77 framework
for expressions which consists of three parts:

• the rules for forming a valid expression (7.2)

• the rules for interpreting the expression (giving it a meaning) (7.3)

• the rules for evaluating the expression (how the computation may be
carried out) (7.4)

An expression is formed from operators and operands. There is no change
from Fortran 77 in the rules for forming expressions, except that a new class of
operators has been defined. These are user-defined operators, which are either
unary or binary operators. They have the form of a sequence of letters
surrounded by periods; .INVERSE. and .PLUS. are examples of possible user-
defined operators.

The formal (BNF) rules for forming expressions imply an order for combining
operands with operators. These rules specify that expressions enclosed in
parentheses are combined first and that, for example, the multiply operator ∗ is
combined with its operands before the addition operator + is combined with
its operands. This order for operators in the absence of specific parentheses is
called the operator precedence and is summarized in Section 7.2.5. Operator
precedence for Fortran 77 operators is unchanged in Fortran 90. There are also
some new operators, such as == and >=, that are equivalent, including
precedence, to their corresponding Fortran 77 operators; for example, == and
>= have the same precedence and meaning as .EQ. and .GE., respectively.

The formation rules for expressions imply that the defined unary operators
have highest precedence of all operators, and defined binary operators have
the lowest precedence of all operators. When they appear in a context where
two or more of these operators of the same precedence are adjacent, the
operands are combined with their operators in a left-to-right manner, as is the
case for the familiar + and – operators, or in a right-to-left manner for the
exponentiation operator (∗∗).

Intrinsic operators (3.6) are generic in the sense that they can operate on
operands of different types. For example, the plus operator + operates on
operands of type integer as well as real and complex. Intrinsic operators can be

Expressions and Assignment 229

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

extended further by the programmer to operate on operands of types for which
there are no intrinsic operations. Similarly, defined unary and defined binary
operators can be extended by the programmer to operate on operands of types
for which there are no previous definitions. Section 12.6.4 describes how any
operator can be made generic by the programmer using a generic specifier on
an interface block.

The rules for interpretation of an expression are provided by the interpretation
of each operator in the expression. When the operator is an intrinsic operator
such as +, ∗, or .NOT., and the operands are of intrinsic types allowed for the
intrinsic operator, the interpretation is provided by the usual mathematical or
symbolic meaning of the operation. Thus, + with two numeric operands means
that the two operands are added together. For the user-defined operators, the
interpretation is provided by a user-supplied function subprogram with a
designation that this subprogram is to be used to define the operation. This
aspect is new to Fortran 90. In addition, Fortran 90 allows the intrinsic operator
symbols to be extended to cases in which the operands are not of the usual
intrinsic types defined by the standard. For example, the + operator can be
defined for operands of type RATIONAL (a user-defined type) or for operands
of type logical with the interpretation provided by a user-supplied function
subprogram. The rules for construction of expressions (the syntax rules) are the
same for user-defined operators as for intrinsic operators.

The general rule for evaluation of a Fortran expression remains unchanged in
Fortran 90. In essence, the rule states that any method that is mathematically
equivalent to that provided by the construction and interpretation rules for the
expression is permitted, provided the order of evaluation indicated by explicit
parentheses in the expression is followed. Thus, a compiler has a great deal of
freedom to rearrange or optimize the computation, provided the rearranged
expression has the same mathematical meaning. Because the definitions of
user-defined operations are provided by subprograms, the opportunities for
determining mathematical equivalent forms for expressions involving user-
defined operations are more limited than for expressions involving only
intrinsic operations.

New to Fortran 90 are arrays and pointers as objects that can appear in
expressions and assignment statements. This chapter describes the use of
arrays and pointers in the following contexts:

• as operands of intrinsic and user-defined operations

• as the variables being assigned in intrinsic assignment statements

230 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• as the variables in pointer assignment statements and masked array
assignment statements, new in Fortran 90

7.1.1 Assignment

The result obtained from the evaluation of an expression can be used in many
ways. For example, it can be printed or passed to a subprogram. In many cases,
however, the value is assigned to a variable and that value may be used later
in the program by referencing the variable.

Execution of the assignment statement causes the expression to be evaluated
(by performing the computation indicated), and then the value of the
expression is assigned to the variable on the left of the equal sign. The form of
assignment and the process of assignment is illustrated in Figure 7-1.

An example of an assignment statement is:

REAL_AGE = REPORTED_AGE + 3.0

REPORTED_AGE + 3.0 is the expression that indicates how to compute a
value, which is assigned to the variable REAL_AGE.

Use of the equal sign for assignment is a little misleading because assignment
is not equality in the algebraic sense. It indicates a replacement of the value of
the variable named on the left-hand side of the equal sign with the value of the
expression on the right. Assigning a value to the variable on the left-hand side
is performed after all expressions in the statement have been evaluated.
Additional examples of assignment statements are:

X = C + 1.0
PI = 3.1416
Z = 3.1 * (PI + X)

In the first statement, the value of C is added to 1.0 in order to compute the
value of the expression C + 1.0; the resulting value is given to X, replacing any
value X already has with the new value. In the second statement, PI is assigned

Variable = Computation

Figure 7-1 The assignment operation

Expressions and Assignment 231

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the constant value 3.1416. In the third statement, the value of Z is determined
from a more complicated expression; first the values of X and PI are added and
then the result is multiplied by 3.1; the final value is assigned to Z.

An example involving subscripts is:

A (I+3) = P I + A (I-3)

The value of the subscript expression I–3 is determined and the value of the I–
3 element of A is added to the value of PI to produce a sum. Before the result
of this expression is assigned, the value of the subscript expression I+3 is
determined, and the value of the sum is assigned to the element I+3 of A.
Whether I+3 is evaluated before or after PI + A (I–3) is computed is not
specified and therefore is processor dependent.

The above examples are arithmetic; Fortran has expressions of other types,
such as logical, character, and derived type. Values of expressions of these
other types can be assigned to variables of these other types. As with
operators, the programmer can extend the meaning of assignment to types not
defined intrinsically and can redefine assignment for two objects of the same
derived type—such assignments are called defined assignments (7.5.2, 12.6.5).
New to Fortran 90 are arrays and pointers of any type. Arrays and the targets
associated with the pointers can be assigned values in intrinsic assignment
statements. In addition, arrays and pointers each have a special form of
assignment statement called masked array assignment (7.5.4) and pointer
assignment (7.5.3), respectively.

7.1.2 Expressions

An assignment statement is only one of the Fortran statements where
expressions may occur. Expressions also may appear in subscripts, actual
arguments, IF statements, PRINT statements, WHERE statements, declaration
statements, and many other statements.

An expression represents a computation that results in a value and may be as
simple as a constant or variable. The value of an expression has a type and
may have zero, one, or two type parameter values. In addition, the value is a
scalar (including a structure) or an array. If the value is of a derived type, it has
no type parameter. If it is of an intrinsic type, it has a kind type parameter, and
if, in addition, it is of the type character, it has a length type parameter.
Complicated expressions can be formed from simpler expressions, for example:

232 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A ** (-B) + 3.0 / C - C * (A + B)

A complex value or a structure value is a scalar, even though it may consist of
more than one value (for example, a complex value consists of two real values).

Arrays and pointers may be used as operands of intrinsic and defined
operators. For intrinsic operators, when an array is an operand, the operation
is performed elementwise on the elements of the array. For intrinsic operators,
when a pointer is an operand, the value of the target pointed to by (associated
with) the pointer is used as the operand. For defined operators, the array or
pointer is used in a manner determined by the procedure defining the
operation.

As indicated in the introduction to this chapter, the presentation of expressions
is described in terms of the following three basic parts:

• The rules for forming expressions (syntax)

• The rules for interpreting expressions (semantics)

• The rules for evaluating expressions (optimization)

The syntax rules indicate which forms of expressions are valid. The semantics
indicate how each expression is to be interpreted. Once an expression has been
given an interpretation, a compiler may evaluate another completely different
expression, provided the expression evaluated is mathematically equivalent to
the one written.

To see how this works, consider the expression 2 ∗ A + 2 ∗ B in the following
PRINT statement:

PRINT * , 2 * A + 2 * B

The syntax rules described later in this chapter indicate that the expression is
valid and suggest an order of evaluation. The semantic rules specify the
operations to be performed which, in this case, are the multiplication of the
values of A and B by 2 and the addition of the two results. That is, the semantic
rules indicate that the expression is to be interpreted as if it were

((2 * A) + (2 * B))

and not, for example

(((2 * A) + 2) * B)

Expressions and Assignment 233

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Once the correct interpretation has been determined, the Fortran rules of
evaluation permit a different expression to be used to evaluate the expression,
provided the different expression is mathematically equivalent to the one
written. For example, the computer may first add A and B and then multiply
the result by 2, because the expression

2 * (A + B)

is mathematically equivalent to the one written.

When reading the rules about allowed alternative evaluations, three properties
should be noted:

• Parentheses must not be violated. For example, the expression

(2 * A) + (2 * B)

must not be evaluated as

2 * (A + B)

This gives the programmer some control over the method of evaluation.

• Integer division is not mathematically equivalent to real division. The
value of 3/2 is 1 and so cannot be evaluated as 3 ∗ 0.5, which is 1.5.

• Mathematically equivalent expressions may produce computationally
different results, due to the implementation of arithmetic and rounding on
computer systems. For example, the expression X/2.0 may be evaluated as
0.5∗X, even though the results may be slightly different. Also, for example,
the expression 2 ∗ A + 2 ∗ B may be evaluated as 2∗(A+B); when A and B
are of type real, the two mathematically equivalent expressions may yield
different values because of different rounding errors and different
arithmetic exceptions in the two expressions.

234 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.2 Formation of Expressions
An expression is formed from operands, operators, and parentheses. The
simplest form of an expression is a constant or a variable. Some examples are:

The values of these simple expressions are the constant value 3.1416, the
constant value .TRUE., the value of the variable X, the value of the array Y, the
value of the array element Y (K), the value of the array section Y (2:10:2), the
value of the component N of structure M, and the value of a substring of an
array element Y (K), respectively.

7.2.1 Operands

An operand in an expression may be one of the following:

• a constant or subobject of a constant

• a variable (for example, a scalar, an array, a substring, or a pointer—see
Section 6.1)

• an array constructor

• a structure constructor

• a function reference (returning, for example, a scalar, an array, a substring,
or a pointer—see Section 12.3.3)

• another expression in parentheses

3.1416 A real constant

.TRUE. A logical constant

X A scalar variable

Y An array variable

Y (K) A variable that is an array element of Y

Y (2:10:2) A variable that is an array section of Y

M % N A variable that is a component of a structure M

Y (K) (I:I+3) A variable that is a substring of array element Y (K)

Expressions and Assignment 235

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples of operands are:

A ! a scalar or an array
B(1) ! an array element or function
C(3:5) ! an array section or a substring
(A + COS(X)) ! an expression in parentheses
(/ 1.2, 2.41 /) ! an array constructor
RATIONAL(1,2) ! a structure constructor or function
I_PTR ! a pointer to an integer target

7.2.2 Binary and Unary Operations

There are two forms that operations may take in an expression. One is an
operation involving two operands such as multiplying two numbers together.
The other is an operation on one operand such as making a number negative.
These forms are called binary and unary operations, respectively.

Table 7-1 lists the intrinsic operators. A programmer may define additional
operators using function subprograms. User-defined operators are either
binary or unary operators.

A binary operator combines two operands as in:

x1 operator x2

Examples are:

A + B
2 * C

The examples show an addition between two operands A and B, and a
multiplication of two operands, the constant 2 and the operand C.

A unary operation acts on one operand as in:

operator x1

Examples are:

- C
+ J
.NOT. L

236 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The first example results in the value minus C. The second example yields the
value J; a unary plus operator is, in effect, the identity operator. The third
example produces a value that is the logical complement of L; the operator
.NOT. is the only intrinsic operator that is a unary operator and is never a
binary operator.

Note that the operators + and – may be used as operators with one operand as
well as two. With two operands, the value of the expression is the sum or
difference of the operands and, with one operand, the value of the expression
is the operand itself or the negation of the operand.

7.2.3 Intrinsic and Defined Operations

Intrinsic operations are those whose definitions are known to the compiler.
They are built into Fortran and are always available for use in expressions.
Table 7-1 lists the operators built into Fortran as specified by the standard.
There may, of course, be other operations that are intrinsic to the compiler.

Table 7-1 Intrinsic operators and the allowed types of their operands

Operator
category

Intrinsic
operator Operand types

Arithmetic ∗∗, ∗, /, +, –,
unary +, unary –

Numeric of any combination of numeric
types and kind type parameters

Character // Character of any length with the same
kind type parameter

Relational .EQ., .NE.,
==, /=

Both of any numeric type and any kind
type parameter, or both of type character
with any length type parameter and with
the same kind type parameter

Relational
.GT., .GE., .LT.,

.LE.,
>, >=, <, <=

Both of any numeric type except complex
and any kind type parameter, or both of
type character with any length type pa-
rameter and with the same kind type pa-
rameter

Logical
.NOT., .AND.,

.OR.,
.EQV., .NEQV.

Both of type logical with any combination
of kind type parameters

Expressions and Assignment 237

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The relational operator symbols ==, /=, >, >=, <, and <= are new to Fortran
and are synonyms for the operators .EQ., .NE., .GT., .GE., .LT., and .LE.,
respectively.

In addition to the Fortran operators that are intrinsic (built in), there may be
user-defined operators in expressions.

Defined operations are those that the user defines in the Fortran program and
makes available to each program unit that uses them. The computation
performed by a defined operation is described explicitly in a function that
must appear as a subprogram in the Fortran program where it is used. The
operator used in a defined operation is called a defined operator. In this way,
users extend the repertoire of operations so that computations can be
expressed in a natural way using operator notation. Function subprograms that
define operators are explained in detail in Section 12.6.4.

A defined operator uses a symbol that is either the symbol for an intrinsic
operator or is a new operator symbol. The synonyms described above for the
relational operators remain synonyms in all contexts, even when there are
defined operators. For example, if the operator < is defined for a new type, say
STRING, the same definition applies to the operator .LT. for the type STRING;
if the operator .LT. is specified as private, the operator < is also private.

A distinction is made between a defined (or new) operator and an extended
intrinsic operator. An extended intrinsic operator is one that uses the same
symbol as an intrinsically defined Fortran operator, like plus + or multiply ∗. It
also causes the operations to be combined in the same order as is specified for
the intrinsic operator. A new operator is one where the operator symbol is not
the same as an intrinsic operator but is new, such as .INVERSE. New
operators, however, have a fixed precedence; new unary operators have the
highest precedence of all operators and new binary operators have the lowest
precedence of all operators. The precedences of all operators are described in
more detail in Section 7.2.5.

7.2.4 Rules for Forming Expressions

Expressions are formed by combining operands. Operands may be constants,
variables (scalars, array elements, arrays, array sections, structures, structure
components, and pointers), array constructors, structure constructors,
functions, and parenthesized expressions with intrinsic and defined operators.
Examples of expressions satisfying the expression formation rules are:

238 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A
A + B
A + B / C
A * (B + C) / D - F ** 10 .EQ. G

The method used to specify these formation rules is a collection of syntax rules
that determine the forms of expressions. The order of evaluation of the
operations in an expression is determined by the usual semantics for the
operations, and the syntax rules are designed to be consistent with these
semantics. In fact, the order of evaluation defines a precedence order for
operators that is summarized in Table 7-2.

The set of syntax rules defines at the highest level an expression in terms of
operators and operands which are themselves expressions. As a result, the
formal set of rules is recursive. The basic or lowest level of an expression is a
primary, which, for example, can be a variable, a constant, or a function, or
recursively an expression enclosed in parentheses. The rules for forming
expressions are described from the lowest or most primitive level to the
highest or most complex level; that is, the rules are stated from a primary up to
an expression.

Primary. A primary has one of the following forms (R701):

constant
constant-subobject
variable
array-constructor
structure-constructor
function-reference
(expression)

Rules and restrictions:

1. A constant subobject is a subobject whose parent is a constant.

2. A variable that is a primary must not be an assumed-size array (5.3.1.4) or
a section of an assumed-size array name, unless the last subscript position
of the array is specified with a scalar subscript or a section subscript in
which the upper bound is specified.

Expressions and Assignment 239

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples of primaries are:

In the above examples, ONE is a named constant if it has the PARAMETER
attribute or appears in a PARAMETER statement. ’ABCS’(I:I) is a constant
subobject even though I may be a variable because its parent is a constant; it is
a constant subobject because it cannot be defined like a variable can be defined.
RATIONAL is a derived type and FCN is a user-defined function.

When an array variable is a primary, the whole array is used, except in a
masked assignment statement (7.5.4). In a masked assignment statement, only
that part of the array specified by the mask is used. When a pointer is a
primary, the target associated with (pointed to by) the pointer is used, except
possibly when the pointer is an actual argument of a procedure, or is an
operand of a defined operation or a defined assignment. Whether the pointer
or the target is used in these exceptional cases is determined by the procedure
invoked by the reference.

Recall that an assumed-size array (5.3.1.4) is a dummy argument whose shape
is not completely specified in the subprogram in that the extent in the last
dimension is determined by its corresponding actual argument. The
implementation model is that the extent in the last dimension is never known

3.2 A real constant

ONE A named constant

’ABCS’ (I:I) A constant subobject

A A variable (scalar, array, structure, or pointer)

B (:,1:N)
An assumed-size array with an

upper bound in the last dimension

C (I) An array element

CH (I:J) A substring

(/ 1, J, 7 /) An array constructor

RATIONAL (I, J) A structure constructor

FCN (A) A function reference

(A ∗ B) A parenthesized expression

240 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

to the subprogram but is specified by the use of a subscript, section subscript,
or vector subscript expression which defines an upper bound in the last
dimension. Unless the extent is specified in this way, such an object must not
be used as a primary in an expression. On the other hand, if a subscript,
section subscript with an extent for the upper bound, or a vector subscript is
specified for the last dimension, the array value has a well-defined shape and
hence can be used as a primary in any expression. For example, if A is declared
as

REAL A(3,*)

A(:,3) has a well-defined shape and can be used as a primary in an expression.

Expressions are used as actual arguments in procedure references (function
references or subroutine calls). Because actual arguments can be expressions
involving operations, actual arguments must not contain assumed-size arrays,
unless their shape is well-defined, as described above. An actual argument,
however, can be just a variable, which then allows the actual argument to be
the name of an assumed-size array. This implies that such actual arguments
can be assumed-size arrays, unless the procedure requires the shape of the
argument to be specified by the actual argument. Most of the intrinsic
procedures that allow array arguments require the shape to be specified for the
actual array arguments, and therefore assumed-size arrays cannot be used as
actual arguments for most intrinsic functions. The exceptions are all references
to the intrinsic function LBOUND, and certain references to the intrinsic
functions UBOUND and SIZE—see their descriptions in Appendix A.

Defined-Unary Expression. A defined-unary expression is a defined operator
followed by a primary. Its form (R703) is:

[defined-operator] primary

where defined operator has the form (R704)

. letter [letter]
Rules and restrictions:

1. A defined operator must not contain more than 31 letters.

2. A defined operator must not be the same name as the name of any intrinsic
operator (.NOT., .AND., .OR., .EQV., .NEQV., .EQ., .NE., .GT., .GE.,
.LT., or .LE.) or any logical literal constant (.FALSE. or .TRUE.).

Expressions and Assignment 241

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples of defined-unary expressions are:

where .INVERSE. is a defined operator.

Exponentiation Expression. An exponentiation expression is an expression in
which the operator is the exponentiation operator ∗∗. Its form (R705) is:

defined-unary-expression [** exponentiation-expression]

Note that the definition is right recursive (that is, the defined term appears to
the right of the operator ∗∗) which indicates that the precedence of the ∗∗
operator in contexts of equal precedence is right-to-left. Thus, the
interpretation of the expression A ∗∗ B ∗∗ C is A ∗∗ (B ∗∗ C). Examples of
exponentiation expressions are:

Multiplication Expression. A multiplication expression is an expression in
which the operator is either ∗ or /. Its forms (R706) are:

[multiplication-expression *] exponentiation-expression
multiplication-expression / exponentiation-expression

Note that the definition is left recursive (that is, the defined term appears to the
left of the operator ∗ or /) which indicates that the precedence of the ∗ and /
operators in contexts of equal precedence is left-to-right. Thus, the

.INVERSE. B A defined-unary expression

A A primary is also a defined-unary expression

A ∗∗ B An exponentiation expression

A ∗∗ B ∗∗ C An exponentiation expression with right-to-left precedence

.INVERSE. B
A defined-unary expression is also an exponentiation
expression

A A primary is also an exponentiation expression

242 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

interpretation of the expression A ∗ B ∗ C is (A ∗ B) ∗ C, or A / B ∗ C is (A / B)
∗ C. This left-to-right precedence rule applies to the remaining binary operators
except the relational operators. Examples of multiplication expressions are:

Summation Expression. A summation expression is an expression in which the
operator is either + or –. Its forms (R707) are:

[summation-expression +] multiplication-expression
summation-expression - multiplication-expression
+ multiplication-expression
- multiplication-expression

Examples of summation expressions are:

A ∗ B A multiplication expression

A ∗ B ∗ C A multiplication expression with left-to-right precedence

A / B A multiplication expression

A / B / C A multiplication expression with left-to-right precedence

A ∗ B / C A multiplication expression with left-to-right precedence

A ∗∗ B
An exponentiation expression is alsoa multiplication
expression

.INVERSE. B
A defined-unary expression is alsoa multiplication
expression

A A primary is also a multiplication expression

A + B A summation expression

A + B – C A summation expression with left-to-right precedence

– A – B – C A summation expression with left-to-right precedence

+ A A summation expression using unary +

– A A summation expression using unary –

A ∗ B
A multiplication expression is also a summation
expression

Expressions and Assignment 243

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Concatenation Expression. A concatenation expression is an expression in
which the operator is //. Its form (R711) is:

[concatenation-expression //] summation-expression

Examples of concatenation expressions are:

Comparison Expression. A comparison expression is an expression in which
the operator is a relational operator. Its form (R713) is:

[concatenation-expression relational-operator] concatenation-expression

A ∗∗ B
An exponentiation expression is also a summation
expression

.INVERSE. B
A defined-unary expression is also a summation
expression

A A primary is also a summation expression

A // B A concatenation expression

A // B // C A concatenation expression with left-to-right precedence

A – B
A summation expression is also a concatenation
expression

– A
A summation expression is also a concatenation
expression

A ∗ B
A multiplication expression is alsoa concatenation
expression

A ∗∗ B
An exponentiation expression is also a concatenation
expression

.INVERSE. B
A defined-unary expression is also a concatenation
expression

A A primary is also a concatenation expression

244 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where a relational operator (R714) is one of the operators .EQ., ==, .NE., /=,
.LT., <, .LE., <=, .GT., >, .GE., and >=. The operators ==, /=, <, <=, >, and
>= are synonyms in all contexts for the operators .EQ., .NE., .LT., .LE., .GT.,
and .GE., respectively.

Note that the definition of a comparison expression is not recursive, and
therefore comparison expressions cannot contain relational operators in
contexts of equal precedence. Examples of comparison expressions are:

Not Expression. A not expression is an expression in which the operator is
.NOT. Its form (R715) is:

[.NOT.] comparison-expression

Note that the definition of a not expression is not recursive, and therefore not
expressions cannot contain adjacent .NOT. operators. Examples of not
expressions are:

A .EQ. B A comparison expression

A < B A comparison expression

A // B A concatenation expression is also a comparison expression

A – B A summation expression is also a comparison expression

– A A summation expression is also a comparison expression

A ∗ B
A multiplication expression is also a comparison
expression

A ∗∗ B
An exponentiation expression is also a comparison
expression

.INVERSE. B
A defined-unary expression is also a comparison
expression

A A primary is also a comparison expression

.NOT. A A not expression

A .EQ. B A comparison expression is also a not expression

A // B A concatenation expression is also a not expression

Expressions and Assignment 245

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Conjunct Expression. A conjunct expression is an expression in which the
operator is .AND. Its form (R716) is:

[conjunct-expression .AND.] not-expression

Note that the definition of a conjunct expression is left recursive, and therefore
the precedence of the .AND. operator in contexts of equal precedence is left-
to-right. Thus, the interpretation of the expression A .AND. B .AND. C is (A
.AND. B) .AND. C. Examples of conjunct expressions are:

A – B A summation expression is also a not expression

– A A summation expression is also a not expression

A ∗ B A multiplication expression is also a not expression

A ∗∗ B An exponentiation expression is also a not expression

.INVERSE. B A defined-unary expression is also a not expression

A A primary is also a not expression

A .AND. B A conjunct expression

A .AND. B
.AND. C

A conjunct expression with left-to-right precedence

.NOT. A A not expression is also a conjunct expression

A .EQ. B A comparison expression is also a conjunct expression

A // B A concatenation expression is also a conjunct expression

A – B A summation expression is also a conjunct expression

– A A summation expression is also a conjunct expression

A ∗ B A multiplication expression is also a conjunct expression

A ∗∗ B
An exponentiation expression is also a conjunct
expression

.INVERSE. B A defined-unary expression is also a conjunct expression

A
A primary is also a conjunct expressiona conjunct
expression

246 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Disjunct Expression. A disjunct expression is an expression in which the
operator is .OR. Its form (R717) is:

[disjunct-expression .OR.] conjunct-expression

Note that the definition of a disjunct expression is left recursive, and therefore
the precedence of the .OR. operator in contexts of equal precedence is left-to-
right. Thus, the interpretation of the expression A .OR. B .OR. C is (A .OR.
B) .OR. C. Examples of disjunct expressions are:

Equivalence Expression. An equivalence expression is an expression in which
the operator is either .EQV. or .NEQV. Its forms (R718) are:

[equivalence-expression .EQV.] disjunct-expression
equivalence-expression .NEQV. disjunct-expression

A .OR. B A disjunct expression

A .OR. B .OR. C A disjunct expression with left-to-right precedence

A .AND. B A conjunct expression is also a disjunct expression

.NOT. A A not expression is also a disjunct expression

A .EQ. B A comparison expression is also a disjunct expression

A // B A concatenation expression is also a disjunct expression

A – B A summation expression is also a disjunct expression

– A A summation expression is also a disjunct expression

A ∗ B A multiplication expression is also a disjunct expression

A ∗∗ B
An exponentiation expression is also a disjunct
expression

.INVERSE. B A defined-unary expression is also a disjunct expression

A A primary is also a disjunct expression

Expressions and Assignment 247

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Note that the definition of an equivalence expression is left recursive, and
therefore the precedence of the .EQV. or .NEQV. operators in contexts of equal
precedence is left-to-right. Thus, the interpretation of the expression A .EQV.
B.NEQV. C is (A .EQV. B) .NEQV. C. Examples of equivalence expressions
are:

Expression. The most general form of an expression (R723) is:

[expression defined-operator] equivalence-expression

A .EQV. B An equivalence expression

A .NEQV. B An equivalence expression

A .NEQV. B .EQV.
C

An equivalence expression with left-to-right precedence

A .OR. B A disjunct expression is also an equivalence expression

A .AND. B A conjunct expression is also an equivalence expression

.NOT. A A not expression is also an equivalence expression

A .EQ. B
A comparison expression is also an equivalence
expression

A // B
A concatenation expression is also an equivalence
expression

A – B
A summation expression is also an equivalence
expression

– A
A summation expression is also an equivalence
expression

A ∗ B
A multiplication expression is also an equivalence
expression

A ∗∗ B
An exponentiation expression is also an equivalence
expression

.INVERSE. B
A defined-unary expression is also an equivalence
expression

A A primary is also an equivalence expression

248 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Note that the definition of an expression is left recursive, and therefore the
precedence of the binary defined operator in contexts of equal precedence is
left-to-right. The interpretation of the expression A .PLUS. B .MINUS. C is
thus (A .PLUS. B) .MINUS. C. Examples of expressions are:

where .PLUS., .MINUS., and .CROSS. are defined operators.

Summary of the Forms and Hierarchy for Expressions. The previous sections
have described in detail the sorts of expressions that can be formed. These
expressions form a hierarchy that can best be illustrated by two figures. Figure
7-2 describes the hierarchy by placing the simplest form of an expression,
namely, a variable, at the center of a set of nested rectangles. The more general

A .PLUS. B An expression

A .CROSS. B .CROSS.
C

An expression with left-to-right precedence

A .EQV. B An equivalence expression is also an expression

A .OR. B A disjunct expression is also an expression

A .AND. B A conjunct expression is also an expression

.NOT. A A not expression is also an expression

A .EQ. B A comparison expression is also an expression

A // B
A concatenation expression is also an
expression

A – B A summation expression is also an expression

– A A summation expression is also an expression

A ∗ B
A multiplication expression is also an
expression

A ∗∗ B
An exponentiation expression is also an
expression

.INVERSE. B
A defined-unary expression is also an
expression

A A primary is also an expression

Expressions and Assignment 249

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

forms of an expression are the enclosing rectangles, from a primary to an
exponential expression, to a summation expression, and finally to a general
expression using a defined binary operator .CROSS. Thus, Figure 7-2
demonstrates that an expression is indeed all of these special case forms,
including the simplest form, a primary.

Figure 7-3 illustrates the relationship between the different sorts of expressions
by summarizing the definitional forms in one table. The simplest form of an
expression is at the bottom and is the primary as in Figure 7-2. The next, more

A .CROSS. B

A .EQV. B

A .OR. B

A .AND. B

.NOT. A

A .EQ. B

A//B

−A

A∗B

A∗∗B

.INVERSE.A

A

(general) expression

equivalence expression

disjunct expression

conjunct expression

not expression

concatenation expression

comarison expression

summation expression

multiplication expression

exponentiation expression

defined unary expression

primary

Figure 7-2 The hierarchy of expressions by examples

250 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

general, form is second from the bottom and is the defined unary expression; it
uses the primary in its definition. At the top of the figure is the most general
form of an expression.

The following are examples of more complicated expressions:

7.2.5 Precedence of Operators

The above formation rules suggest a precedence among the operators—that is,
the order in which operands are combined with operators to form values of
subexpressions. Table 7-2 summarizes the relative precedence of operators,
including the precedence when operators of equal precedence are adjacent. An
entry “N/A” in the column titled “In context of equal precedence” indicates
that the operator cannot appear in such contexts. The column titled “Category
of operator” classifies the operators as extension, numeric, character, relational,
and logical operators. Note that these operators are not intrinsic operators
unless the types of the operands are those specified in Table 7-3.

For example, in the expression

A .AND. B .AND. C .OR. D

Table 7-2 indicates that the .AND. operator is of higher precedence than the
.OR. operator, and the .AND. operators are combined left-to-right when in
contexts of equal precedence; thus, A and B are combined by the .AND.
operator, the result A .AND. B is combined with C using the .AND. operator,
and that result is combined with D using the .OR. operator. This expression is
thus interpreted the same way as the following fully parenthesized expression

(((A .AND. B) .AND. C) .OR. D)

A + B .CROSS. C – D An expression mixing new operators and old ones

(A + B) .CROSS. (C – D)
An expression which has the same interpretation

as the previous expression

A + (B .CROSS. C) – D
An expression which has a different interpretation

from the previous two expressions

A .CROSS. (B .CROSS.
C)

An expression which in general is not the same
as the expression A .CROSS. B .CROSS. C

Expressions and Assignment 251

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Notice that the defined (or new) operators have fixed precedences; new unary
operators have the highest precedence of all operators and are all of equal
precedence; new binary operators have the lowest precedence, are all of equal
precedence, and are combined left-to-right when in contexts of equal

Term Definition

expression [expression defined-operator] equivalence-expression

equivalence-expression
[equivalence-expression .EQV.] disjunct-expression
equivalence-expression .NEQV. disjunct-expression

disjunct-expression [disjunct-expression .OR.] conjunct-expression

conjunct-expression [conjunct-expression .AND.] not-expression

not-expression [.NOT.] comparison-expression

comparison-expression
[concatenation-expression relational-operator] &

concatenation-expression

concatenation-expression [concatenation-expression //] summation-expression

summation-expression

[summation-expression +] multiplication-expression
summation-expression - multiplication-expression
+ multiplication-expression
- multiplication-expression

multiplication-expression
[multiplication-expression *] exponentiation-expression
multiplication-expression / exponentiation-expression

exponentiation-expression defined-unary-expression [** exponentiation-expression]

defined-unary-expression [defined-operator] primary

primary

constant
constant-subobject
variable
array-constructor
structure-constructor
function-reference
(expression)

Figure 7-3The hierarchy of expressions via forms

252 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

precedence. Both kinds of new operators may have multiple definitions in the
program unit and therefore may be generic just as intrinsic operators and
intrinsic procedures are generic.

As a consequence of the expression formation rules, unary operators cannot
appear in a context of equal precedence; the precedence must be specified by
parentheses. There is thus no left-to-right or right-to-left rule for any unary
operators. Similarly, the relational operators cannot appear in a context of
equal precedence; consequently, there is no left-to-right or right-to-left rule for
the relational operators.

Table 7-2 Categories of operations and relative precedences

Category
of operator Operator Precedence

In context of
equal

precedence

Extension Unary defined-operator Highest N/A

Numeric ** . Right-to-left

Numeric ∗ or / . Left-to-right

Numeric Unary + or – . N/A

Numeric Binary + or – . Left-to-right

Character // . Left-to-right

Relational
.EQ., .NE., .LT., .LE., .GT.,

.GE.
==, /=, <, <=, >, >=

. N/A

Logical .NOT. . N/A

Logical .AND. . Left-to-right

Logical .OR. . Left-to-right

Logical .EQV. or .NEQV. . Left-to-right

Extension Binary defined-operator Lowest Left-to-right

Expressions and Assignment 253

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.2.6 Intrinsic Operations

Intrinsic operations are those known to the processor. For an operation to be
intrinsic, an intrinsic operator symbol must be used, and the operands must be
of the intrinsic types specified in Table 7-3.

The intrinsic operations are either binary or unary. The binary operations use
the binary intrinsic operator symbols +, –, ∗, /, ∗∗, //, .EQ., .NE., .LT., .GT.,
.LE., .GE. (and their synonyms ==, /=, <, >, <=, and >=), .AND., .OR.,
.EQV., and .NEQV. The unary operations use the unary intrinsic operator
symbols +, –, and .NOT.

Table 7-3 Type of operands and result for intrinsic operations

Intrinsic operator Type of x1 Type of x2

Type of
result

Unary +, – I, R, Z I, R, Z

Binary +, –, ∗, /, ∗∗
I
R
Z

I, R, Z
I, R, Z
I, R, Z

I, R, Z
R, R, Z
Z, Z, Z

// C C C

.EQ., .NE.
==, /=

I
R
Z
C

I. R. Z
I, R, Z
I, R, Z

C

L, L, L
L, L, L
L, L, L

L

.GT., .GE., .LT., .LE.
>, >=, <, <=

I
R
C

I. R
I, R
C

L,L
L, L

L

.NOT. L L

.AND., .OR., .EQV., .NEQV. L L L

Note: The symbols I, R, Z,C, and L stand for the types integer, real,
complex, character, and logical, respectively. Where more than one
type for is given, the type of the result of the operation is given
in the same relativeposition in the next column. For the intrinsic
operators requiring operands of type character, the kind type
parameters of the operands must be the same.

x2

254 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The intrinsic operations are divided into four classes with different rules and
restrictions for the types of the operands. The four classes are numeric
intrinsic, character intrinsic, logical intrinsic, and numeric relational intrinsic
operations.

The numeric intrinsic operations use the intrinsic operators +, –, ∗, /, and ∗∗.
The operands may be of any numeric type and with any kind type parameters.
The result of the operation is of a type specified by Table 7-3 and has type
parameters as specified in Section 7.2.8.2.

For example, the expressions

I + R
I * I
I - D
I / Z

where I, R, D, and Z are declared to be of types integer, real, double precision
real, and complex have the types and type parameters of the variables R, I, D,
and Z, respectively.

7.2.7 Defined Operations

A defined operation is any nonintrinsic operation that is interpreted and
evaluated by a function subprogram specified by an interface block with a
generic specifier of the form OPERATOR (defined-operator). A defined operation
uses either a defined operator or an intrinsic operator symbol, and is either
unary or binary. Its forms (R703, R723) are:

intrinsic-unary-operator x2

defined-operator x2

x1 intrinsic-binary-operator x2

x1 defined-operator x2

where x1 and x2 are operands. When either an intrinsic unary or binary
operator symbol is used, the type of x2 and types of x1 and x2 must not be
the same as the types of the operands specified in Table 7-3 for the
particular intrinsic operator symbol. Thus, intrinsic operations on intrinsic
types cannot be redefined by the user. Examples of each of the previous
forms are:

Expressions and Assignment 255

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

- A
.PLUS. A
A * B
A .HIGHER. B

When a defined operation uses an intrinsic operator symbol, the generic
properties of that operator are extended to the new types specified by the
interface block. When a defined operation uses a defined operator, the defined
operation is called an extension operation, and the operator is called an
extension operator. An extension operator may have generic properties by
specifying more than one interface block with the same generic specifier of the
form OPERATOR (defined-operator) or by specifying more than one function
subprogram in an interface block.

7.2.8 Data Type, Type Parameters, and Shape of an Expression

The data type, type parameters, and shape of a complete expression are
determined by the data type, type parameters, and shape of each constant,
variable, constructor, and function reference appearing in the expression. The
determination is inside-out in the sense that the properties are determined first
for the primaries. These properties are then determined repeatedly for the
operations in precedence order, resulting eventually in the properties for the
expression.

For example, consider the expression A + B ∗ C, where A, B, and C are of
numeric type. First, the data types, type parameter values, and shapes of the
three variables A, B, and C are determined. Because ∗ has a higher precedence
than +, the operation B ∗ C is performed first. The type, type parameters, and
shape of the expression B ∗ C are determined next, and then these properties
for the entire expression are determined from those of A and B ∗ C.

7.2.8.1 Data Type and Type Parameters of a Primary

The type, type parameters, and shape of a primary that is a nonpointer
variable or constant is straightforward because these properties are determined
by specification statements for the variable or named constant, or by the form
of the constant (4.2.4). For example, if A is a variable, its declaration in a
specification statement such as

REAL A (10, 10)

256 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

determines it as an explicit-shaped array of type real with a default kind
parameter. For a constant such as

(1.3, 2.9)

the form of the constant indicates that it is a scalar constant of type complex
and of default kind.

For a pointer variable, the type, type parameters, and rank are determined by
the declaration of the pointer variable. However, if the pointer is of deferred
shape, the shape (in particular, the extents in each dimension) is determined by
the target of the pointer. Consider the declarations

REAL, POINTER :: A (:, :)
REAL, TARGET :: B (10, 20)

and suppose that the pointer A is associated with the target B. Then the shape
of A is (10, 20).

The type, type parameters, and shape of an array constructor are determined
by the form of the constructor. Its shape is of rank one and of size equal to the
number of elements. Its type and type parameters are those of any element of
the constructor because they must all be of the same type and type parameters.
Therefore, the type and type parameters of the array constructor

(/ 1_1, 123_1, -10_1 /)

are integer and kind value 1.

The type of a structure constructor is the derived type used as the name of the
constructor. A structure constructor is always a scalar. A structure has no type
parameters. So, the type of the structure constructor

PERSON(56, ’Father’)

is the derived type PERSON. (See Section 4.6 for the type definition PERSON.)

The type, type parameters, and shape of a function are determined either by:

• an implicit type declaration for the function within the program unit
referencing the function,

• an explicit type declaration for the function within the program unit
referencing the function (just like a variable), or

Expressions and Assignment 257

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• an explicit interface to the function (12.6.1). (When the interface is not
explicit, the function is either an external function or a statement function.)

In case the interface is explicit, these properties are determined by:

• the type and other specification statements for the function in an interface
block within the program unit referencing the function

• the type and other specification statements for the internal or module
procedure specifying the function

• the description of the particular intrinsic function being referenced (see
Appendix A)

Note, however, that because intrinsic functions and functions with interface
blocks may be generic, these properties are determined by the type, type
parameters, and shapes of the actual arguments of the particular function
reference.

For example, consider the statements

REAL FUNCTION FCN (X)
DIMENSION FCN (10, 15)

as part of the program unit specifying an internal function FCN. A reference to
FCN (3.3) is of type default real with shape (10, 15). As a second example,
consider

REAL (SINGLE) X (10, 10, 10)
. . .
. . . SIN (X) . . .

The interface to SIN is specified by the definition of the sine function in
Appendix A. In this case, the function reference SIN (X) is of type real with
kind parameter value SINGLE and of shape (10, 10, 10).

As mentioned above, the interface is implicit if the function is external (and no
interface block is provided) or is a statement function. In these cases, the shape
is always that of a scalar, and the type and type parameters are determined by
the implicit type declaration rules in effect, or by an explicit type declaration
for the function name. For example, given the code fragment:

IMPLICIT INTEGER (SHORT) (A-F)
. . .
. . . FCN (X) . . .

258 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

FCN (X) is a scalar of type integer with kind type parameter value SHORT.

The one case for variables and functions that is not straightforward is the
determination of the shape of a variable when it is of deferred shape or of
assumed shape. For deferred-shape arrays, the rank is known from the
declaration but the sizes in each dimension are determined as the result of
executing an ALLOCATE statement or a pointer assignment statement. For
assumed-shape arrays, the rank is also known from the declaration but the
sizes are determined by information passed into the subprogram through a
descriptor in the argument sequence. In the case of pointers, the shape of the
object is that of the target associated with (pointed to by) the pointer. The
shape of deferred-shape and assumed-shape arrays thus cannot be determined
in general until execution time.

7.2.8.2 Type and Type Parameters of the Result of an Operation

The type of the result of an intrinsic operation is determined by the type of the
operands and the intrinsic operation and is specified by Table 7-3.

For nonnumeric operations, the type parameters of the result of an operation
are determined as follows. For the relational intrinsic operations, the kind type
parameter is that for the default logical type. For the logical intrinsic
operations, the kind type parameter is that of the operands if the operands
have the same kind type parameter, and otherwise is processor dependent. For
the character intrinsic operation (note—there is only one, namely //), the
operands must have the same kind type parameter and the result has that kind
type parameter. The length type parameter value for the result is the sum of
the length type parameters of the operands.

For example, consider the operation C1 // C2 where C1 and C2 are of type
character with kind type parameters 2 and lengths 7 and 18. The result is of
type character with kind type parameter value 2 and length type parameter
value 25.

For numeric intrinsic operations, the kind type parameter value of the result is
determined as follows:

• For unary operations, it is that of the operand.

• For binary operations, if the operands are of different types (for example,
I+R), it is the kind type parameter of the operand with the same type as the
result (as specified by Table 7-3).

Expressions and Assignment 259

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• For binary operations, if the operands are of the same type and kind
type parameters, it is the kind type parameter of the operands.

• For binary operations, if the operands are both of type integer but with
different kind type parameters, it is the kind type parameter of the
operand with the larger decimal exponent range. If the decimal
exponent ranges of the two kinds are the same, it is processor
dependent.

• For binary operations, if the operands are both of type real or complex
but with different kind type parameters, it is the kind type parameter
of the operand with the larger decimal precision. If the decimal
precisions are the same, the kind type parameter is processor
dependent.

For numeric intrinsic operations, an easy way to remember the result type
and type parameter rules is to consider that the three numeric
types—integer, real, and complex—are ordered by the increasing generality
of numbers: integers are contained in the set of real numbers and real
numbers are contained in the set of complex numbers. Within the integer
type, the kinds are ordered by increasing decimal exponent ranges. Within
the real and complex types, the kinds for each type are ordered by
increasing decimal precision. If there is more than one kind of integer with
the same decimal exponent range, the ordering is processor dependent; a
similar processor-dependent ordering is selected for the real and complex
types, if there is more than one kind with the same decimal precision.

Using this model, the result type of a numeric intrinsic operation is the
same type as the operand of the greater generality. For the result type
parameter, the rule is complicated: if one or both of the operands is of type
real or complex, the type parameter is that of the set of numbers of the
more general type described above and with a precision at least as large as
the precision of the operands; if both are of type integer, the result type
parameter is of a set of numbers that has a range at least as large as the
range of the operands.

To illustrate this ordering, consider an implementation that has two kinds
of integers (kind=1 is a 16-bit format; kind=2 is a 32-bit format) with
decimal exponent ranges 4 and 10, two kinds of reals (kind=1 is a 32-bit
format; kind=2 is a 64-bit format) with decimal precisions 6 and 15, and
two kinds of complex numbers (kind=1 is a 64-bit format; kind=2 is a 128-
bit format) with decimal precisions 6 and 15. Figure 7-4 gives the ordering

260 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

of the integer, real, and complex types that are likely for the common 32- and
64-bit representations used by most workstations. Let variables of the 6
numeric types be I4, I10, R6, R15, C6, and C15, where the letter designates the
type and the digits designate the decimal exponent range or decimal precision.
Using this ordering, Table 7-4 gives the type and type parameters of some
simple expressions.

The type and type parameter values of a defined operation are determined by
the interface block (or blocks) for the referenced operation and are the type and
type parameters of the name of the function specified by the interface block.

Table 7-4 Type and type parameters of some simple expressions

Expressions
Type and type parameters are

the same as the variable

I4 + R6 R6

I10 ∗ C15 C15

C6 / C15 C15

I4 − I10 I10

I4 ∗∗ C6 C6

R15 + C6 C15

C6 ∗∗ I4 C6

I10 − R6 R6

integer
exp=4
kind=1
16-bit

integer
exp=10
kind=2
32-bit

real
prec=15
kind=2
64-bit

complex
prec=6
kind=1
64-bit

complex
prec=15
kind=2
128-bit

I4 I10 R6 R15 C6 C15

Figure 7-4 Example ordering of numeric types

real
prec=6
kind=1
32-bit

⊂ ⊂ ⊂ ⊂ ⊂

Expressions and Assignment 261

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Note that the operator may be generic and therefore the type and type
parameters may be determined by the operands. For example, consider the
interface:

INTERFACE OPERATOR (.PLUS.)

TYPE (SET) FCN_SET_PLUS (X, Y)
TYPE (SET) X, Y

END FUNCTION FCN_SET_PLUS

TYPE (RATIONAL) FCN_RAT_PLUS (X, Y)
TYPE (RATIONAL) X, Y

END FUNCTION FCN_RAT_PLUS

END INTERFACE

The operation A .PLUS. B where A and B are of type RATIONAL is an
expression of type RATIONAL with no type parameters. The operation
C .PLUS. D where C and D are of type SET is an expression of type SET with
no type parameters.

7.2.8.3 Shape of an Expression

The shape of an expression is determined by the shape of each operand in the
expression in the same recursive manner as for the type and type parameters
for an expression. That is, the shape of an expression is the shape of the result
of the last operation determined by the interpretation of the expression.

However, the shape rules are simplified considerably by the requirement that
the operands of binary intrinsic operations must be in shape conformance; that
is, two operands are in shape conformance if both are arrays of the same
shape, or one or both operands are scalars. The operands of a defined
operation have no such requirement but must match the shape of the
corresponding dummy arguments of the defining function.

For primaries that are constants, variables, constructors, or functions, the shape
is that of the constant, variable, constructor, or function name. Recall that
structure constructors are always scalar, and array constructors are always
rank-one arrays of size equal to the number of elements in the constructor. For
unary intrinsic operations, the shape of the result is that of the operand. For
binary intrinsic operations, the shape is that of the array operand if there is one
and is scalar otherwise. For defined operations, the shape is that of the
function name specifying the operation.

262 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

For example, consider the intrinsic operation A + B where A and B are of type
default integer and default real respectively; assume A is a scalar and B is an
array of shape (3, 5). Then, the result is of type default real with shape (3, 5).

As a second example, consider the expression A // B as a defined operation
where A is a scalar of type character with kind type parameter value 1 and of
length 25, and B is an array of type character with kind type parameter value 2,
of length 30, and of shape (10). Suppose further there is the following interface
for the // operator:

INTERFACE OPERATOR (//)

FUNCTION FCN_CONCAT (X, Y)
CHARACTER (*, 1) X
CHARACTER (*, 2) Y (:)
CHARACTER (LEN (X) + LEN (Y), 2) FCN_CONCAT (SIZE (Y))

END FUNCTION FCN_CONCAT

END INTERFACE

The type declaration for FCN_CONCAT determines that the result of the
expression A // B is of type character with kind type parameter 2. In addition,
the same type declaration specifies that the length of the result is the sum of
the lengths of the operands A and B, that is, of length 55. The shape is specified
to be of rank one and of size equal to the size of the actual argument B
corresponding to the dummy argument Y, that is, of shape (10).

7.2.8.4 The Extents of an Expression

For most contexts, the extents (lower and upper bounds) of an array expression
are not needed; only the sizes of each dimension are needed to satisfy array
conformance requirements for expressions. The extents of an array expression
when it is the ARRAY argument (first positional argument) of the LBOUND
and UBOUND intrinsic functions are needed, however.

The functions LBOUND and UBOUND have two keyword arguments ARRAY
and DIM; ARRAY is an array expression and DIM, which is optional, is an
integer. If the DIM argument is present, LBOUND and UBOUND return the
lower and upper bounds, respectively, of the dimension specified by the DIM
argument. If DIM is absent, they return a rank-one array of the lower and
upper bounds, respectively, of all dimensions of the ARRAY argument. As
described below, these functions distinguish the special cases when the array

Expressions and Assignment 263

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

argument is a name or structure component with no section subscript list from
the general case when the array argument is a more general expression. Note
that if A is a structure with an array component B, A % B is treated as if it
were an array name and not an expression.

When the ARRAY argument is an array expression that is not a name or a
structure component, the function LBOUND returns 1 if the DIM argument is
specified and returns a rank-one array of 1s if the DIM argument is absent. For
the same conditions, the function UBOUND returns as the upper bound the
size of the requested dimension or the size of all dimensions in a rank-one
array.

When the ARRAY argument is an array name or a structure component with
no section subscript list, there are four cases to distinguish depending on the
array specifier for the name.

Explicit-Shape Specifier. LBOUND and UBOUND functions return the
declared lower and upper bounds of the array name or the structure
component with no section subscript list.

Examples:

INTEGER A (2:10, 11:12)

TYPE PASSENGER_INFO
INTEGER NUMBER
INTEGER TICKET_IDS (2:500)

END TYPE PASSENGER_INFO

TYPE (PASSENGER_INFO) PAL, MANY (3:10)

LBOUND (A) has the value (2, 11), and UBOUND (A, 1) has the value 10.
LBOUND (PAL % TICKET_IDS) has the value (2) and UBOUND (MANY %
TICKET_IDS(2), 1) has the value 10.

Assumed-Shape Specifier. The name is a dummy argument whose extents are
determined by the corresponding actual argument. The dummy argument may
have its lower bound in a particular dimension specified but if not, the lower
bound is defined to be 1. The LBOUND function returns these lower bounds.
The upper bound for a particular dimension is the extent of the actual
argument in that dimension, if no lower bound is specified for the dummy
argument, and is the extent minus 1 plus the lower bound if a lower bound is
specified. The UBOUND function returns these upper bounds.

264 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Example:

REAL C (2:10, 11:12)
. . .

CALL S (C (4:8, 7:9))
CONTAINS

SUBROUTINE S (A)
REAL A (:, 2:)

. . .
! Reference to LBOUND (A) and UBOUND (A)

. . .

Inside the body of subroutine S, LBOUND (A) has the value (1, 2), because the
array starts at subscript position 1 by default in the first dimension and starts
at subscript position 2 by declaration in the second dimension. UBOUND (A)
has the value (5, 4), because there are 5 subscript positions (4 to 8) in the first
dimension of the actual argument corresponding to A, and 3 subscript
positions (7 to 9) in the second dimension of the same actual argument and the
subscripts are specified to start at 2 by the declaration of the dummy argument
A.

Assumed-Size Specifier. The name is a dummy argument whose upper and
lower bounds in all but the last dimension are declared for the dummy
argument. The lower bound for the last dimension may be specified in the
assumed-shape specifier but, if absent, the lower bound is 1. The LBOUND
function returns these lower bounds. The upper bound for all dimensions
except the last one is known to the subprogram but the upper bound in the last
dimension is not known. The UBOUND function, therefore, must not be
referenced with the first argument being the name of an assumed-size array
and no second argument, or the first argument being the name of an assumed-
size array and the second argument specifying the last dimension of the array.
Otherwise, the UBOUND function returns the upper bounds as declared for all
but the last dimension.

Example:

REAL C (2:10, 11:12)
. . .

CALL S (C (4:8, 7:9))
CONTAINS

Expressions and Assignment 265

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SUBROUTINE S (A)
REAL A (-2:2, *)

. . .
! Reference to LBOUND (A, 1) and UBOUND (A (:, 2))
! A reference to UBOUND (A) would be illegal.
! A reference to UBOUND (A, 2) would be illegal.

. . .

Inside the body of subroutine S, LBOUND (A, 1) has the value –2, and
UBOUND (A (:, 2)) has the value (5) because A(:,2) is an expression, which is
an array section, not an array name.

Deferred-Shape Specifier. The name is the name of an allocatable array, an
array pointer, or a structure component with one of its part references being an
allocatable or pointer array. As such, if the array or a part reference has not
been allocated or associated with a target, the LBOUND and UBOUND
functions must not be invoked with the ARRAY argument equal to such an
array name. If it is allocated, the functions LBOUND and UBOUND return the
lower and upper bounds specified in the ALLOCATE statement that allocated
the array. If no lower bound is specified, it is taken as 1. If it is an array
pointer, either its target has been allocated by an ALLOCATE statement or its
target has become associated with the pointer using a pointer assignment
statement. In the former case, the LBOUND and UBOUND functions return the
lower and upper bounds specified in the ALLOCATE statement. In the latter
case, the LBOUND and UBOUND functions return values as if the ARRAY
argument were equal to the target used in the pointer assignment statement
that created the last association for the pointer.

Example:

REAL, ALLOCATABLE :: A (:, :)
. . .

ALLOCATE (A (5, 7:9))
. . .

! Reference to LBOUND (A) and UBOUND (A)
. . .

After the ALLOCATE statement above is executed, LBOUND (A) has the
value (1, 7), and UBOUND (A) has the value (5, 9).

266 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.2.9 Special Expressions

Expressions may appear in statements other than assignment statements, in
particular in specification statements. In many cases, such expressions are
restricted in some way; for example, the operands in expressions in a
PARAMETER statement are restricted to essentially constants. Throughout the
standard, there are terms used for the various categories of expressions
allowed in specific syntactic contexts. For example, the expressions that can be
used in PARAMETER statements are called initialization expressions and can
be evaluated at the time the program is compiled. Initialization expressions are
restricted forms of constant expressions.

The expressions that can be used as array bounds and character lengths in
specification statements are called specification expressions and are those that
are scalar and of type integer that can be evaluated on entry to the program
unit at the time of execution. The remainder of this subsection describes and
defines such limited expressions and summarizes where they can be used.

7.2.9.1 Constant Expressions

A constant expression is an extended constant or is an expression consisting of
intrinsic operators whose operands are extended constants. An extended
constant in this context is defined as any one of the following:

1. a literal or named constant, or a subobject of a constant where each
subscript, section subscript, or starting and ending point of a substring
range is a constant expression

2. an array constructor where every subexpression has primaries that are
constant expressions or are implied-DO variables of the array constructor

3. a structure constructor where each component is a constant expression

4. an intrinsic function reference that can be evaluated at compile-time

5. a constant expression enclosed in parentheses.

The restriction in item (4) above to intrinsic functions that can be evaluated at
compile-time eliminates the use of the intrinsic functions PRESENT,
ALLOCATED, and ASSOCIATED, and requires that each argument of the
intrinsic function reference be a constant expression or a variable whose type
parameters or bounds are known at compile-time. This restriction excludes, for
example, named variables that are assumed-shape arrays, assumed-size arrays

Expressions and Assignment 267

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

for inquiries requiring the size of the last dimension, and variables that are
pointer arrays or allocatable arrays. For example, if an array X has explicit
bounds in all dimensions, an inquiry such as SIZE (X) can be computed at
compile-time, and SIZE (X) + 10 is considered a constant expression.

Constant expressions may be used in any executable statement where general
expressions (that is, unrestricted expressions) are permitted.

Examples of constant expressions are:

2 An integer literal constant

3.0E+01 A real literal constant

–7.5_QUAD
A real literal constant where QUAD

is a named integer constant

7_LONG
An integer literal constant where LONG

is a named integer constant

(/ 7, (I, I = 1, 10) /) An array constructor

RATIONAL (1, 2+J)
A structure constructor where RATIONAL is a

derived type and J is a named integer constant

LBOUND (A,1)+3
A reference to an inquiry intrinsic function

where A is an explicit-shape array

INT (N, 2) An intrinsic function where N is a named constant

KIND (X)
An intrinsic function where X is a real variable

with known type parameter

REAL (10+I)
An intrinsic function where I is

a named integer constant

COUNT (A)
An intrinsic function where A is

a named logical constant

LOG (2.0) An intrinsic function

I/3.3 + J∗∗3.3
A numeric expression where I and J are

named integer constants

SUM (A)
A reference to a transformational intrinsic function

where A is a named integer array constant

268 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.2.9.2 Initialization Expressions

An initialization expression is a constant expression restricted as follows:

1. The exponentiation operator (∗∗) is allowed only when the power (second
operand) is of type integer; that is, X ∗∗ Y is allowed only if Y is of type
integer.

2. Subscripts, section subscripts, starting and ending points of substring
ranges, components of structure constructors, and arguments of intrinsic
functions must be initialization expressions.

3. The elements of array constructors must be initialization expressions or
implied-DOs for which the array constructor values and implied-DO
parameters are expressions whose primaries are initialization expressions
or implied-DO variables.

4. An elemental intrinsic function in an initialization expression must have
arguments of type integer or character, and must return a result of type
integer or character.

5. A transformational intrinsic function in an initialization expression must
be one of the transformational intrinsic functions REPEAT, RESHAPE,
SELECTED_INT_KIND, SELECTED_REAL_KIND, TRANSFER, and TRIM,
and must have initialization expressions as arguments; this excludes the
use of the transformational functions ALL, ANY, COUNT, CSHIFT,
DOT_PRODUCT, EOSHIFT, MATMUL, MAXLOC, MAXVAL, MINLOC,
MINVAL, PACK, PRODUCT, SPREAD, SUM, TRANSPOSE, and UNPACK.

6. An inquiry intrinsic function is allowed, except that the arguments must
either be initialization expressions or variables whose type parameters or
bounds inquired about are not assumed, not defined by an ALLOCATE
statement, or not defined by pointer assignment.

7. Any subexpression enclosed in parentheses must be an initialization
expression.

All but the last five examples in Section 7.2.9.1 are initialization expressions.
The last five are not because initialization expressions cannot contain functions
that return results of type real (REAL, LOG), must not reference certain

Expressions and Assignment 269

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

transformational functions (COUNT, SUM), or use the exponentiation operator
when the second operand is of type real. Further examples of initialization
expressions are:

Initialization expressions must be used in the following contexts:

1. as initial values following the equal signs in PARAMETER statements and
in type declaration statements with the PARAMETER attribute

2. as initial values following the equal signs for entities in type declaration
statements

3. as expressions in structure constructors in the DATA statement value list

4. as kind type parameter values in type declaration statements; in this case,
they also must be scalar and of type integer

5. as actual arguments for the KIND dummy argument of the conversion
intrinsic functions AINT, ANINT, CHAR, CMPLX, INT, LOGICAL, NINT,
REAL; in this case, they also must be scalar and of type integer

6. as case values in the CASE statement; in this situation, they must be scalar
and of type integer, logical, or character

7. as subscript or substring range expressions of equivalence objects in an
EQUIVALENCE statement; in this case, they must be scalar and of type
integer

SIZE (A, 1) * 4
An integer expression where A is

an array with an explicit shape

KIND (0.0D0)
An inquiry function

with a constant argument

SELECTED_REAL_KIND (6,
30)

An inquiry function
with constant arguments

SELECTED_INT_KIND (2 * R)

An inquiry function with an argument
that is an initialization expression,
where R is a previously declared
named constant of type integer

270 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Thus, initialization expressions must be used for situations where the value of
the expression is needed at compile time. Note that the initialization
expressions do not include intrinsic functions that return values of type real,
logical, or complex, or have arguments of type real, logical, or complex.

7.2.9.3 Specification Expressions

Specification expressions are forms of restricted expressions (defined below),
limited in type and rank. Briefly, a restricted expression is limited to constants
and certain variables accessible to the scoping unit whose values can be
determined on entry to the programming unit before any executable statement
is executed. For example, variables that are dummy arguments, are in a
common block, are in a host program unit, or are in a module made accessible
to the program unit can be evaluated on entry to a program unit. Array
constructors, structure constructors, intrinsic function references, and
parenthesized expressions made up of these primaries must depend only on
restricted expressions as building blocks for operands in a restricted
expression. To be specific, a restricted expression is an expression in which
each operation is intrinsic and each primary is limited to one of the following:

1. a constant or constant subobject

2. a variable that is a dummy argument

3. a variable that is in a common block

4. a variable made accessible from a module

5. a variable from the host program unit

6. an array constructor where every expression has primaries that are
restricted expressions or are implied-DO variables of the array constructor

7. a structure constructor where each component is a restricted expression

8. an elemental intrinsic function whose result is of type integer or character
and whose arguments are all restricted expressions of type integer or
character

9. one of the transformational intrinsic functions REPEAT, RESHAPE,
SELECTED_INT_KIND, SELECTED_REAL_KIND, TRANSFER, and TRIM,
where each argument is a restricted expression of type integer or character
(this excludes the use of the transformational functions ALL, ANY,

Expressions and Assignment 271

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

COUNT, CSHIFT, DOT_PRODUCT, EOSHIFT, MATMUL, MAXLOC,
MAXVAL, MINLOC, MINVAL, PACK, PRODUCT, SPREAD, SUM,
TRANSPOSE, and UNPACK).

10. an inquiry intrinsic function except PRESENT, ALLOCATED, and
ASSOCIATED where each argument is either:

a. a restricted expression, or

b. a variable whose bounds or type parameters inquired about are not
assumed, not defined by an ALLOCATE statement, and not defined by
a pointer assignment statement

where any subscript, section subscript, and starting or ending point of a
substring range is a restricted expression.

A specification expression is a restricted expression that has a scalar value and
is of type integer. Specification expressions are used as bounds for arrays and
length parameter values for character entities in type declarations, attribute
specifications, dimension declarations, and other specification statements (see
Table 7-5).

7.2.9.4 Initialization and Specification Expressions in Declarations

The following rules and restrictions apply to the use of initialization and
specification expressions in specification statements.

Rules and restrictions:

1. The type and type parameters of a variable or named constant in one of
these expressions must be specified in a prior specification in the same
scoping unit, in a host scoping unit, in a module scoping unit made
accessible to the current scoping unit, or by the implicit typing rules in
effect. If the variable or named constant is explicitly given these attributes
in a subsequent type declaration statement, it must confirm the implicit
type and type parameters.

2. If an element of an array is referenced in one of these expressions, the array
bounds must be specified in a prior specification.

3. If a specification expression includes a variable that provides a value
within the expression, the expression must appear within the specification
part of a subprogram. For example, the variable N in the program segment:

272 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

INTEGER N
COMMON N
REAL A (N)

is providing a value that determines the size of the array A. This program
segment must not appear in a main program but may appear in the
specification part of a subprogram.

A prior specification in the above cases may be in the same specification
statement, but to the left of the reference. For example, the following
declarations are valid:

INTEGER, DIMENSION (4), PARAMETER : : A = (/ 4, 3, 2, 1 /)
REAL, DIMENSION (A (2)) :: B, C (SIZE (B))

B and C are of size 3 (the second element of the constant array A). But the
following declaration is invalid because SIZE (E) precedes E:

REAL, DIMENSION (2) :: D (SIZE (E)), E

7.2.9.5 Uses of the Various Kinds of Expressions

The various kinds of expressions are somewhat confusing and it is difficult to
remember where they can be used. To summarize the differences, Section 7.2.4
specifies the most general kind of expression; the other kinds of expressions
are restrictions of the most general kind. The classification of expressions forms
two orderings, each from most general to least general, as follows:

• expression, restricted expression, and specification expression

• expression, constant expression, and initialization expression

The relationship between the various kinds of expression can be seen in the
diagram in Figure 7-5.

Note that initialization expressions are not a subset of specification expressions
because the result of an initialization expression can be of any type, whereas
the result of a specification expression must be of type integer and scalar. Also,
specification expressions are not a subset of initialization expressions because
specification expressions allow certain variables (such as dummy arguments
and variables in common blocks) to be primaries, whereas initialization
expressions do not allow such variables.

Expressions and Assignment 273

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Table 7-5 describes in detail the differences between the various kinds of
expressions. Table 7-6 summarizes where each of these kinds of expressions are
used in other Fortran statements and gives the restrictions as to their type and
rank when used in the various contexts. For example, Table 7-5 indicates that
initialization and specification expressions are different in that initialization
expressions can be array valued, whereas specification expressions are scalar. A
consequence of this difference, as indicated in Table 7-6, is that an initialization
expression is used in a type declaration statement or a PARAMETER statement
to specify the value of a named constant array, whereas a specification
expression is used to specify the bounds of an array in a declaration statement.

Also in Table 7-6 are the kinds of expressions that can be used as data-implied-
do parameters and subscripts of DATA statement objects in a DATA statement;
such expressions must be scalar integer expressions in which each primary is
either a constant or a variable of a containing implied-do, and each operation
must be an intrinsic operation. (These expressions are anomalous in terms of
the above categorization of expressions mainly because of the limited scope of
the DO variables in data-implied-do lists and because the DATA statement is
treated by many implementations as a compile-time assignment statement.)

Specification

Restricted

Initialization

Constant

General

Figure 7-5 Diagram describing relationships between the kinds of expressions

274 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Table 7-5 Differences and similarities between initialization and specification expressions

Kind of expression

Property Initialization Specification

Character result Yes No1

Integer result Yes Yes

Scalar result Yes Yes

Array result Yes No

Variables as primaries
(limited to dummy arguments,
common objects, host objects,
module objects)

No Yes

Elemental intrinsic functions of type integer
and character as primaries

Yes Yes

Elemental intrinsic functions of type real, complex,
logical, and derived type as primaries

No No

Only constants as primaries Yes No

Only constant subscripts, strides, character lengths Yes No

One of the transformational intrinsic functions
REPEAT, RESHAPE, SELECTED_INT_KIND,
SELECTED_REAL_KIND, TRANSFER,
or TRIM as primaries

Yes Yes

Inquiry intrinsic functions (not including
ALLOCATED, ASSOCIATED, or PRESENT)
as primaries

Yes Yes

Note 1: Expression results of type character are allowed if they are arguments of certain intrinsic functions.

Expressions and Assignment 275

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Table 7-6 Kinds of expressions and their uses

Kinds of expressions

Arb. Init. Spec.

Context expr. expr. expr. Type1 Rank2

Bounds in declaration statement3 No No Yes I Scalar

Lengths in declaration statement4 No No Yes I Scalar

Subscripts and substring ranges in EQUIVALENCE statement No Yes No I Scalar

Values in CASE statement No Yes No I,L,C Scalar

Kind parameters in declaration statement No Yes No I Scalar

Kind arguments in intrinsics No Yes No I Scalar

Initial value in PARAMETER and type declaration statement No Yes No Any Any

Data-implied-DO parameters No Restr.5 No I Scalar

Assignment Yes Yes Yes Any Any

Subscripts in executable statement Yes Yes Yes I ≤1

Strides in executable statement Yes Yes Yes I Scalar

Substring ranges in executable statement Yes Yes Yes I Scalar

Expression in SELECT CASE Yes Yes Yes I,L,C Scalar

IF-THEN statement Yes Yes Yes L Scalar

ELSE-IF statement Yes Yes Yes L Scalar

IF statement Yes Yes Yes L Scalar

Arithmetic IF statement Yes Yes Yes I,R Scalar

DO statement Yes Yes Yes I,R Scalar

Mask in WHERE statement Yes Yes Yes L Array

Mask in WHERE construct Yes Yes Yes L Array

Output item list Yes Yes Yes Any Any

I/O specifier values except FMT= specifier Yes Yes Yes I,C Scalar

I/O FMT= specifier value Yes Yes Yes C(def) Any

RETURN statement Yes Yes Yes I Scalar

Computed GO TO statement Yes Yes Yes I Scalar

Array-constructor-implied-DO parameters Yes Yes Yes I Scalar

I/O-implied-DO parameters Yes Yes Yes I,R Scalar

Actual arguments Yes Yes Yes Any Any

Expressions in statement function definitions Yes Yes Yes Any Scalar

276 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Notes for previous table.

For example,

DATA ((A (I*3) , I = 1+2*J, 5*J/3) , J = 1, 10)/ ... /

the expressions I∗3, 1+2∗J, 5∗J/3, 1, and 10 are all expressions allowed in
subscripts and DO parameter expressions in an implied-do list in a DATA
statement. However, expressions such as:

RADIX(I)
N ! where N is not a named constant nor an

! implied-do variable in a containing implied-do list

are not allowed expressions for data-implied-do parameters or subscripts of
DATA statement objects.

Thus, such special expressions are restricted forms of initialization expressions
in the sense that the primaries must not include references to any intrinsic
function. On the other hand, they are extended forms of initialization
expressions in the sense that they permit the use of implied-do variables that
have the scope of the implied-do list—namely, are implied-do variables of the
implied-do or a containing implied-do in the DATA statement.

7.3 Interpretation of Expressions
The interpretation of an expression specifies the value of the expression when
it is evaluated. As with the rules for forming an expression, the rules for
interpreting an expression are described from the bottom up, from the
interpretation of constants, variables, constructors, and functions to the
interpretation of each subexpression to the interpretation of the entire
expression.

Note 1: “Any” in this column means any intrinsic or derived type.

Note 2: “Any” in this column means that the result may be a scalar or an array of any rank (less than 8).

Note 3: The relevant declaration statements are type declaration, component definition, DIMENSION,
TARGET, and COMMON statements.

Note 4: The relevant declaration statements are type declaration, component definition, IMPLICIT, and
FUNCTION statements.

Note 5: A data-implied DO parameter may be an expression involving intrinsic operations with constants
and variables as operands.

Expressions and Assignment 277

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

When an expression is interpreted, the value of each constant and variable is
determined. Once these are determined, the operations for which they are
operands are interpreted in precedence order, and a value for the operation is
determined by the interpretation rules for each operator. This repeats
recursively until the entire expression is interpreted and a value is determined.

The interpretation rules for operations are of two sorts: rules for the intrinsic
operations (intrinsic operators with operands of the intrinsic types specified by
Table 7-3) and rules for the defined operations (provided by the programmer
using function subprograms). Except for integer division, the intrinsic
operations are interpreted in the usual mathematical way, subject to
representation limitations imposed by a computer (for example, a finite range
of integers, or finite precision of real numbers). The defined operations are
interpreted by a function program that is specified in an interface block with a
generic specifier of the form OPERATOR (defined-operator).

The interpretation rules for an intrinsic or a defined operation are independent
of the context in which the expression occurs. That is, the type, type
parameters, and interpretation of any expression do not depend on any part of
a larger expression in which it occurs. This statement is often misunderstood. It
does not mean that in all cases the results of individual operations with the
same operands must be the same in all contexts. The reason is that the actual
results of the intrinsic operations (except for logical, character, and possibly
integer operations) are not specified precisely. For example, the expression
A + B in the assignment statement X = A + B where A and B are of type real
may not yield the same results as the same expression A + B in the expression
A+B .EQ. X. The result of A + B is required to be only an approximation of
the mathematical result of adding A to B, and different numerical
approximations are allowed in different contexts. In terms of understanding
the behavior of a program, this behavior is not desirable and rarely happens in
practice. On the other hand, it allows an implementation the freedom to
optimize the evaluation of certain expressions to speed up the program.

7.3.1 Interpretation of the Intrinsic Operations

When the arguments of the intrinsic operators satisfy the requirements of Table
7-3, the operations are intrinsic and are interpreted in the usual mathematical
way as described in Table 7-7, except for integer division. For example, the
binary operator ∗ is interpreted as the mathematical operation multiplication
and the unary operator – is interpreted as negation.

278 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Table 7-7 Interpretation of the intrinsic operations

Use of operator Interpretation

** Raise to the power

/ Divide by

* Multiply by

– Subtract from

– Negate

+ Add and

+ Same as

// Concatenate with

.LT. less than

< less than

.LE. less than or equal to

<= less than or equal to

.GT. greater than

> greater than

.GE. greater than or equal to

>= greater than or equal to

.EQ. equal to

== equal to

.NE. not equal to

/= not equal to

.NOT. True if is false

.AND. True if and are both true

.OR. True if and/or is true

.NEQV. True if either or is true, but not both

.EQV. True if both and are true or both are false

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x2 x1

x2 x2

x1 x2 x1 x2

x2 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x2 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

x1 x2 x1 x2

Expressions and Assignment 279

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.3.1.1 Interpretation of Numeric Intrinsic Operations

Except for exponentiation to an integer power, when an operand for a numeric
intrinsic operation does not have the same type or type parameters as the
result of the operation, the operand is converted to the type, type parameter,
and shape of the result and the operation is then performed. For
exponentiation to an integer power, the operation may be performed without
the conversion of the integer power, say, by developing binary powers of the
first operand and multiplying them together to obtain an efficient computation
of the result.

For integer division, when both operands are of type integer, the result must be
of type integer, but the mathematical quotient is, in general, not an integer. In
this case, the result is specified to be the integer value closest to the quotient
and between zero and the quotient inclusively.

For exponentiation, there are three cases that need to be further described.
When both operands are of type integer, the result must be of type integer;
when is negative, the operation ∗∗ is interpreted as the quotient
1/(∗∗). Note that it is subject to the rules for integer division. For
example, 4 ∗∗ (–2) is 0.

The second case occurs when the first operand is a negative value of type
integer or real and the second operand is of type real. In this case, the result is,
in general, a complex number but the returned type is real. A program is
invalid if it causes a reference to the exponentiation operator with such values.
For example, a program that contains the expression (–1.0) ∗∗ 0.5 and causes
the expression to be evaluated is an invalid program.

The third case occurs when the second operatnd is of type real or of type
complex. In this case, the result returned is the principal value of the
mathematical power function .

7.3.1.2 Interpretation of Nonnumeric Intrinsic Operations

The intrinsic character operation performs the usual concatenation operation.
For this operation, the operands must be of type character with the same kind
type parameters. The length parameter values may be different. The result is of
type character with the kind type parameter of its operands and a length type
parameter value equal to the sum of the lengths of the operands. The result

x2 x1 x2
x1 x2)–(

x1
x2

280 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

consists of the characters of the first operand in order followed by those of the
second operand in order. For example, ’Fortranb’ // ’b90’ yields the result
’Fortranbb90’.

The intrinsic relational operations perform the usual comparison operations for
character and most numeric operands. For these operations, the operands must
both be of numeric type or both be of character type. The kind type parameter
values of the operands of the numeric types may be different but must be the
same for operands of type character. However, the lengths of the character
operands may be different. Complex operands must only be compared for
equality and inequality; the reason is that complex numbers are not totally
ordered. The result in all cases is of type default logical.

When the operands of an intrinsic relational operation are both numeric, but of
different types or type parameters, each operand is converted to the type and
type parameters of the sum of the two operands. Then, the operands are
compared according to the usual mathematical interpretation of the particular
relational operator.

When the operands are both of type character, the shorter one is padded on the
right with blank padding characters until the operands are of equal length.
Then, the operands are compared one character at a time in order, starting
from the leftmost character of each operand until the corresponding characters
differ. The first operand is less than or greater than the second operand
according to whether the characters in the first position where they differ are
less than or greater than in the processor collating sequence. The operands are
equal if both are of zero length or all corresponding characters are equal,
including the padding characters. Note that the padding character is the
Fortran blank (3.1.1) when the operands are of default character type and is a
processor specified character for nondefault character types. Also, all
comparisons, except equality (.EQ. or ==) and inequality (.NE. or /=), are
processor dependent as they depend on the processor-dependent collating
sequence.

There is no ordering defined for logical values. However, logical values may be
compared for equality and inequality by using the logical equivalence and not
equivalence operators .EQV. and .NEQV. That is, L1 .EQV. L2 is true when L1
and L2 are equal and is false otherwise; L1 .NEQV. L2 is true if L1 and L2 are
not equal and is false otherwise.

Expressions and Assignment 281

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The intrinsic logical operations perform many of the common operations for
logical computation. For these operations, the operands must both be of logical
type but may have different kind type parameters. When the kind type
parameters are the same, the kind parameter value of the result is that value; if
different, the kind parameter value of the result is processor dependent. The
values of the result in all cases are specified inTable 7-8.

7.3.1.3 Interpretation of Intrinsic Operations with Array Operands

Each of the intrinsic operations may have array operands; however, for the
binary intrinsic operations, the operands must both be of the same shape, if
both are arrays. When one operand is an array and the other is a scalar, the
operation behaves as if the scalar operand were broadcast to an array of the
result shape and the operation performed. Broadcasting a scalar to an array
means creating an array of elements all equal to the scalar. This broadcast need
not actually occur if the operation can be performed without it.

For both the unary and binary intrinsic operators, the operation is interpreted
element-by-element; that is, the scalar operation is performed on each element
of the operand or operands. For example, if A and B are arrays of the same
shape, the expression A ∗ B is interpreted by taking each element of A and the
corresponding element of B and multiplying them together using the scalar
intrinsic operation ∗ to determine the corresponding element of the result.
Note that this is not the same as matrix multiplication. As a second example,
the expression –A is interpreted by taking each element of A and negating it to
determine the corresponding element of the result.

Table 7-8 The values of operations involving logical intrinsic operators

.NOT. .AND.
 .OR.

 .EQV. .NEQV.

true true false true true true false

true false true false true false true

false true false false true false true

false false true false false true false

x1 x2 x2

x1
x2

x1 x2
x1

x2

x1
x2

282 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

For intrinsic operations that appear in masked assignment statements (7.5.4)
(in WHERE blocks, ELSEWHERE blocks, or in a WHERE statement), the scalar
operation is performed only for those elements selected by the logical mask
expression.

Note that there is no order specified for the interpretation of the scalar
operations. Indeed, a processor is allowed to perform them in any order,
including all at once (possible for vector and array processors). For masked
operations in masked assignment statements, the scalar operations on the
unselected elements may still be performed, provided they have no side
effects; that is, the computation on the unselected elements must not change
any value in the expression or statement, or cause any execution-time error.

7.3.1.4 Interpretation of Intrinsic Operations with Pointer Operands

The intrinsic operations may have pointers for their operands. In such cases,
each pointer must be associated with a target that is defined, and the value of
the target is used as the operand. The target may be scalar or array-valued; the
rules for interpretation of the operation are those appropriate for the operand
being a scalar or an array, respectively.

Recall that an operand may be a structure component that is the component of
a structure variable that is itself a pointer. In this case, the value used for the
operand is the named component of the target structure associated with the
structure variable. For example, consider the declarations:

TYPE(RATIONAL)
N, D :: INTEGER

END TYPE

TYPE(RATIONAL), POINTER :: PTR
TYPE(RATIONAL), TARGET :: T

and suppose the pointer PTR is associated with T. If PTR % N appears as an
operand, its value is the component N of the target T, namely T % N.

7.3.2 Interpretation of Defined Operations

The interpretation of a defined operation is provided by a function
subprogram with an OPERATOR interface (see Section 12.6.4). When there is
more than one function with the same OPERATOR interface, the function
giving the interpretation of the operation is the one whose dummy arguments

Expressions and Assignment 283

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

match the operands in order, types, kind type parameters, and ranks (if the
operands are arrays). For example, for the operation A .PLUS. B, where A and
B are structures of the derived type RATIONAL, the interface

INTERFACE OPERATOR (.PLUS.)

FUNCTION RATIONAL_PLUS (L, R)
USE RATIONAL_MODULE
TYPE (RATIONAL), INTENT (IN) :: L, R
TYPE (RATIONAL) :: RATIONAL_PLUS

END FUNCTION RATIONAL_PLUS

FUNCTION LOGICAL_PLUS (L, R)
LOGICAL, INTENT (IN) :: L, R
LOGICAL :: LOGICAL_PLUS

END FUNCTION LOGICAL_PLUS

END INTERFACE

specifies that the function RATIONAL_PLUS provides the interpretation of this
operation.

Rules and restrictions:

1. A defined operation is declared using a function with one or two dummy
arguments. (Note that the function may be an entry in an external or
module function.)

2. The dummy arguments to the function represent the operands of the
operation; if there is only one, the operation is a unary operation, and
otherwise it is a binary operation. For a binary operation, the first
argument is the left operand and the second is the right operand.

3. There must be an interface block for the function with the generic specifier
of the form OPERATOR (defined-operator).

4. The types and kind type parameters of the operands in the expression
must be the same as those of the dummy arguments of the function.

5. The rank of the operands in the expression must match the ranks of the
corresponding dummy arguments of the function.

6. Either one of the dummy arguments must be of a derived type, or both are
of intrinsic type but do not match the types and kind type parameters for
intrinsic operations as specified in Table 7-3.

284 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The requirement that the shapes of the dummy arguments and operands match
implies that the defined operators are never elemental; that is, if a defined
operation is specified for a scalar operator, it does not apply to array operands
of the same shape as is the case for intrinsic operations. Thus, user-defined
elemental procedures (functions or subroutines) are not allowed. Note also that
the operands of a defined operation need not be in shape conformance as is
required for the intrinsic operations.

As with the intrinsic operations, the type, type parameters, and interpretation
of a defined operation are independent of the context of the larger expression
in which the defined operation appears. The interpretation of the same defined
operation in different contexts is the same; however, the results may be
different because the results of the procedure being invoked may depend on
values that are not operands and that are different for each invocation.

The relational operators ==, /=, >, >=, <, and <= are synonyms for the
operators .EQ., .NE., .GT., .GE., .LT., and .LE., even when they are defined
operators. It is invalid, therefore, to have an interface block for both == and
.EQ., for example, for which the order, types, type parameters, and rank of the
dummy arguments of two functions are the same.

Defined operations are either unary or binary. An existing unary operator (that
is, one that has the same name as an intrinsic operator) cannot be defined as a
binary operator unless it is also a binary operator. Similarly, an existing binary
operator cannot be defined as a unary operator unless it is also a unary
operator. However, a defined operator, .PLUS. say, (that is, one that does not
have a name that is the same as an intrinsic operator) can be defined as both a
unary and binary operator.

7.4 Evaluation of Expressions
The form of the expression and the meaning of the operations establish the
interpretation; once established, the compiler evaluates the expression in any
way that provides the same interpretation with one exception; parentheses
specify an order of evaluation that cannot be modified. This applies to both
intrinsic operations and defined operations. For defined operations, it is more
difficult to determine whether an alternative evaluation scheme provides the
same interpretation.

There are essentially two sorts of alternative evaluations that are permitted.
They are:

Expressions and Assignment 285

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• the rearrangement of an expression that yields an equivalent expression;
for example, A + B + C can be evaluated equivalently as A + (B + C) and
would improve the efficiency of the compiled program if B + C were a
subexpression whose value had already been computed.

• the partial evaluation of an expression because the value of the
unevaluated part can be proven not to affect the value of the entire
expression. For example, once one operand of a disjunction (.OR.
operator) is known to be true, the other operand need not be evaluated to
determine the result of the operation. To be specific, the operand
A ∗ B < C need not be evaluated in the expression
A < B .OR. A ∗ B < C if A < B is true.

This freedom for the compiler to use alternative equivalent evaluations permits
the compiler to produce code that is more optimal in some sense (for example,
fewer operations, array operations rather than scalar operations, or a reduction
in the use of registers or work space), and thereby produce more efficient
executable code.

7.4.1 Possible Alternative Evaluations

Before describing in more detail the possible evaluation orders, four basic
issues need to be addressed, namely, definition of operands, well-defined
operations, functions (and defined operations) with side effects, and equivalent
interpretations.

Definition status is described in detail in Section 14.4. For the purpose of
evaluation of expressions, it is required that each operand is defined, including
all of its parts, if the operand is an aggregate (an array, a structure, or a string).
If the operand is a subobject (part of an array, structure, or string), only the
selected part is required to be defined. If the operand is a pointer, it must be
associated with a target that is defined. An integer operand must be defined
with an integer value rather than a statement label.

For the numeric intrinsic operations, the operands must have values for which
the operation is well-defined. For example, the divisor for the division
operation must be nonzero, and the result of any of the numeric operations
must be within the exponent range for the result data type; otherwise, the
program is not standard conforming. Other cases include limitations on the

286 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

operands of the power operation ∗∗: for example, a zero-valued first operand
must not be raised to a nonpositive second operand; and a negative-valued
first operand of type real cannot be raised to a real power.

The third issue is functions with side effects. In Fortran, functions are allowed
to have side effects; that is, they are allowed to modify the state of the program
so that the state is different after the function is invoked than before it is
invoked. This possibility potentially affects the equivalence of two schemes for
evaluating an expression (see below), particularly if the function modifies
objects appearing in other parts of the expression. However, Fortran outlaws
the formation of statements with these kinds of side effects. That is, a function
(or defined operation) within a statement is not permitted to change any entity
in the same statement. Exceptions are those statements that have statements
within them, for example, an IF statement or a WHERE statement. In these
cases, the evaluation of functions in the logical expressions in parentheses after
the IF keyword or WHERE keyword are allowed to affect objects in the
statement following the closing right parenthesis. For example, if F and G
below are functions that change their actual argument I, the statements

IF (F (I)) A = I
WHERE (G (I)) B = I

are valid, even though I is changed when the functions are evaluated.
Examples of invalid statements are:

A (I) = F (I)
Y = G (I) + I

because F and G change I, which is used elsewhere in the same statement.

In case the reader is wondering, it is also illegal for there to be two function
references in a statement, if each causes a side effect and the order in which the
functions are invoked yields a different final status, even though nothing in the
statement is changed.

The fourth issue is equivalent interpretation. For the numeric intrinsic
operations, the definition of equivalent interpretation is defined as being
mathematical equivalence of the expression, not computational equivalence.
Mathematical equivalence assumes exact arithmetic (no rounding errors and
infinite exponent range) and thus assumes the rules of commutativity,
associativity, and distributivity as well as other rules that can be used to
determine equivalence (except that the order of operations specified by
parentheses must be honored). Under these assumptions, two evaluations are

Expressions and Assignment 287

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

mathematically equivalent if they yield the same values for all possible values
of the operands. A + B + C and A + (B + C) are thus mathematically equivalent
but are not necessarily numerically equivalent because of possible different
rounding errors. On the other hand, I / 2 and 0.5 ∗ I (where I is an integer) is a
mathematical difference because of the special Fortran definition of integer
division.

For example, Table 7-9 gives examples of equivalent evaluations of expressions
where A, B, and C are operands of type real or complex, and X, Y, and Z are of
any numeric type. All of the variables are assumed to be defined and have
values that make all of the operations in this table well-defined.

Table 7-10 provides examples of invalid alternative evaluations that are not
mathematically equivalent to the original expression. In addition to the
operands of the same names used in Table 7-9, Table 7-10 uses I and J as
operands of type integer. Recall that when both operands of the division
operator are of type integer, a Fortran integer division truncates the result
toward zero to obtain the nearest integer quotient.

Table 7-9 Equivalence evaluations for numeric intrinsic
operations

Expression Equivalent evaluations

X + Y Y + X

X * Y Y * X

– X + Y Y – X

X + Y + Z X + (Y + Z)

X – Y + Z X – (Y – Z)

X ∗ A / Z X ∗ (A / Z)

X ∗ Y – X ∗ Z X ∗ (Y – Z)

A / B / C A / (B ∗ C)

A / 5.0 0.2∗ A

288 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.4.2 Partial Evaluations

For character, relational, and logical intrinsic operations, the definition of the
equivalence of two evaluations is that, given the same values for their
operands, each evaluation produces the same result. The definition for
equivalence of two evaluations of the same defined operation also requires the
results to be the same; note that this definition is more restrictive than for the
numeric intrinsic operations, because only mathematical equivalence need be
preserved for numeric operations. As described for numeric intrinsic
operations, the compiler may choose any evaluation scheme equivalent to that
provided by the interpretation. Table 7-11 gives some equivalent schemes for
evaluating a few example expressions. For these examples, I and J are of type
integer; L1, L2, and L3 are of type logical; and C1, C2, and C3 are of type
character of the same length. All of the variables are assumed to be defined.

Table 7-10 Nonequivalent evaluations of numeric expressions

Expression Prohibited evaluations

I / 2 0.5∗ I

X ∗ I / J X ∗ (I / J)

I / J / A I / (J∗ A)

(X + Y) + Z X + (Y + Z)

(X ∗ Y) – (X ∗ Z) X ∗ (Y – Z)

X ∗ (Y – Z) X ∗ Y – X ∗ Z

Table 7-11 Equivalent evaluations of other expressions

Expression Equivalent evaluations

I .GT. J (I-J) .GT. 0

L1 .OR. L2 .OR. L3 L1 .OR. (L2 .OR. L3)

L1 .AND. L1 L1

C3 = C1 // C2 C3 = C1 (C1, C2, C3 all of the same length)

Expressions and Assignment 289

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

These rules for equivalent evaluation schemes allow the compiler to not
evaluate any part of an expression that has no effect on the resulting value of
the expression. Consider the expression X ∗ F(Y), where F is a function and X
has the value 0. The result will be the same regardless of the value of F(Y);
therefore, it need not be evaluated. This shortened evaluation is allowed in all
cases, even if F(Y) has side effects. In this case every data object that F could
affect is considered to be undefined after the expression is evaluated—that is, it
does not have a predictable value.

The execution of an array element, an array section, or a character substring
reference requires, in most cases, the evaluation of the expressions that are the
subscripts, strides, or substring ranges. The type or type parameters of an
expression are not affected by the evaluation of such expressions. It is not
necessary for these expressions to be evaluated, if the array section can be
shown to be zero-sized or the substring can be shown to be of a zero-length by
other means. For example, in the expression A (1:0) + B (:),
and need not be evaluated as the conformance rules for intrinsic
operations require that the section of B be zero-sized.

In contrast, and in apparent contradiction to the rule above, the standard states
that the appearance of an array constructor requires the evaluation of all
elements of the constructor. This rule also requires the evaluation of any
implied-DO parameters. It is the authors’ opinion that the general rule above
overrides this special treatment of array constructors.

The type and type parameters, if any, of the constructor are not affected by the
evaluation of any of the expressions within the constructor.

Parentheses within the expression must be honored. This is particularly
important for computations involving numeric values where rounding errors
or range errors may occur or for computations involving functions with side
effects. Of course, if there is no computational difference between two
evaluation schemes where parentheses are provided, the compiler can violate
the parentheses integrity because no one can tell the difference. For example,
the expression (1.0/3.0)∗3.0 must be evaluated by performing the division first
because of the explicit parentheses. Evaluating the expression as 1.0 would be
valid if the value obtained by performing the division first and then the
multiplication produced a result that is equal to 1.0 despite rounding errors.
Although this sort of rearrangement might be possible in theory, it is not a
practical option in general, unless all of the operands are constants as in the
above example.

expr1 expr2 expr1
expr2

290 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.5 Assignment
The most common use of the result of an expression is to give a value to a
variable. This is done with an assignment statement. For example,

RUG = BROWN + 2.34 / TINT

An assignment statement has three parts:

• the variable being assigned a value

• the assignment symbol (= or =>)

• the computation (an expression)

Assignment establishes a value for the variable on the left of the assignment
symbol in an assignment statement. Execution of the assignment statement
causes the expression to be evaluated (by performing the computation
indicated), and then the value of the expression is assigned to the variable. If
the variable has subscripts, section subscripts, or a substring range, the
execution of the assignment statement must behave as if they were evaluated
before any part of the value is assigned.

There are four forms of the assignment statement: intrinsic assignment, defined
assignment, pointer assignment, and masked array assignment. All but the first
are new in Fortran 90 and apply specifically to new entities in Fortran. In
addition, intrinsic assignment has been extended to arrays, pointers, and
structure objects.

The form of intrinsic assignment, defined assignment, and masked array
assignment (R735) is the same, namely:

variable = expression

An assignment statement is a defined assignment if:

1. there is a subroutine subprogram with an assignment interface of the form
ASSIGNMENT (=)

2. the types, kind type parameters, and ranks (if arrays) of the variable and
expression match in order the dummy arguments of the subroutine with
the assignment interface

Expressions and Assignment 291

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

An assignment statement is a masked array assignment if it appears in a
WHERE construct or WHERE statement. Otherwise, it is an intrinsic or defined
assignment.

The form of the pointer assignment statement is similar to the assignment
statement except that the assignment operator is => instead of =.

The rules and restrictions for each of these forms of assignment are different
and are described in the subsections below for each form of assignment.

Examples of the four forms of assignment are:

7.5.1 Intrinsic Assignment

Intrinsic assignment may be used to assign a value to a nonpointer variable of
any type or to the target associated with a pointer variable. The assignment
statement defines or redefines the value of the variable or the target, as
appropriate. The value is determined by the evaluation of the expression on
the right-hand side of the equal sign.

Rules and restrictions:

1. The types and kind parameters of the variable and expression in an
intrinsic assignment statement must be of the types given in Table 7-12.

2. If the variable is an array, the expression must either be a scalar or an array
of the same shape as the variable. If the variable is a scalar, the expression
must a scalar. The shape of the variable may be specified in specification
statements if it is an explicit-shape array; it may be determined by the

X = X + 1 Intrinsic assignment for reals

CHAR (1:4) = "A123" Intrinsic assignment for characters

STUDENT = B_JONES Intrinsic assignment for structures

STRING = "Brown" Defined assignment for varying string structure

WHERE (Z /= 0.0)
A = B / Z

END WHERE
Masked array assignment

PTR => X Pointer assignment

292 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

section subscripts in the variable, by an actual argument if it is a assumed-
shape array, or by an ALLOCATE statement or a pointer assignment
statement if it is a deferred-shape array. It must not be an assumed-size
array unless there is a vector subscript, a scalar subscript, or a section
subscript containing an upper bound in the last dimension of the array.
The shape of the expression is determined by the shape of the operands,
the operators in the expression, and the functions referenced in the
expression. A complete description of the shape of an expression appears
in Section 7.2.8.3.

3. If the variable is a pointer, it must be associated with a target; the
assignment statement assigns the value of the expression to the target of
the pointer. The pointer may be associated with a target that is an array;
the pointer determines the rank of the array, but the extents in each
dimension are that of the target.

4. The evaluation of the expression on the right-hand side of the equal sign,
including subscript and section subscript expressions that are part of the
expression and part of the variable, must be performed before any portion
of the assignment is performed. Before the assignment begins, any
necessary type conversions are completed if the variable has a different
numeric type or type parameter from the expression. The conversion is the
same as that performed by the conversion intrinsic functions INT, REAL,
CMPLX, and LOGICAL, as specified in Table 7-13.

Table 7-12 Types of the variable and expression in an intrinsic
assignment

Type of the variable Type of the expression

Integer Integer, real, complex

Real Integer, real, complex

Complex Integer, real, complex

Character
Character with the same kind
type parameter as the variable

Logical Logical

Derived type Same derived type as the variable

Expressions and Assignment 293

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. An expression may use parts of the variable that appear on the left side of
an assignment statement. (Note that this is not allowed in Fortran 77.) For
example, in evaluating a character string expression on the right-hand side
of an assignment, the values in the variable on the left-hand side may be
used, as in

DATE (2:5) = DATE (1:4)

6. If the variable and expression are of character type, they must have the
same kind type parameter value.

7. If the variable and expression are of character type with different lengths,
the assignment occurs as follows: if the length of the variable is less than
that of the expression, the value of the expression is truncated from the
right; if the length of the variable is greater than the expression, the value
of the expression is filled with blanks on the right. The character used as
the blank character for default character type is the blank character
specified in Section 3.1.1 and otherwise is a blank padding character
specified by the processor for nondefault character types.

8. The evaluation of expressions in the variable on the left-hand side, such as
subscript expressions, has no affect on, nor is affected by, the evaluation of
the expression on the right-hand side, which is evaluated completely first.
(As usual, this requirement that the expression on the right be evaluated
first is specifying the semantics of the statement and does not imply that an
implementation must perform the computation in this way if there is an
equivalent order that computes the same result.)

9. When a scalar is assigned to an array, the assignment behaves as if the
scalar is broadcast to an array of the shape of the variable; it is then in
shape conformance with the variable. In the example:

Table 7-13 Conversion performed on an expression before assignment

Type of
the variable Value assigned

Integer INT (expression, KIND (variable))

Real REAL (expression, KIND (variable))

Complex CMPLX (expression, KIND (variable))

Logical LOGICAL (expression, KIND (variable))

294 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

REAL A (10)
A = 1.0

all ten elements of the array A are assigned the value 1.0.

10. Array assignment is element-by-element but the order is not specified. If A
and B are real arrays of size 10, and the whole array assignment were:

A = B

the first element of B would be assigned to the first element of A, the
second element of B would be assigned to the second element of A, and
this would continue element-by-element for 10 elements. The assignment
of elements, however, may be performed in any order, as long as the effect
is as if all elements were assigned simultaneously.

11. For derived-type intrinsic assignment, the derived types of the variable
and the expression must be the same. Derived-type intrinsic assignment is
performed component-by-component following the above rules, except
when a component is a pointer. For pointer components, pointer
assignment between corresponding components is used.

7.5.2 Defined Assignment

Defined assignment is an assignment operation provided by a subroutine with
an assignment interface ASSIGNMENT (=)—see Section 12.6.5. When the
variable and expression in the assignment statement are of intrinsic types and
do not satisfy the type matching rules in Table 7-12 or are of derived type, a
defined assignment operation will be used, provided the assignment interface
and subroutine are accessible. For example, a defined assignment may apply
when character objects of different kinds are to be assigned, provided a
subroutine with a generic assignment interface is accessible. Assignment thus
may be extended to types other than the intrinsic types or may replace the
usual assignment operation for derived types, if the programmer defines the
rules for this assignment in a subroutine.

Rules and restrictions:

1. An assignment operation is declared using a subroutine with two dummy
arguments. (Note that the subroutine may be an entry in an external or
module subroutine.)

Expressions and Assignment 295

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. The dummy arguments to the subroutine represent the variable and the
expression, in that order.

3. There must be an interface block for the subroutine with the generic
specifier of the form ASSIGNMENT (=).

4. The types and kind type parameters of the variable and expression in the
assignment statement must be the same as those of the dummy arguments.

5. The rank of the variable and the expression in the assignment must match
the ranks of the corresponding dummy arguments.

6. Either one of the dummy arguments must be of a derived type, or both are
of intrinsic type but do not match the types and kind type parameters for
intrinsic assignment as specified in Table 7-12.

Example:

INTERFACE ASSIGNMENT (=)

SUBROUTINE RATIONAL_TO_REAL (L, R)
USE RATIONAL_MODULE
TYPE (RATIONAL), INTENT (IN) :: R
REAL, INTENT(OUT) :: L

END SUBROUTINE RATIONAL_TO_REAL

SUBROUTINE REAL_TO_RATIONAL (L, R)
USE RATIONAL_MODULE
REAL, INTENT(IN) :: R
TYPE (RATIONAL), INTENT (OUT) :: L

END SUBROUTINE REAL_TO_RATIONAL

END INTERFACE

The above interface block specifies two defined assignments for two
assignment operations in terms of two external subroutines, one for
assignment of objects of type RATIONAL to objects of type real and other for
assignment of objects of type real to objects of type RATIONAL. With this
interface block, the following assignment statements are defined:

REAL R_VALUE
TYPE (RATIONAL) RAT_VALUE

R_VALUE = RATIONAL (1, 2)
RAT_VALUE = 3.7

296 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The effect of the defined assignment on variables in the program is determined
by the referenced subroutine. The variable being assigned may be a pointer, or
the expression on the right may yield a pointer. How such pointers are used is
determined by the declarations and uses of the corresponding dummy
arguments of the subroutine.

7.5.3 Pointer Assignment

Recall that a pointer is a variable that points to another object. The term
(pointer) association is used for the concept of “pointing to” and the term
target is used for the object associated with a pointer.

A pointer assignment associates a pointer with a target, unless the target is
disassociated or undefined. If the target is disassociated or undefined, the
pointer becomes disassociated or undefined according to the status of the
target. Once a pointer assignment has been executed, the association status of
the pointer remains unchanged, until another pointer assignment or
ALLOCATE, DEALLOCATE, or NULLIFY statement is executed redefining the
pointer.

The form of a pointer assignment statement (R736) is:

pointer-object => target

where a pointer object (R630) has one of the forms:

variable-name
structure-component

and a target (R737) is of one of the forms:

variable
expression

The form of the expression permitted as a target is limited severely—see
item 12 of the rules and restrictions below.

Rules and restrictions:

1. If the pointer object is a variable name, the name must have the POINTER
attribute. If the pointer object is a structure component, the component
must have the POINTER attribute.

2. If the target is a variable, then

Expressions and Assignment 297

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

a. it must have the TARGET attribute

b. it must be the component of a structure, the element of an array
variable, or the substring of a character variable that has the TARGET
attribute, or

c. it must have the POINTER attribute

3. The type, type parameters (kind and length, if character), and rank of the
target must be the same as the pointer object.

4. If the variable on the right of => has the TARGET attribute, the pointer
object on the left of => becomes associated with this target.

5. If the variable on the right of => has the POINTER attribute and is
associated, the pointer object on the left of => points to the same data that
the target points to after the pointer assignment statement is executed.

6. If the variable on the right of => has the POINTER attribute and is
disassociated, the pointer object on the left of => becomes disassociated.

7. If the variable on the right of => has the POINTER attribute and has an
undefined association status, the association status of the pointer object on
the left of => becomes undefined.

8. A pointer assignment statement terminates any previous association for
that pointer and creates a new association.

9. If the pointer object is a deferred-shape array, the pointer assignment
statement establishes the extents for each dimension of the array, unless the
target is a disassociated or undefined pointer. Except for the case of a
disassociated or undefined pointer, the extents are those of the target. For
example, if the following statements have been processed:

INTEGER, TARGET :: T (11:20)
INTEGER, POINTER :: P1 (:), P2 (:)
P1 => T
P2 => T (:)

the extents of P1 are those of T, namely 11 and 20, but those of P2 are 1 and
10, because T (:) has a section subscript list (7.2.8.4).

10. The target must not be a variable that is an assumed-size array. If it is an
array section of an assumed-size array, the upper bound for the last
dimension must be specified.

298 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11. If the target is an array section, it must not have a vector subscript.

12. If the target is an expression, it must deliver a pointer result. This implies
that the expression must be a user-defined function reference or defined
operation that returns a pointer (there are no intrinsic operations or
functions that return results with the POINTER attribute).

13. If the target of a pointer may not be referenced or defined, the pointer must
not be referenced or defined.

14. If a structure has a component with the POINTER attribute and the
structure is assigned a value using an intrinsic derived-type assignment,
pointer assignment is used for each component with the POINTER
attribute. Also, defined assignment may cause pointer assignment between
some components of a structure.

Note that, when a pointer appears on the right side of => in a pointer
assignment, the pointer on the left side of => is defined or redefined to be
associated with the target on the right side of the =>; neither the pointer on the
right nor its target are changed in any way.

Examples:

MONTH => DAYS (1:30)
PTR => X (:, 5)
NUMBER => JONES % SOCSEC

An example where a target is another pointer is:

REAL, POINTER :: PTR, P
REAL, TARGET :: A
REAL B
A = 1.0
P => A
PTR => P
B = PTR + 2.0

The previous program segment defines A with the value 1.0, associates P with
A; then PTR is associated with A as well (through P). The value assigned to B
in the regular assignment statement is 3.0, because the reference to PTR in the
expression yields the value of the target A which is the value 1.0. An example
in which the target is an expression is:

INTERFACE
FUNCTION POINTER_FCN (X)

Expressions and Assignment 299

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

REAL X
REAL, POINTER :: POINTER_FCN

END FUNCTION
END INTERFACE

REAL, POINTER :: P
REAL A

P => POINTER_FCN (A)

In this example, the function POINTER_FCN takes a real argument and returns
a pointer to a real target. After execution of the pointer assignment statement,
the pointer P points to this real target.

Pointers may become associated using the ALLOCATE statement instead of a
pointer assignment statement. Pointers may become disassociated using the
DEALLOCATE or NULLIFY statements, as well as with the pointer assignment
statement.

A pointer may be used in an expression (see Section 7.3.1.4 for the details).
Briefly, any reference to a pointer in an expression, other than in a pointer
assignment statement, or in certain procedure references, yields the value of
the target associated with the pointer. When a pointer appears as an actual
argument corresponding to a dummy argument that has the pointer attribute,
the reference is to the pointer and not the value. Note that a procedure must
have an explicit interface (12.6.1), if it has a dummy argument with a pointer
attribute.

7.5.4 Masked Array Assignment

Sometimes, it is desirable to assign only certain elements of one array to
another array. To invert the elements of an array element-by-element, for
example, one has to avoid elements that are 0. The masked array assignment is
ideal for such selective assignment, as the following example using a WHERE
construct illustrates:

REAL A(10,10)
...

WHERE(A /= 0.0)
RECIP_A = 1.0 / A ! Assign only where the

! elements are nonzero
ELSEWHERE

300 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

RECIP_A = 1.0 ! Use the value 1.0 for
! the zero elements.

END WHERE

The first array assignment statement is executed for only those elements where
the mask A /= 0.0 is true. Next, the second assignment statement (after the
ELSEWHERE statement) is executed for only those elements where the same
mask is false. If the values of RECIP_A where A is 0 are never used, this
example can be simply written using the WHERE statement rather than the
WHERE construct as follows:

WHERE(A /= 0.0) RECIP_A = 1.0 / A

A masked array assignment is an intrinsic assignment statement in a WHERE
block, an ELSEWHERE block, or a WHERE statement for which the variable
being assigned is an array. The WHERE statement and WHERE construct
appear to have the characteristics of a control statement or construct such as
the IF statement and IF construct. But there is a major difference; every
assignment statement in a WHERE construct is executed, whereas at most one
block in the IF construct is executed. Similarly, the assignment statement
following a WHERE statement is always executed. For this reason, WHERE
statements and constructs are discussed here under assignment rather than
under control constructs.

In a masked array assignment, the assignment is made to certain elements of
an array based on the value of a logical array expression serving as a mask for
picking out the array elements. The logical array expression acts as an array-
valued condition on the elemental intrinsic operations, functions, and
assignment for each array assignment statement in the WHERE statement or
WHERE construct.

As in an intrinsic array assignment, a pointer to an array may be used as the
variable, and a pointer to a scalar or an array may be used as a primary in the
expression. In case the target of the pointer is an array, the target array is
masked in the same manner as a nonpointer array used in a masked array
assignment.

7.5.4.1 WHERE Statement

The form of the WHERE statement (R738) is:

WHERE (logical-expression) array-intrinsic-assignment-statement

Expressions and Assignment 301

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The logical expression is evaluated resulting in a logical array, which is treated
as a mask. The mask array must conform with the variable on the right side in
the array intrinsic assignment statement. Each element of the array on the left
side of the array assignment statement is assigned a value from the expression
on the right, if the corresponding element in the mask is true. Where the mask
is false, the array elements are not assigned a value. Any elemental intrinsic
operations or functions within the expression are evaluated only for the
selected elements.

The expression in the array assignment statement may contain nonelemental
function references. Nonelemental function references are references to any
function or operation defined by a subprogram, or any intrinsic function that is
a transformational or an inquiry function. If it does, all elements of the
arguments of such functions and returned results (if arrays) are evaluated in
full. If the result of the nonelemental function is an array and is an operand of
an elemental operation or function, then only the selected elements are used in
evaluating the remainder of the expression.

Example:

WHERE(TEMPERATURES > 90.0) HOT_TEMPS = TEMPERATURES
WHERE(TEMPERATURES < 32.0) COLD_TEMPS = TEMPERATURES

7.5.4.2 WHERE Construct

The form of the WHERE construct (R739) is:

WHERE (logical-expression)

[array-intrinsic-assignment-statement] ...
[ELSEWHERE

[array-intrinsic-assignment-statement] ...]
END WHERE

The WHERE block is the set of assignments between the WHERE construct
statement and the ELSEWHERE statement (or END WHERE statement, if the
ELSEWHERE statement is not present). The ELSEWHERE block is the set of
assignment statements between the ELSEWHERE and the END WHERE
statements.

Rules and restrictions:

302 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

1. The logical expression is evaluated resulting in a logical array, which is
treated as a mask. The mask array must conform with the variables on the
right side in all of the array assignment statements in the construct.

2. Each assignment in the WHERE block assigns a value to each element of
the array that corresponds with an element of the mask array that is true.

3. Each assignment in the ELSEWHERE block assigns a value to each element
of the array that corresponds with an element of the mask array that is
false.

4. The ELSEWHERE block is optional; when it is not present, no assignment
is made to elements corresponding to mask array elements that are false.

5. All of the assignment statements are executed in sequence as they appear
in the construct (in both the WHERE and ELSEWHERE blocks).

6. Except as indicated by the following rule, any elemental intrinsic operation
or function within the expression is evaluated only for the selected
elements. For example:

REAL A (10, 20)
...

WHERE(A > 0.0)
SQRT_A = SQRT (A)

END WHERE

the square roots are taken only of the elements of A that are positive.

7. Nonelemental function references, including defined operations, in the
array assignment statements are completely evaluated, even though all
elements of the resulting array may not be used. For example:

REAL A (2, 3), B (3, 10), C (2, 10), D (2, 10)
INTRINSIC MATMUL

...
WHERE(D < 0.0)

C = MATMUL(A, B)
END WHERE

the matrix product A × B is performed, yielding all elements of the
product, and only for those elements of D that are negative are the
assignments to the corresponding elements of C made.

Expressions and Assignment 303

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8. An elemental function reference is evaluated independently for each
element, and only those elements needed in the array assignment are
referenced. Elemental function references are only those intrinsic functions
classified as elemental functions, such as ABS, INT, and COS.

9. In a WHERE construct, only the WHERE construct statement may be a
branch target statement.

Example:

WHERE(VALUES > 0.0)
A = VALUES

ELSEWHERE
A = 0.0

END WHERE

7.5.4.3 Differences between the WHERE Construct and Control Constructs

One major difference between the WHERE construct and control constructs has
been described in Section 7.5.4. Another difference is that no transfers out of
WHERE or ELSEWHERE blocks are possible (except by a function reference)
because only intrinsic assignment statements are permitted within these
blocks. Note that the execution of statements in the WHERE block can affect
variables referenced in the ELSEWHERE block (because the statements in both
blocks are executed).

7.6 Summary

7.6.1 Expression

An expression is formed using operands, operators, and parentheses. When
evaluated, an expression produces a value. An expression has a type, type
parameters when of intrinsic type, and a shape. Operands may be scalars,
arrays, pointers, or structures of derived type. When a pointer is used in an
expression, the value of the target is used.

7.6.2 Scalar Expression

The result of a scalar expression is a scalar value.

X + 1.

304 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.6.3 Array Expression

The result of an array expression is an array value.

A (1:10) = B (1:10) + C (2:11)

7.6.4 Constant Expression

A constant expression is constructed from values that can be determined at
compile time. These include constants, references to intrinsic functions with
constant arguments, and references to certain other intrinsic functions whose
values can be evaluated at compile time.

10 / 2 + 7
SIZE (X) + K

7.6.5 Specification Expression

A specification expression is a scalar expression of type integer that can be
evaluated on entry to a program before any executable statement in the
program unit is executed. Specification expressions are used to specify array
bounds and character length parameter values in specification statements.

7.6.6 Initialization Expressions

Initialization expressions are restricted forms of constant expressions. The
restrictions are essentially that the exponentiation operator is limited to integer
powers, and no intrinsic functions that use or return values of type real,
logical, or complex are allowed. This excludes many of the transformational
intrinsic functions such as SUM, ALL, and SPREAD, and many of the floating
point and logical elemental intrinsic functions such as CONJG, COS, DBLE,
SQRT, LGE, LOGICAL, EXPONENT, and SCALE.

Expressions are limited to initialization expressions in only a few contexts. In
brief, these contexts include the initialization of named constants and variables
in declaration statements, kind type parameter values in all contexts, case
values in CASE statements, and subscript and subrange expressions in
EQUIVALENCE statements.

Expressions and Assignment 305

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.6.7 Expressions Resulting in Scalar and Array Values

Constants, variables, structures, and functions may be used as operands in
expressions. Each of these forms may be a scalar or an array. If all operands are
scalars, the operations are performed on scalar values. If both operands are
arrays, the operations are performed on all the elements of the arrays named as
operands. If one operand is a scalar and the other is an array in a binary
operation, the scalar is broadcast to an array of the appropriate shape, that is,
the scalar is repeated as many times as there are elements in the array.

Example:

X + 1. Scalar expression
Y + 1.0 Array expression
W + Z Array expression

where X is a scalar variable, Y is a one-dimensional array of size 100, and W
and Z are two 10 × 100 arrays.

In the first example, the single value of X is added to 1.0. In the second
example, each of the 100 elements of Y is added to 1.0. The scalar 1.0 is
broadcast 100 times, once for each element of Y. In the third example, the
arrays are “conformable” (both have 1000 elements) and the operation is
performed element-by-element for all elements W and Z.

7.6.8 Assignment

The outcome of an assignment replaces a value for a variable on the left of an
equal sign (the assignment symbol) with the result of evaluating the expression
on the right-hand side of the equal sign. The variable may be a scalar, an array,
a pointer, or a structure.

X = Y * Z / (2.3 - U)

X is assigned a value obtained by evaluating the expression Y ∗ Z / (2.3 – U).

306 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7.6.9 Intrinsic Assignment

Intrinsic assignment is an assignment operation (using the equal sign) that is
understood by the Fortran processor; it is built in. Intrinsic assignment applies
to all intrinsic and derived types, provided the types of the variable and
expression in the assignment satisfy the requirements for intrinsic assignment
specified in Table 7-12.

X = X + 1.0
L = CHAR (3:4) == C1 (1:2)

7.6.10 Defined Assignment

A defined assignment statement is not built into Fortran. The program must
define the assignment in a subroutine subprogram for which an interface block
with an assignment generic specifier is provided.

7.6.11 Masked Array Assignment

The variable on the left of the equal sign and the elemental operations on the
right are controlled by a mask. Elements of an array are assigned values based
on an array of logical values, serving as the mask. The array assignment
statements must be controlled by a WHERE statement or a WHERE construct.

WHERE (I == J)
X = 1.0

ELSEWHERE
X = 0.0

END WHERE
WHERE (I >= 0) X = 3.0

7.6.12 Pointer Assignment

A pointer assignment statement associates a pointer with a target. The target is
either a variable or a function that returns a pointer. The pointer may be a
scalar or an array. If it is an array, it must be of deferred shape and the pointer
assignment statement establishes the extents of the array. In the example

REAL, POINTER :: PTR, ARRAY_PTR (:, :)
REAL, TARGET :: A (10, 100)

PTR => A (7, 6)

Expressions and Assignment 307

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

ARRAY_PTR => A

after the pointer assignment statements are executed, the pointer PTR points to
the element A (7, 6), and the pointer ARRAY_PTR points to the entire array
and has the shape (10, 100).

308 Fortran 90 Handbook

7

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

309

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Controlling Execution 8

A program performs its computation by executing the statements in sequence
from beginning to end. Control constructs and statements modify this normal
sequential execution of a program. The modification may select blocks of
statements and constructs for execution or repetition, or may transfer control to
another statement in the program. Repetition occurs until some condition is
met and a branch to some other statement in the program occurs.

As outlined in Chapter 2, the statements and constructs making up a program
are of two sorts—nonexecutable and executable. The nonexecutable
statements “set the stage” or establish the environment under which the
program runs. In particular, they determine the properties and attributes for
data and consist mostly of those statements described in Chapters 4 and 5. The
executable statements and executable constructs, some of which are action
statements, perform computations, assign values, perform input/output
operations, or control the sequence in which the other executable statements
and constructs are executed. This chapter describes the latter group of
executable statements—the control statements and control constructs.

Control constructs and control statements alter the usual sequential execution
order of statements and constructs in a program. This execution order is called
the normal execution sequence. The control constructs are block constructs
and consist of the IF construct, the DO construct, and the CASE construct.
Individual statements that alter the normal execution sequence include the
CYCLE and EXIT statements which are special statements for DO constructs,
branch statements such as arithmetic IF statements, various forms of GO TO
statements, and the statements that cause execution to cease such as the STOP
and PAUSE statements.

310 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

With any of the block constructs, construct names may be used to identify the
constructs and also to identify which DO constructs, particularly in a nest of
DO constructs, are being terminated or cycled when using the EXIT or CYCLE
statements. Construct names are described in the introductory material for
blocks (8.2) and also with each construct and statement that uses them.

8.1 The Execution Sequence
There is an established execution sequence for action statements in a Fortran
program. Normally, a program or subprogram begins with the first executable
statement in that program or subprogram and continues with the next
executable statement in the order in which these statements appear. However,
there are executable constructs and statements that cause statements to be
executed in an order that is different from the order in which they appear in
the program. These are either control constructs or branching statements.

There are two basic ways to affect the execution sequence. One is to use an
executable construct that selects a block of statements and constructs for
execution. The second is to execute a statement that branches to a specific
statement in the program. In almost all cases, the use of constructs will result
in programs that are more readable and maintainable, so constructs are
discussed first, followed by branching statements.

8.2 Blocks and Executable Constructs
A control construct consists of one or more blocks of Fortran statements and
constructs and the control logic that explicitly or implicitly encloses these
blocks. Based on a control condition, a block of statements and constructs is
selected for execution. A block (R801) is a sequence of zero or more statements
and constructs, and has the form:

[execution-part-construct] ...

A block of statements and constructs is treated as a whole. Either the block as
a whole is executed or it is not executed. Whether or not the block is executed
is determined by expressions in the control logic of the construct. Note that not
every statement or construct in the block need be executed; for example, a
branch statement early in the block may prevent subsequent statements in the
block from being executed. This is still considered a complete execution of the
block.

Controlling Execution 311

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

An executable construct consists of one or more blocks of statements
surrounded by control statements. The construct usually contains an initial
statement before a block and a terminal statement after the block. There are
constructs that contain more than one block. The construct includes conditions
that determine which block in the construct is executed. Some of the constructs
contain additional statements between blocks that may determine which block
is chosen. The DO construct determines how many times a block will be
executed. An example of an executable construct controlling a block of
statements is:

IF (I <= 1) THEN ! Initial statement of the IF construct
X = 1.2 * I ! First statement of the block
Y = COS (X) ! Final statement of the block

END IF ! Terminal statement of the IF construct

There are three executable constructs that contain blocks:

1. IF construct

2. CASE construct

3. DO construct

There is also a construct called the WHERE construct that controls array
assignment for individual elements (masked array assignment) as opposed to
controlling flow of the program statements. Even though it looks like a control
construct, it really is a construct for unconditional but masked array
assignment. Every statement in the construct is executed independent of the
control conditions; the condition is used to determine how much of each array
assignment in the blocks is executed. This construct is discussed in detail in
Section 7.5.4.

Naming a construct is a new option in Fortran 90; the name, if used, must
appear on the same line as the initial statement of the construct and a matching
name must appear on the terminal statement of the construct.

The IF construct is in Fortran 77. The CASE construct is new in Fortran 90.
Extensions have been made to the Fortran 77 DO loop, which permit more
flexible control of blocks.

Some of the general rules and restrictions that apply to blocks and control of
blocks follow.

Rules and restrictions:

312 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

1. The first statement or construct of a block is executed first. The statements
of the block are executed in order unless there is a control construct or
statement within the block that changes the sequential order.

2. A block, as an integral unit, must be completely contained within a
construct. A block may be empty; that is, it may contain no statements or
constructs at all.

3. A branching or control construct within a block that transfers to a
statement or construct within a block is permitted.

4. Exiting from a block may be done from anywhere within the block.

5. Branching to a statement or construct within a block from outside the block
is prohibited. (Even branching to the first executable statement within a
block from outside the block is prohibited.)

6. References to procedures are permitted within a block.

7. Constructs may have construct names.

8.3 IF Construct and IF Statement
An IF construct selects at most one block of statements and constructs within
the construct for execution. It was introduced in Fortran 77. The IF statement
controls the execution of only one statement; formerly it was called the logical
IF statement and was present in Fortran 66. The arithmetic IF statement, the
only IF statement in the original Fortran, is not the same as the IF statement; it
is a branching statement that is designated as obsolescent and is discussed in
Section 8.7.2.

8.3.1 The IF Construct

The IF construct contains one or more executable blocks; at most one block is
executed, and it is possible for no block to be executed when there is no ELSE
statement. The logical expression determining whether a particular block is
executed appears prior to the block except the block following the ELSE
statement. These expressions are evaluated in turn until one of them is true.
The block immediately following the control statement containing the first true
logical expression is executed. If none of the expressions is true, the block
following the ELSE statement, if present, is executed. If there is no ELSE
statement, the IF construct terminates. At most one block is chosen for

Controlling Execution 313

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

execution, after which the IF construct is completed and it terminates. If more
than one logical expression is true, only the block following the first one is
executed.

8.3.1.1 Form of the IF Construct

The form of the IF construct (R802) is:

[if-construct-name :] IF (scalar-logical-expression) THEN

block
[ELSE IF (scalar-logical-expression) THEN [if-construct-name]

block] ...
[ELSE [if-construct-name]

block]
END IF [if-construct-name]

Rules and restrictions:

1. At most one of the blocks in the construct is executed. It is possible that no
block is executed.

2. ELSE IF statements cannot follow an ELSE statement.

3. Branching to an ELSE IF or an ELSE statement is prohibited.

4. Branching to an END IF is allowed from any block within the IF construct.
Branching to an END IF from outside the IF construct is allowed but is
designated as an obsolescent feature.

5. If a construct name appears on the IF-THEN statement, the same name
must appear on the corresponding END IF statement.

6. The construct names on the ELSE IF and ELSE statements are optional, but
if present, must be the same name as the one on the IF-THEN statement. If
one such ELSE IF or ELSE statement has a construct name, the others are
not required to have a construct name.

7. The same construct name must not be used for different named constructs
in the same scoping unit; thus, two IF blocks must not be both named
INNER in the same executable part, for example.

314 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8.3.1.2 Execution of the IF Construct

The logical expressions are evaluated in order until one is found to be true. The
block following the first true condition is executed, and the execution of the IF
construct terminates. Subsequent true conditions in the construct have no
effect. There may be no logical expressions found to be true in the construct. In
this case, the block following the ELSE statement is executed if there is one;
otherwise, no block in the construct is executed.

Figure 8-1 indicates the execution flow for an IF construct.

Example:

IF (I < J) THEN
X = Y + 5.0

ELSE IF (I > 100) THEN
X = 0.0
Y = -1.0

ELSE
X = -1.0
Y = 0.0

END IF

If I is less than J, the statement X = Y + 5.0 is executed and execution proceeds
following the END IF statement. If I is not less than J and if I is greater than
100, the two statements following the ELSE IF statement are executed and
execution proceeds following the END IF statement. If neither of these
conditions is true, the block after the ELSE statement is executed.

8.3.2 The IF Statement

The IF statement is the logical IF statement of Fortran 77.

8.3.2.1 Form of the IF Statement

The form of the IF statement (R807) is:

IF (scalar-logical-expression) action-statement

Example:

IF (S < T) S = 0.0

Controlling Execution 315

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Is the logical
expression in the

IF statement
true?

Is there
an(other) ELSE IF

statement?

Is ther
an ELSE

statement?

Is its
logical expression

true?

Execute
block

Execute
block

Execute
block

Yes

Yes

Yes

Yes

No

No

Figure 8-1 Execution flow for an IF construct

316 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8.3.2.2 Execution of the IF Statement

The scalar logical expression is evaluated. If true, the action statement is
executed. If false, the action statement is not executed, and control passes to
the next statement in the program.

Rules and restrictions:

1. The action statement must not be an IF statement or an END statement for
a program, function, or subroutine.

2. If the logical expression contains a function reference, its evaluation may
have side effects that modify the action statement. This is permitted.

A complete list of the action statements can be found in Section 2.6.
Fundamentally, action statements change the definition state of variables or the
condition of the input/output system, or are control statements. Examples of
action statements are the assignment, WRITE, and GO TO statements.
Specification statements such as type declaration statements, FORMAT
statements, and ENTRY statements are not action statements. Note that
constructs are not action statements.

8.4 The CASE Construct
The CASE construct is a new feature in Fortran 90. It, like the IF construct,
consists of a number of blocks, of which at most one is selected for execution.
The selection is based on the value of the scalar expression in the SELECT
CASE statement at the beginning of the construct; the value of this expression
is called the case index. The case selected is the one for which the case index
matches a case selector value in a CASE statement. Case selector values must
not overlap. There is an optional default case that, in effect, matches all values
not matched by any other CASE statement in the construct.

8.4.1 Form of the CASE Construct

The form of the CASE construct (R808) is:

[case-construct-name :] SELECT CASE (case-expression)

[CASE (case-value-range-list) [case-construct-name]
block] ...

Controlling Execution 317

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

[CASE DEFAULT[case-construct-name]
block]

END SELECT[case-construct-name]

where case expression is a scalar expression. The forms of a case value range
(R814) are:

case-value
case-value :

: case-value
case-value : case-value

where each case value is a scalar initialization expression of the same type as
the case expression. Recall that an initialization expression is an expression that
can be evaluated at compile time; that is, a constant expression, essentially. The
types of the case expression and case values are limited to the “discrete”
intrinsic types, namely integer, character, and logical.

The statement containing the keywords SELECT CASE is called the SELECT
CASE statement. The statement beginning with the keyword CASE is called
the CASE statement. The statement beginning with the keywords END
SELECT is called the END SELECT statement. A case value range list enclosed
in parenthesis or the DEFAULT keyword is called a case selector.

Rules and restrictions:

1. If a construct name is present on a SELECT CASE statement, it must also
appear on the END SELECT statement.

2. Any of the case selector statements may or may not have a construct name.
If one does, it must be the same name as the construct name on the
SELECT CASE statement.

3. A CASE statement with the case selector DEFAULT is optional; if it is
present, the general form (R808) of the CASE construct does not require
that such a CASE statement be the last CASE statement.

4. Within a particular CASE construct, the case expression and all case values
must be of the same type. If the character type is used, different character
lengths are allowed. But, the kind type parameter values must be the same
for all of these expressions.

318 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. The colon forms of the case values expressing a range may be used for
expressions in the construct of type integer and character (but not logical).
For example, a CASE statement of the form

CASE (’BOOK’:’DOG’)

would select all character strings that collate between BOOK and DOG
inclusive, using the processor-dependent collating sequence for the default
character type.

6. After expression evaluation, there must be no more than one case selector
that matches the case index. In other words, overlapping case values and
case ranges are prohibited.

An example of the CASE construct is:

FIND_AREA: & ! Compute the area with a formula
! appropriate for the shape of the object

SELECT CASE (OBJECT)
CASE (CIRCLE) FIND_AREA

AREA = PI * RADIUS ** 2
CASE (SQUARE) FIND_AREA

AREA = SIDE * SIDE
CASE (RECTANGLE) FIND_AREA

AREA = LENGTH * WIDTH
CASE DEFAULT FIND_AREA

END SELECT FIND_AREA

8.4.2 Execution of the CASE Construct

The case index (the scalar expression) in the SELECT CASE statement is
evaluated in anticipation of matching one of the case values preceding the
blocks. The case index must match at most one of the selector values. The block
following the case matched is executed, the CASE construct terminates, and
control passes to the next executable statement or construct following the END
SELECT statement of the construct. If no match occurs and the CASE
DEFAULT statement is present, the block after the CASE DEFAULT statement
is selected. If there is no CASE DEFAULT statement, the CASE construct
terminates, and the next executable statement or construct following the END
SELECT statement of the construct is executed. If the case value is a single
value, a match occurs if the index is equal to the case value (determined by the

Controlling Execution 319

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

rules used in evaluating the equality or equivalence operator [see Section
7.3.1.2]). If the case value is a range of values, there are three possibilities to
determine a match depending on the form of the range:

Rules and restrictions:

1. Overlapping case ranges are not allowed.

2. The execution of the construct concludes with the execution of the block
selected, if there is one. At most one block is executed. There must not be a
case value that would select more than one block.

3. If there is no match and no default case, the CASE construct terminates.
None of the blocks within the construct is executed.

4. Branching to the END SELECT statement is allowed only from within the
construct.

5. Branching to a CASE statement is prohibited; branching to the SELECT
CASE statement is allowed, however.

Figure 8-2 illustrates the execution of a CASE construct.

Example:

INDEX = 2
SELECT CASE (INDEX)
CASE (1)

X = 1.0
CASE (2)

X = 2.0
CASE DEFAULT

X = 99.0
END SELECT

Case value range Condition for a match

case-value1 : case-value2
case-value1 ≤ case-index ≤ case-

value2

case-value : case-value ≤ case-index

: case-value case-value ≥ case-index

.

320 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The case expression INDEX has the value 2. The block following the case value
of 2 is executed; that is, the statement X = 2.0 is executed, and execution of the
CASE construct terminates.

Example:

COLOR = ’GREEN’
SELECT CASE (COLOR)
CASE (’RED’)

STOP

Does the value
match a case range?

Evaluate the case expression
in the SELECT CASE statement

Execute
block

Execute
block

Execute
block

Execute
block

YesYes

No

.

... .
. .

Figure 8-2 Execution flow for a CASE construct

Controlling Execution 321

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

CASE (’YELLOW’)
CALL STOP_IF_YOU_CAN_SAFELY

CASE (’GREEN’)
CALL GO_AHEAD

END SELECT

This example uses selectors of type character. The expression COLOR has the
value GREEN, and therefore the procedure GO_AHEAD is executed. When it
returns, the execution of the CASE statement terminates, and the executable
statement after the END SELECT statement executes next.

8.5 The DO Construct
The DO construct contains zero or more statements and constructs that are
repeated under control of other parts of the construct. More specifically, the
DO construct controls the number of times a sequence of statements and
constructs within the range of a loop is executed. There are three steps in the
execution of a DO construct:

1. First, if execution of the DO construct is controlled by a DO variable, the
expressions representing the parameters that determine the number of
times the range is to be executed are evaluated (step 1 of Figure 8-3).

2. Next, a decision is made as to whether the range of the loop is to be
executed (step 2 of Figure 8-3).

3. Finally, if appropriate, the range of the loop is executed (step 3a of Figure
8-3); the DO variable, if present, is updated (step 3b of Figure 8-3); and step
2 is repeated.

In Fortran 77, execution of a DO loop is controlled by a DO variable that is
incremented a certain number of times as prescribed in the initial DO
statement. In Fortran 90, this option remains available, but there are two
additional ways of controlling the loop; one is the DO WHILE and the other is
the simple DO, sometimes called “DO forever”. The execution of the simple
DO construct must be terminated by executing a statement, such as an EXIT
statement, that transfers control out of the DO range.

There are two basic forms of the DO construct—the block DO and the nonblock
DO. Modern programming practice favors the block DO form and therefore the
block DO form is the recommended construct. The nonblock DO form is there
for compatibility with Fortran 77. The block DO contains all of the
functionality of the nonblock DO and vice versa. Indeed, both forms of DO

322 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

construct permit the DO WHILE and DO forever forms of loops. The feature
distinguishing the two forms is that the block DO construct is always
terminated by an END DO or CONTINUE statement whereas the nonblock DO
construct either terminates with an action statement or construct or shares a
termination statement with another DO construct.

An example of a block DO construct is:

DO I = 1, N
SUM = SUM + A (I)

END DO

Initialize DO constructStep 1

Should
DO range be

executed?

Update DO variable,
if present

Execute
DO rante

Step 2

Yes

Step 3b

Step 3a

No

Figure 8-3 Execution flow for a DO construct

Controlling Execution 323

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

An example of a nonblock DO construct to perform the same computation is:

DO 10 I = 1, N
10 SUM = SUM + A (I)

8.5.1 Form of the Block DO Construct

The block DO construct is a DO construct that terminates with an END DO
statement or a CONTINUE statement that is not shared with another DO
construct. The form of a block DO construct (R817) is:

[do-construct-name :] DO [label] [loop-control]
[execution-part-construct] ...

[label] end-do

where the forms of the loop control (R821) are:

[,] scalar-variable-name = scalar-numeric-expression , &

scalar-numeric-expression [, scalar-numeric-expression]
[,] WHILE (scalar-logical-expression)

and the forms of the end-do (R824) are:

END DO[do-construct-name]
CONTINUE

The statement beginning with the keyword DO after the optional construct
name is called a DO statement. The statement beginning with the keywords
END DO is called an END DO statement. The statement beginning with the
keyword CONTINUE is called a CONTINUE statement.

Rules and restrictions:

1. The DO variable must be a scalar named variable of type integer, default
real, or double precision real. (This excludes scalar variables that are array
elements, arrays, and components of structures.) The use of a real or
double precision DO variable is obsolescent.

2. Each scalar numeric expression in the loop control must be of type integer,
default real, or double precision real. The use of numeric expressions of
type real or double precision real for the DO loop parameters is
obsolescent.

324 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. If the DO statement of a block DO construct has a construct name, the
corresponding end-do must be an END DO statement that has the same
construct name. If the DO statement of a block DO construct does not have
a construct name, the corresponding end-do must not have a construct
name.

4. If the DO statement does not contain a label, the corresponding end-do
must be an END DO statement. If the DO statement does contain a label,
the corresponding end-do must be identified with the same label. Note that
a block DO construct can never share its terminal statement with another
DO construct, even if it is a labeled statement. If a DO construct does share
its terminal statement with another DO construct, it is a nonblock DO
construct.

Examples:

SUM = 0.0
DO I = 1, N

SUM = SUM + X (I) ** 2
END DO

FOUND = .FALSE.
I = 0
DO WHILE (.NOT. FOUND .AND. I < LIMIT)

IF (KEY == X (I)) THEN
FOUND = .TRUE.

ELSE
I = I + 1

END IF
END DO

NO_ITERS = 0
DO

! F and F_PRIME are functions
X1 = X0 - F (X0) / F_PRIME (X0)
IF (ABS(X1-X0) < SPACING (X0) .OR. &

NO_ITERS > MAX_ITERS) EXIT
X0 = X1
NO_ITERS = NO_ITERS + 1

END DO

INNER_PROD = 0.0
DO 10 I = 1, 10

INNER_PROD = INNER_PROD + X (I) * Y (I)
10 CONTINUE

Controlling Execution 325

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

LOOP: DO I = 1, N
Y (I) = A * X (I) + Y (I)

END DO LOOP

Although a DO construct can have both a label and a construct name, use of
both is not in the spirit of modern programming practice where the use of
labels is minimized.

8.5.2 Form of the Nonblock DO Construct

The nonblock DO construct is a DO construct that either shares a terminal
statement with another DO construct, or the terminal statement is a construct
or an action statement. The nonblock DO construct always uses a label to
specify the terminal statement of the construct. The two forms for a nonblock
DO construct (R826) are:

action-terminated-do-construct
outer-shared-do-construct

where the form of an action terminated DO construct (R827) is:

[do-construct-name :] DO label [loop-control]
[execution-part-construct] ...

label action-statement

and the form of an outer shared DO construct (R830) is:

[do-construct-name :] DO label [loop-control]
[execution-part-construct] ...

label shared-termination-do-construct

where the forms of a shared termination DO construct (R831) are:

outer-shared-do-construct
inner-shared-do-construct

An inner shared DO construct (R832) is:

[do-construct-name :] DO label [loop-control]
[execution-part-construct] ...

label action-statement

The action statement terminating an action terminated DO construct is called a
DO terminated action statement. The action statement terminating an inner
shared DO construct is called a DO terminated shared statement. The DO

326 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

terminated action statement, DO terminated shared statement, or shared
terminated DO construct at the end of a nonblock DO construct is called the
DO termination or the terminal statement of that construct.

Rules and restrictions:

1. A DO terminated action statement must not be a CONTINUE statement, a
GO TO statement, a RETURN statement, a STOP statement, an EXIT
statement, a CYCLE statement, an END statement for a program or
subprogram, an arithmetic IF statement, or an assigned GO TO statement.

2. The DO terminated action statement must be identified with a label and
the corresponding DO statement must refer to the same label.

3. A DO terminated shared statement must not be a GO TO statement, a
RETURN statement, a STOP statement, an EXIT statement, a CYCLE
statement, an END statement for a program or subprogram, an arithmetic
IF statement, or an assigned GO TO statement.

4. The DO terminated shared statement must be identified with a label and
all DO statements of the shared terminated DO construct must refer to the
same label.

Examples:

PROD = 1.0
DO 10 I = 1, N

10 PROD = PROD * P (I)

DO 10 I = 1, N
DO 10 J = 1, N

10 HILBERT (I, J) = 1.0 / REAL (I + J)

FOUND = .FALSE.
I = 0
DO 10 WHILE (.NOT. FOUND .AND. I < LIMIT)

I = I + 1
10 FOUND = KEY == X (I)

DO 20 I = 1, N
DO 20 J = I+1, N

T = A (I, J); A (I, J) = A (J, I); A (J, I) = T
20 CONTINUE

Controlling Execution 327

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8.5.3 Range of a DO Construct

The range of a DO construct consists of all statements and constructs following
the DO statement, bounded by and including the terminal statement. The DO
range may contain constructs, such as an IF construct, a CASE construct, or
another DO construct, but the inner construct or constructs must be entirely
enclosed within the nearest outer construct. If the range of a DO construct
contains another DO construct, the DO constructs are said to be nested.

Although a nest of DO constructs sharing a terminal statement is obsolescent
and is earmarked for removal in the next revision of the standard, it is still
permitted. A branch to a statement within a DO construct range from outside
the DO construct is prohibited.

8.5.4 Active and Inactive DO Constructs

A DO construct is either active or inactive. A DO construct becomes active
when the DO statement is executed. A DO construct becomes inactive when
any one of the following situations occurs:

1. the iteration count is zero at the time it is tested

2. the WHILE condition is false at the time it is tested

3. an EXIT statement is executed that causes an exit from the DO construct or
any DO construct containing the DO construct

4. a CYCLE statement is executed that causes cycling of any DO construct
containing the DO construct

5. there is a transfer of control out of the DO construct

6. a RETURN statement in the DO construct is executed

7. the program terminates for any reason

8.5.5 Execution of DO Constructs

There are essentially three forms of DO constructs, each with their own rules
for execution. These forms are: a DO construct with an iteration count, a DO
WHILE construct, and a simple DO construct. Each form of the DO construct

328 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

may contain executable statements that alter the sequential execution of the
DO range (8.5.6); in addition, some render the DO construct inactive as
described in Section 8.5.4.

8.5.5.1 DO Construct with an Iteration Count

In this case, an iteration count controls the number of times the range of the
loop is executed.

The form of a DO statement (R818) using an iteration count is:

DO [label] [,] &

do-variable = expression1 , expression2 [, expression3]

The DO variable and the expressions may be of any arithmetic type, except
complex, but the use of any type except integer is considered obsolescent.
Examples of the DO statement are:

DO 10 I = 1, N
DO, J = -N, N
DO K = N, 1, -1

The Iteration Count. An iteration count is established for counting the number
of times the program executes the range of the DO construct. This is done by
evaluating the expressions expression1, expression2, and expression3, and
converting these values to the type of the DO variable. Let , , and be
the values obtained. The value of must not be zero. If expression3 is not
present, is given the value 1. Thus:

 is the initial value of the DO variable
 is the terminal value the DO variable may assume
 is an optional parameter, specifying the DO variable increment

The iteration count is calculated from the formula:

MAX (INT ((– +) /), 0)

Note that the iteration count is 0 if:

 > and > 0
 or

 < and < 0

Controlling Execution of the Range of the DO Construct. The steps that
control the execution of the range of the DO construct are:

m1 m2 m3
m3

m3

m1
m2
m3

m2 m1 m3 m3

m1 m2 m3

m1 m2 m3

Controlling Execution 329

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

1. The DO variable is set to , the initial parameter (step 1 of Figure 8-3).

2. The iteration count is tested (step 2 of Figure 8-3). If it is 0, the DO
construct terminates.

3. If the iteration count is not 0, the range of the DO construct is executed
(step 3a of Figure 8-3). The iteration count is decremented by 1, and the DO
variable is incremented by (step 3b of Figure 8-3). Steps 2 and 3 are
repeated until the iteration count is 0.

After termination, the DO variable retains its last value, the one that it had
when the iteration count was tested and found to be 0.

The DO variable must not be redefined or become undefined during the
execution of the range of the DO construct. Note that changing the variables
used in the expressions for the loop parameters during the execution of the DO
construct does not change the iteration count; it is fixed each time the DO
construct is entered.

Example:

N = 10
SUM = 0.0
DO 2 I = 1, N

SUM = SUM + X (I)
N = N + 1

2 CONTINUE

The loop is executed 10 times; after execution I = 11 and N = 20.

Example:

X = 20.
DO 41 I = 1, 2

DO 40 J = 1, 5
X = X + 1.0

40 CONTINUE
41 CONTINUE

The inner loop is executed 10 times. After completion of the outer DO
construct, J = 6, I = 3, X = 30.

If the second DO statement had been

DO 40 J = 5, 1

m1

m3

330 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the inner DO construct would not have executed at all; X would remain equal
to 20; J would equal 5, its initial value; and I would be equal to 3. Note that
labels in DO constructs can be used in both free and fixed source forms.

8.5.5.2 The DO WHILE Construct

The DO WHILE form of the DO construct provides the ability to repeat the DO
range while a specified condition remains true.

The form of the DO WHILE statement is:

DO [label] [,] WHILE (scalar-logical-expression)

Examples of the DO WHILE statement are:

DO WHILE(K >= 4)
DO 20 WHILE(.NOT. FOUND)
DO, WHILE(A(I) /= 0)

The DO range is executed repeatedly as follows. Prior to each execution of the
DO range, the logical expression is evaluated. If it is true, the range is
executed; if it is false, the DO WHILE construct terminates.

SUM = 0.0
I = 0
DO WHILE (I < 5)

I = I + 1
SUM = SUM + I

END DO

The loop would execute 5 times, after which SUM = 15.0 and I = 5.

8.5.5.3 The Simple DO Construct

A DO construct without any loop control provides the ability to repeat
statements in the DO range until the DO construct is terminated explicitly by
some statement within the range. When the end of the DO range is reached,
the first executable statement of the DO range is executed next.

The form of the simple DO statement is:

DO [label]

Controlling Execution 331

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Example:

DO
READ *, DATA
IF (DATA < 0) STOP
CALL PROCESS (DATA)

END DO

The DO range executes repeatedly until a negative value of DATA is read, at
which time the DO construct (and the program, in this case) terminates. The
previous example, rewritten using a label, is:

DO 100
READ *, DATA
IF (DATA < 0) STOP
CALL PROCESS (DATA)

100 CONTINUE

8.5.6 Altering the Execution Sequence within the Range of a DO Construct

There are two special statements that may appear in the range of any DO
construct that alter the execution sequence in a special way. One is the EXIT
statement; the other is the CYCLE statement. Other statements, such as branch
statements, RETURN statements, and STOP statements also alter the execution
sequence but are not restricted to DO constructs as are the EXIT and CYCLE
statements.

8.5.6.1 EXIT Statement

The EXIT statement immediately causes termination of the DO construct. No
further action statements within the range of the DO construct are executed. It
may appear in either the block or nonblock form of the DO construct, except
that it must not be the DO termination action statement or DO termination
shared statement of the nonblock form.

The form of the EXIT statement (R835) is:

EXIT [do-construct-name]

Rules and restrictions:

1. The EXIT statement must be within a DO construct.

332 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. If the EXIT statement has a construct name, it must be within the DO
construct with the same name; when it is executed, the named DO
construct is terminated as well as any DO constructs containing the EXIT
statement and contained within the named DO construct.

3. If the EXIT statement does not have a construct name, the innermost DO
construct in which the EXIT statement appears is terminated.

Example:

LOOP_8 : DO
. . .
IF (TEMP == INDEX) EXIT LOOP_8
. . .

END DO LOOP_8

The DO construct has a construct name, LOOP_8; the DO range is executed
repeatedly until the condition in the IF statement is met, when the DO
construct terminates.

8.5.6.2 CYCLE Statement

In contrast to the EXIT statement, which terminates execution of the DO
construct entirely, the CYCLE statement interrupts the execution of the DO
range and begins a new cycle of the DO construct, with appropriate
adjustments made to the iteration count and DO variable, if present. It may
appear in either the block or nonblock form of the DO construct, except it must
not be the DO termination action statement or DO termination shared
statement of the nonblock form. When the CYCLE statement is in the nonblock
form, the DO termination action statement or DO termination shared statement
is not executed.

The form of the CYCLE statement (R834) is:

CYCLE [do-construct-name]

Rules and restrictions:

1. The CYCLE statement must be within a DO construct.

Controlling Execution 333

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. If the CYCLE statement has a construct name, it must be within the DO
construct with the same name; when it is executed, the execution of the
named DO construct is interrupted, and any DO construct containing the
CYCLE statement and contained within the named DO construct is
terminated.

3. If the CYCLE statement does not have a construct name, the innermost DO
construct in which the CYCLE statement appears is interrupted. The
CYCLE statement may be used with any form of the DO statement and
causes the next iteration of the DO range to begin, if permitted by the
condition controlling the loop.

4. Upon interruption of the DO construct, if there is a DO variable, it is
updated and the iteration count is decremented by 1. Then, in all cases, the
processing of the next iteration begins.

Example:

DO
. . .
INDEX = . . .
. . .
IF (INDEX < 0) EXIT
IF (INDEX == 0) CYCLE
. . .

END DO

In the above example, the loop is executed as long as INDEX is nonnegative. If
INDEX is negative, the loop is terminated. If INDEX is 0, the latter part of the
loop is skipped.

8.6 Branching
Branching is a transfer of control from the current statement to another
statement or construct in the program unit. A branch alters the execution
sequence. This means that the statement or construct immediately following
the branch is usually not executed. Instead, some other statement or construct
is executed, and the execution sequence proceeds from that point. The terms
branch statement and branch target statement are used to distinguish between
the transfer statement and the statement to which the transfer is made.

334 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

An example of branching is provided by the GO TO statement. It is used to
transfer to a statement in the execution sequence that is usually not the next
statement in the program, although this is not prohibited.

The statements that may be branch target statements are those classified as
action statements plus the IF-THEN statement, SELECT CASE statement, a DO
statement, a WHERE statement, and a few additional statements in limited
situations. However, it is not permitted to branch to a statement within a block
from outside the block. The additional statements that may be branch targets in
limited contexts are:

1. an END SELECT statement, provided the branch is taken from within the
CASE construct

2. an END DO statement provided the branch is taken from within the DO
construct

3. an END IF statement provided the branch is taken from within the IF
construct; also from outside the IF construct, but this use is designated as
obsolescent

4. an END DO statement, a DO termination action statement, or a DO
termination shared statement, provided the branch is taken from within
the DO construct, but this use is also designated as obsolescent

8.6.1 Use of Labels in Branching

A statement label is a means of identifying the branch target statement. Any
statement in a Fortran program may have a label. However, if a branch
statement refers to a statement label, some statement in the program unit must
have that label, and the statement label must be on an allowed branch target
statement (8.6).

As described in Section 3.2.5, a label is a string of from one to five decimal
digits; leading zeros are not significant. Note that labels can be used in both
free and fixed source forms.

8.6.2 The GO TO Statement

The GO TO statement is an unconditional branching statement altering the
execution sequence.

Controlling Execution 335

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8.6.2.1 Form of the GO TO Statement

The form of the GO TO statement (R836) is:

GO TO label

Rules and restrictions:

1. The label must be a branch target statement in the same scoping unit as the
GO TO statement (that is, in the same program unit, excluding labels on
statements in internal procedures, derived-type definitions, and interface
blocks).

8.6.2.2 Execution of the GO TO Statement

When the GO TO statement is executed, the next statement that is executed is
the branch target statement identified with the label specified. Execution
proceeds from that point. For example:

GO TO 200 ! This is an unconditional branch and
! always goes to 200.

X = 1.0 ! Because this statement is not labeled
! and follows a GO TO statement, it is
! not reachable.

GO TO 10
GO TO 010 ! 10 and 010 are the same label.

8.6.3 The Computed GO TO Statement

The computed GO TO statement transfers to one of a set of the branch target
statements based on the value of an integer expression, selecting the branch
target from a list of labels. The CASE construct provides a similar functionality
in a more structured form.

8.6.3.1 Form of the Computed GO TO Statement

The form of the computed GO TO statement (R837) is:

GO TO (label-list) [,] scalar-integer-expression

336 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples:

GO TO (10, 20), SWITCH
GO TO (100, 200, 3, 33), 2*I-J

Rules and restrictions:

1. If there are labels in the list and the expression has one of the values
from 1 to , the value identifies a statement label in the list: the first,
second, ..., or th label. A branch to the statement with that label is
executed.

2. If the value of the expression is less than 1 or greater than , no branching
occurs and execution continues with the next executable statement or
construct following the computed GO TO statement.

3. Each label in the list must be the label of a branch target statement in the
same scoping unit as the computed GO TO statement.

4. A label may appear more than once in the list of target labels.

Example:

SWITCH = . . .
GO TO (10, 11, 10) SWITCH
Y = Z

10 X = Y + 2.
. . .

11 X = Y

If SWITCH has the value 1 or 3, the assignment statement labeled 10 is
executed; if it has the value 2, the assignment statement labeled 11 is executed.
If it has a value less than 1 or greater than 3, the assignment statement Y = Z is
executed, because it is the next statement after the computed GO TO statement,
and the statement with label 10 is executed next.

8.6.4 The CONTINUE Statement

The form of the CONTINUE statement (R841) is:

CONTINUE

n
n

n

n

Controlling Execution 337

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Normally, the statement has a label and is used for DO termination; however, it
may serve as some other place holder in the program or as a branch target
statement. It may appear without a label. The statement by itself does nothing
and has no effect on the execution sequence or on program results. Examples
are:

100 CONTINUE
CONTINUE

8.6.5 The STOP Statement

This statement terminates the program whenever and wherever it is executed.

The forms of the STOP statement (R842) are:

STOP [scalar-character-constant]
STOP digit [digit [digit [digit [digit]]]]

Rules and restrictions:

1. The character constant or list of digits identifying the STOP statement is
optional and is called a stop code.

2. The character constant must be of default character type.

3. When the STOP code is a string of digits, leading zeros are not significant;
10 and 010 are the same STOP code.

The stop code is accessible following program termination. This might mean
that the processor prints this code to identify where the program stopped if
there are multiple STOP statements. Using a stop code is dependent on the
local termination procedures used by the processor. Examples are:

STOP
STOP ’Error #823’
STOP 20

8.7 Obsolescent Control Statements
Three Fortran 77 control facilities have been declared obsolescent and may be
removed from the next revision of the standard. These are, however, part of the
current standard, but their use is discouraged because of their potential

338 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

removal after the next revision of the standard. These statements are the
ASSIGN and the assigned GO TO statements, the arithmetic IF statement, and
the PAUSE statement.

8.7.1 The ASSIGN and Assigned GO TO Statements

The ASSIGN statement gives an integer variable a statement label. During
program execution, the variable may be assigned labels of branch target
statements, providing a dynamic branching capability in a program. The
unsatisfactory property of these statements is that the integer variable name
may be used to hold both a label and an ordinary integer value, leading to
errors that are hard to discover and programs that are difficult to read.

A frequent use of the ASSIGN statement and assigned GO TO statement is to
simulate internal procedures, using the ASSIGN statement to record the return
point after a reusable block of code has completed. The new internal procedure
mechanism of Fortran 90 provides this capability. A second use of these
constructs is to simulate dynamic format specifications by assigning labels
corresponding to different format statements to an integer variable and using
this variable in input/output statements as a format specifier. This use can be
accomplished in a clearer way by using character strings as format
specifications. Thus, it is no longer necessary to use the ASSIGN statement and
assigned GO TO statement.

Execution of an ASSIGN statement assigns a label to an integer variable.
Subsequently, this value may be used by an assigned GO TO statement or by
an input/output statement to reference a FORMAT statement.

Execution of the assigned GO TO statement causes a transfer of control to the
branch target statement with the label that had previously been assigned to the
integer variable.

8.7.1.1 Form of the ASSIGN and Assigned GO TO Statements

The form of the ASSIGN statement (R838) is:

ASSIGN label TO scalar-integer-variable

Rules and restrictions:

1. The variable must be a named variable of default integer type. That is, it
must not be an array element, an integer component of a structure, or an
object of nondefault integer type.

Controlling Execution 339

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. The label must be the label of a branch target statement or the label of a
FORMAT statement in the same scoping unit as the ASSIGN statement.

3. When defined with an integer value, the integer variable may not be used
as a label.

4. When assigned a label, the integer variable must not be used as anything
other than a label.

5. When the integer variable is used in an assigned GO TO statement, it must
be assigned a label.

6. The variable may be redefined during program execution with either
another label or an integer value.

Example:

ASSIGN 100 TO K

The form of the assigned GO TO statement (R839) is:

GO TO scalar-integer-variable [[,] (label-list)]

Rules and restrictions:

1. The variable must be a named variable of default integer type. That is, it
must not be an array element, an integer component of a structure, or an
object of nondefault integer type.

2. The variable must be assigned the label of a branch target statement in the
same scoping unit as the assigned GO TO statement.

3. If the label list appears, the variable must have been assigned a label value
that is in the list.

Example:

GO TO K
GO TO K (10, 20, 100)

8.7.2 Arithmetic IF Statement

The arithmetic IF statement is a three-way branching statement based on an
arithmetic expression.

340 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The form of the arithmetic IF statement (R840) is:

IF (scalar-numeric-expression) label , label , label

Rules and restrictions:

1. The same label may appear more than once in the same arithmetic IF
statement.

2. The numeric expression must not be of type complex.

3. Each statement label must be the label of a branch target statement in the
same scoping unit as the arithmetic IF statement itself.

The execution begins with the evaluation of the expression. If the expression is
negative, the branch is to the first label; if zero, to the second label; and if
positive, to the third label.

8.7.3 PAUSE Statement

The execution of the PAUSE statement suspends the execution of a program
until the operator or system starts the execution again. This is now redundant,
because a WRITE statement may be used to send a message to any device
(such as the operator console or terminal) and a READ statement may be used
to wait for and receive a message from the same device.

The forms of the PAUSE statement (R844) are:

PAUSE [scalar-character-constant]
PAUSE digit [digit [digit [digit [digit]]]]

The character constant or list of digits identifying the PAUSE statement is
called the pause code and follows the same rules as those for the stop code
(8.6.5). The pause code, as with the stop code, is accessible following program
suspension and may be printed as a code to identify where the program has
been suspended. Using a pause code is dependent on the local termination
procedures used by the processor. Examples are:

PAUSE
PAUSE ’Wait #823’
PAUSE 100

Controlling Execution 341

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8.8 Summary

8.8.1 IF Construct

If the logical expression in the IF-THEN statement is true, the block following
that statement is executed and the construct completes. If the logical expression
is not true, the block is not executed. If there is an ELSE IF statement, its logical
expression is evaluated and, if it is true, the block following it is executed, and
the construct terminates. There may be several ELSE IF statements with a block
following each one of them. At most one block in the construct is executed. An
ELSE statement is optional, and the optional block following it is executed if
none of the logical expressions in the IF-THEN or ELSE IF statements is true.
The construct may be named with a construct name. Recall that the blocks may
be empty; that is, they may contain no executable statements or constructs.

SUM = S
SUMXY : IF (X > Y) THEN

SUM = SUM + X
ELSE

SUM = SUM + Y
END IF SUMXY

8.8.2 IF Statement

An action statement is executed if the logical expression in the IF statement is
true. If it is not true, the next statement in the execution sequence is executed
and the action statement is not executed.

IF (I == J) X = X + 1.0

8.8.3 CASE Construct

The case index is evaluated and compared with all case selectors. If there is a
match, the block following the matched case is executed. There may be a
default case that is executed when no match occurs. At most one block in the
construct is executed. The construct may be named with a construct name. The
case index is limited to an expression of type integer, character, or logical.

342 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

I = 2
. . .

SELECT CASE (I)
CASE (0)

Z = 4.5
A = A + 1.0

CASE (2)
A = A + 2.0

CASE DEFAULT
A = 999.0

END SELECT

8.8.4 DO Construct

The DO construct is used to repeat zero or more times a sequence of statements
and constructs that constitute its range. The DO construct includes the Fortran
77 DO loop as well as the new iterated DO construct, the DO WHILE, and the
simple DO loop. The repetition of the DO construct range may be controlled by
an iteration count or a logical condition. A DO construct may contain EXIT and
CYCLE statements. The construct may be named with a construct name.

8.8.5 Simple DO Loop

The range of the loop is repeated until it is terminated explicitly by a statement
within the range.

DO
S (K) = . . .
K = . . .
IF (K < LIMIT) THEN

K = 0
EXIT

END IF
. . .

END DO

8.8.6 DO Loop with Iteration Count

The range of the DO construct is executed as many times as the iteration count.
The iteration count is determined initially from the expressions in the DO
statement and decremented until the count is zero. The DO construct may
contain EXIT and CYCLE statements.

Controlling Execution 343

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

DO I = 1, 100
X (I) = 2 * I
Y (I) = COS (R * X(I))

END DO

8.8.7 DO WHILE Loop

The range of the DO WHILE construct is executed while the value of a logical
expression in the DO statement is true.

DO WHILE (J < K)
X (J) = COS (Y (J) * J)
J = J + 2

END DO

8.8.8 GO TO Statement

The statement branches unconditionally to the statement with the label
referenced.

GO TO 100

8.8.9 Computed GO TO Statement

A transfer to a branch target statement takes place based on the value of a
scalar integer expression.

GO TO (1, 2, 99) SWITCH

If the scalar integer expression has the value , there is a transfer to the branch
target statement with the th label in the list.

8.8.10 STOP Statement

A program terminates unconditionally when a STOP statement is executed. A
stop code is optional.

STOP

i
i

344 Fortran 90 Handbook

8

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8.8.11 ASSIGN and Assigned GO TO Statements

An integer variable may be given a label by execution of an ASSIGN statement.
Subsequently, the variable may be used in an assigned GO TO statement to
designate a branch target. The label of a FORMAT statement also may be
assigned and used in an input/output statement to designate the format to be
used.

ASSIGN 100 TO FORMAT_SPEC
WRITE (6, FORMAT_SPEC) X

. . .
ASSIGN 98 TO ERROR_HANDLER
GO TO ERROR_HANDLER

100 FORMAT(3A5)

8.8.12 Arithmetic IF Statement

The arithmetic IF statement provides a three-way branch based on whether the
value of an expression is negative, zero, or positive.

IF (IOSTAT_RESULT) 10, 20, 30

The branch is to the first label if it is negative, the second label if it is zero, and
the third label if it is positive.

345

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Input and Output Processing 9

Many programs need data to begin a calculation. After the calculation is
completed, often the results need to be printed, displayed graphically, or saved
for later use. During execution of a program, sometimes there is a large
amount of data produced by one part of the program that needs to be saved for
use by another part of the program, and the amount of data is too large to store
in variables, such as arrays. Also, the editing capabilities of the data transfer
statements for internal files are so powerful that they can be used for
processing character strings. Each of these tasks is accomplished using Fortran
input/output statements described in this chapter.

The input/output statements are:

READ
PRINT
WRITE
OPEN
CLOSE
INQUIRE
BACKSPACE
ENDFILE
REWIND

The READ statement is a data transfer input statement and provides a means
for transferring data from an external media to internal storage or from an
internal file to internal storage through a process called reading. The WRITE
and PRINT statements are both data transfer output statements and provide a
means for transferring data from internal storage to an external media or from

346 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

internal storage to an internal file. This process is called writing. The OPEN
and CLOSE statements are both file connection statements. The INQUIRE
statement is a file inquiry statement. The BACKSPACE, ENDFILE, and
REWIND statements are all file positioning statements.

The first part of this chapter discusses terms and concepts needed to gain a
thorough understanding of all of the input/output facilities. These include
internal and external files, formatted and unformatted records, sequential and
direct access methods for files, advancing and nonadvancing input/output for
the sequential formatted access method, file and record positions, units, and
file connection properties. Following the concepts are descriptions of the
READ, WRITE, and PRINT data transfer statements and the effect of these
statements when they are executed. A model for the execution of data transfer
statements and a description of the possible error and other conditions created
during the execution of data transfer statements are provided next. Following
the model are the descriptions of the OPEN, CLOSE, and INQUIRE statements
that establish respectively the connection properties between units and files,
that disconnect units and files, and that permit inquiry about the state of the
connection between a unit and file. Lastly, file position statements are
specified, which include the BACKSPACE and REWIND statements, followed
by the description of the ENDFILE statement that creates end-of-file records.

The reader should keep in mind that the processor is not required to perform
any input/output operation that cannot be supported by the processor. This
and other restrictions are described in Section 9.9. For example, the processor is
not required to skip a page when the output unit is connected to a nonprinting
device, because skipping a page has no meaning for a file connected to a card
punch. This statement is the “way out” for implementations in the
input/output area and is sometimes referred to as the “cop-out clause”.

The chapter concludes with a summary of the terms, concepts, and statements
used for input and output processing and some examples.

9.1 Records, Files, Access Methods, and Units
Collections of data are stored in files. The data in a file is organized into
records. Fortran treats a record, for example, as a line on a computer terminal,
a line on a printout, or a logical record on a magnetic tape or disk file.
However, the general properties of files and records do not depend on how the

Input and Output Processing 347

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

properties are acquired or how the files and records are stored. This chapter
discusses the properties of records and files, and the various kinds of data
transfer.

A file is a sequence of records that can be represented schematically with each
box representing a record as shown in Figure 9-1. Before discussing further the
general properties of files, we will discuss the properties of records.

9.1.1 Records

There are two kinds of records: data and end-of-file. A data record is a
sequence of values; thus, it can be represented schematically as a collection of
small boxes, each containing a value, as shown in Figure 9-2.

...

Figure 9-1 Schematic representations of records in a file

. . .

Figure 9-2 Schematic representations of the values in a record

348 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The values in a data record may be represented in one of two ways: formatted
or unformatted. Formatted data consists of characters that are representable by
the processor and are viewable on some medium. For example, a record may
contain the four character values “6”, “,”, “1”, and “1” that are intended to
represent the two numbers, 6 and 11. In this case, the record might be
represented schematically as shown in Figure 9-3. Unformatted data consists
of values represented usually just as they are stored in computer memory. For
example, if integers are stored using a binary representation, an unformatted
record, consisting of two integer values, 6 and 11, might look like Figure 9-4.

The values in a data record are either all formatted or all unformatted. A
formatted record is one that contains only formatted data. It may be created by
a person typing at a terminal or by a Fortran program that converts values
stored internally into character strings that form readable representations of
those values. When formatted data is read into the computer, the characters
must be converted to the computer’s internal representation of values, which is
often a binary representation. Even character values may be converted from

6 , 1 1

Figure 9-3 A formatted record with four character values

00000110 00001011

Figure 9-4 An unformatted record with two integer values

Input and Output Processing 349

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

one character representation in the record to another internal representation.
The length of a formatted record is the number of characters in it; the length
may be zero.

An unformatted record is one that contains only unformatted data.
Unformatted records usually are created by running a Fortran program,
although with the knowledge of how to form the bit patterns correctly, they
could be created by other means. Unformatted data often requires less space on
an external device. Also, it is usually faster to read and write because no
conversion is required. However, it is not as suitable for reading by humans
and usually it is not suitable for transferring data from one computer to
another because the internal representation of values is machine dependent.
The length of an unformatted data record depends on the number of values in
it, but is measured in some processor-dependent units; it may be zero. The
length of an unformatted record that will be produced by a particular output
list may be determined by the INQUIRE statement (9.7.1).

In general, a formatted record is read and written by a formatted data transfer
input/output statement, and an unformatted record is read and written by an
unformatted data transfer input/output statement.

The other kind of record is the end-of-file record; it has no value and has no
length. There can be at most one end-of-file record in a file and it must be the
last record of a file. It is used to mark the end of a file. It may be written
explicitly for files connected for sequential access by using the ENDFILE
statement; it may be written implicitly with a file positioning statement
(REWIND or BACKSPACE statement), by closing the file (CLOSE statement),
or by the normal termination of the program.

9.1.2 Kinds of Files

The records of a file must be either all formatted or all unformatted, except that
the file may contain an end-of-file record as the last record. A file may have a
name, but the length of a file name and the characters that may be used in a file
name depend on the processor.

A distinction is made between files that are located on an external device like a
disk, and files in memory accessible to the program. The two kinds of files are:

1. external files

2. internal files

350 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The use of these files is illustrated schematically in Figure 9-5.

9.1.2.1 External Files

External files are located on external devices such as tapes, disks, or computer
terminals. For each external file, there is a set of allowed access methods, a set
of allowed forms, a set of allowed actions, and a set of allowed record lengths.
How these characteristics are established is not described by the standard, but
usually is determined by a combination of requests by the user of the file and
by actions of the operating system. Each of these characteristics will be
discussed later in this chapter. An external file connected to a unit has the
position property; that is, the file is positioned at the current record (at the
beginning or end), and in some cases, is positioned within the current record.

9.1.2.2 Internal Files

The contents of internal files are stored as values of variables of type default
character. The character values may be created using all the usual means of
assigning character values, or they may be created with an output statement
specifying the variable as an internal file. Data transfer to and from internal

External fileCompter
memory

Data value

Character string Internal file

Figure 9-5 Internal and external files

Input and Output Processing 351

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

files is described in detail in Section 9.2.9. Such data transfer to and from an
internal file must use formatted sequential access input/output statements,
including list-directed data transfer, but not namelist data transfer.

File connection, file positioning, and file inquiry must not be used with internal
files. If the variable representing the internal file is a scalar, the file has just one
record; if the variable is an array, the file has one record for each element of the
array. The order of the records is the order of the elements in the array. The
length of each record is the length of one array element.

9.1.2.3 Existence of Files

Certain files are made known to the processor for any executing program, and
these files are said to exist at the time the program begins executing. On the
other hand, a file may not exist because it is not anywhere on the disks
accessible to a system. A file may not exist for a particular program because the
user of the program is not authorized to access the file. For example, Fortran
programs usually are not permitted to access special system files, such as the
operating system or the compiler, in order to protect them from user
modification.

In addition to files that are made available to programs by the processor for
input, output, and other special purposes, programs may create files needed
during and after program execution. When the program creates a file, it is said
to exist, even if no data has been written into it. A file no longer exists after it
has been deleted. Any of the input/output statements may refer to files that
exist for the program at that point during execution. Some of the input/output
statements (INQUIRE, OPEN, CLOSE, WRITE, PRINT, REWIND, and
ENDFILE) may refer to files that do not exist. A WRITE or PRINT statement
may create a file that does not exist and put data into that file, unless an error
condition occurs.

An internal file always exists.

9.1.3 File Position

Each file being processed by a program has a position. During the course of
program execution, records are read or written, causing the file position to
change. Also, there are other Fortran statements that cause the file position to

352 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

change; an example is the BACKSPACE statement. The action produced by the
input/output statements is described in terms of the file position, so it is
important that file position be discussed in detail.

The initial point is the point just before the first record. The terminal point is
the point just after the last record. If the file is empty, the initial point and the
terminal point are the same. Initial and terminal points of a file are illustrated
in Figure 9-6. A file position may become indeterminate, in particular, when an
error condition occurs. When the file position becomes indeterminate, the
programmer cannot rely on the file being in any particular position.

A file may be positioned between records. In the example pictured in Figure
9-7, the file is positioned between records 2 and 3. In this case, record 2 is the
preceding record and record 3 is the next record. Of course, if a file is
positioned at its initial point, there is no preceding record, and there is no next
record if it is positioned at its terminal point.

There may be a current record during execution of an input/output statement
or after completion of a nonadvancing input/output statement as shown in
Figure 9-8, where record 2 is the current record. If the file is positioned within
a current record, the preceding record is the record immediately previous to
the current record, unless the current record is also the initial record, in which

...

Initial point

Terminal point

Figure 9-6 Initial and terminal points of a file

Input and Output Processing 353

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

case there is no preceding record. Similarly, the next record is the record
immediately following the current record, unless the current record is also the
final record in which case there is no next record.

...

Figure 9-7 A file positioned between records

...

Current record

Figure 9-8 A file positioned with a current record

354 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

When there is a current record, the file is positioned at the initial point of the
record, between values in a record, or at the terminal point of the record as
illustrated in Figure 9-9.

An internal file is always positioned at the beginning of a record just prior to
data transfer.

Advancing input/output is record oriented; completion of such an operation
always positions a file at the end of a record or between records, unless an
error condition occurs. In contrast, nonadvancing input/output is character
oriented; after reading and writing, the file may be positioned between
characters within the current record.

The position of a nonadvancing file is never changed following a data transfer,
unless an error, end-of-file, or end-of-record condition occurs while reading the
file. The file position is indeterminate following an error condition when
reading a file.

When a nonadvancing input operation is performed, the file can be positioned
after the last character of the file and before the logical or physical end of
record. A subsequent nonadvancing input operation causes an end-of-record
condition to occur, regardless of whether this record is the last record of the

. . .

At initial point Between values At ter,minal point

Figure 9-9 Positions within a record of a file

Input and Output Processing 355

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

file. If another read operation is executed after the end-of-record condition
occurs and the record is the last record of the file, an end-of-file condition
occurs.

9.1.4 File Access Methods

There are two access methods:

1. sequential access

2. direct access

Some files may be accessed by both methods; other files may be restricted to
one access method or the other. For example, a magnetic tape may be accessed
only sequentially. While each file is connected, it has a set of permissible access
methods, which usually means that it may be accessed either sequentially or
directly. However, a file must not be connected for both direct and sequential
access simultaneously; that is, if a file is connected for direct access, it must be
disconnected with a CLOSE statement and/or reconnected with an OPEN
statement specifying sequential access before it can be referenced in a
sequential access data transfer statement, and vice versa.

The actual file access method used to read or write the file is not a property of
the file itself, but is indicated when the file is connected to a unit or when the
file is created, if the file is preconnected. The same file may be accessed
sequentially by a program, then disconnected, and then later accessed directly
by the same program, if both types of access are permitted for the file.

9.1.4.1 Sequential Access

Sequential access to the records in the file begins with the first record of the file
and proceeds sequentially to the second record, and then to the next record,
record-by-record. The records are accessed serially as they appear in the file. It
is not possible to begin at some particular record within the file without
reading down to that record in sequential order, as illustrated in Figure 9-10.

356 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

When a file is being accessed sequentially, the records are read and written
sequentially. For example, if the records are written in any arbitrary order
using direct access (see below) and then read using sequential access, the
records are read beginning with record number 1 of the file, regardless of when
it was written.

9.1.4.2 Direct Access

When a file is accessed directly, the records are selected by record number.
Using this identification, the records may be read or written in any order.
Therefore, it is possible to write record number 47 first, then number 13. In a

...

record 1

record 2

record 3

record n

Figure 9-10 Sequential access

Input and Output Processing 357

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

new file, this produces a file represented by Figure 9-11. Reading or writing
such records is accomplished by direct access data transfer input/output
statements. Either record may be written without first accessing the other.

A file can be accessed using both the direct and sequential access methods (but
not both at the same time). However, direct access reads are restricted to
records that have been written, and direct access writes are restricted to files
connected for direct access (9.2.6). If a file contains an end-of-file record and is
connected for direct access, the end-of-file record is not considered part of the
file. If the sequential access method is not an allowed access method between
the unit and the file, the file must not contain an end-of-file record.

9.1.5 Units

Input/output statements refer to a particular file by providing an input/output
unit. An input/output unit is either an external unit or an internal unit. An
external unit is either a nonnegative integer or an asterisk (∗). When an
external file is a nonnegative integer, it is called an external file unit. The
number of units and their numbering are processor-dependent. On most

13

47

Figure 9-11 A file written using direct access

358 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

systems, an asterisk in an input data transfer statement is the same as one of
the numbered units, usually 5, and in an output data transfer statement, an
asterisk is the same as another numbered unit, usually 6.

An internal unit is a default character variable. The name of an internal file
also is called a unit. A unit number identifies one and only one external unit in
all program units in a Fortran program.

File positioning, file connection, and inquiry statements must use an external
unit.

9.1.5.1 Unit Existence

The collection of unit numbers that can be used in a program for external files
is determined by the processor and the operating system. The unit numbers
that may be used are said to exist. Some unit numbers on some processors are
always used for data input (for example, unit 5), others are always used for
output (for example, unit 6). There may be certain unit numbers that are never
allowed for user files because they are restricted by the operating system.
Input/output statements must refer to units that exist, except for those that
close a file or inquire about a unit.

9.1.5.2 Establishing a Connection to a Unit

In order to transfer data to or from an external file, the file must be connected
to a unit. An internal file is always connected to the unit that is the name of the
character variable. There are two ways to establish a connection between a unit
and an external file:

1. execution of an OPEN statement in the executing program

2. preconnection by the operating system

Only one file may be connected to a unit at any given time and vice versa. If
the unit is disconnected after its first use on a file, it may be reconnected later
to another file or to the same file. A file that is not connected to a unit must not
be used in any statement, except the OPEN, CLOSE, or INQUIRE statements.

Some units may be preconnected to files for each Fortran program by the
operating system without any action necessary by the program. For example,
on most systems, units 5 and 6 are always preconnected to the default input
and default output files, respectively. Preconnection of units also may be done

Input and Output Processing 359

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

by the operating system when requested by the user in the operating system
command language. In either of these cases, the user program does not require
an OPEN statement to connect the file; it is preconnected.

Once a file has been disconnected, the only way to reference it is by its name
using an OPEN or INQUIRE statement. There is no means of referencing an
unnamed file once it is disconnected.

9.2 Data Transfer Statements
When a unit is connected, either by preconnection or execution of an OPEN
statement, data may be transferred by reading and writing to the file associated
with the unit. The transfer may occur to or from internal or external files.

The data transfer statements are the READ, WRITE, and PRINT statements.
The general form of the data transfer statements is presented first, and then
they are followed by the forms that specify the major uses of data transfer
statements.

9.2.1 General Form for Data Transfer Statements

There are three general forms for data transfer statements:

• the READ statement (R909) in two forms

READ (io-control-spec-list) [input-item-list]
READ format [, input-item-list]

• the WRITE statement (R910)

WRITE (io-control-spec-list) [output-item-list]

• the PRINT statement (R911)

PRINT format [, output-item-list]

360 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The forms of input and output items are given in Section 9.2.2.1. The form of
the item format is described as part of the FMT= specifier in Section 9.2.2. The
format item is called a format specifier.

9.2.1.1 The Input/Output Control Specifiers

The forms of the input/output control specifier (R912) are:

[UNIT =] io-unit
[FMT =] format
[NML =] namelist-group-name
ADVANCE =scalar-default-character-expression
END = label
EOR = label
ERR = label
IOSTAT = scalar-default-integer-variable
REC = scalar-integer-expression
SIZE = scalar-default-integer-variable

The UNIT= specifier, with or without the keyword UNIT, is called a unit
specifier; the FMT= specifier, with or without the keyword FMT, is called a
format specifier; and the NML= specifier, with or without the keyword NML,
is called a namelist specifier.

The data transfer statement is called a formatted input/output statement if a
format or namelist group name specifier is present; it is called an unformatted
input/output statement if neither is present. If a namelist group name specifier
is present, it is also called a namelist input/output statement. It is called a
direct access input/output statement if a REC= specifier is present; otherwise,
it is called a sequential access input/output statement.

Rules and restrictions:

1. The input/output control specification list must contain a unit specifier
and may contain any of the other input/output control specifiers (but none
can appear more than once). A FMT= and NML= specifier may not both
appear in the list.

Input and Output Processing 361

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

There are many additional rules describing the valid combinations of the
input/output control specifiers. These rules are covered in the descriptions of
each specifier in Section 9.2.2, where appropriate, and in terms of
straightforward forms specifying the various kinds of data transfer statements
(see Sections 9.2.3 to 9.2.9).

9.2.2 Specifiers for Data Transfer Statements

This section describes the form and effect of the control information specifiers
that are used in the data transfer statements. The NML=, ADVANCE=, END=,
EOR=, REC=, and SIZE= specifiers are each unique to one of the forms of the
data transfer statements, whereas the other specifiers are used in more than
one form. In particular, NML= is used in the namelist data transfer statement;
the ADVANCE=, EOR=, and SIZE= specifiers are used in input data transfer
statements to specify nonadvancing formatted sequential data transfer; and the
REC= specifier is used for direct access data transfer.

[UNIT=] input/output unit (R901)

scalar integer expression indicates an external unit (R902)

∗ indicates a processor-dependent external unit.
It is the same unit number that the processor
would define if a READ or PRINT statement
appeared without the unit number. The
external unit used for a READ statement
without a unit specifier or a READ statement
with an asterisk unit specifier need not be the
same as that used for a PRINT statement or
WRITE statement with an asterisk unit
specifier

default character variable
indicates an internal unit (R903)

Rules:

1. If a scalar integer expression is used as an input/output unit, it must
be nonnegative.

2. A unit specifier is required.

362 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. A unit number identifies one and only one external unit in all program
units in a Fortran program.

4. If the UNIT keyword is omitted, the input/output unit must be first. In
this case, the keyword FMT or NML may be omitted from the format
or namelist specifier and either item must be second in the list.

5. The unit specified by an asterisk may be used only for formatted
sequential access.

[FMT=] format

default character expression provides the format specification
(10.1.1) in the form of a character
string, indicating formatted
input/output

∗ indicates list-directed formatting

label provides the statement label of a
FORMAT statement containing the
format specification (10.1.1), indicating
formatted input/output.

scalar default integer variable provides an integer variable that has
been assigned the label of a FORMAT
statement, using an ASSIGN statement
(8.7.1), and indicates formatted
input/output

Rules:

1. The keyword FMT= may be omitted if the format specifier is the
second specifier in the control information list; otherwise, it is required.

2. If a format specifier is present, a namelist specifier (NML=) must not be
present.

3. A format specifier may appear in a PRINT statement and the short
form of the READ statement.

4. The scalar default character expression must be a valid format
specification (10.1.1). If the expression is an array, it is treated as if all
elements of the array were concatenated together in array element
order and must be a valid format specification.

Input and Output Processing 363

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. If a label or a variable with a label value is used, the label must be the
label of a FORMAT statement in the same scoping unit as the data
transfer statement.

6. The use of a scalar default integer variable is considered obsolescent.

[NML=] namelist group name

name is the name of a namelist group declared in a
NAMELIST statement

Rules:

1. The namelist group name identifies the list of data objects to be
transferred by the READ or WRITE statement with the NML= specifier.

2. If a namelist specifier is present, a format specifier must not be present.

ADVANCE= scalar default character expression

NO indicates nonadvancing formatted sequential
data transfer

YES indicates advancing formatted sequential data
transfer

Rules:

1. The default value is YES.

2. Trailing blanks in the scalar default character expression are ignored.
The value of the specifier is without regard to case (upper or lower);
that is, the value no is the same as NO.

3. If an ADVANCE= specifier appears in the control information list, the
data transfer must be a formatted sequential data transfer statement
connected to an external unit. List-directed or namelist input/output is
not allowed and neither is data transfer to or from an internal unit.

4. If the EOR= or SIZE= specifier appears in the control information list,
an ADVANCE= specifier must also appear with the value NO.

END= label

label is the label of a branch target statement taken
when an end-of-file condition occurs

364 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules:

1. The END= specifier may appear only in a sequential access READ
statement; note that the END= specifier must not appear in a WRITE
statement.

2. If an IOSTAT= specifier is present, an end-of-file condition occurs, and
no error condition occurs, the IOSTAT variable specified becomes
defined with a processor-dependent negative value.

3. If the file is an external file, it is positioned after the end-of-file record.

4. If an end-of-file condition occurs and no error condition occurs during
the execution of the READ statement, the program branches to the
label in the END= specifier. The label must be a branch target in the
same scoping unit as the READ statement.

EOR= label

label is the label of a branch target statement taken
when an end-of-record condition occurs

Rules:

1. The program branches to the labeled statement specified by the EOR=
specifier if an end of record is encountered for a nonadvancing READ
statement. The label must be a branch target in the same scoping unit
as the statement containing the EOR= specifier.

2. The EOR= specifier may appear only in a READ statement with an
ADVANCE= specifier with a value of NO, that is, a nonadvancing
READ statement.

3. If an end-of-record condition occurs and no error condition occurs
during the execution of the READ statement:

a. The file is positioned after the current record.

b. The variable given in the IOSTAT= specifier, if present, becomes
defined with a processor-dependent negative value.

c. If the connection has been made with the PAD= specifier of YES,
the record is padded with blanks to satisfy the input item list and
the corresponding data edit descriptor that requires more
characters than are provided in the record.

Input and Output Processing 365

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

d. The variable given in the SIZE= specifier, if present, becomes
defined with an integer value (9.2.2) equal to the number of
characters read from the input record; however, blank padding
characters inserted because the PAD= specifier is YES are not
counted.

e. Execution of the READ statement terminates, and the program
branches to the label in the EOR= specifier.

ERR= label

label is the label of a branch target statement taken
when an error condition occurs

Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. The program branches to the label in the ERR= specifier if an error
occurs in a data transfer statement. The label must be a branch target in
the same scoping unit as the data transfer statement.

3. If an IOSTAT= specifier is also present and an error condition occurs,
the IOSTAT variable specified becomes defined with a processor-
dependent positive value.

4. If the data transfer statement is a READ statement, contains a SIZE=
specifier, and an error condition occurs, then the variable specified by
the SIZE= specifier becomes defined with an integer value equal to the
number of characters read from the input record; however, blank
padding characters inserted because the PAD= specifier is YES are not
counted.

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred

negative integer indicates an end-of-file or end-of-record
condition occurred

0 indicates that no error, end-of-file, or end-of-
record condition occurred

Rules:

366 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

1. The negative value indicating the end-of-file condition must not be the
same as the negative value indicating the end-of-record condition.

2. The IOSTAT= specifier applies to the execution of the data transfer
statement itself.

3. The variable specified in the IOSTAT= specifier must not be the same
as or associated with any entity in the input/output item list or in the
namelist group or with the variable specified in the SIZE= specifier, if
present.

4. If the variable specified in the IOSTAT= specifier is an array element,
its subscript values must not be affected by the data transfer, by any
implied-do item or processing, or with the definition or evaluation of
any other specifier in the control specifier list.

REC= scalar integer expression

integer indicates the record number to be read or
written

Rules:

1. The REC= specifier may appear only in a data transfer statement with
a unit that is connected for direct access.

2. If the REC= specifier is present in a control information list, the data
transfer is for a unit connected for direct access, and an END=,
namelist, or format specifier with an asterisk (for list-directed data
transfer) must not be specified in the same control information list.

SIZE= scalar default integer variable

nonnegative integer indicates the number of characters read

Rules:

1. The SIZE= specifier applies to the execution of the READ statement
itself and can appear only in a READ statement with an ADVANCE=
specifier with the value NO.

2. Blanks inserted as padding characters when the PAD= specifier is YES
for the connection (see Section 9.5.5) are not counted.

Input and Output Processing 367

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. The variable specified in the SIZE= specifier must not be the same as or
associated with any entity in the input/output item list or in the
namelist group or with the variable specified in the IOSTAT= specifier,
if present.

4. If the variable specified in the SIZE= specifier is an array element, its
subscript values must not be affected by the data transfer, by any
implied-do item or processing, or with the definition or evaluation of
any other specifier in the control specifier list.

9.2.2.1 The Input/Output Item List

The input/output item list consists basically of lists of variables in a READ
statement and lists of expressions in a WRITE or PRINT statement. In addition,
in any of these statements, the input/output item list may contain an
input/output implied-do list, containing a list of variables or expressions
indexed by the DO variables.

The forms of an input item (R914) are:

variable
io-implied-do

and the forms of an output item (R915) are:

expression
io-implied-do

where the form of an input/output implied-do (R916) is:

(io-implied-do-object-list , io-implied-do-control)

and the forms of an input/output implied-do object (R917) are:

input-item
output-item

and the form of an input/output DO control (R918) is:

do-variable = scalar-numeric-expression , &

scalar-numeric-expression [, scalar-numeric-expression]

368 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. The DO variable must be a scalar integer or real variable. If it is real, it
must be default real or double precision real; the use of real DO variables is
considered obsolescent.

2. Each scalar numeric expression must be of type integer or real. If it is of
type real, each must be of type default real or default double precision; the
use of such real expressions is considered obsolescent. They need not be all
of the same type nor of the type of the DO variable.

3. The DO variable must not be one of the input items in the implied-do; it
must not be associated with an input item either.

4. Two nested implied-do must not have the same (or associated) DO
variables.

5. An implied-do object, when it is part of an input item, must itself be an
input item; that is, it must be a variable or an implied-do object whose
objects are ultimately variables. Similarly, an implied-do object, when it is
part of an output item, must itself be an output item; that is, it must be an
expression or an implied-do object whose objects are ultimately
expressions.

6. For an input/output implied-do, the loop is initialized, executed, and
terminated in the same manner as for the DO construct (8.5.5). Its iteration
count is established at the beginning of processing of the items that
constitute the input/output implied-do.

7. An array appearing without subscripts in an input/output list is treated
the same as if all elements of the array appeared in array-element order.
For example, if UP is an array of shape (2,3),

READ *, UP

is the same as

READ *, UP(1,1), UP(2,1), UP(1,2), &
UP(2,2), UP(1,3), UP(2,3)

8. When a subscripted array is an input item, it is possible that when a value
is transferred from the file to the variable, it might affect another part of
the input item. This is not permitted. Consider the following READ
statements, for example:

Input and Output Processing 369

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

INTEGER A(100), V(10)

! Suppose V’s elements are defined with values in the
! range 1 to 100.

READ *, A(A)
READ *, A(A(1):A(9))
READ *, A(V)

All three READ statements are invalid because the data values read affect
other parts of the array A.

9. Assumed-size arrays may not appear in input/output lists, unless a
subscript, a section subscript specifying an upper bound, or a vector
subscript appears in the last dimension.

10. In formatted input/output, a structure is treated as if, in place of the
structure, all components were listed in the order of the components in the
derived-type definition. For example, if FIRECHIEF is a structure of type
PERSON defined in Section 4.6,

READ *, FIRECHIEF

is the same as

READ *, FIRECHIEF % AGE, FIRECHIEF % NAME

11. In unformatted input/output, a structure is treated as a single object and
its components are arranged in some processor-dependent order; it is not
necessarily processed as if all components appeared in the order given in
the derived-type definition, even if it is of a sequence type.

12. All components of a structure in an input/output list must be accessible in
that scoping unit.

13. A pointer may be an input/output list item but it must be associated with
a target at the time the data transfer statement is executed. For an input
item, the data in the file is transferred to the associated target. For an
output item, the target associated with the pointer must be defined, and
the value of the target is transferred to the file.

14. No structure with an ultimate component that is a pointer may appear in
an input/output list.

370 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

15. An input or output list item must not be of nondefault character type if the
data transfer statement specifies an internal file.

16. A constant or an expression with operators, parentheses, or function
references may not appear as an input list item, but may appear as an
output list item. A function reference in an output list must not cause
execution of another input/output statement.

17. An input list item, or an entity associated with it, must not contain any
portion of an established format specification.

18. On output, every entity whose value is to be written must be defined.

9.2.3 Explicitly Formatted Advancing Sequential Access Data Transfer

For formatted input and output, the file consists of characters. These characters
are converted into representations suitable for storing in the computer memory
during input and converted from an internal representation to characters on
output. When a file is accessed sequentially, records are processed in the order
in which they appear in the file.

Explicitly formatted advancing sequential access data transfer statements have
the forms:

READ ([UNIT =] io-unit &

, [FMT =] format &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

[, END = label] &

[, ADVANCE = ’YES’] &

) [input-item-list]

READ format [, input-item-list]

WRITE ([UNIT =] io-unit &

, [FMT =] format &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

[, ADVANCE = ’YES’] &

) [output-item-list]

PRINT format [, output-item-list]

Input and Output Processing 371

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. The input/output unit is either a scalar integer expression with a
nonnegative value indicating a formatted sequential access external unit or
an asterisk (∗) indicating a processor-dependent formatted sequential
access external unit, usually a preconnected external unit.

2. The format must not be an asterisk (∗), if an ADVANCE= specifier is
present.

3. When an advancing input/output statement is executed, reading or
writing of data begins with the next character in the file. If a previous
input/output statement was a nonadvancing statement, the next character
transferred may be in the middle of a record, even if the statement being
executed is an advancing statement. The essential difference between
advancing and nonadvancing sequential data transfer is that an advancing
input/output statement always leaves the file positioned at the end of the
record.

4. During the data transfer, data are transferred with editing between the file
and the entities specified by the input/output list. Format control is
initiated and editing is performed as described in Chapter 10. The current
record and possibly additional records are read or written.

5. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

6. For input data transfer, the file must be positioned so that the record read
is a formatted record or an end-of-file record.

7. For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters
than the record contains, unless the PAD= specifier is specified as NO in
the OPEN statement. If the PAD= specifier is NO, the input list and format
specification must not require more characters from the record than the
record contains. The action of the processor at this point is processor
dependent; it may report this erroneous condition by setting the variable of
the IOSTAT= specifier, if it is present, or it may terminate execution of the
program.

372 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8. For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the
record size for an external file is specified by a RECL= specifier in the
OPEN statement.

9. If the file is connected for formatted input/output, unformatted data
transfer is prohibited.

10. Execution of an advancing sequential access data transfer statement
terminates when:

a. format processing encounters a data or colon edit descriptor, and there
are no remaining elements in the input item list or output item list

b. on input, an end-of-file condition is encountered

c. an error condition is encountered

Examples of formatted reading are:

! Assume that FMT_5 is a character string
! whose value is a valid format specification.
READ (5, 100, ERR = 99, END = 200) &

A, B, (C (I), I = 1, 40)
READ (9, IOSTAT = IEND, FMT = FMT_5) X, Y
READ (FMT = "(5E20.0)", UNIT = 5, &

ADVANCE = "YES") (Y (I) , I = 1, KK)
READ 100, X, Y

Examples of formatted writing are:

! Assume FMT_103 is a character string with a valid
! format specification.

WRITE (9, FMT_103, IOSTAT = IS, ERR = 99) A, B, C, S
WRITE (FMT = 105, ERR = 9, UNIT = 7) X
WRITE (*, "(F10.5)") X
PRINT "(A, E14.6)" , " Y = ", Y

In free source form, blank characters are required in some contexts and are not
allowed in others. A blank is not required to separate the name of the specifier
and its value from the equal sign. For example, the following statement uses
blanks in various places adjacent to the equal sign and is a correct WRITE
statement:

WRITE (FMT=105, IOSTAT =IST,ERR = 9 , UNIT=7)

Input and Output Processing 373

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.2.4 Unformatted Sequential Access

For unformatted sequential input and output, the file consists of values stored
using a representation that is close to or the same as that used in program
memory. This means that little or no conversion is required during input and
output. Sequential access processes records in the order in which the records
appear in the file.

Unformatted sequential access data transfer statements are the READ and
WRITE statements with no format specifier or namelist group name specifier.
The forms are:

READ ([UNIT =] scalar-integer-expression &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

[, END = label] &

) [input-item-list]
WRITE ([UNIT =] scalar-integer-expression &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [output-item-list]

Rules and restrictions:

1. Data are transferred without editing between the current record and the
entities specified by the input/output list. Exactly one record is read or
written.

2. Objects of intrinsic or derived types may be transferred through an
unformatted data transfer statement.

3. For input data transfer, the file must be positioned so that the record read
is an unformatted record or an end-of-file record.

4. For input data transfer, the number of values required by the input list
must be less than or equal to the number of values in the record. Each
value in the record must be of the same type as the corresponding entity in
the input list, except that one complex value may correspond to two real
list entities or two real values may correspond to one complex list entity.
The type parameters of the corresponding entities must be the same. Note
that if an entity in the input list is of type character, the character entity
must have the same length and the same kind type parameter as the

374 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

character value. Also note that if two real values correspond to one
complex entity or one complex value corresponds to two real entities, all
three must have the same kind type parameter values.

5. On output, if the file is connected for unformatted sequential access data
transfer, the record is created with a length sufficient to hold the values
from the output list. This length must be one of the set of allowed record
lengths for the file and must not exceed the value specified in the RECL=
specifier, if any, of the OPEN statement that established the connection.

6. Execution of an unformatted sequential access data transfer statement
terminates when:

a. the input item list or output item list is exhausted

b. on input, an end-of-file condition is encountered

c. an error condition is encountered

7. If the file is connected for unformatted input/output, formatted data
transfer is prohibited.

Examples of unformatted sequential access reading are:

READ (5, ERR = 99, END = 100) A, B, (C (I) , I = 1, 40)
READ (IOSTAT = IEND, UNIT = 9) X, Y
READ (5) Y

Examples of unformatted sequential access writing are:

WRITE (9, IOSTAT = IS, ERR = 99) A, B, C, S
WRITE (ERR = 99, UNIT = 7) X
WRITE (9) X

If the access is sequential, the file is positioned at the beginning of the next
record prior to data transfer and positioned at the end of the record when the
input/output is finished, because nonadvancing unformatted input/output is
not permitted.

9.2.5 Nonadvancing Formatted Sequential Data Transfer

Nonadvancing formatted sequential input/output provides the capability of
reading or writing part of a record. It leaves the file positioned after the last
character read or written, rather than skipping to the end of the record.
Processing of nonadvancing input continues within a current record, until an

Input and Output Processing 375

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

end-of-record condition occurs. Nonadvancing input statements can read
varying-length records and determine their lengths. Nonadvancing
input/output is sometimes called partial record or stream input/output. It
may be used only with explicitly formatted, external files connected for
sequential access.

The forms of the nonadvancing input/output statements are:

READ ([UNIT =] io-unit &

, [FMT =] format &

, ADVANCE = ’NO’ &

[, SIZE = scalar-default-integer-variable] &

[, EOR = label] &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

[, END = label] &

) [input-item-list]

WRITE ([UNIT =] io-unit &

, [FMT =] format &

, ADVANCE = ’NO’ &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [output-item-list]

Rules and restrictions:

1. The input/output unit is either a scalar integer expression with a
nonnegative value, indicating a formatted sequential access external unit,
or an asterisk (∗), indicating a processor-dependent formatted sequential
access external unit, usually a preconnected external unit.

2. The format must not be an asterisk (∗).

3. During the data transfer, data are transferred with editing between the file
and the entities specified by the input/output list. Format control is
initiated and editing is performed as described in Chapter 10. The current
record and possibly additional records are read or written.

4. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

376 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. For input data transfer, the file must be positioned at the beginning of, end
of, or within a formatted record or at the beginning of an end-of-file record.

6. For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters
than the record contains, unless the PAD= specifier is specified as NO in
the OPEN statement. If the PAD= specifier is NO, the input list and format
specification must not require more characters from the record than the
record contains, except in the presence of an ADVANCE= specifier with the
value NO and either the EOR= or IOSTAT= specifier. In the exceptional
cases during nonadvancing input, the actions and execution sequence are
described in Section 9.4.

7. For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the
record size for an external file is specified by a RECL= specifier in the
OPEN statement.

8. The variable in the SIZE= specifier is assigned the number of characters
read on input. Blanks inserted as padding characters when the PAD=
specifier is YES are not counted.

9. The program branches to the label given by the EOR= specifier, if an end-
of-record condition is encountered during input. The label must be the
label of a branch target statement in the same scoping unit as the data
transfer statement.

10. Execution of a nonadvancing formatted sequential access data transfer
statement terminates when:

a. format processing encounters a data or colon edit descriptor, and there
are no remaining elements in the input item list or output item list

b. on input, an end-of-file or end-of-record condition is encountered

c. an error condition is encountered

11. Unformatted data transfer is prohibited.

Examples: If N has the value 7, the statements

WRITE (*, ’(A)’, ADVANCE = "NO") "The answer is "
PRINT ’(I1)’, N

Input and Output Processing 377

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

produce the single output record:

The answer is 7

If SSN is a rank-one array of size 9 with values (1, 2, 3, 0, 0, 9, 8, 8, 6), the
following statements

DO I = 1, 3
WRITE (*, ’(I1)’, ADVANCE = "NO") SSN(I)

ENDDO
WRITE (*, ’("-")’, ADVANCE = "NO")
DO I = 4, 5

WRITE (*, ’(I1)’, ADVANCE = "NO") SSN(I)
ENDDO
WRITE (*, ’(A1)’, ADVANCE = "NO") ’-’
DO I = 6, 9

WRITE (*, ’(I1)’, ADVANCE = "NO") SSN(I)
ENDDO

produce the record:

123-00-9886

378 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.2.6 Direct Access Data Transfer

In direct access data transfer, the records are selected by record number. The
record number is a scalar integer expression whose value represents the record
number to be read or written. The records may be written in any order, but all
records must be of the length specified by the RECL= specifier in an OPEN
statement.

If a file is connected using the direct access method, then nonadvancing, list-
directed, and namelist input/output is prohibited. Also, an internal file must
not be accessed using the direct access method.

It is not possible to delete a record using direct access. However, records may
be rewritten so that a record can be erased by writing blanks into it.

9.2.6.1 Formatted Direct Access Data Transfer

For formatted input and output, the file consists of characters. These characters
are converted into representations suitable for storing in computer memory
during input and converted from an internal representation to characters on
output. When a file is accessed directly, the record to be processed is given by
reference to the record number.

Formatted direct access data transfer statements are READ and WRITE
statements with a REC= specifier and a format specifier. The forms for
formatted direct access data transfer statements are:

READ ([UNIT =] scalar-integer-expression &

, [FMT =] format &

, REC = scalar-integer-expression &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [input-item-list]
WRITE ([UNIT =] scalar-integer-expression &

, [FMT =] format &

, REC = scalar-integer-expression &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [output-item-list]

Input and Output Processing 379

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. The format must not be an asterisk (∗).

2. On input, an attempt to read a record of a file connected for direct access
that has not previously been written causes all entities specified by the
input list to become undefined.

3. During the data transfer, data are transferred with editing between the file
and the entities specified by the input/output list. Format control is
initiated and editing is performed as described in Chapter 10. The current
record and possibly additional records are read or written.

4. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

5. For input data transfer, the file must be positioned so that the record read
is a formatted record or an end-of-file record.

6. For input data transfer, the input record is logically padded with blanks to
satisfy an input list and format specification that requires more characters
than the record contains, unless the PAD= specifier was specified as NO in
the OPEN statement. If the PAD= specifier is NO, the input list and format
specification must not require more characters from the record than the
record contains. The action of the processor at this point is processor
dependent; it may report this erroneous condition by setting the variable of
the IOSTAT= specifier, if it is present, or it may terminate execution of the
program.

7. For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the
record size for an external file is specified by a RECL= specifier in the
OPEN statement.

8. If the format specification specifies another record (say, by the use of the
slash edit descriptor), the record number is increased by one as each
succeeding record is read or written by that input/output statement.

9. For output data transfer, if the number of characters specified by the
output list and format do not fill a record, blank characters are added to fill
the record.

380 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10. Execution of a formatted direct access data transfer statement terminates
when:

a. format processing encounters a data or colon edit descriptor, and there
are no remaining elements in the input item list or output item list

b. an error condition is encountered

11. If the file is connected for formatted input/output, unformatted data
transfer is prohibited.

12. Note the above forms are intentionally structured so that the unit cannot be
an internal file, and the END=, ADVANCE=, and namelist specifiers cannot
appear.

Examples of formatted direct access input/output statements are:

READ (7, FMT_X, REC = 32, ERR = 99) A
READ (IOSTAT = IO_ERR, REC = 34, &

FMT = 185, UNIT = 10, ERR = 99) A, B, D
WRITE (8, "(2F15.5)", RE C = N + 2) X, Y

9.2.6.2 Unformatted Direct Access Data Transfer

For unformatted input and output, the file consists of values stored using a
representation that is close to or the same as that used in program memory.
This means that little or no conversion is required during input and output.
When a file is accessed directly, the record to be processed is given by reference
to the record number.

Unformatted direct access data transfer statements are READ and WRITE
statements with a REC= specifier and no format specifier. The forms for
unformatted direct access data transfer statements are:

READ ([UNIT =] scalar-integer-expression &

, REC = scalar-integer-expression &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [input-item-list]
WRITE ([UNIT =] scalar-integer-expression &

, REC = scalar-integer-expression &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [output-item-list]

Input and Output Processing 381

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. On input, an attempt to read a record of a file connected for direct access
that has not previously been written causes all entities specified by the
input list to become undefined.

2. The number of items in the input list must be less than or equal to the
number of values in the input record.

3. Data are transferred without editing between the current record and the
entities specified by the input/output list. Exactly one record is read or
written.

4. Objects of intrinsic or derived types may be transferred.

5. For input data transfer, the file must be positioned so that the record read
is an unformatted record or an end-of-file record.

6. For input data transfer, the number of values required by the input list
must be less than or equal to the number of values in the record. Each
value in the record must be of the same type as the corresponding entity in
the input list, except that one complex value may correspond to two real
list entities or two real values may correspond to one complex list entity.
The type parameters of the corresponding entities must be the same. Note
that if an entity in the input list is of type character, the character entity
must have the same length and the same kind type parameter as the
character value. Also note that if two real values correspond to one
complex entity or one complex value corresponds to two real entities, all
three must have the same kind type parameter values.

7. The output list must not specify more values than can fit into the record. If
the file is connected for direct access and the values specified by the output
list do not fill the record, the remainder of the record is undefined.

8. Execution of an unformatted direct access data transfer statement
terminates when:

a. the input item list or output item list is exhausted

b. an error condition is encountered

9. If the file is connected for unformatted direct access input/output,
formatted data transfer is prohibited.

382 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10. Note the above forms are intentionally structured so that the unit cannot be
an internal file, and the FMT=, END=, ADVANCE=, and namelist specifiers
cannot appear.

Examples of unformatted direct access input/output statements are:

READ (7, REC = 32, ERR = 99) A
READ (IOSTAT = MIS, REC = 34, UNIT = 10, ERR = 99) A, B, D
WRITE (8, RE C = N + 2) X, Y

9.2.7 List-Directed Data Transfer

List-directed formatting may occur only with files connected for sequential
access; however, the file may be an internal file. The input/output data transfer
must be advancing. The records read and written are formatted.

List-directed data transfer statements are any data transfer statement, for
which the format specifier is an asterisk (∗). The forms of the list-directed data
transfer statements are:

READ ([UNIT =] io-unit &

, [FMT =] * &

[, IOSTAT = scalar-default-integer-variable] &

[, END = label] &

[, ERR = label] &

) [input-item-list]

READ ∗ [, input-item-list]

WRITE ([UNIT =] io-unit &

, [FMT =] * &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [output-item-list]

PRINT * [, output-item-list]

Rules and restrictions:

1. During the data transfer, data are transferred with editing between the file
and the entities specified by the input/output list. The rules for formatting
the data transferred are discussed in Section 10.10. The current record and
possibly additional records are read or written.

Input and Output Processing 383

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

3. For input data transfer, the file must be positioned so that the record read
is a formatted record or an end-of-file record.

4. For output data transfer, the output list and list-directed formatting must
not specify more characters for a record than the record size; recall that the
record size for an external file is specified by a RECL= specifier in the
OPEN statement.

5. If the file is connected for list-directed data transfer, unformatted data
transfer is prohibited.

6. Execution of a list-directed data transfer statement terminates when:

a. the input item list or the output item list is exhausted

b. on input, an end-of-file is encountered, or a slash (/) is encountered as
a value separator

c. an error condition is encountered

7. Note the above forms are intentionally structured so that the ADVANCE=
and namelist specifiers cannot appear.

Examples of list-directed input and output statements are:

READ (5, *, ERR = 99, END = 100) A, B, (C (I) , I = 1, 40)
READ (FMT = *, UNIT = 5) (Y (I) , I = 1, KK)
READ *, X, Y
WRITE (*, *) X
PRINT * , " Y = ", Y

9.2.8 Namelist Data Transfer

Namelist input/output uses a group name for a list of variables that are
transferred. Before the group name can be used in the transfer, the list of
variables must be declared in a NAMELIST statement, a specification
statement. Using the namelist group name eliminates the need to specify the
list of variables in the sequence for a namelist data transfer. Namelist
input/output is convenient for initializing the same variables with different
values in successive runs. It is also convenient for changing the values of a few

384 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

variables among a large list of variables that are given default initial values.
The formatting of the input or output record is not specified in the program; it
is determined by the contents of the record itself or the items in the namelist
group. Conversion to and from characters is implicit for each variable in the
list.

9.2.8.1 Form of a Namelist Group Declaration

All namelist input/output data transfer statements use a namelist group name,
which must be declared. As described in Section 5.9, the form of a namelist
group name declaration (R543) is:

NAMELIST / namelist-group-name / &

variable-name [, variable-name] ... &

[[,] / namelist-group-name / &

variable-name [, variable-name] ...] ...

Examples are:

NAMELIST / GOAL / G, K, R
NAMELIST / XLIST / A , B / YLIST / Y, YY, YU

9.2.8.2 Forms of Namelist Input and Output Statements

Namelist input and output data transfer statements are READ and WRITE
statements with a namelist specifier. The forms for namelist data transfer
statements are:

READ ([UNIT =] io-unit &

, [NML =] namelist-group-name &

[, IOSTAT = scalar-default-integer-variable] &

[, END = label] &

[, ERR = label] &

)

WRITE ([UNIT =] io-unit &

, [NML =] namelist-group-name &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

)

Input and Output Processing 385

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. The input/output unit is either a scalar integer expression with a
nonnegative value indicating a formatted sequential access external unit or
an asterisk (∗) indicating a processor-dependent formatted sequential
access external unit, usually a preconnected externa unit.

2. During namelist data transfer, data are transferred with editing between
the file and the entities specified by the namelist group name. Format
control is initiated and editing is performed as described in Section 10.11.
The current record and possibly additional records are read or written.

3. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

4. For namelist input data transfer, the file must be positioned so that the
record read is a formatted record or an end-of-file record.

5. For namelist output data transfer, the output list and namelist formatting
must not specify more characters for a record than the record size; recall
that the record size for an external file is specified by a RECL= specifier in
the OPEN statement.

6. If an entity appears more than once within the input record for a namelist
input data transfer, the last value is the one that is used.

7. For namelist input data transfer, all values following a name= part within
the input record are transmitted before processing any subsequent entity
within the namelist input record.

8. Execution of a namelist data transfer statement terminates when:

a. on input, an end-of-file is encountered, or a slash (/) is encountered as
a value separator

b. on input, the end of a namelist input record is reached and a name-
value subsequence has been processed for every item in the namelist
group object list

c. on output, the namelist group object list is exhausted

d. an error condition is encountered

386 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9. If the file is connected for namelist data transfer, unformatted data transfer
is prohibited.

10. Note the above forms are intentionally structured so that the unit cannot be
an internal file. Also, the REC=, FMT=, and ADVANCE= specifiers cannot
appear, and there must be no input or output item list.

Examples of namelist data transfer statements are:

READ (NML = NAME_LIST_23, IOSTAT = KN, UNIT = 5)
WRITE (6, NAME_LIST_23, ERR = 99)

9.2.9 Data Transfer on Internal Files

Transferring data from machine representation to characters or from characters
back to machine representation can be done between two variables in an
executing program. A formatted sequential access input or output statement,
including list-directed formatting, is used. The format is used to interpret the
characters. The internal file and the internal unit are the same character
variable.

With this feature, it is possible to read in a string of characters without
knowing its exact format, examine the string, and then interpret it according to
its contents.

Formatted sequential access data transfer statements on an internal file have
the forms:

READ ([UNIT =] default-character-variable &

, [FMT =] format &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

[, END = label] &

) [input-item-list]
WRITE ([UNIT =] default-character-variable &

, [FMT =] format &

[, IOSTAT = scalar-default-integer-variable] &

[, ERR = label] &

) [output-item-list]

Examples of data transfer on internal files are:

READ (CHAR_124, 100, IOSTAT = ERR) MARY, X, J, NAME

Input and Output Processing 387

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

WRITE (FMT = *, UNIT = CHAR_VAR) X

Rules and restrictions:

1. The unit must be a default character variable that is not an array section
with a vector subscript.

2. Each record of an internal file is a scalar character variable of default
character kind.

3. If the character variable is an array or an array section, each element of the
array or section is a scalar character variable and thus a record. The order
of the records is array element order. The length, which must be the same
for each record, is the length of one array element.

4. If the character variable is an array or part (component, element, section, or
substring) of an array that has the allocatable attribute, the variable must
be allocated before its use as an internal file. It must be defined if it is used
as an internal file in a READ statement.

5. If the character variable is a pointer, it must be associated with a target.
The target must be defined if it is used as an internal file in a READ
statement.

6. During data transfer, data are transferred with editing between the file and
the entities specified by the input/output list. Format control is initiated
and editing is performed as described in Chapter 10. The current record
and possibly additional records are read or written.

7. For the data transfer, values may be transmitted to or from objects of
intrinsic or derived types. In the latter case, the transmission is in the form
of values of intrinsic types to or from the components of intrinsic types,
which ultimately comprise these structured objects.

8. For output data transfer, the output list and format specification must not
specify more characters for a record than the record size; recall that the
record size for an internal file is the length of the character variable
representing the internal file. The format specification must not be part of
the internal file or associated with the internal file or part of it.

9. If the number of characters written is less than the length of the record, the
remaining characters are set to blank.

388 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10. The records in an internal file are defined when the record is written. An
input/output list item must not be in the internal file or associated with
the internal file. An internal file also may be defined by a character
assignment statement, or some other means, or may be used in expressions
in other statements. For example, an array element may be given a value
with a WRITE statement and then used in an expression on the right-hand
side of an assignment statement.

11. In order to read a record in an internal file, the scalar character object must
be defined.

12. Before a data transfer occurs, an internal file is positioned at the beginning
of the first record (that is, before the first character, if a scalar, and before
the first character of the first element, if an array). This record becomes the
current record.

13. Only formatted sequential access, including list-directed formatting, is
permitted on internal files. Namelist formatting is prohibited.

14. On input, an end-of-file condition occurs when there is an attempt to read
beyond the last record of the internal file.

15. During input processing, all nonleading blanks in numeric fields are
treated as if they were removed, right justifying all characters in the field
(as if a BN edit descriptor were in effect [10.8.6]). In addition, records are
blank padded when an end of record is encountered before all of the input
items are read (as if PAD=YES were in effect [9.5.5]).

16. For list-directed output, character values are not delimited (10.10.2).

17. File connection, positioning, and inquiry must not be used with internal
files.

18. Execution of a data transfer statement on an internal file terminates when:

a. format processing encounters a data or colon edit descriptor, and there
are no remaining elements in the input item list or output item list

b. if list-directed processing is specified, the input item list or the output
item list is exhausted; or on input, a slash (/) is encountered as a value
separator

c. on input, an end-of-file condition is encountered

d. an error condition is encountered

Input and Output Processing 389

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.2.10 Printing of Formatted Records

Sometimes output records are sent to a device that interprets the first character
of the record as a control character. This is usually the case with line printers. If
a formatted record is transferred to such a device, the first character of the
record is not printed, but instead is used to control vertical spacing. The
remaining characters of the record, if any, are printed on one line beginning at
the left margin. This transfer of information is called printing.

The first character of such a record must be of default character type and
determines vertical spacing as specified in Table 9-1.

If there are no characters in the record, a blank line is printed. If the first
character is not a blank, 0, 1, or +, the interpretation is processor dependent;
usually the character is treated as a blank.

The PRINT statement does not imply that printing will occur actually on a
printer, and the WRITE statement does not imply that printing will not occur.
Whether printing occurs depends on the device connected to the unit number.

9.3 Execution Model for Data Transfer Statements
When a data transfer statement is executed, these steps are followed in the
order given:

1. Determine the direction of data transfer. A READ statement indicates that
data is to be transferred from a file to program variables. A WRITE or
PRINT statement indicates that data is to be transferred from program
variables to a file.

Table 9-1 Interpretation of the first character for printing control

Character Vertical spacing before printing

Blank One line (single spacing)

0 Two lines (double spacing)

1 To first line of next page (begin new page)

+ No advance (no spacing—print on top of previous line)

390 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. Identify the unit. The unit identified by a data transfer input/output
statement must be connected to a file when execution of the statement
begins. Note that the file may be preconnected.

3. Establish the format, if one is specified. If specified, the format specifier is
given in the data transfer statement and implies list-directed, namelist, or
formatted data transfer.

4. Position the file prior to transferring the data. The position depends on the
method of access (sequential or direct) and is described in Section 9.3.2.

5. Transfer data between the file and the entities specified by the
input/output item list (if any). The list items are processed in the order of
the input/output list for all data transfer input/output statements, except
namelist input data transfer statements which are processed in the order of
the entities specified within the input records. For namelist output data
transfer, the output items are specified by the namelist when a namelist
group name is used.

6. Determine if an error, end-of-record, or end-of-file condition exists. If one
of these conditions occurs, the status of the file and the input/output items
is specified in Section 9.4.

7. Position the file after transferring the data (9.3.3). The file position depends
on whether one of the conditions in step 6 above occurred or if the data
transfer was advancing or nonadvancing.

8. Cause the variables specified in the IOSTAT= and SIZE= specifiers, if
present, to become defined. See the description of these specifiers in the
READ and WRITE data transfer statements in Section 9.2.2.

9. If ERR=, END=, or EOR= specifiers appear in the statement, transfer to the
branch target corresponding to the condition that occurs. If an IOSTAT=
specifier appears in the statement and the label specifier corresponding to
the condition that occurs does not appear in the statement, the next
statement in the execution sequence is executed. Otherwise, the execution
of the program terminates. See the descriptions of these label specifiers in
Section 9.2.2.

Input and Output Processing 391

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.3.1 Data Transfer

Data are transferred between records in the file and entities in the
input/output list or namelist. The list items are processed in the order of the
input/output list for all data transfer input/output statements except namelist
data transfer statements. The list items for a namelist formatted data transfer
input statement are processed in the order of the entities specified within the
input records. The list items for a namelist data transfer output statement are
processed in the order in which the data objects (variables) are specified in the
namelist group object list.

The next item to be processed in the input or output item list is the next
effective item, which is used to determine the interaction between the
input/output item list and the format specification (see Section 10.3).

Zero-sized arrays and implied-do lists with zero iteration counts are ignored in
determining the next effective item.

Before beginning the input/output processing of a particular list item, all
values needed to determine which entities are specified by the list item are
evaluated first. For example, the subscripts of a variable in an input/output list
are evaluated before any data is transferred.

The value of an item that appears early in an input/output list may affect the
processing of an item that appears later in the list. In the example,

READ (N) N, X (N)

the old value of N identifies the unit, but the new value of N is the subscript
of X.

9.3.2 File Position Prior to Data Transfer

The file position prior to data transfer depends on the method of access:
sequential or direct.

For sequential access on input, if there is a current record, the file position is
not changed; this will be the case if the previous data transfer was
nonadvancing. Otherwise, the file is positioned at the beginning of the next
record and this record becomes the current record. Input must not occur if
there is no next record (there must be an end-of-file record at least) or if there
is a current record and the last data transfer statement accessing the file
performed output.

392 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

If the file contains an end-of-file record, the file must not be positioned after
the end-of-file record prior to data transfer. However, a REWIND or
BACKSPACE statement may be used to reposition the file.

For sequential access on output, if there is a current record, the file position is
not changed; this will be the case if the previous data transfer was
nonadvancing. Otherwise, a new record is created as the next record of the file;
this new record becomes the last and current record of the file and the file is
positioned at the beginning of this record.

For direct access, the file is positioned at the beginning of the record specified.
This record becomes the current record.

9.3.3 File Position After Data Transfer

If an error condition exists, the file position is indeterminate. If no error
condition exists, but an end-of-file condition exists as a result of reading an
end-of-file record, the file is positioned after the end-of-file record.

If no error condition or end-of-file condition exists, but an end-of-record
condition exists, the file is positioned after the record just read. If no error
condition, end-of-file condition, or end-of-record condition exists, and the data
transfer was a nonadvancing input or output statement, the file position is not
changed. In all other cases, the file is positioned after the record just read or
written, and that record becomes the preceding record.

9.4 Error and Other Conditions in Input/Output Statements
In step 6 of the execution model in Section 9.3, the data transfer statements
admit the occurrence of error and other conditions during the execution of the
statement. The same is true for the OPEN, CLOSE, INQUIRE, and file
positioning statements.

The set of error conditions is processor dependent. Whenever an error
condition is detected, the variable of the IOSTAT= specifier is assigned a
positive value, if it is present. Also, if the ERR= specifier is present, the
program transfers to the branch target specified by the ERR= specifier upon

Input and Output Processing 393

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

completion of the input/output statement. Note, then, that the set of
conditions that set the variable of the IOSTAT= specifier or cause a transfer to
the branch target specified by the ERR= specifier is processor dependent.

In addition, two other conditions described below must be detected by the
processor: end-of-file and end-of-record. For each of these conditions, error
branches may be provided using the END= and EOR= specifiers in a READ
statement to which the program branches upon completion of the READ
statement. Also, the variable of the IOSTAT= specifier, if present, is set to a
unique negative integer value, indicating which condition occurred.

An end-of-file condition occurs when either an end-of-file record is
encountered during a sequential READ statement, or an attempt is made to
read beyond the end of an internal file. An end-of-file condition may occur at
the beginning of the execution of an input statement or during the execution of
a formatted READ statement when more than one record is required by the
interaction of the format specification and the input item list.

An end-of-record condition occurs when a nonadvancing input statement
(9.2.5) attempts to transfer data from beyond the end of the record.

Two or more conditions may occur during a single execution of an
input/output statement. If one or more of the conditions is an error condition,
one of the error conditions takes precedence, in the sense that the IOSTAT=
specifier is given a positive value designating the particular error condition
and the action taken by the input/output statement is as if only that error
condition occurred.

In summary, an error condition may be generated by any of the input/output
statements, and an end-of-file or end-of-record condition may be generated by
a READ statement. The IOSTAT=, END=, EOR=, and ERR= specifiers allow the
program to recover from such conditions rather than terminate execution of the
program. In particular, when any one of these conditions occurs, the following
actions are taken:

1. If an end-of-record condition occurs and if the connection has been made
with the PAD= specifier of YES, the record is padded, as necessary, with
blanks to satisfy the input item list and the corresponding data edit
descriptor. See Section 9.3.3 for the file position.

2. Execution of the input/output statement terminates.

394 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. If an error condition occurs, the position of the file becomes indeterminate;
if an end-of-file condition occurs, the file is positioned after the end-of-file
record; if an end-of-record condition occurs, the file is positioned after the
current record.

4. If the statement also contains an IOSTAT= specifier, the variable specified
becomes defined with a processor-dependent nonzero integer value; the
value is positive if an error condition occurs and is negative if either an
end-of-file or end-of-record condition occurs.

5. If the statement is a READ statement with a SIZE= specifier and an end-of-
record condition occurs, then the variable specified by the SIZE= specifier
becomes defined with an integer value equal to the number of characters
read from the input record; blank padding characters inserted because the
PAD= specifier is YES are not counted. See Section 9.3.3 for the file
position.

6. Any implied-do variables in the input/output statement become
undefined; if an error or end-of-file condition occurs during execution of a
READ statement, all list items become undefined; if an error condition
occurs during the execution of an INQUIRE statement, all specifier
variables except the IOSTAT= variable become undefined.

7. If an END= specifier is present and an end-of-file condition occurs,
execution continues with the statement specified by the label in the END=
specifier; if an EOR= specifier is present and an end-of-record condition
occurs, execution continues with the statement specified by the label in the
EOR= specifier; if an ERR= specifier is present and an error condition
occurs, execution continues with the statement specified by the label in the
ERR= specifier; if none of the above cases applies, but the input/output
statement contains an IOSTAT= specifier, the normal execution sequence is
resumed; if there is no IOSTAT=, END=, EOR=, or ERR= specifier and an
error or other condition occurs, the program terminates execution.

The following program segment illustrates how to handle end-of-file and error
conditions.

READ (FMT = "(E8.3)", UNIT=3, IOSTAT = IOSS) X

IF (IOSS < 0) THEN

! PERFORM END-OF-FILE PROCESSING ON THE
! FILE CONNECTED TO UNIT 3.

Input and Output Processing 395

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

CALL END_PROCESSING

ELSE IF (IOSS > 0) THEN

! PERFORM ERROR PROCESSING
CALL ERROR_PROCESSING

END IF

The procedure END_PROCESSING is used to handle the case where an end-of-
file condition occurs and the procedure ERROR_PROCESSING is used to
handle all other error conditions, because an end-of-record condition cannot
occur.

9.5 The OPEN Statement
The OPEN statement establishes a connection between a unit and an external
file and determines the connection properties. In order to perform data
transfers (reading and writing), the file must be connected with an OPEN
statement or preconnected by the processor. It may also be used to change
certain properties of the connection between the file and the unit, to create a
file that is preconnected, or create a file and connect it.

The OPEN statement may appear anywhere in a program, and once executed,
the connection of the unit to the file is valid in the main program or any
subprogram for the remainder of that execution, unless a CLOSE statement
affecting the connection is executed.

If a file is already connected to one unit, it must not be connected to a different
unit.

9.5.1 Connecting a File to a Unit

In what is probably the most common situation, the OPEN statement connects
an external file to a unit. If the file does not exist, it is created. If a unit is
already connected to a file that exists, an OPEN statement referring to that unit
may be executed. If the FILE= specifier is not included, the unit remains
connected to the file. If the FILE= specifier names the same file, the OPEN
statement may change the connection properties as described in Section 9.5.3.
If it specifies a different file by name, the effect is as if a CLOSE statement
without a STATUS= specifier is executed on that unit and the OPEN statement

396 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

is then executed. (The default value of the STATUS= specifier is KEEP, unless
the prior status of the file was SCRATCH, in which case the default value is
DELETE.)

9.5.2 Creating a File on a Preconnected Unit

If a unit is preconnected to a file that does not exist, the OPEN statement
creates the file and establishes properties of the connection.

9.5.3 Changing the Connection Properties

Execution of an OPEN statement may change the properties of a connection
that is already established. The properties that may be changed are those
indicated by BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers. If new
values for DELIM=, PAD=, and BLANK= specifiers are specified, these will be
used in subsequent data transfer statements; otherwise, the old ones will be
used. However, the values in ERR= and IOSTAT= specifiers, if present, apply
only to the OPEN statement being executed; after that, the values of these
specifiers have no effect. If no ERR= or IOSTAT= specifier appears in the new
OPEN statement, error conditions will terminate the execution of the program.

9.5.4 Form of the OPEN Statement

The form of the OPEN statement (R904) is:

OPEN (connection-spec-list)

where the forms of a connection specifier (R905) are:

[UNIT =] scalar-integer-expression
ACCESS =scalar-default-character-expression
ACTION = scalar-default-character-expression
BLANK = scalar-default-character-expression
DELIM = scalar-default-character-expression
ERR = label
FILE = file-name-expression
FORM =scalar-default-character-expression
IOSTAT = scalar-default-integer-variable
PAD = scalar-default-character-expression

Input and Output Processing 397

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

POSITION = scalar-default-character-expression
RECL = scalar-integer-expression
STATUS = scalar-default-character-expression

Rules and restrictions:

1. A unit specifier is required. If the keyword UNIT is omitted, the scalar
integer expression must be the first item in the list.

2. A specifier must not appear more than once in an OPEN statement.

3. The character expression established for many of the specifiers must
contain one of the permitted values from the list of alternative values for
each specifier described in Section 9.5.5. For example, OLD, NEW,
REPLACE, UNKNOWN, or SCRATCH are permitted for the STATUS=
specifier; any other combination of letters is not permitted. Trailing blanks
in any specifier are ignored. If a processor is capable of representing both
uppercase and lowercase letters, the value specified is without regard to
case.

4. Note that the form ∗ for the unit specifier is not permitted in the OPEN
statement. However, in cases where the default external unit specified by
an asterisk also corresponds to a nonnegative unit specifier (such as unit
numbers 5 and 6 on many systems), inquiries about these default units and
connection properties are possible.

5. If the last data transfer to a unit connected for sequential access to a
particular file is an output data transfer statement, an OPEN statement for
that unit connecting it to a different file writes an end-of-file record to the
original file.

Examples are:

OPEN (STATUS = "SCRATCH", UNIT = 9)
OPEN (8, FILE = "PLOT_DATA", RECL = 80, ACCESS = "DIRECT")

398 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.5.5 The Connection Specifiers

The OPEN statement specifies the connection properties between the file and
the unit, using keyword specifiers, which are described in this section. Table
9-2 indicates the possible values for the specifiers in an OPEN statement and
their default values when the specifier is omitted.

Table 9-2 Values for keyword specifier variables in an OPEN statement

Specifier Possible values Default value

ACCESS= DIRECT, SEQUENTIAL SEQUENTIAL

ACTION= READ, WRITE, READWRITE
Processor
dependent

BLANK= NULL, ZERO NULL

DELIM= APOSTROPHE, QUOTE, NONE NONE

ERR= Label No default

FILE= Character expression
Processor
determined

FORM=
FORMATTED

UNFORMATTED

FORMATTED for
sequential access
UNFORMATTED
for direct access

IOSTAT= Scalar default integer variable No default

PAD= YES, NO YES

POSITION= ASIS, REWIND, APPEND ASIS

RECL= Positive scalar integer expression
Processor
dependent

STATUS=
OLD, NEW, UNKNOWN,

REPLACE, SCRATCH
UNKNOWN

UNIT= Scalar integer expression No default

Input and Output Processing 399

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

[UNIT=] scalar integer expression

Rules:

1. The value of the scalar integer expression must be nonnegative.

2. A unit specifier with an external unit is required. If the keyword UNIT
is omitted, the unit specifier must be the first item in the list.

3. A unit number identifies one and only one external unit in all program
units in a Fortran program.

ACCESS= scalar default character expression

DIRECT specifies the direct access method for data
transfer

SEQUENTIAL specifies the sequential access method for data
transfer

Rules:

1. The default value is SEQUENTIAL.

2. If the file exists, the method specified must be an allowed access
method for the file.

3. If the file is new, the allowed access methods given for the file must
include the one indicated.

4. If the ACCESS= specifier is DIRECT, a RECL= specifier must be
present.

ACTION= scalar default character expression

READ indicates that WRITE, PRINT, and ENDFILE
statements are prohibited

WRITE indicates that READ statements are prohibited

READWRITE indicates that any input/output statement is
permitted

Rules:

1. The default value is processor dependent.

400 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. If READWRITE is an allowed ACTION= specifier, READ and WRITE
must also be allowed ACTION= specifiers.

3. For an existing file, the specified action must be an allowed action for
the file.

4. For a new file, the value of the ACTION= specifier must be one of the
allowed actions for the file.

BLANK= scalar default character expression

NULL ignore all blanks in numeric fields

ZERO interpret all blanks except leading blanks as
zeros

Rules:

1. The default value is NULL.

2. A field of all blanks evaluates to zero in both cases.

3. The BLANK= specifier may be specified for files connected only for
formatted input/output.

DELIM= scalar default character expression

APOSTROPHE use the apostrophe as the delimiting character
for character constants written by a list-
directed or namelist formatted data transfer
statement

QUOTE use the quotation mark as the delimiting
character for character constants written by a
list-directed or namelist-formatted data
transfer statement

NONE use no delimiter to delimit character constants
written by a list-directed or namelist-formatted
data transfer statement

Rules:

1. The default value is NONE.

Input and Output Processing 401

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. If the DELIM= specifier is APOSTROPHE, any occurrence of an
apostrophe within a character constant will be doubled; if the DELIM=
specifier is QUOTE, any occurrence of a quote within a character
constant will be doubled.

3. The specifier is permitted only for a file connected for formatted
input/output; it is ignored for formatted input.

ERR= label

label is the label of a branch target statement taken
when an error condition occurs

Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. If an IOSTAT= specifier is present and an error condition occurs, the
IOSTAT variable specified becomes defined with a processor-
dependent positive value.

3. The program branches to the label in the ERR= specifier if an error
occurs in the OPEN statement. The label must be a branch target in the
same scoping unit as the OPEN statement.

FILE= scalar default character expression

expression indicates the name of the file to be connected. It
is called the file name expression

Rules:

1. If the name is omitted, the connection can be made to a processor-
determined file.

2. Trailing blanks in the name are ignored.

3. The name must be a file name allowed by the processor.

4. If the processor allows uppercase and lowercase letters in file names,
the interpretation of the case of the letters is processor dependent; for
example, the processor may distinguish file names by case or it may
interpret the name all in uppercase or lowercase letters.

402 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. The FILE= specifier must appear if the STATUS= specifier is OLD,
NEW, or REPLACE; the FILE= specifier must not appear if the
STATUS= specifier is SCRATCH.

6. If the FILE= specifier is omitted and the unit is not already connected
to a file, the STATUS= specifier (see below) must have the value
SCRATCH; in case the unit is not already connected, the unit becomes
connected to a processor-dependent file.

FORM= scalar default character expression

FORMATTED indicates that all records are formatted

UNFORMATTED indicates that all records are unformatted

Rules:

1. The default value is UNFORMATTED, if the file is connected for direct
access and the FORM= specifier is absent.

2. The default value is FORMATTED, if the file is connected for
sequential access and the FORM= specifier is absent.

3. If the file is new, the allowed forms given for the file must include the
one indicated.

4. If the file exists, the form specified by the FORM= specifier must be
one of the allowed forms for the file.

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred

0 indicates that no error condition occurred

Rules:

1. The IOSTAT= specifier applies to the execution of the OPEN statement
itself. Note that the value cannot be negative.

PAD= scalar default character expression

YES use blank padding when the input item list and
format specification require more data than the
record contains

Input and Output Processing 403

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

NO requires that the input record contains the data
indicated by the input list and format
specification

Rules:

1. The default value is YES.

2. The specifier is permitted only for a file connected for formatted
input/output; it is ignored for formatted output.

3. The blank padding character used for nondefault character types is
processor dependent.

4. If this specifier has the value YES and an end-of-record condition
occurs, the data transfer behaves as if the record were padded with
sufficient blanks to satisfy the input item and the corresponding data
edit descriptor.

POSITION= scalar default character expression

ASIS indicates the file position is to remain
unchanged for a connected file and is
unspecified for a file that is not connected

REWIND indicates the file is to be positioned at its initial
point

APPEND indicates the file is to be positioned at the
terminal point or just before an end-of-file
record, if there is one

Rules:

1. The default value is ASIS, permitting an OPEN statement to change
other connection properties of a file that is already connected without
changing its position.

2. The file must be connected for sequential access.

3. If the file is new, it is positioned at its initial point, regardless of the
value of the POSITION= specifier.

404 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

RECL= scalar integer expression

positive value specifies the length of each record if the access
method is direct, or the maximum length of a
record if the access method is sequential

Rules:

1. The default value is processor dependent, if the RECL= specifier is
absent for a file connected for sequential access.

2. The RECL= specifier must be present for a file connected for direct
access.

3. If the file is connected for formatted input/output, the length is the
number of characters.

4. If the file is connected for unformatted input/output, the length is
measured in processor-dependent units. In this case, the length may be
the number of computer words, for example.

5. If the file exists, the length of the record specified must be an allowed
record length.

6. If the file does not exist, the file is created with the specified length as
an allowed length.

STATUS= scalar default character expression

OLD requires that the file exist

NEW requires that the file not exist

UNKNOWN indicates that the file has a processor-
dependent status

REPLACE requires that, if the file does not exist, the file is
created and given a status of OLD; if the file
does exist, the file is deleted, a new file is
created with the same name, and the file is
given a status of OLD

Input and Output Processing 405

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SCRATCH indicates that an unnamed file is to be created
and connected to the specified unit; it is to exist
either until the program terminates or a CLOSE
statement is executed on that unit

Rules:

1. The default value is UNKNOWN.

2. Scratch files must be unnamed; that is, the STATUS= specifier must not
be SCRATCH when a FILE= specifier is present. The term scratch file
refers to this temporary file.

3. Note that, if the STATUS= specifier is REPLACE, the specifier in this
statement is not changed to OLD; only the file status is considered to
be OLD when the file is used in subsequently executed input/output
statements, such as a CLOSE statement.

9.6 The CLOSE Statement
Execution of a CLOSE statement terminates the connection of a file to a unit.
Any connections not closed explicitly by a CLOSE statement are closed by the
operating system when the program terminates, unless an error condition has
terminated the program. The form of the CLOSE statement (R907) is:

CLOSE (close-spec-list)

where the forms of a close specifier (R908) are:

[UNIT =] scalar-integer-expression
IOSTAT = scalar-default-integer-variable
ERR = label
STATUS = scalar-default-character-expression

Rules and restrictions:

1. A unit specifier is required. If the keyword UNIT is omitted, the scalar
integer expression must be the first item in the list.

2. A specifier must not appear more than once in a CLOSE statement.

3. A CLOSE statement may appear in any program unit in an executing
program.

406 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. A CLOSE statement may refer to a unit that is not connected or does not
exist, but it has no effect.

5. When an executing program terminates, all files are closed, unless the
program has been terminated by an error condition.

6. If the last data transfer to a file connected for sequential access is an output
data transfer statement, a CLOSE statement for a unit connected to this file
writes an end-of-file record to the file.

7. After a unit has been disconnected by a CLOSE statement, it may be
connected again to the same or a different file. Similarly, after a file has
been disconnected by a CLOSE statement, it may also be connected to the
same or a different unit, provided the file still exists.

Examples are:

CLOSE (ERR = 99, UNIT = 9)
CLOSE (8, IOSTAT = IR, STATUS = "KEEP")

9.6.1 The CLOSE Specifiers

This section describes the form and effect of the specifiers that may appear in a
CLOSE statement.

[UNIT=] scalar integer expression

Rules:

1. The value of the scalar integer expression must be nonnegative.

2. A unit specifier is required. If the keyword UNIT is omitted, a scalar
integer expression unit must be the first item in the list.

3. A unit number identifies one and only one external unit in all program
units in a Fortran program.

ERR= label

label is the label of a branch target statement taken
when an error condition occurs

Input and Output Processing 407

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. If an IOSTAT= specifier is present and an error condition occurs, the
IOSTAT variable specified becomes defined with a processor-
dependent positive value.

3. The program branches to the label in the ERR= specifier if an error
occurs in the CLOSE statement. The label must be a branch target in
the same scoping unit as the CLOSE statement.

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred

0 indicates that no error condition occurred

Rules:

1. The IOSTAT= specifier applies to the execution of the CLOSE statement
itself. Note that the value cannot be negative.

STATUS= scalar default character expression

KEEP indicates that the file is to continue to exist
after closing the file

DELETE indicates that the file will not exist after closing
the file

Rules:

1. The default value is DELETE, if the unit has been opened with a
STATUS= specifier of SCRATCH.

2. The default value is KEEP, if the unit has been opened with any other
value of the STATUS= specifier.

3. KEEP must not be specified for a file whose file status is SCRATCH.

4. If KEEP is specified for a file that does not exist, the file does not exist
after the CLOSE statement is executed.

408 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.7 Inquiring about Files
An inquiry may be made about a file’s existence, connection, access method, or
other properties. For each property inquired about, a scalar variable of default
kind is supplied; that variable is given a value that answers the inquiry. The
variable may be tested and optional execution paths may be selected based on
the answer returned. The inquiry specifiers are determined by keywords in the
INQUIRE statement. The only exception is the unit specifier, which, if no
keyword is specified, must be the first specifier. A file inquiry may be made by
unit number, file name, or an output item list. When inquiring by an output
item list, an output item list that might be used in an unformatted direct access
output statement must be present.

9.7.1 The INQUIRE Statement

There are three kinds of INQUIRE statements (R923): inquiry by unit, by name,
and by an output item list. The first two kinds use the first form of the
INQUIRE statement below, whereas the third kind uses the second form below.
Inquiry by unit uses a unit specifier, whereas inquiry by file uses a file specifier
with the keyword FILE=. The form of an inquiry by unit or file is:

INQUIRE (inquiry-spec-list)

The form of an inquiry by an output item list is:

INQUIRE (IOLENGTH = scalar-default-integer-variable) output-item-list

The forms of an inquiry specifier (R924) are:

[UNIT =] scalar-integer-expression
ACCESS =scalar-default-character-variable
ACTION = scalar-default-character-variable
BLANK = scalar-default-character-variable
DELIM = scalar-default-character-variable
DIRECT = scalar-default-character-variable
ERR = label
EXIST = scalar-default-logical-variable
FILE = scalar-default-character-expression
FORM =scalar-default-character-variable
FORMATTED =scalar-default-character-variable
IOSTAT = scalar-default-integer-variable
NAME =scalar-default-character-variable

Input and Output Processing 409

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

NAMED =scalar-default-logical-variable
NEXTREC =scalar-default-integer-variable
NUMBER =scalar-default-integer-variable
OPENED =scalar-default-logical-variable
PAD = scalar-default-character-variable
POSITION = scalar-default-character-variable
READ = scalar-default-character-variable
READWRITE =scalar-default-character-variable
RECL = scalar-default-integer-variable
SEQUENTIAL = scalar-default-character-variable
UNFORMATTED =scalar-default-character-variable
WRITE = scalar-default-character-variable

Rules and restrictions:

1. An INQUIRE statement with an inquiry specifier list must have a unit
specifier or a FILE= specifier, but not both. If the keyword UNIT is omitted,
a scalar integer expression must be the first item in the list and must have
a nonnegative value.

2. No specifier may appear more than once in a given inquiry specifier list.

3. For an inquiry by an output item list, the output item list must be a valid
output list for an unfromatted direct access output statement. The length
value returned in the scalar default integer variable must be a value that is
acceptable when used as the value of the RECL= specifier in an OPEN
statement. This value may be used in a RECL= specifier to connect a file
whose records will hold the data indicated by the output list of the
INQUIRE statement.

4. The value taken by a variable given in an inquiry specifier is the value that
would be obtained if the specified value were assigned to the variable
using an intrinsic assignment statement.

5. An INQUIRE statement may be executed before or after a file is connected
to a unit. The specifier values returned by the INQUIRE statement are
those current at the time at which the INQUIRE statement is executed.

6. A variable appearing in a keyword specifier or any entity associated with it
must not appear in another specifier in the same INQUIRE statement if
that variable can become defined or undefined as a result of executing the
INQUIRE statement. That is, do not try to assign two inquiry results to the
same variable!

410 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7. Except for the NAME= specifier, the processor must return character
values in uppercase, even if it can process both uppercase and lowercase.
For the NAME= specifier, the allowed characters used in the value
returned are processor determined. For the same reason, the allowed
characters for the value for the FILE= specifier are processor dependent.

8. If an error condition occurs during the execution of an INQUIRE
statement, all the inquiry specifier variables become undefined except the
IOSTAT= specifier.

Examples of the INQUIRE statement are:

INQUIRE (9, EXIST = EX)
INQUIRE (FILE = "T123", OPENED = OP, ACCESS = AC)
INQUIRE (IOLENGTH = IOLEN) X, Y, CAT

9.7.2 Specifiers for Inquiry by Unit or File Name

This section describes the form and effect of the inquiry specifiers that may
appear in the inquiry by unit and file forms of the INQUIRE statement.

[UNIT=] scalar integer expression

expression indicates an external unit (R902)

Rules:

1. The value of the scalar integer expression must be nonnegative.

2. A unit specifier is required. If the keyword UNIT is omitted, a scalar
integer expression must be the first item in the list.

3. A unit number identifies one and only one external unit in all program
units in a Fortran program.

4. The file is the file connected to the unit, if one is connected; otherwise,
the file does not exist.

ACCESS= scalar default character variable

SEQUENTIAL indicates the file is connected for sequential
access

DIRECT indicates the file is connected for direct access

Input and Output Processing 411

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

UNDEFINED indicates the file is not connected

ACTION= scalar default character variable

READ indicates the file is connected with access
limited to input only

WRITE indicates the file is connected with access
limited to output only

READWRITE indicates the file is connected for both input
and output

UNDEFINED indicates the file is not connected

BLANK= scalar default character variable

NULL indicates null blank control is in effect

ZERO indicates zero blank control is in effect

UNDEFINED indicates the file is not connected for formatted
input/output or the file is not connected at all

Rules:

1. See the BLANK= specifier for the OPEN statement in Section 9.5.5 for
the meaning of null and zero blank control.

DELIM= scalar default character variable

APOSTROPHE indicates an apostrophe is used as the delimiter
in list-directed and namelist-formatted output

QUOTE indicates the quotation mark is used as the
delimiter in list-directed and namelist-
formatted output

NONE indicates there is no delimiting character in list-
directed and namelist-formatted output

UNDEFINED indicates the file is not connected or the file is
not connected for formatted input/output

412 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

DIRECT= scalar default character variable

YES indicates direct access is an allowed access
method

NO indicates direct access is not an allowed access
method

UNKNOWN indicates the processor does not know if direct
access is allowed

ERR= label

label is the label of a branch target statement taken
when an error condition occurs

Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. If an IOSTAT= specifier is present and an error condition occurs, the
IOSTAT variable specified becomes defined with a processor-
dependent positive value. All other inquiry specifier variables become
undefined.

3. The program branches to the label in the ERR= specifier if there is an
error in the execution of the INQUIRE statement itself. The label must
be a branch target in the same scoping unit as the INQUIRE statement.

EXIST= scalar default logical variable

true indicates the file or unit exists

false indicates the file or unit does not exist

FILE= scalar default character expression

expression indicates the name of the file

Rules:

1. The value of the scalar default character expression must be a file name
acceptable to the processor. Trailing blanks are ignored. If the processor
can represent both uppercase and lowercase letters, the interpretation
is processor dependent.

Input and Output Processing 413

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. The file name may refer to a file not connected or to one that does not
exist.

FORM= scalar default character variable

FORMATTED indicates the file is connected for formatted
input/output

UNFORMATTED indicates the file is connected for unformatted
input/output

UNDEFINED indicates the file is not connected

FORMATTED= scalar default character variable

YES indicates formatted input/output is an allowed
form for the file

NO indicates formatted input/output is not an
allowed form for the file

UNKNOWN indicates the processor cannot determine if
formatted input/output is an allowed form for
the file

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred

0 indicates no error condition occurred

Rules:

1. The IOSTAT= specifier applies to the execution of the INQUIRE
statement itself. Note that the value cannot be negative.

NAME= scalar default character variable

file name indicates the name of the file connected to the
unit, if the file has a name

undefined value indicates the file does not have a name or no
file is connected to the unit

414 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules:

1. The processor may return a name different from the one specified in
the FILE= specifier by the program, because a user identifier or some
other processor requirement for file names may be added.

2. Whatever the name returned, it must be acceptable for use as a FILE=
specifier in an OPEN statement.

3. The interpretation of the case (upper or lower) of letters used and
allowed in a file name is determined by the processor.

NAMED= scalar default logical variable

true indicates the file has a name

false indicates the file does not have a name

NEXTREC= scalar default integer variable

last record number + 1 indicates the next record number to be read or
written in a file connected for direct access. The
value is one more than the last record number
read or written

1 indicates no records have been processed

undefined value indicates the file is not connected for direct
access or the file position is indeterminate
because of a previous error condition

Rules:

1. This inquiry is used for files connected for direct access.

NUMBER= scalar default integer variable

unit number indicates the number of the unit connected to
the file

–1 indicates there is no unit connected to the file

OPENED= scalar default logical variable

true indicates the file or unit is connected (that is,
opened)

Input and Output Processing 415

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

false indicates the file or unit is not connected (that
is, not opened)

PAD= scalar default character variable

NO indicates the file or unit is connected with the
PAD= specifier set to NO

YES indicates the file or unit is connected with the
PAD= specifier other than NO, or the file or
unit is not connected

POSITION= scalar default character variable

REWIND indicates the file is connected with its position
at the initial point

APPEND indicates the file is connected with its position
at the terminal point

ASIS indicates the file is connected without changing
its position

UNDEFINED indicates the file is not connected or is
connected for direct access

Rules:

1. If any repositioning has occurred since the file was connected, the
value returned is processor dependent, but it is not equal to REWIND
unless positioned at the initial point, and it is not equal to APPEND
unless positioned at the terminal point.

READ= scalar default character variable

YES indicates READ is one of the allowed actions
for the file

NO indicates READ is not one of the allowed
actions for the file

UNKNOWN indicates the processor is unable to determine
whether READ is one of the allowed actions for
the file

416 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

READWRITE= scalar default character variable

YES indicates READWRITE is an allowed action for
the file

NO indicates READWRITE is not an allowed action
for the file

UNKNOWN indicates the processor is unable to determine
whether READWRITE is an allowed action for
the file

RECL= scalar default integer variable

maximum record length indicates an integer value which is the record
length of a file connected for sequential access
and the length of each record of a file
connected for direct access

undefined value indicates the file does not exist

Rules:

1. For a formatted file that contains only default characters, the length is
the number of characters for all records.

2. For a formatted file containing nondefault characters or for an
unformatted file, the length is in processor-dependent units.

SEQUENTIAL= scalar default character variable

YES indicates sequential access is an allowed access
method

NO indicates sequential access is not an allowed
access method

UNKNOWN indicates the processor does not know whether
sequential access is allowed

UNFORMATTED= scalar default character variable

YES indicates unformatted input/output is an
allowed form for the file

Input and Output Processing 417

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

NO indicates unformatted input/output is not an
allowed form for the file

UNKNOWN indicates the processor cannot determine
whether unformatted input/output is an
allowed form for the file

WRITE= scalar default character variable

YES indicates WRITE is an allowed action for the
file

NO indicates WRITE is not an allowed action for
the file

UNKNOWN indicates the processor is unable to determine
whether WRITE is an allowed action for the file

9.7.3 Table of Values Assigned by the INQUIRE Statement

Table 9-3 summarizes the values assigned to the various variables by the
execution of an INQUIRE statement.

9.8 File Positioning Statements
Execution of a data transfer statement usually changes the file position. In
addition, there are three statements whose main purpose is to change the file
position. Changing the position backwards by one record is called backspacing
and is performed by the BACKSPACE statement. Changing the position to the
beginning of the file is called rewinding and is performed by the REWIND
statement. The ENDFILE statement writes an end-of-file record and positions
the file after the end-of-file record.

The forms of the BACKSPACE statement (R919) are:

BACKSPACEscalar-integer-expression
BACKSPACE (position-spec-list)

The forms of the REWIND statement (R920) are:

REWINDscalar-integer-expression
REWIND (position-spec-list)

418 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Table 9-3 Values for keyword specifier variables in an INQUIRE statement

INQUIRE by file INQUIRE by unit

Specifier Unconnected Connected Connected Unconnected

ACCESS= UNDEFINED SEQUENTIAL or DIRECT UNDEFINED

ACTION= UNDEFINED READ, WRITE, or READWRITE UNDEFINED

BLANK= UNDEFINED NULL, ZERO, or UNDEFINED UNDEFINED

DELIM= UNDEFINED APOSTROPHE, QUOTE, NONE, or UNDEFINED UNDEFINED

DIRECT= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

EXIST=
.TRUE. if file exists,
.FALSE. otherwise

.TRUE. if unit exists,
.FALSE. otherwise

FORM= UNDEFINED FORMATTED or UNFORMATTED UNDEFINED

FORMATTED= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

IOSTAT= 0 for no error, a positive integer for an error

 NAME= Filename (may not be sam as FILE= value) Filenam if named else undefined Undefined

NAMED= .TRUE. .TRUE. if file named,
.FALSE. otherwise

.FALSE.
NEXTREC= Undefined If direct access, next record #; else undefined Undefined

NUMBER= –1 Unit number –1

OPENED= .FALSE. .TRUE. .FALSE.
PAD= YES YES or NO YES

POSITION= UNDEFINED
REWIND, APPEND,

ASIS, or UNDEFINED
UNDEFINED

READ= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

READWRITE= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

RECL= Undefined
If direct access, record length;
else maximum record length

Undefined

SEQUENTIAL= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

UNFORMATTED= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

WRITE= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

IOLENGTH= RECL= value for output-item-list

Input and Output Processing 419

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The forms of the ENDFILE statement (R921) are:

ENDFILE scalar-integer-expression
ENDFILE (position-spec-list)

The forms of a position specifier (R922) are (none may be repeated in a position
specifier list):

[UNIT =] scalar-integer-expression
ERR = label
IOSTAT = scalar-default-integer-variable

Rules and restrictions:

1. The scalar integer expression in the first form of each file positioning
statement is a unit specifier and must have a nonnegative value. A unit
specifier in the second form of each file positioning statement is required,
and its scalar integer expression must have a nonnegative value. Thus, the
BACKSPACE, REWIND, and ENDFILE statements are used only to
position external files.

2. The files must be connected for sequential access.

3. If the last data transfer to a file connected for sequential access is an output
data transfer statement, a BACKSPACE or REWIND statement for a unit
connected to this file writes an end-of-file record to the file.

Example file positioning statements are:

BACKSPACE 9
BACKSPACE (UNIT = 10)
BACKSPACE (ERR = 99, UNIT = 8, IOSTAT = STATUS)
REWIND (ERR = 102, UNIT = 10)
ENDFILE (10, IOSTAT = IERR)
ENDFILE (11)

9.8.1 Specifiers for File Position Statements

This section describes the form and effect of the position specifiers that may
appear in the file positioning statements.

[UNIT=] scalar integer expression

expression indicates an external unit (R902)

420 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules:

1. The value of the scalar integer expression must be nonnegative.

2. A unit specifier is required.

3. There must be a file connected to the unit, and the unit must be
connected for sequential access.

4. If the keyword UNIT is omitted, the scalar integer expression must be
the first item in the position specifier list.

5. A unit number identifies one and only one external unit in all program
units in a Fortran program.

ERR= label

label is the label of a branch target statement taken
when an error condition occurs

Rules:

1. If an error condition occurs, the position of the file becomes
indeterminate.

2. If an IOSTAT= specifier is present and an error condition occurs, the
IOSTAT variable specified becomes defined with a processor-
dependent positive value.

3. The program branches to the label in the ERR= specifier if there is an
error in the execution of the particular file positioning statement itself.
The label must be a branch target label in the same scoping unit as the
file positioning statement.

IOSTAT= scalar default integer variable

positive integer indicates an error condition occurred

0 indicates no error condition occurred

Rules:

1. The IOSTAT= specifier applies to the execution of the file positioning
statement itself. Note that the value cannot be negative.

Input and Output Processing 421

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.8.2 The BACKSPACE Statement

Execution of a BACKSPACE statement causes the file to be positioned before
the current record if there is a current record, or before the preceding record if
there is no current record. If there is no current record and no preceding record,
the file position is not changed. If the preceding record is an end-of-file record,
the file becomes positioned before the end-of-file record. If a BACKSPACE
statement causes the implicit writing of an end-of-file record and if there is a
preceding record, the file becomes positioned before the record that precedes
the end-of-file record.

If the file is already at its initial point, a BACKSPACE statement has no effect.
If the file is connected, but does not exist, backspacing is prohibited.
Backspacing over records written using list-directed or namelist formatting is
prohibited.

Examples of BACKSPACE statements are:

BACKSPACE ERROR_UNIT ! ERROR_UNIT is an
! integer variable.

BACKSPACE (10, & ! STAT is an integer variable
IOSTAT = STAT) ! of default type.

9.8.3 The REWIND Statement

A REWIND statement positions the file at its initial point. Rewinding has no
effect on the file position when the file is already positioned at its initial point.
If a file does not exist, but it is connected, rewinding the file is permitted, but
has no effect. Examples of REWIND statements are:

REWIND INPUT_UNIT ! INPUT_UNIT is an integer variable.
REWIND (10, ERR = 200) ! 200 is a label of branch target

! in this scoping unit.

9.8.4 The ENDFILE Statement

The ENDFILE writes an end-of-file record as the next record and positions the
file after the end-of-file record written. Writing records past the end-of-file
record is prohibited. After executing an ENDFILE statement, it is necessary to
execute a BACKSPACE or REWIND statement to position the file ahead of the

422 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

end-of-file record before reading or writing the file. If the file is connected but
does not exist, writing an end-of-file record creates the file. Examples of
ENDFILE statements are:

ENDFILE OUTPUT_UNIT ! OUTPUT_UNIT is an integer variable.
ENDFILE (10, & ! 200 is a label of a branch target

ERR = 200, & ! in this scoping unit. ST is a
IOSTAT = ST) ! default scalar integer variable.

A file may be connected for sequential and direct access, but not for both
simultaneously. If a file is connected for sequential access and an ENDFILE
statement is executed on the file, only those records written before the
ENDFILE statement is executed are considered to have been written.
Consequently, when the file is subsequently connected for direct access, only
those records before the end-of-file record may be read.

9.9 Restrictions: I/O Specifiers, List Items, and Statements
Any function reference appearing in a keyword specifier value or in an
input/output list must not cause the execution of another input/output
statement. Note that such function references also must not have side effects
that change any object in the same statement (7.4.1). For example:

WRITE (10, FMT = "(10I5)", REC = FCN(I)) X(FCN(J)), I, J

The function FCN must not contain an input/output statement and must not
change its argument, because I and J are also output list items.

A unit or file may not have all of the properties (for example, all access
methods or all forms) required for it by execution of certain input/output
statements. If this is the case, such input/output statements must not refer to
files or units limited in this way. For example, if unit 5 cannot support
unformatted sequential files, the following OPEN statement must not appear
in a program:

OPEN (UNIT = 5, IOSTAT = IERR, &
ACCESS = "SEQUENTIAL", FORM = "UNFORMATTED")

Input and Output Processing 423

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.10 Summary

9.10.1 Fortran Files

A Fortran file consists of records. Files may be internal or external.

9.10.2 Record

Data records are sequences of data values. End-of-file records are processor
determined.

9.10.3 Formatted and Unformatted Data

Records of formatted data may not be mixed with unformatted data.
Formatted data is converted to characters according to the editing in a format
statement, or by namelist or list-directed editing. Unformatted data is not
converted.

9.10.4 File Positioning

The file position determines the data record to be processed. The file may be at
the initial point, the terminal point, between data records, within a record, or
be undetermined.

9.10.5 Backspacing

The BACKSPACE statement positions the file ahead of the previous record.

BACKSPACE 9

9.10.6 Rewinding

The REWIND statement positions the file at the initial point.

REWIND (10, ERR = 99)

424 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.10.7 Ending a File

The ENDFILE statement writes an end-of-file record and the file is positioned
after the end-of-file record. Reading or writing beyond an end-of-file record is
prohibited.

ENDFILE 8

9.10.8 Unit

A unit number is a nonnegative integer that identifies a file. The valid unit
numbers are processor dependent. On any system, the files that exist for
connection to a unit are processor determined.

REWIND (UNIT = 9)

A unit may also be a character variable in the program. In this case, an internal
file is being specified, and the internal file is the character variable.

CHARACTER (100) INTERNAL_FILE
READ (UNIT = INTERNAL_FILE, FMT = ’(2I5)’) I, J

9.10.9 File Connection

File connection, preconnection, and disconnection apply to external files and a
unit number. Internal files are always connected.

9.10.10 Opening Files

The OPEN statement connects a file to a unit and determines file connection
characteristics.

OPEN (UNIT = 10, IOSTAT = IERR, &
ACCESS = "DIRECT", RECL = 100)

9.10.11 Closing Files

The CLOSE statement disconnects a file from a unit.

CLOSE (10, ERR = 99, STATUS = "KEEP")

Input and Output Processing 425

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.10.12 Unformatted Sequential Access Input/Output

Data is transferred without any format conversion. The transfer proceeds
sequentially from the current file position to the next data record.

READ (9, IOSTAT = IER) X, Y
WRITE (10) A

9.10.13 Formatted Sequential Access Input/Output

Data is transferred with format conversion. The transfer proceeds sequentially
from the current file position to the next data record.

READ (9, 100, IOSTAT = IER) X, Y
WRITE (10, 101) A

9.10.14 Namelist Input/Output

Variables are established in a list with a group name. Conversion takes place
implicitly without a format specification. The data transfer uses the group
name rather than the list of variables.

NAMELIST / GROUP_NAME / A, B, C
. . .

READ (9, NML = GROUP_NAME, ERR = 99)
. . .

WRITE (19, NML = GROUP_NAME)

9.10.15 List-Directed Input/Output

Data is converted without a format specification. The data consists of
sequences of values edited implicitly. Sequential access is required. An asterisk
as the format specification indicates list-directed data transfer.

READ (9, *, ERR = 99) X
WRITE (UNIT = 8, FMT = *, IOSTAT = IERR) Y

426 Fortran 90 Handbook

9

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9.10.16 Nonadvancing Input/Output

Nonadvancing reading and writing is character oriented. Positioning is after
the last character read or written. Nonadvancing data transfer is indicated by
an ADVANCE= specifier with the value NO.

READ (9, 100, ADVANCE = "NO", &
SIZE = NCOUNT, EOR = 200) CHAR

WRITE (FMT = 12, ADVANCE = "NO", UNIT = 8, IOSTAT = K) NAME

9.10.17 Data Transfer on Internal Files

The transfer is memory to memory using a format specification for conversion
to or from characters. Only formatted sequential access is allowed. The unit is
a character variable.

READ (CHAR, FMT = 103) X, Y, KK
WRITE (UNIT = CH, FMT = 104, ERR = 99) A, I, J

9.10.18 Unformatted Direct Access Input/Output

Access is by record number. The records in the file are all unformatted. Direct
access data transfer is indicated by a REC= specifier in the data transfer
statement.

READ (9, IOSTAT = IERR, REC = 64) X, Y
WRITE (UNIT = 8, ERR = 99, REC = 30) Z

9.10.19 Formatted Direct Access Input/Output

Access is by record number. The records in the file are all formatted.

READ (9, 100, IOSTAT = IERR, REC = 64) X, Y
WRITE (UNIT = 8, FMT = 105, ERR = 99, REC = 30) Z

427

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Input and Output Editing 10

Data usually are stored in memory as the values of variables in some binary
form. For example, the integer 6 may be stored as 0000000000000110, where the
0s and 1s represent binary digits. On the other hand, formatted data records in
a file consist of characters. Thus, when data is read from a formatted record, it
must be converted from characters to the internal representation. When data is
written to a formatted record, it must be converted from the internal
representation into a string of characters.

A format specification provides the information necessary to determine how
these conversions are to be performed. The format specification is basically a
list of edit descriptors, of which there are three general types: data edit
descriptors, control edit descriptors, and string edit descriptors. There is a data
edit descriptor for each data value in the input/output list of the data transfer
statement. Control edit descriptors specify the spacing and position within a
record, new records, interpretation of blanks, and plus sign suppression. String
edit descriptors transfer strings of characters represented in format
specifications to output records.

The format reference that indicates where to find the format may be a
statement label that identifies a FORMAT statement, or it may be a character
expression giving the format directly. Using either method is called explicit
formatting.

There are two other cases where formatting of a different sort applies. These
are list-directed and namelist formatting. Formatting (that is, conversion)
occurs without specifically providing the editing information usually

428 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

contained in a format specification. In these cases, the editing or formatting is
implicit; that is, the details about the width of fields, forms of output values,
and location of output fields within the records is determined by the processor.

This chapter describes the two methods of specifying explicit formatting,
namely, using a FORMAT statement and using a character expression
representing a format specification. It then lists and subsequently describes in
detail the three kinds of edit descriptors that determine the conversion,
location, and transfer of data values to and from input and output records. An
algorithm is given that describes the correspondence of the data edit
descriptors and items in the data item list of the data transfer statement. Next,
the two methods of implicit formatting—list-directed and namelist
formatting—are described. Finally, the chapter concludes with a brief summary
of the formatting methods available in Fortran 90.

Tables 10-1, 10-2, and 10-3 list all of the edit descriptors—control, data, and
string edit descriptors—and provide a brief description of each.

Table 10-1 Summary of control edit descriptors

Descriptor Description

BN Ignore nonleading blanks in numeric input fields

BZ Treat nonleading blanks in numeric input fields as zeros

S Printing of optional plus sign is processor dependent

SP Print optional plus sign

SS Do not print optional plus sign

T Tab to specified position

TL Tab left the specified number of positions

TR Tab right the specified number of positions

X Tab right the specified number of positions

/ End current record and move to beginning of next record

:
Stop format processing when no further input/output list
items

P Interpret certain real numbers with a specified scale factor

Input and Output Editing 429

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.1 Explicit Formatting
As indicated above, explicit formatting information may be:

1. contained in a FORMAT statement

WRITE (6, 100) LIGHT, AND, HEAVY
100 FORMAT (F10.2, I5, E16.8)

Table 10-2 Summary of data edit descriptor

Descriptor Description

A Convert data of type character

B Convert data of type integer to/from a binary base

D Convert data of type real—same as E edit descriptor

E Convert data of type real with an exponent

EN Convert data of type real to engineering notation

ES Convert data of type real to scientific notation

F Convert data of type real with no exponent on output

G Convert data of all intrinsic types

I Convert data of type integer

L Convert data of type logical

O Convert data of type integer to/from an octal base

Z Convert data of type integer to/from a hexadecimal base

Table 10-3 Summary of string edit descriptors

Descriptor Description

H Transfer of text to output record

’text’ Transfer of a character literal constant to output record

"text" Transfer of a character literal constant to output record

430 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. given as the value of a character expression

WRITE (6,’(F10.2, I5, E16.8)’) LIGHT, AND, HEAVY

10.1.1 The FORMAT Statement

The form of the FORMAT statement (R1001) is:

FORMAT ([format-item-list])

A format specification (R1002) consists of the parentheses and the format item
list (10.2).

The FORMAT statement must be labeled. The label is used in the input/output
statement to reference a particular FORMAT statement.

There may be many FORMAT statements in a program—as many as one for
each input/output statement; or, FORMAT statements may be used repeatedly
in different input/output statements.

10.1.2 Character Expression Format Specifications

A character expression may be used in the input/output statement as a format
specification. The leading part of the character expression must be a valid
format specification including the parentheses; that is, the value of the
expression must be such that the first nonblank character is a left parenthesis,
followed by a list of valid format items, followed by a right parenthesis.

Rules and restrictions:

1. All variables in the character expression must be defined when the
input/output statement is executed.

2. Characters may appear following the last right parenthesis in the character
expression; they have no effect.

3. If the expression is a character array, the format is scanned in array element
order. For example, the following format specification is valid (where A is
a character array of length at least 6 and size at least 2):

A (1) = ’(1X,I3,’
A (2) = ’ I7, I9)’
PRINT A, MUTT, AND, JEFF

Input and Output Editing 431

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. If the expression is an array element, the format must be entirely contained
within that element.

5. If the expression is a character variable, it or any part of it must not be
redefined or become undefined during the execution of the input/output
statement.

6. If the expression is a character constant delimited by apostrophes, two
apostrophes must be written to represent each apostrophe in the format
specification. If a format specification contains, in turn, a character constant
delimited by apostrophes, there must be two apostrophes for each of the
apostrophe delimiters, and each apostrophe within the character constant
must be represented by four apostrophes (see the example below). If
quotes are used for the string delimiters and quotes are used within the
string, a similar doubling of the quote marks is required. One way to avoid
problems is to use delimiters different from the characters within the
format specification, if possible. The best way to avoid the problem is to
put the character expression in the input/output list instead of the format
specification as shown in the second line of the following example.

PRINT ’(’’I can’’’’t hear you’’)’
PRINT "(A16)", "I can’t hear you"

where A16 is a character edit descriptor specifying a field width of 16
positions.

The last example can be written without a field width (character count) as
in:

PRINT "(A)", "I can’t hear you"

When a character expression is used as a format specification, the processor is
not required to detect at compile-time any syntax or constraint violations in the
format specification. The reason for relaxing the requirements for detection of
such errors is that the format specification may not be complete or known until
the data transfer statement is executed and therefore cannot be checked for
validity until execution time. The same relaxation on the requirements for error
detection also applies to the use of deleted, obsolescent, and extended features
used in format specifications.

432 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.2 Format Specifications
Each item in the format item list of a format specification is an edit descriptor,
which may be a data edit descriptor, control edit descriptor, or character string
edit descriptor. Each data list item must have a corresponding data edit
descriptor; other descriptors specify spacing, tabulation, scale factors for real
data, and printing of optional signs.

Blanks may be used freely in format specifications without affecting the
interpretation of the edit descriptors, both in the free and fixed source forms.
Named constants are not allowed in format specifications because they would
create ambiguities in the interpretation of the format specifications. For
example, if N12 were a named integer constant with value 15, the engineering
format edit descriptor E N12.4 could be interpreted as the edit descriptor
EN12.4 or E15.4.

The forms of a format item (R1003) are:

[r] data-edit-descriptor
control-edit-descriptor
character-string-edit-descriptor
[r] (format-item-list)

where r is a default integer literal constant and is called a repeat factor. If a
repeat factor is optional and is not present, it is as if it were present with the
value of 1.

Rules and restrictions:

1. r must not have a kind value specified for it.

2. The comma between edit descriptors may be omitted in the following
cases:

a. between the scale factor (P) and the numeric edit descriptors F, E, EN,
ES, D, or G

b. before a new record indicated by a slash when there is no repeat factor
present

c. after the slash for a new record

d. before or after the colon edit descriptor

Input and Output Editing 433

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. Blanks may be used as follows:

a. before the first left parenthesis

b. anywhere in the format specification except within a character string;
the blanks have no effect on the formatting. It is recommended that
blanks be used to enhance the readability of the format specification

4. r must be a positive integer.

5. Edit descriptors may be nested within parentheses and may be preceded
by a repeat factor indicating that the edit descriptor is repeated; a
parenthesized list of edit descriptors may also be preceded by a repeat
factor, indicating that the entire list is to be repeated.

The following examples illustrate many of the edit descriptors that are
described in detail in the next sections.

100 FORMAT (2(5E10.1, I10) / (1X, SP, I7, ES15.2))
110 FORMAT (I10, F14.1, EN10.2)
120 FORMAT (TR4, L4, 15X, A20)
130 FORMAT (9HMORE SNOW)
140 FORMAT (9X, 3A5, 7/ 10X, 3L4)

10.2.1 Data Edit Descriptor Form

Data edit descriptors specify the conversion of values to and from the internal
representation to the character representation in the formatted record of a file.
The forms of the data edit descriptors (R1005) are:

I w [. m]
B w [. m]
Ow [. m]
Z w [. m]
F w . d
E w . d [E e]
ENw . d [E e]
ES w . d [E e]
Gw . d [E e]
L w
A [w]
D w . d

434 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where w, m, d, and e are default integer literal constants, and

Rules and restrictions:

1. w, m, d, and e must not have a kind value specified for them.

2. w and e must be positive.

3. The values of m, d, and e must not exceed the value of w.

4. The I, B, O, Z, F, E, EN, ES, G, L, A, and D edit descriptors indicate the
manner of editing.

The detailed meanings of the data edit descriptors are described in Sections
10.5 through 10.7.

10.2.2 Control Edit Descriptor Form

Control edit descriptors determine the position, form, layout, and
interpretation of characters transferred to and from formatted records in a file.
The forms of a control edit descriptor (R1010) are:

T n
TL n
TR n
n X

[r] /

:

S

SP

SS

k P

BN

BZ

w is the width of the field

m is the least number of digits in the field

d is the number of decimal digits in the field

e is the number of digits in the exponent

Input and Output Editing 435

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where n and r are default integer literal constants, k is a signed default integer
literal constant, and

The control edit descriptors T, TL, TR, and X are called position edit
descriptors (R1012). The control edit descriptors S, SP, and SS are called sign
edit descriptors (R1014). The control edit descriptors BN and BZ are called
blank interpretation edit descriptors (R1015).

Rules and restrictions:

1. n must be positive.

2. n, k, and r must not have a kind value specified for them.

In kP, k is called the scale factor. T, TL, TR, X, slash, colon, S, SP, SS, P, BN, and
BZ indicate the manner of editing and are described in detail in Section 10.8.

10.3 Character String Edit Descriptor Form
Character string edit descriptors specify character strings to be transmitted to
the formatted output record of a file. The forms of the character string edit
descriptor (R1016) are:

character-literal-constant
n H representable-character [representable-character] ...

where n is a default integer literal constant and is a character count.

Rules and restrictions:

1. n must not have a kind value specified for it.

2. n must be positive.

k is a scale factor

n
is a position in the record to move to, relative to the left tab
limit for descriptor T

n is the number of spaces to move for descriptors X, TR, and TL

r is a repeat factor

436 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. If the edit descriptor is a character literal constant, it must not have a kind
value specified for it.

The character string edit descriptors are described in detail in Section 10.9.

10.4 Formatted Data Transfer
The format specification indicates how data are transferred by READ, WRITE,
and PRINT statements. The data transfer typically involves a conversion of a
data value. The particular conversion depends on the next data input or output
item, along with the current edit descriptor in the format specification.

Examples:

READ (*, ’(A7, I10, E16.8)’) X, Y, Z
WRITE (*, 100) X, Y, Z
100 FORMAT (A7, I10, E16.3)

An empty format specification () is restricted to input/output statements with
no items in the input/output data item list or a list of items all of which have
zero size. On the other hand, a scalar zero-length character string requires an A
edit descriptor.

The effect on input and output of an empty format specification depends on
whether the data transfer is advancing or nonadvancing, and on whether there
is a current record. The effect is described by the following eight cases:

1. The data transfer is advancing:

a. if there is no current record, then:

i. on input, skip the next record

ii. on output, write an empty record

b. if there is a current record, then:

i. on input, skip to the end of the current record

ii. on output, terminate the current record

2. The data transfer is nonadvancing:

a. if there is no current record, then:

i. on input, move to the initial point of the next record

Input and Output Editing 437

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

ii. on output, create an empty record and move to its initial point

b. if there is a current record, then:

i. on input, there is no effect

ii. on output, there is no effect

Example:

DO I = 1, N
READ (5, ’(A1)’, ADVANCE=’NO’) (CHARS(I)(J:J) , J = 1, M)

ENDDO
READ (5, ’()’, ADVANCE = ’YES’)

The above program segment reads N character strings, each of length M, from
a single record and then advances to the beginning of the next record.

The data and the edit descriptors are converted in a left-to-right fashion, except
for repeated items, which are repeated until either the data items are exhausted
or the repeat number is reached. A complex data item requires two data edit
descriptors for data items of type real; that is, two of the edit descriptors E, F,
D, ES, EN, or G (they may be different).

Control edit descriptors and character edit descriptors do not require a
corresponding data item in the list. The effect is directly on the record
transferred. When the data items are completed, no further change is made to
record on output, and no change is made to the position in the file on input.

10.4.1 Parentheses Usage

The effect of parentheses in a format specification depends on the nesting level
of the parentheses.

Rules and restrictions:

1. When the rightmost right parenthesis of a complete format specification is
encountered and there are no more data items, the input/output data
transfer terminates. Remember that the format specification may be given
by a character string expression. In such a case, the right parenthesis
matching the leftmost left parenthesis may be followed by any characters,
including parentheses. None of these trailing characters are relevant to the
rules and restrictions in this section. For example, the following character
string

438 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

’(I5,E16.8,A5) (This part is ignored)’

may be used as a format specification in a character string, and the part
after the first right parenthesis is ignored.

2. When the rightmost right parenthesis is encountered and there are more
data items, format control continues beginning at the left parenthesis
corresponding to the last preceding right parenthesis in the specification, if
there is one, with an implied slash (/) to cause a new record to begin. If
there is no preceding right parenthesis, the reversion is to the beginning of
the format.

3. If there is a repeat factor encountered when reverting, the repeat before the
parenthesis is reused.

4. Reversion does not affect the scale factors, the sign control edit descriptor,
or blank interpretation. These remain in effect for the duration of the
format action.

Example:

CHR_FMT = ’(I5, 4(3F10.2, 10X), E20.4)’

If the above character string were used in a formatted output data transfer
statement, the first output data item must be an integer. The remaining items
must be of type real (or complex): 13 real values are printed on the first line
after the integer, and then the next real values are printed on each new line, 13
at a time, until the data items are exhausted. All but the last line will have 13
real values printed, 3 real values using the F10.2 edit descriptor, 10 blanks,
followed by 3 more real values and 10 blanks repeated 4 times in total,
followed by a real value using the E20.4 edit descriptor. This behavior is
described in more detail in the next section.

10.4.2 Correspondence between a Data-Edit Descriptor and a List Item

The best way to describe how this correspondence is determined is to think of
two markers, one beginning at the first item of input/output data item list and
the other beginning at the first left parenthesis of the format specification.
Before describing how each marker proceeds through each list, the
input/output data item list is considered to be expanded by writing out each
element of an array, each component of a structure, each part (real and
imaginary) of each item of type complex, and each iteration of each implied-do
list. The expanded item list is called the effective data item list, and each item

Input and Output Editing 439

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

in the list is called an effective item. Note that zero-sized arrays yield no
effective items, but zero-length character objects yield effective items. Also, the
format specification is considered expanded for each repeat factor preceding
any (data or slash) edit descriptor but not a parenthesized format item list. If
the data item list is nonempty, there must be at least one data edit descriptor in
the format specification. Given the effective data item list and expanded format
specification, the markers proceed as follows:

1. The marker proceeds through the format specification until the first data
edit descriptor or right parenthesis is encountered. Any control edit
descriptor or string edit descriptor encountered before the first data edit
descriptor is encountered is interpreted according to its definition, each
possibly changing the position within the record or the position within the
file, or changing the interpretation of data in the record or conversion of
data to the record.

2. If a data edit descriptor is encountered first, the effective data item pointed
to by the marker in the data item list is transferred and converted
according to the data edit descriptor, and the marker in the data item list
proceeds to the next effective data item.

3. If a right parenthesis is encountered and the right parenthesis is not the
outermost one of the format specification, the repeat factor in front of the
matching left parenthesis is reduced by one. If the reduced factor is
nonzero, the marker scans right from this left parenthesis, looking for a
data edit descriptor as above. If the repeat factor becomes zero, the format
specification marker then proceeds right from the right parenthesis, again
looking for a data edit descriptor. If the right parenthesis is the outermost
right parenthesis, the marker reverts to the left parenthesis corresponding
to the last preceding right parenthesis, if there is one; if there is no
preceding right parenthesis, it reverts to the first left parenthesis of the
format specification. Upon reversion, a slash edit descriptor is interpreted
implicitly, and the format marker proceeds right from this left parenthesis,
honoring any repeat factor in front of it.

4. If no effective data item remains when a data edit descriptor is
encountered or when a colon edit descriptor is encountered, the
input/output operation terminates.

To illustrate how this works, consider the following example:

440 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

INTEGER A(3)
COMPLEX C
TYPE RATIONAL

INTEGER N, D
END TYPE
TYPE (RATIONAL) R

. . .
WRITE (*, &

"(’A and C appear on line 1, R appears on line 2’ &
/ (1X, 3I5, 2F5.2))") A, C, R

The data item list is first expanded as described above. The expanded data
item list becomes:

A(1), A(2), A(3), REAL(C), AIMAG(C) , R % N, R % D

The format specification is also expanded and becomes:

(’A and C appear on line 1, R appears on line 2’ &
/ (1X, I5, I5, I5, F5.2, F5.2))

A marker is established in the data item list, which initially points at the item
A(1). A marker is also established in the format specification and initially
points to the first left parenthesis. The marker in the format specification
proceeds right to the first edit descriptor, which is the first I5. In so doing, it
sees the string edit descriptor which is transferred to the output record, the
slash edit descriptor which causes the previous record to terminate and to
begin a new record, and the position edit descriptor which positions the record
at the second character, blank filling the record. The item A(1) is then
converted according to the I5 specification and the converted value is
transferred to the output record. The marker in the data item list is moved to
A(2). The format specification marker is moved left to the second I5 edit
descriptor, and A(2) is converted and transferred to the output record.
Similarly, A(3), the real part of C, and the imaginary part of C are converted
and transferred to the output record. At this point, the data item list marker is
pointing at R % N, and the format specification marker begins scanning after
the second F5.2 edit descriptor looking for the next edit descriptor. The first
right parenthesis is encountered and the scan reverts back to the corresponding
left parenthesis. The repeat factor in front of this parenthesis is 1 by default and
is reduced by 1 to 0. The marker in the format specification proceeds right from
the first right parenthesis, encountering the outermost right parenthesis and
then reverts to the left parenthesis before the edit descriptor 1X. As a result, an
implicit slash edit descriptor is interpreted, causing the previous output record
to be completed and a new record to be started. The format specification

Input and Output Editing 441

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

marker scans right looking for a data edit descriptor, which is the first I5. In the
process of the scan right, the position edit descriptor is interpreted, which
positions the file at the second character of the next record (and blank fills the
skipped characters). Finally, the N and D components of R are converted and
transferred to the output record, using the first two I5 edit descriptors. The
data item list marker finds no further items, and the output operation
terminates.

An example of writing a zero-sized array and zero-length character string
using formatted output data transfer is:

REAL A(10)
CHARACTER(4) CHR

. . .
WRITE(6, ’()’) A(1:0)
WRITE(6, ’(A4)’) CHR(4:3)

An empty format specification is allowed for the first WRITE statement,
because the array to be printed is a zero-sized array section. The format
specification in the second WRITE statement is required to have at least one A
edit descriptor, because the effective data item is a zero-length character string,
not a zero-sized array. In the first case, an empty record is written, and, in the
second case, a record consisting of four blank characters is written (see Section
10.7).

10.5 File Positioning by Format Control
There is a current record being processed. After each data edit descriptor is
used, the file position within that record is following the last character read or
written by the particular edit descriptor. On output, after a string edit
descriptor is used, the file is positioned within that record following the last
character written. (See the description of the control edit descriptors T, TL, TR,
and X for any special positioning within the current record; see the description
of the slash edit descriptor for special positioning within the file.) The
remaining control edit descriptors do not affect the position within a record or
within the file; they affect only the interpretation of the input characters or the
form of the output character string or how subsequent edit descriptors are
interpreted. The interpretation of the edit descriptors is not affected by
whether the operation is an advancing or nonadvancing input/output
operation.

442 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.6 Numeric Editing
There are seven edit descriptors that cover numeric editing: I, F, E, EN, ES, D,
and G. The following rules apply to all of them.

Rules and restrictions:

On input:

1. Leading blanks are never significant.

2. Plus signs may be omitted in the input data.

3. A blank field is considered to be zero, regardless of the BN edit descriptor
or the BLANK= specifier in effect.

4. Within a field, blanks are interpreted in a manner that depends on the
BLANK= specifier default for preconnected files, the BLANK= specifier
provided in an OPEN statement for the unit, and any BN or BZ blank edit
descriptor in effect.

5. In numeric fields that have a decimal point and correspond to F, E, EN, ES,
D, or G edit descriptors, the decimal point in the input field overrides the
placement of the decimal point specified by the edit descriptor
specification.

6. Data input is permitted to have more digits of significance than the
processor can use to represent a number.

7. If the processor is capable of representing both uppercase and lowercase
letters in input records, the lowercase exponent letters e and d are
equivalent to the corresponding uppercase exponent letters.

8. The constants in the input records may have kind parameters specified for
them, but the kind parameters are restricted to integer literal constants;
named constants are prohibited.

On output:

1. A positive or zero value may have a plus sign, depending on the sign edit
descriptors used.

Input and Output Editing 443

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. Negative values must have a negative sign, unless the printed value would
be zero (because of the conversion rules). Negative zero must never be
produced. For example, suppose the variable SMALL has the value
–0.000314. On output, the characters transferred to output unit 6 by the
statements

WRITE(6,10) SMALL
10 FORMAT(F5.2)

must not contain a negative sign, and may be either

b0.00 or bb.00

because a negative zero must not be printed.

3. The number is right justified in the field. Leading blanks may be inserted.

4. If the number or the exponent is too large for the field width specified in
the edit descriptor, the entire output field is filled with asterisks.

5. The processor must not produce asterisks when the optional characters can
be omitted and the output character string fits in the output field.

10.6.1 Integer Editing

The input/output list item corresponding to an integer edit descriptor must be
of type integer, except for the G edit descriptor.

The integer edit descriptors are:

I w [. m]
B w [. m]
Ow [. m]
Z w [. m]
Gw . d [E e]

where:

Rules and restrictions:

w is the field width

m is the minimum number of digits in the constant

444 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

On both input and output:

1. The value of m must not exceed the value of w.

2. For an integer input/output list item, the edit descriptor Gw.d[Ee] is the
same as the Iw for the given value of w.

On input:

1. m has no effect on an input field.

2. For the I edit descriptor, the character string in the file must be an
optionally signed integer constant.

3. For the B, O, or Z edit descriptors, the character string must be a string of
blanks and digits of binary, octal, or hexadecimal base, respectively. For
example, the character string corresponding to a B edit descriptor must not
contain digits 2 through 9. The character string corresponding to an O edit
descriptor must not contain the digits 8 or 9. The character string
corresponding to a Z edit descriptor may consist only of the blank
character, the digits 0 through 9, and the letters A through F (or
equivalently the letters a through f if the processor supports lowercase
letters).

Example:

READ (5, 100) K, J
100 FORMAT (I5, G8.0)

If the input field is

bb-24 bbbbb 117

K is read using the integer I5 edit descriptor, while J is read with a G8 edit
descriptor. The resulting values of K and J are –24 and 117, respectively.

On output:

1. If m is not present, each edit descriptor behaves as if it were present with
the value 1.

2. For the Iw.m edit descriptor with m positive, the field is w characters wide
and consists of zero or more leading blanks, followed by an optional sign,
followed by an unsigned integer consisting of at least m digits. Leading
zeros pad an integer field until there are m digits.

Input and Output Editing 445

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. If m is not present and the value of the output list item is nonzero, the first
digit must be nonzero; otherwise, the field consists of only one 0 digit with
no sign character. Negative zero must never be produced.

4. For the Iw.0 edit descriptor, if the output list item has the value 0, the field
consists entirely of blanks.

5. For the B, O, or Z edit descriptors, the rules for forming the output field for
the values w and m are the same as for the I edit descriptor except that no
sign is allowed and the unsigned integer must consist of digits from the
binary, octal, or hexadecimal base, respectively. A negative value must be
indicated in the encoding of the digits written; for example, –1 might be
printed as 80000001 using a hexadecimal edit descriptor, encoding the
negative sign as a leading 1 bit.

The interpretation of the digits under B, O, and Z edit descriptors is not
specified in the standard particularly for negative values. Encodings other than
those illustrated above are permitted, and so the interpretation of the binary,
octal, or hexadecimal digits is processor dependent. For example, the constant
80000001 may be interpreted as –1 if the first bit is the sign bit, or if the
sign bit is further to the left in the representation. Therefore, the B, O, and Z
edit descriptors are basically nonportable. Most implementations will choose
the machine representation for these patterns.

10.6.2 Real Editing

The F, E, EN, ES, and D edit descriptors specify editing for real and complex
input/output list items. The G edit descriptor may also be used for real and
complex items. Two such edit descriptors are required for each complex data
item.

The forms of the edit descriptors for real values are:

F w . d
E w . d [E e]
ENw . d [E e]
ES w . d [E e]
D w . d
Gw . d [E e]

2
31

1+

446 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.6.2.1 F Editing

Fw.d editing converts to or from a string occupying w positions.

Rules and restrictions:

On both input and output:

1. d must not exceed w.

2. The value in the input field or the value transferred to the output field may
be signed.

On input:

1. d specifies the number of decimal places in the input value if a decimal
point is not present in the input field.

2. The input field may be:

a. a signed integer or real literal constant but without an underscore and
kind parameter value

b. a signed digit string followed by a sign followed by an unsigned digit
string treated as an exponent

c. a signed digit string containing a decimal point followed by a sign
followed by an unsigned digit string treated as an exponent

except that blanks may be freely inserted anywhere in the input field.

3. If the input field contains a decimal point, the value of d has no effect.

4. If there is no decimal point, a decimal point is inserted in front of the
rightmost d digits of the nonexponent part, treating blanks as 0 digits or as
if they were not present, according to the BLANK= specifier or the BZ or
BN edit descriptor currently in effect.

Example: consider the format specification F5.1. The input data item

1bb99

is treated as the real number 19.9, if the BLANK= specifier is NULL or the
BN edit descriptor is in effect, and is treated as the real number 1009.9 if
the BLANK= specifier is ZERO or the BZ edit descriptor is in effect.

5. There may be more digits in the number than the processor can use.

Input and Output Editing 447

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

6. The number may contain an E or D indicating an exponent value; a field
with a D exponent letter is processed identically to the same field with an
E exponent letter. If there is no exponent field on input, the assumption is
that the character string is followed by an exponent with the value –k
where k is the scalar factor established by a previous kP edit descriptor.

On output:

1. d specifies the number of digits after the decimal point.

2. The form of the output field consists of w positions comprised of leading
blanks, if necessary, and an optionally signed real constant with a decimal
point, rounded to d digits after the decimal point but with no exponent,
underscore, or kind parameter value. The rounding algorithm is not
specified by the standard; most systems round up when the d+1-st digit is
5 or greater.

3. Leading 0s are not permitted unless the number is less than 1, in which
case the processor may place a 0 in front of the decimal point.

4. At least one zero must be output if no other digits would appear.

5. The scale factor has no effect on F editing on output.

6. Negative zero must never be produced (see Section 10.5).

Example:

READ (5, 100) X, Y
100 FORMAT (F10.2, F10.3)

If the input field is

bbbb 6.42181234567890

the values assigned to X and Y are 6.4218 and 1234567.89, respectively. The
value of d is ignored for X because the input field contains a decimal point.

The rounding algorithm for either input or output is not specified by the
standard; recent articles (SIGPLAN ’90 Conference, SIGPLAN Notices, Vol. 25,
No. 6, June 1990, pp. 92–101, pp. 112–123) describe reasonable rounding
algorithms with many desirable properties.

448 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.6.2.2 E and D Editing

The Ew.d[Ee] and Dw.d edit descriptors convert to and from a string occupying
w positions. For the edit descriptors Ew.d[Ee] and Dw.d, the field representing
the floating point number contains w characters, including an exponent.

Rules and restrictions:

On both input and output:

1. w is the field width, d is the number of places after the decimal, and e is the
exponent width.

2. d and e must not exceed w.

On input:

1. The form Ew.d[Ee] is the same as for Fw.d editing, where either E or D in
the input data record may indicate an exponent. e has no effect on input.

On output:

1. The form of the output field for a scale factor of zero is:

[±] [0] .

where:

a. ± signifies a plus or a minus.

b. are the d most significant digits of the datum value after
rounding.

c. exp is a decimal exponent having one of the forms specified in Table
10-4, where each is a decimal digit.

2. The sign in the exponent is required.

3. Plus is used for zero exponents.

4. If the exponent exceeds 999 in magnitude, the forms Ew.dEe must be used
with a sufficiently large value of e to represent the exponent exp.

5. A scale factor kP may be used to specify the number of digits to the left of
the decimal point, with the exponent adjusted accordingly; that is, the scale
factor k controls the decimal normalization. If –d < k ≤ 0, the output field
contains the decimal point, exactly |k| leading zeros, and d − |k|

x1x2…xd exp

x1x2…xd

zi

Input and Output Editing 449

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

significant digits. If 0 < k < d + 2, the output field contains exactly k
significant digits to the left of the decimal point and d − k + 1 significant
digits to the right of the decimal point. Other values of k are not permitted;
that is, those values of k that will produce no digits to the left of the
decimal point or specify fewer than zero digits to the right of the decimal
point.

6. The precise form of zero on output is not specified, except that it must
contain a decimal point, d zero digits, and an exponent of at least 4
characters whose digits are not specified. However, a reasonable, sensible,
and likely value of the exponent is zero.

Example:

WRITE (6, 105) Y, Z
105 FORMAT (E15.3,4PD15.3)

If the values of Y and Z are and respectively, the
output record produced is:

bbbbb -0.212E+02 bbb2654.212E+01

10.6.2.3 Engineering Edit Descriptor EN

The EN edit descriptor converts to or from a string using engineering notation
for a value occupying w positions.

Table 10-4 Forms for the exponent exp in E and D editing

Edit
descriptor

Absolute value
of exponent

Form of
exponent

Ew.d
 or

Ew.dEe

Dw.d
 or

or

exp 99≤
99 exp 999≤<

E z1z2± 0z1z2±
z1z2z3±

exp 10e 1–≤ E z1z2…ze±

exp 99≤
99 exp< 999≤

D z1z2± E z1z2±
0z1z2±

z1z2z3±

2.12 101×– 2.65421232 104×

450 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

On input:

1. The form ENw.d[Ee] is the same as for Fw.d editing (10.5.2.1).

On output:

1. The output of the number is in the form of engineering notation, where the
exponent is divisible by 3 and the absolute value of the significand is
1000 > |significand| ≥ 1. This is the same form as the E edit descriptor,
except for the restriction on the exponent and significand.

Example:

WRITE (6, 110) B
110 FORMAT (EN13.3)

If the value of B is 0.212, the output record produced is:

bb212.000E-03

2. The precise form of zero is not specified, except for the same restrictions as
noted for the E edit descriptor with the additional restriction that there
must be exactly one zero digit before the decimal point.

3. The form of the output field is:

[±]

where:

a. ± signifies a plus or a minus.

b. are the 1 to 3 decimal digits representing the most significant
digits of the value of the datum after rounding (is an integer such
that or, if the output value is zero, = 0).

c. are the d next most significant digits of the value of the
datum after rounding. If the output value is zero, the are all 0.

d. exp is a decimal integer, divisible by 3, representing the exponent and
of one of the forms, given in Table 10-5, where each is a decimal
digit.

yyy.x1x2…xd exp

yyy
yyy

1 yyy≤ 1000< yyy

x1x2…xd
xi

zi

Input and Output Editing 451

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. The sign in the exponent is produced. A plus sign is produced if the
exponent value is zero. The form ENw.dEe must be used with a sufficiently
large value of e if |exp| > 999.

Examples:

10.6.2.4 Scientific Edit Descriptor ES

The scientific edit descriptor ES converts to or from a string using scientific
notation for a value occupying w positions.

Rules and restrictions:

On input:

1. The form ESw.d[Ee] is the same as for Fw.d editing (10.5.2.1) .

On output:

1. The output of the number is in the form of scientific notation, where the
absolute value of the significand is 10 > |significand| ≥ 1. This is the same
form as the E edit descriptor, except for the restriction on the significand.

Table 10-5 Forms for the exponent exp in EN editing

Edit
descriptor

Absolute value
of exponent

Form of
exponent

ENw.d
 or

ENw.dEe

Internal value Output field using SS, EN12.3

6.421 6.421E+00

-.5 -500.000E-03

.00217 2.170E-03

4721.3 4.721E+03

exp 999≤
99 exp< 999≤

E z1z2± 0z1z2±
z1z2z3±

exp 10
e

1–≤ E z1z2…ze±

452 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Example:

WRITE (6, 110) B
110 FORMAT (ES12.3)

If the value of B is 0.12345678, the output record produced is:

bbb1.235E-01

2. The precise form of zero is not specified, except for the same restrictions as
noted for the EN edit descriptor.

3. The form of the output field is:

[±]

where:

a. ± signifies a plus or a minus.

b. is a decimal digit representing the most significant digit of the value
of the datum after rounding (is an integer such that 1 ≤ < 10 or, if
the output value is zero, = 0).

c. are the d next most significant decimal digits of the value of
the datum after rounding. If the output value is zero, the are all 0.

d. exp is a decimal exponent of one of the forms, given in Table 10-6,
where each is a decimal digit.

4. The sign in the exponent is produced.

5. A plus sign is produced if the exponent value is zero.

6. The form ESw.dEe must be used with a sufficiently large value of e if
|exp| > 999.

Table 10-6 Forms for the exponent exp in ES editing

Edit
descriptor

Absolute value
of exponent

Form of
exponent

ESw.d
 or

ESw.dEe

y.x1x2…xd exp

y
y y

y

x1x2…xd
xi

zi

exp 99≤
99 exp< 999≤

E z1z2± 0z1z2±
z1z2z3±

exp 10e 1–≤ E z1z2…ze±

Input and Output Editing 453

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples:

10.6.2.5 Complex Editing

Complex editing follows the rules for numeric editing. Editing of complex
numbers requires two real edit descriptors, the first one for the real part and
the second one for the imaginary part. Different edit descriptors may be used
for the two parts. Control and character string edit descriptors may be inserted
between the edit descriptors for the real and imaginary parts.

Example:

COMPLEX CM (2)
READ (5, "(4E7.2)") (CM (I) , I = 1, 2)

If the input record is:

bb55511 bbb2146 bbbb 100bbbb 621

the values assigned to CM (1) and CM (2) are 555.11 + 21.46ι and 1 + 6.21ι,
respectively.

10.6.2.6 Generalized Editing of Real Data

Gw.d[Ee] converts to or from a string using generalized editing. The form for
generalized editing is determined by the magnitude of the value of the
number.

Rules and restrictions:

On input:

1. The Gw.d[Ee] edit descriptor is the same as the Fw.d edit descriptor
(10.5.2.1).

Internal value Output field using SS, ES12.3

6.421 6.421E+00

–.5 –5.000E–01

.00217 2.170E-03

4721.3 4.721E+03

454 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

On output:

1. Let be the magnitude of a number to be printed using a G edit
descriptor. If = 0 or is approximately between 0.1 and , Table 10-7
specifies the form of the output, where is 4 for Gw.d and is e + 2 for
Gw.dEe. A kP scale factor has no effect.

2. If is outside this range, output editing with the edit descriptor
kPGw.d[Ee] is the same as that with kPEw.d[Ee].

Examples:

PRINT "(G10.1)", 8.76E1

produces the output

bbb0.9E+02

because the magnitude of is such that rule 2 applies, yielding the format
E10.1.

PRINT "(G10.3)" , 8.76E1

Table 10-7 The form of the output using a G edit descriptor for a number of
magnitude

Magnitude of datum s t
Equivalent
conversion

w − n d − 1 Fs.t, nX

w − n d Fs.t, nX

w − n d − 1 Fs.t, nX

w − n d − 2 Fs.t, nX

.

.

.

w - n 1 Fs.t, nX

w − n 0 Fs.t, nX

N
N 10d

n n

N

N

N 0=

0.1 0.5 10 d– 1–×– N≤ 1 0.5 10 d–×–<

1 0.5 10 d–×– N≤ 10 0.5 10 d– 1+×–<

10 0.5 10 d– 1+×– N≤ 100 0.5 10 d– 2+×–<

10d 2– 0.5 10 2–×– N≤ 10d 1– 0.5 10 1–×–<

10d 1– 0.5 10 1–×– N≤ 10d 0.5–<

N

Input and Output Editing 455

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

produces the output:

bb87.6 bbbb

because n is 4, and the format reduces to F6.1,4X (the fourth line in Table 10-7)
because of the range of the magnitude of the number.

Example:

PRINT "(G10.3E1)" , 8.76E1

produces the output:

bbb87.6 bbb

because n is 3 (=1+2) and the format reduces to F7.1,3X.

10.7 Logical Editing
The logical edit descriptors convert to or from a string representing a logical
value that is true or false. The edit descriptors used for logical editing are:

L w
Gw . d [E e]

Rules and restrictions:

On both input and output:

1. w is the field width.

2. Generalized logical editing Gw.d[Ee] follows the rules for Lw editing.

On input:

1. The input field for a logical value consists of any number of blanks,
followed by an optional period, followed by T or F, for a true and false
value respectively, followed by any representable characters.

Example: Using the READ statement:

READ (5, "(2L8)") L1, L2

to read the input record:

.TRUE. bb.FALSE. b

456 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

will cause L1 and L2 to have the values true and false, respectively. The result
would be the same if the input record were:

TUESDAYbFRIDAYbb

On output:

1. The output field consists of leading blanks, followed by T or F, for a
true and false value, respectively, of the output item.

Example:

WRITE (6, "(2L7)") L1, L2

If L1 and L2 are true and false, respectively, the output record will be:

bbbbbb Tbbbbbb F

10.8 Character Editing
Character editing converts to or from a string of characters. The edit
descriptors for character editing are:

A [w]
Gw . d [E e]

Rules and restrictions:

On both input and output:

1. w is the field width measured in characters.

2. A Gw.d[Ee] general edit descriptor is the same as an Aw edit descriptor for
character data.

3. All characters transferred under the control of a particular A or G edit
descriptor must be of the same kind.

4. If w is omitted, the length of the character data object being transferred is
used as the field width.

On input:

1. If w is greater than or equal to the length of the character datum read,
 rightmost characters of the input field are read.

w 1–

len
len

Input and Output Editing 457

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. If w is less than the length of the character data read, the w characters
of the character datum will be read from the input field and placed left
justified in the character list item followed by − w trailing blanks.

On output:

1. If w exceeds the length of the character datum written, w − blank
padding characters are written followed by characters of the character
datum.

2. If w is less than or equal to the length of the character data written, the
w leftmost characters of the character datum will appear in the output
field.

3. If the character datum is of the nondefault kind, the character used for
“blank padding” is processor dependent.

Example:

CHARACTER (LEN = 14), PARAMETER :: SLOGAN = "SAVE THE RIVER"
WRITE (*, "(A)") SLOGAN

produces the output record:

SAVE THE RIVER

10.9 Control Edit Descriptors
No data is transferred or converted with the control edit descriptors. Control
edit descriptors affect skipping, tabbing, scale factors, and printing of optional
signs. These edit descriptors may affect how the data is input or output using
the subsequent data edit descriptors in the format specification.

10.9.1 Position Editing

Position edit descriptors control relative tabbing left or right in the record
before the next list item is processed. The edit descriptors for tabbing are:

T n tab to position n
TL n tab left n positions
TR n tab right n positions
n X tab right n positions

len

len

len len
len

len

458 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The tabbing operations to the left are limited by a position called the left
tabbing limit. This position is normally the first position of the current record
but, if the previous operation on the file was a nonadvancing formatted data
transfer, the left tabbing limit is the current position within the record before
the data transfer begins. If the file is positioned to another record during the
data transfer, the left tabbing limit changes to the first position of the new
record.

The Tn edit descriptor positions the record just before the character in position
n relative to the left tabbing limit. TRn and nX move right n characters from the
current position. TLn moves left n characters from the current position, but is
limited by the left tabbing limit.

Rules and restrictions:

On both input and output:

1. n must be a positive integer constant with no kind parameter value
specified for it.

2. Left tabbing is always limited so that even if left tabbing specifies a
position to the left of the left tabbing limit, the record position is set to the
left tabbing limit in the record.

3. The left tabbing limit in the record is determined by the position in the
record before any data transfer begins for a particular data transfer
statement.

4. If a file is positioned to another record during a particular data transfer
statement, the left tabbing limit is the first position of the record.

On input:

1. The resulting position in the record after tabbing over nondefault
characters in the output record is processor dependent.

2. The T descriptor may move the position within a record either left or right
from the current position.

3. Moving to a position left of the current position allows input to be
processed twice, provided the same input statement is performing the
processing for advancing input, or provided nonadvancing input is in
effect.

Input and Output Editing 459

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. The X descriptor always moves the position to the right and skips
characters.

On output:

1. The positioning does not transmit characters, and does not by itself cause
the record to be shorter or longer.

2. Positions that are skipped and have not been filled previously behave as if
they are blank filled.

3. Positions previously filled may be replaced with new characters, but are
not blank filled when they are skipped using any of the position edit
descriptors.

Example: If DISTANCE and VELOCITY have the values 12.66 and –8654.123,

PRINT 100, DISTANCE, VELOCITY
100 FORMAT (F9.2, 6X, F9.3)

produces the record:

bbbb 12.66 bbbbbb -8654.123

and

PRINT 100, DISTANCE, VELOCITY
100 FORMAT (F9.2, T7, F9.3)

produces the record:

bbbb 12-8654.123

because T7 specifies the first position for VELOCITY as the seventh character
in the record.

10.9.2 Slash Editing

The slash edit descriptor consists of the single slash character (/). The current
record is ended when a slash is encountered in a format specification.

460 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

On input:

1. If the file is connected for sequential access, the file is positioned at the
beginning of the next record. The effect is to skip the remainder of the
current record.

2. For direct access, the record number is increased by one, and the file is
positioned at the beginning of the record with this increased record
number, if it exists; it becomes the current record.

3. A record may be skipped entirely on input.

On output:

1. If the file is connected for sequential access, a new empty record is created
after the current record, and the file is positioned at the beginning of a new
record. In completing the previous record, no characters may be written to
the file (for example, for systems that support variable length records).

2. For direct access, the current record is blank filled, the record number is
increased by one, and this record becomes the current record.

3. For an internal file, the current record is blank filled, and the file is
positioned at the beginning of the next array element.

Example: If ALTER, POSITION, and CHANGE have the values 1.1, 2.2, and
3.3, respectively,

PRINT "(F5.1, /, 2F6.1)", ALTER, POSITION, CHANGE

produces two records:

bb1.1
bbb2.2 bbb3.3

10.9.3 Colon Editing

The colon edit descriptor consists of the character colon (:). If the list of items
in a formatted READ or WRITE statement is exhausted, a colon stops format
processing at that point. If the list is not exhausted, the colon edit descriptor
has no effect.

Input and Output Editing 461

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Example: If ALTER, POSITION, and CHANGE have the values 1.1, 2.2, and
3.3, respectively,

WRITE (6, 100) ALTER, POSITION, CHANGE
100 FORMAT (3F5.2, :, "STOP")

produces:

bb1.1 bb2.2 bb3.3

The characters STOP are not printed because the output list is exhausted when
the colon edit descriptor is processed. If the colon edit descriptor were not
present in the above format, the string "STOP" would be printed.

10.9.4 Sign Editing

Sign editing applies to the output data transfer of positive integer and real
values only. It controls the writing of the optional plus sign when the edit
descriptor I, F, E, EN, ES, D, or G is used. The sign edit descriptors are:

Rules and restrictions:

1. The descriptors have effect until another sign edit descriptor is
encountered in the format specification.

2. The descriptors have no effect during formatted input data transfers.

Example: If SPEED(1) and SPEED(2) are 1.46 and 2.3412 respectively,

WRITE (6, 110) (SPEED (K) , K = 1, 2)
110 FORMAT (SP, 2F10.2)

produces the record:

bbbbb +1.46 bbb+234.12

S
the optional plus may or may not be printed;

the choice is processor dependent

SP the optional plus must be printed

SS the optional plus must not be printed

462 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.9.5 Scale Factors

The kP edit descriptor indicates scaling, where the scale factor k is a signed
integer literal constant.

The scale factor is zero at the beginning of a formatted input/output statement.
When a kP descriptor occurs, the scale factor becomes k, and all succeeding
numeric fields processed with an F, E, EN, ES, D, or G edit descriptor may be
affected by this scale factor until another kP edit descriptor occurs.

Rules and restrictions:

On input:

1. If the input field has no exponent, the external number equals the internal
number multiplied by a scale factor .

2. The scale factor has no effect if the input field has an exponent.

Example: If the input record contains 10.12:

READ (5,100) MASS
100 FORMAT (3PF15.3)

gives MASS the value 10120.0.

On output:

1. For the F edit descriptor, the scale factor has no effect.

2. For the E and D edit descriptors, the nonexponent part (significand) of the
number appearing in the output is multiplied by and the exponent is
reduced by k.

3. The G edit descriptor is not affected by the scale factor if the number will
print correctly with the appropriate F edit descriptor as described in Table
10-7. Otherwise, the scale factor for the G edit descriptor has the same
effect as for the E edit descriptor.

4. EN and ES edit descriptors are not affected by a scale factor.

Example: If TREE has the value 12.96:

WRITE (6,200) TREE
200 FORMAT (2PG10.1)

10k

10k

Input and Output Editing 463

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

produces:

b1296.E-02

10.9.6 Blanks in Numeric Fields

Blanks other than leading blanks may be ignored or interpreted as zero
characters in numeric input fields as determined by the blank edit descriptors:

BN treat nonleading blanks in numeric input fields as nonexistent
BZ treat nonleading blanks in numeric input fields as zeros

The interpretation is for input fields only when the field is processed using an
I, B, O, Z, F, E, EN, ES, D, or G edit descriptor; output fields are not affected.
The BLANK= specifier in the OPEN statement affects the interpretation of
blanks if no BN or BZ descriptor is used.

Rules and restrictions:

On input:

1. The BLANK= specifier for an internal file is NULL.

2. If the BLANK= specifier is NULL, or a BN edit descriptor is in effect, the
nonleading blanks are ignored and treated as if they were not in the input
field.

3. If the BLANK= specifier is ZERO, or a BZ edit descriptor is in effect, the
nonleading blanks are interpreted as zeros in succeeding numeric fields.

4. The BN and BZ edit descriptors override the effect of the BLANK=
specifier during the execution of a particular input data transfer statement.

Example:

READ (5, 100) N1, N2
100 FORMAT (I5, BZ, I5)

If the input record is:

b9b9b9b9b9

and unit 5 has been opened with a BLANK= specifier equal to NULL, the
values assigned to N1 and N2 are 99 and 90909, respectively.

464 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.9.7 Character String Edit Descriptors

Character string edit descriptors are used to transfer characters to an output
record. The character string edit descriptors must not be used on input. The
character string edit descriptors are apostrophe, quote, and Hollerith and are
respectively:

’ characters ’

" characters "

n H characters

Rules and restrictions:

On output:

1. The apostrophe and quote edit descriptors have the form of literal
character constants with no kind parameter values and cause those
constants to be placed in the output.

2. The Hollerith descriptor nH . . . may be used to print the n characters
following the H. n must be a positive integer and must not have a kind
value specified for it.

3. To print a quote in the output field when a quote is the delimiting
character, use two consecutive quotes; to print an apostrophe in the output
field when an apostrophe is the delimiting character, use two consecutive
apostrophes.

4. The field width is the length of the character constant, but does not include
the extra character for each pair of doubled apostrophes or quotes.

Example: If TEMP has the value 32.120001,

WRITE (6, 120) TEMP
120 FORMAT (’ TEMPERATURE = ’, F13.6)

produces the record:

bTEMPERATUREb=bbbbb 32.120001

Input and Output Editing 465

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.10 List-Directed Formatting
List-directed formatting is one of the implicit formatting methods in Fortran.
Conversion to and from characters in READ and WRITE statements does not
use an explicit format specification. The editing occurs based on the type of the
list item. Data is separated by commas or blanks. The input/output statement
uses an asterisk (∗) instead of an explicit format specification.

Example:

READ (5, *) HOT, COLD, WARM

Rules and restrictions:

On both input and output:

1. A list-directed record consists of values and value separators.

2. Values. The values allowed in a list-directed input record are:

where r is a nonzero digit string.

Embedded blanks are not allowed within values except in a delimited
character constant.

3. Value Separators. The value separators allowed in a list-directed input
record are:

• a comma, optionally preceded or followed by contiguous blanks
• a slash, optionally preceded or followed by contiguous blanks

null
a null value, specified for example by two consecutive
commas (,,)

c

a noncharacter literal constant (which must be unsigned)
with no embedded blanks, a character literal constant, or a
nondelimited character string with no embedded blanks
(see Section 10.10.1.1 for the detailed requirements for
nondelimited character constants)

r∗c r repetitions of the constant c

r∗ r repetitions of the null value

466 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

• one or more contiguous blanks between two nonblank values or
following the last nonblank value, where a nonblank value is a
constant, an r∗c form, or an r∗ form

4. List-directed formatting must not be specified for direct access or
nonadvancing sequential data transfer.

5. If there are no list items and there is no current record, an input record is
skipped or an output record that is empty is written. If there are no list
items and there is a current record, the current record is skipped (the file is
positioned at the end of the current record) or the current record is
terminated at the current position. (Recall that a current record exists only
if the previous input/output data transfer to the unit was nonadvancing.)
An empty record is either a blank-filled record or a record with no
characters in it, depending on the processor.

6. The end of a record has the same effect as a blank, unless it occurs within a
delimited character literal constant. Similarly, a sequence of two or more
consecutive blanks is treated as a single blank.

10.10.1 List-Directed Input

Input values are generally accepted as list-directed input if they are the same
as those required for explicit formatting with an edit descriptor. There are
some exceptions. They are:

1. When the data list item is of type integer, the constant must be of a form
suitable for the I edit descriptor. Binary, octal, or hexadecimal based values
must not appear in a list-directed input record.

2. When the data list item is of type real, the constant must be of a form
suitable for the F edit descriptor. If no decimal point appears in the
constant, the constant has no fractional digits specified for it.

3. Blanks are never zeros.

4. Embedded blanks are not allowed, except within a delimited character
constant. Values of type complex include the parentheses for a complex
constant, and blanks may occur before or after the comma, and before or
after the parentheses.

Input and Output Editing 467

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples are:

"NICE DAY"
(1.2, 5.666)
TODAY

5. Logical items must not use value separators as the optional characters
following the T or F. TUESDAY is allowed; T,TOO is not.

6. An end of record may not occur within a constant, except a complex
constant or a delimited character constant: for a complex constant, the end
of record may occur between the real part and the comma, or between the
comma and the imaginary part; for a character constant, the end of record
may occur anywhere in the constant except between any consecutive
(doubled) quotes or apostrophes in the constant. The end of record does
not cause a blank or any other character to become part of the character
value. A complex or character constant may be continued on as many
records as needed.

7. Value separators may appear in any delimited default character constant.
They are, however, not interpreted as value separators, but are characters
in the delimited character constant.

8. If len is the length of the corresponding input list item, and w is the
number of effective characters in the character value, and if:

For example, consider the code:

CHARACTER (2) NAME
. . .

READ (5,*) NAME

where the input record is:

JONES

After the READ statement, the value in NAME is JO, because len (=2) is
less than w (=5).

the leftmost len characters of the constant are used

the w characters of the constant are left justified in the
input list item and the list item is blank filled on the right

len w≤

len w>

468 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.10.1.1 Requirements for Nondelimited Character Strings as Values

In certain cases, the delimiters are not required for character values on input.
However, nondelimited character strings impose certain requirements which
are:

1. The corresponding data list item must be of type character.

2. The character string must not contain any value separator.

3. The character string must not be continued across a record boundary.

4. The first nonblank character is neither an apostrophe (’) nor a quote (").

5. The leading characters are not a string of digits followed immediately by
an asterisk.

In any of these cases, the character constant represented by the character string
is terminated by the first value separator or end of record, and apostrophes (’)
and quotes (") are not doubled.

10.10.1.2 Null Values

Null values are used to specify no change of the items in the input item list.
Null values have the forms:

1. no value between separators, such as ,,

2. a nonblank value separator as the first entity in the record; for example, a
record beginning with slash as the first nonblank character represents a
null value, as in /4.56

3. r∗ followed by a value separator as in:

7*,’TODAY’

Rules and restrictions:

1. An end of record does not signify a null value.

2. The null value does not affect the definition status or value of the
corresponding list item.

3. For a complex constant, the entire constant may be null, but not one of the
parts.

Input and Output Editing 469

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. If a slash terminates input, the remaining characters in the record are
ignored, and the remaining list items are treated as though null values had
been read. This applies to any remaining items in an implied-DO or to any
remaining elements of an array.

Example:

REAL AVERAGE (2)
READ (5, *) NUMBER, AVERAGE

If the input record is:

b6,,2.418

the result is that NUMBER = 6, AVERAGE (1) is unchanged, and AVERAGE (2)
= 2.418.

10.10.2 List-Directed Output

List-directed output uses similar conventions to those used for list-directed
input. The rules and restrictions that are the same are:

Rules and restrictions:

1. A blank or a comma optionally preceded or followed by a blank is used as
a separator except for nondelimited character values.

2. The processor begins new records, as needed, at any point in the list of
output items. A new record does not begin in the middle of a value, except
as noted below for complex and character values. Each new record begins
with a blank for carriage control, except for delimited character constants.

3. Slashes and null values are not output.

4. The processor has the option of using the repeat factor r∗c for two or more
consecutive values that are identical.

There are a few exceptions that are noted below for each of the intrinsic types.

Integer. The effect is as though an Iw edit descriptor were used, using a
suitable processor-dependent value for w.

470 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Real. The effect is as though an 0PFw.d or an 1PEw.dEe edit descriptor were
used, using suitable processor-dependent values for w, d, and e. Which edit
descriptor is chosen by the compiler depends on the magnitude of the number
written.

Complex. The real and imaginary parts are enclosed in parentheses and
separated by a comma (with optional blanks surrounding the comma). If the
length of the complex number is longer than an entire record, the processor
may separate the real and imaginary parts on two consecutive records with the
real part in the first record.

Logical. List-directed output prints T or F depending on the value of the
logical data item.

Character. The form of the output for character values depends on the value of
the DELIM= specifier in the OPEN statement for that unit.

1. If there is no DELIM= specifier, if the value of the DELIM= specifier is
NONE, or if the file is an internal file:

a. Character values are not delimited.

b. Character values are not surrounded by value separators.

c. Only one quote or apostrophe is needed for each quote or apostrophe
in the string transferred.

d. A blank is inserted at the beginning of new records for a continued
character value.

2. If the DELIM= specifier is QUOTE or APOSTROPHE:

a. Character values are delimited with the specified delimiter quote or
apostrophe.

b. All values are surrounded by value separators.

c. A character that is the same as the specified delimiter is doubled when
written to the output record.

d. An underscore followed by a kind parameter is allowed, if applicable.

e. No blank is inserted at the beginning of a continued record for carriage
control in the case of a character value continued between records.

Input and Output Editing 471

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Example:

REAL :: TEMPERATURE = -7.6
INTEGER :: COUNT = 3
CHARACTER(*), PARAMETER :: PHRASE = "This isn’t so"

OPEN(10, DELIM = ’NONE’)
WRITE(10, *) TEMPERATURE, COUNT, PHRASE

The output record on unit 10 would be:

-7.6 3 This isn’t so

10.11 Namelist Formatting
In some programs, it is convenient to create a list of variables that can be read
or written by referencing the name of the list. The term namelist denotes this
kind of data transfer. Before input or output can begin using this facility, the
NAMELIST specification statement (5.9) is used to define the list and give it a
group name. In the following example, the NAMELIST statement defines the
group name MEETING made up of the data objects JAKE, JOE, and JANE.

NAMELIST /MEETING/ JOE, JAKE, JANE

The namelist input and output records consist of an ampersand (&) followed
by a namelist group name followed by a sequence of name-value pairs
followed by a slash (/). A name-value pair is a name or a subobject designator,
an equal sign, and one or more values separated by value separators; that is,

 or , The name in a name-value pair must
appear in the NAMELIST statement specifying the namelist group name. The
name-value pairs provide a convenient form of documentation.

For example, the following input data transfer statement

READ (*, NML = MEETING)

sets the variables JAKE and JOE when the input record is:

&MEETING JAKE = 3505, JOE = 1 /

and does not change the value of the variable JANE.

name value= name value=

472 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Namelist output is convenient for debugging or writing values in a form that
can later be read by a READ statement referencing the same namelist group
name. All variables in the namelist group name appear in the output record
but must be defined when the output statement is executed. For example, the
WRITE statement

WRITE (*, NML = MEETING)

creates the output record (assuming JANE is defined with the value 0)

&MEETING JAKE = 3505, JOE = 1, JANE = 0 /

In namelist input/output records, blanks may be before or after the
ampersand, after the namelist group name, before or after the equal sign in the
name-value pairs, or before the slash terminating the namelist input statement.

The rules and restrictions for a blank and an end of record in a character
constant are the same as for delimited character constants in list-directed
formatting. Nondelimited character strings are not permitted in namelist
records.

10.11.1 Namelist Input

Namelist input consists of an ampersand (&), followed by the group name,
followed by one or more blanks, followed by a sequence of zero or more name-
value pairs whose names (10.11.1.1) are in the namelist group and whose
values are described in Section 10.11.1.2, are separated by value separators, and
followed by a slash which terminates the namelist input.

Name-Value Pairs. The name-value pairs are separated by value separators
that are of the form:

• a comma, optionally preceded or followed by contiguous blanks

• a slash, optionally preceded or followed by contiguous blanks

• one or more contiguous blanks between two name-value pairs

Rules and restrictions:

1. Blanks may precede the ampersand or the slash.

2. When the name in the name-value pair is a subobject designator, it must
not be a zero-sized array, zero-sized array section, or a zero-length
character string.

Input and Output Editing 473

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. If the processor supports uppercase and lowercase characters, a lowercase
letter is the same as an uppercase letter and vice versa when used in the
group name.

An example of namelist input is:

READ (*, NML = MEETING)

The input record might be:

&MEETING JAKE = 3500, JOE = 100, JANE = 0/

10.11.1.1 Names in Name-Value Pairs

There are rules and restrictions for the names used in the name-value pairs in
the namelist records.

Rules and restrictions:

1. The name-value pairs may appear in any order in the input records.

2. The name-value pairs are evaluated serially, in left-to-right order.

3. A name in the namelist group may be omitted.

4. Each name must correspond with a name in the designated namelist
group; a component name, if any, must also be the name of a component of
the structure named in the namelist group.

5. Optionally-signed integer literal constants with no kind parameter values
must be used in all expressions that appear in subscripts, section
designators, or substring designators.

6. The name of a structure or a subobject designator may be the name in a
name-value pair.

7. A name in an input record must not contain embedded blanks. A name in
the name-value pair may be preceded or followed by one or more blanks.

8. If the processor supports uppercase and lowercase characters, a lowercase
letter is the same as an uppercase letter and vice versa when used in the
name of a name-value pair.

9. A namelist group object name or subobject designator may appear in more
than one name-value pair in a sequence.

474 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10. Recall that each name must not be the name of an array dummy argument
with nonconstant bounds, an automatic object, a character variable with
nonconstant length, a pointer, or a structure variable of a type with a
component that is a pointer, or an allocatable array.

10.11.1.2 Values in Name-Value Pairs

The value in a name-value pair must be in a form acceptable for a format
specification for the type of the name, except for restrictions noted below.

Null values have the forms:

1. no value between value separators

2. no value between the equal sign and the first value separator

3. the r∗ form, followed by one or more blanks.

Null values do not change the value of the named item or its definition status.
An entire complex constant may be null; neither of the parts can be. The end of
a record following a value separator does not specify a null value.

Each value is a null value or one of these forms:

where r is awhere repeat factor and is a nonzero digit string.

Rules and restrictions:

1. The form of a value must be acceptable to a format specification for an
entity of the type of the corresponding list item, except as noted below; for
example, the value c corresponding to a list item of type real can be of the
forms:

1
1.0_2
1.0E0

but cannot be of the forms:

c indicates a literal constant (which must be unsigned)

r∗c indicates r successive literal constants c

r∗ indicates r successive null values

Input and Output Editing 475

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

(1.0,0.0)
A0
1.0EN-3
2.2_QUAD

2. Blanks are never zero, and embedded blanks may not appear in numeric or
logical constants. The exception is that a blank may appear as a character
in a character constant, or preceding or following the real or imaginary
parts of a complex constant.

3. The number of values following the equal sign must not be larger than the
number of elements of the array when the name in the name-value pair is
an array, or must not be larger than the ultimate number of components
when the name in the name-value pair is that of a structure. Any array or
component that is an array is filled in array element order.

For the example:

TYPE PERSON
INTEGER LEN
CHARACTER (10) NAME

END TYPE PERSON
TYPE (PERSON) PRESIDENT, VICE_PRES
NAMELIST/PERSON_LIST/PRESIDENT, VICE_PRES
READ (5, NML = PERSON_LIST)

the input record might be:

&PERSON_LIST PRESIDENT%LEN=4, PRESIDENT%NAME="BUSH",
VICE_PRES%LEN=6, VICE_PRES%NAME="QUAYLE"/

4. If there are fewer values in the expanded sequence than array elements or
structure components, null values are supplied for the missing values.

5. If a slash occurs in the input, it is as if null values were supplied for the
remaining list items, and the namelist input data transfer is terminated.
The remaining values after the slash within the current record are ignored.

6. An integer value is interpreted as if the data edit descriptor were Iw for a
suitable value of w; for example, the integer value must not be a
hexadecimal based digit string.

7. A complex value consists of a pair of parentheses surrounding the real and
imaginary parts, separated by a comma. Blanks may appear before and
after these values.

476 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8. A logical value must not contain slashes, commas, or blanks as part of the
optional characters after the .T, .F, T, or F.

9. A character literal constant may contain slashes, commas, or blanks as part
of the constant. The character constant must have the same kind parameter
value as the name in the name-value pair. On namelist input, the DELIM=
specifier is ignored.

10.11.1.3 Blanks

Blanks are part of the value separator except for the use of blanks:

1. in a character constant

2. before or after the parts of a complex constant

3. before or after an equal sign, unless after the equal sign the blanks are
followed immediately by a comma or slash

4. before the ampersand indicating the namelist group name and after the
namelist group name

10.11.1.4 Use of Namelist Input

Namelist input requires the namelist group name, preceded by an ampersand,
to be on the first nonblank record read by the namelist READ statement.

Example of namelist input:

REAL A (3), B (3)
CHARACTER (LEN = 3) CHAR
COMPLEX X
LOGICAL LL
NAMELIST / TOKEN / I, A, CHAR, X, LL, B
READ (*, NML = TOKEN)

If the input record is:

&TOKEN A(1:2) = 2*1.0 CHAR = "NOP " B = ,3.13,,
X = (2.4,0.0) L L = T /

Input and Output Editing 477

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

results of the READ statement are:

10.11.2 Namelist Output

On namelist output, the processor may produce uppercase and lowercase
letters if it supports them. Value separators may be blanks, commas, or a
combination of blanks and commas. A new record may begin anywhere, except
within a name or value, unless the value is a character constant or a complex
constant; a record may begin anywhere within a character constant, or may
begin before or after the comma, or left or right parenthesis of a complex
constant. A blank may occur anywhere, except in a name or a noncharacter
value. The only blanks that may occur in a character value are those that are in
the character string; no additional blanks may be added.

10.11.2.1 Use of Namelist Output

A number of rules, similar to those for list-directed formatting, apply for
namelist output.

Name Value

I Unchanged

A (1) 1.0

A (2) 1.0

A (3) Unchanged

B (1) Unchanged

B (2) 3.13

B (3) Unchanged

CHAR "NOP"

X (2.4, 0.0)

LL True

478 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. Namelist output consists of a series of records. The first nonblank record
begins with an ampersand, followed by the namelist group name, followed
by a sequence of name-value pairs, one pair for each variable name in the
namelist group object list of the NAMELIST statement and ends with a
slash.

2. A logical value is either T or F.

3. An integer value is one that would be produced by an Iw edit descriptor
using a suitable value of w.

4. For real output, the rules for list-directed output are followed using
reasonable values for the w, e, and d that appear in real data edit
descriptors and are appropriate for the output value.

5. Parentheses enclose the value of a complex constant, and the parts are
separated by a comma. An end of record may occur after the comma only
if the value is longer than the entire record. Blanks may be embedded after
the comma and before the end of the record.

6. Character constants follow the rules for list-directed output.

7. Repeat factors of the form r∗c are allowed on output for successive
identical values.

8. An output record does not contain null values.

9. Each record begins with a blank for carriage control.

10. No values are written for zero-sized arrays.

11. For zero-length character strings, the name is written, followed by an equal
sign, followed by a zero-length character string, and followed by a value
separator or slash.

Example:

NAMELIST / CALC / DEPTH, PRESSURE
DIMENSION DEPTH (3), PRESSURE (3)
WRITE (6, NML = CALC)

&CALC DEPTH(1) = 1.2, DEPTH(2) = 2.2, DEPTH(3) = 3.2,
PRESSURE = 3.0, 3.1, 3.2 /

Input and Output Editing 479

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.11.2.2 DELIM= Specifier for Character Constants

The form of the output for character values depends on the value of the
DELIM= specifier in the OPEN statement for that unit.

1. If there is no DELIM= specifier or the value of the DELIM= specifier is
NONE:

a. Character values are not delimited.

b. Character values are not surrounded by value separators.

c. Only one quote or apostrophe is needed for each quote or apostrophe
in the string transferred.

d. A blank is inserted in new records for a continued character value to
allow for carriage control.

2. If the DELIM= specifier is QUOTE or APOSTROPHE:

a. Character values are delimited with the specified delimiter, either
quote or apostrophe.

b. A character that is the same as the specified delimiter is doubled when
written to the output record.

c. A kind parameter followed by an underscore all preceding a delimited
character value is allowed if applicable.

Example: for LEFT and RIGHT with values "SOUTH" and "NORTH", the
program with the DELIM= specifier of QUOTE for unit 10:

CHARACTER (5) LEFT, RIGHT
NAMELIST / TURN / LEFT, RIGHT
WRITE (10, NML = TURN)

produces the output record:

&TURN LEFT = "SOUTH", RIGHT = "NORTH" /

Note that if the DELIM= specifier is NONE in an OPEN statement, namelist
output may not be usable as namelist input when character values are
transferred, because namelist input of character values requires delimited
character values.

480 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.12 Summary

10.12.1 Explicit Formatting

Explicit formatting uses edit descriptors that are contained in a FORMAT
statement or contained in a character expression used as a format specification.

READ (5,200) DIFFICULTY
200 FORMAT (F5.1)

or

READ (5, "(F5.1)") DIFFICULTY

10.12.2 Format Specifications

Format specifications are lists of edit descriptors enclosed in parentheses.
There are data edit descriptors, control edit descriptors, and character string
edit descriptors. The format specification, including the parentheses and the
edit descriptors, are placed in the input/output statement itself.

READ (5, "(2F10.1)") LATITUDE, LONGITUDE

The format specification also may appear in a FORMAT statement, for
example, as in:

WRITE (6, 500) A(1:2), B, TITLE
500 FORMAT (1H0, 2F10.3, E15.1, TR1, A10, 7HIN BOOK)

10.12.3 The FORMAT Statement

This statement contains edit descriptors corresponding to an input or output
list. The statement labeled 100 in the example is the FORMAT statement. The
list of data items is in the WRITE statement.

WRITE (6, 100) LATITUDE, LONGITUDE
100 FORMAT (1H0, F10.1, 7HDEGREES, F10.1, &

7HDEGREES)

Input and Output Editing 481

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.12.4 Data Edit Descriptors

There must be at least one data edit descriptor for each effective item in the
expanded input/output item list. Edit descriptors can be reused as a result of
reversion back to the previous parenthetical group. The descriptor must be
appropriate for the type of the item in the list. The data edit descriptors are
listed in Section 10.2.1.

WRITE (6, 100) (SEASONS (I) , I = 1,4)
100 FORMAT (1H0, 4A20)

10.12.5 Control Edit Descriptors

Control edit descriptors do not correspond to items in the input/output list.
They control the position, as well as the scale factor for real values, transferred
to the output file (10.2.2). Examples are the tabbing facility (Tn, TLn, TRn, or nX
edit descriptors), the sign interpretation (BN and BZ edit descriptors), and
blank interpretation (SS and SP edit descriptors).

In the example:

100 FORMAT (TR4, F6.1, SS, 5F10.2)

TR4 and SS are control edit descriptors.

10.12.6 Character String Edit Descriptors

A string of characters may be transferred to an output device or file by using
apostrophes or quotes to delimit the string or preceding the string by nH
where n is the number of characters in the string. See Section 10.9.

100 FORMAT (1H , "KEEP", ’SAVE’, 6HDELETE)

10.12.7 Implicit Formatting

List-directed and namelist data transfer in Fortran 90 are implicit input/output
conversion and transfer operations. They do not require a format specification.
Instead they behave as though appropriate edit descriptors were supplied.

482 Fortran 90 Handbook

10

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10.12.8 List-Directed Formatting

Editing occurs based on the type of the list item. An asterisk as a format
specifier signifies list-directed data transfer in an input/output statement.

READ (5, *) TEMP, I, CHAR

10.12.9 Namelist Formatting

Editing occurs based on the type of the list item included in the namelist
group. The namelist group name appears in the input/output statement after
the NML= specifier in the input/output statement.

NAMELIST / BOOK_ONE / X, Y, Z
NAMELIST / TURN / TED, MARY, JOAN, BOB
WRITE (*, NML = BOOK_ONE)
READ (*, NML = TURN)

The input might be:

&TURN TED = 98, MARY = 80, JOAN = 99,
BOB = 100 /

The output for the namelist group BOOK_ONE might be:

&BOOK_ONE X = 2.4, Y = 0.64E-07 , Z = 6.0/

483

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Program Units 11

There are several kinds of executable and nonexecutable program units in
Fortran. Each of these program units provides unique functionality. The
executable program units are the main program and procedure subprograms;
the nonexecutable program units are block data units, which are now
effectively obsolescent, and modules, which provide definitions used by other
program units. This chapter describes each of these as well as the closely
related concepts of host association and use association. Only one of these
program units—the module—is new in Fortran 90, although internal
procedures, which are procedure subprograms, represent a significant addition
to the executable program units. A section on the major uses of modules is
included.

A complete Fortran program might be compared to a complete meal. There are
a number of parts to a meal—the main course, salad, dessert, etc. Each course
has a specific part in the meal, just like each program unit (main program,
subroutine, etc.) plays a specific part in a complete program. The parts work
together, and in a well-planned program, as with a well-designed meal, the net
result is something analogous to the whole being greater than the sum of its
parts.

11.1 Overview
A Fortran program is a collection of program units. One and only one of these
units must be a main program. In all but the simplest programs, the individual
tasks are typically organized into a collection of function and subroutine
subprograms and module program units. The program may be organized so

484 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

that the main program drives (or manages) the collection of program units
making up the executable program, but other program organizations can work
as well.

Each program unit is an ordered set of constructs and statements. The heading
statement identifies the kind of program unit it is, such as a subroutine or a
module; it is optional in a main program. An ending statement marks the end
of the unit. The five principal kinds of program units are:

main program
external function subprogram
external subroutine subprogram
module program unit
block data program unit

As already noted, the module program unit is new in Fortran 90 and is
intended to help the programmer organize elements of the program. A module
itself is not executable but contains data declarations, derived-type definitions,
procedure interface information, and subprogram definitions used by other
program units. Block data program units are also nonexecutable and are used
only to specify initial values for variables in named common blocks. With the
addition of modules to Fortran, block data program units are no longer needed
for new programs because modules can provide global data initializations.

Program execution begins with the first executable statement in the main
program. Chapter 2 explains the high-level syntax of Fortran and how to put a
Fortran program together. It is a good place to review the ways statements can
be combined to form a program unit.

The Fortran program in Figure 11-1 is an example of a program that contains
four program units: a main program, a module, and two subroutines.

Module STOCK_ROOM contains data and procedure information used by
subroutines MECHANIC and PARTS. The main program DRIVER invokes the
task represented by subroutine MECHANIC, but DRIVER does not itself need
the information in STOCK_ROOM.

Program Units 485

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.2 Main Program
The main program specifies the overall logic of a Fortran program and is
where execution of the program begins. A main program is similar to the other
program units (particularly external subprograms), and has three principal
parts:

specification-part defines the data environment of the program

execution-part where execution begins, and program logic is detailed

internal-procedure-part if the main program contains internal procedures

The principal ways of stopping the execution are:

1. executing a STOP statement anywhere in the program—that is, in any
program unit making up the program

2. reaching the end of the main program

PROGRAM DRIVER
 . . .
 CALL MECHANIC (TUNEUP)
 . . .
END PROGRAM DRIVER

SUBROUTINE PARTS &
 (PARTS, MODEL, YEAR)
 USE STOC_ROOM
 . . .
END SUBROUTINE PARTS

MODULE STOCK_ROOM
 . . .
END MODULE STOCK_ROOM

SUBROUTINE MECHANIC &
 (SERVICE)
 USE STOCK_ROOM
 . . .
 CALL PARTS (PLUGS, "CRX",1992)
 . . .
END MODULE STOCK_ROOM

Figure 11-1 Four program units

486 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.2.1 Main Program Organization

The form of a main program (R1101) is:

[PROGRAMprogram-name]
[specification-part]
[execution-part]
[internal-subprogram-part]

END [PROGRAM[program-name]]

The simplest of all programs is:

END

Of course, this is not a very interesting program! A more interesting simple
program is:

PROGRAM SIMPLE
PRINT*, ’Hello, world.’

END

The main program organization is essentially an extension of that for
Fortran 77, with the optional internal subprogram part as the principal new
feature.

Rules and restrictions:

1. The PROGRAM statement is optional in main programs (but a program
heading is required for all other program units).

2. The program name on the END statement, if present, must be the same as
the name on the PROGRAM statement and must be preceded by the
keyword PROGRAM.

3. Main programs have no provisions for dummy arguments.

4. Main programs must not be referenced anywhere—that is, main programs
must not be recursive (either directly or indirectly).

5. Main programs must not contain RETURN or ENTRY statements (but
internal procedures in a main program can have RETURN statements).

Program Units 487

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.2.2 The Specification Part

The principal purpose of the specification part is to describe the nature of the
data environment of the program—the arrays, types and attributes of variables,
initial values, etc. The complete list of specification part statements is given in
Chapter 2. A summary of these statements that are valid in a main program is
(R204):

ALLOCATABLE PARAMETER
COMMON POINTER
DATA SAVE
DIMENSION TARGET
EQUIVALENCE USE
EXTERNAL derived-type definition
FORMAT interface block
IMPLICIT statement function
INTRINSIC type declaration statement
NAMELIST

The statements in this list that are new in Fortran 90 are:

1. USE statements to provide access to entities packaged in modules

2. derived-type definitions and declarations

3. procedure interface blocks, which make procedure interfaces explicit

4. “entity-oriented” style of declarations, where all attributes of an entity may
be declared in the same statement

5. NAMELIST statement, for namelist data transfer

6. ALLOCATABLE attribute and statement, for dynamic arrays

7. POINTER attribute and statement, to specify dynamic objects

8. TARGET attribute and statement, to specify a target for a pointer

Rules and restrictions:

1. OPTIONAL and INTENT attributes or statements do not appear in the
specification part of a main program; they are applicable only to dummy
arguments.

488 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. The accessibility specifications, PUBLIC and PRIVATE, do not appear in a
main program; they are applicable only within modules.

3. Automatic objects (5.8) have no meaning in main programs.

4. The SAVE attribute or statement may appear, but it has no effect in a main
program.

11.2.3 The Execution Part

The complete list of execution part statements (R208) is given in Chapter 2. A
summary of these statements that are valid in a main program is:

ALLOCATE IF construct
ASSIGN INQUIRE
BACKSPACE NULLIFY
CALL OPEN
CASE construct PAUSE
CLOSE PRINT
CONTINUE READ
CYCLE REWIND
DATA STOP
DEALLOCATE WHERE
DO construct WHERE construct
ENDFILE WRITE
END arithmetic IF
ENTRY assigned GO TO
EXIT assignment statement
FORMAT computed GO TO
GO TO pointer assignment statement
IF

The statements that are new in Fortran 90 are:

1. the DO construct, including the EXIT and CYCLE statements

2. the SELECT CASE control construct, including the CASE statement

3. the WHERE statement and construct

4. the ALLOCATE and DEALLOCATE statements for dynamically allocatable
objects

Program Units 489

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. pointer statements, including pointer assignment and the NULLIFY
statement

11.2.4 The Internal Subprogram Part

A set of internal procedures comprises the internal subprogram part. Internal
procedures are described in the following section.

11.3 Internal Procedures
Internal procedures are very much like Fortran 77 external procedures, except
that they are packaged inside main programs or other procedure subprograms.
This makes their names local, rather than global like Fortran 77 external
procedures, and an internal procedure can be referenced only within the
program unit that contains its definition. Internal procedures may be recursive,
must not contain ENTRY statements, and must not be passed as actual
arguments. There are three principal reasons for providing internal procedures
in Fortran 90:

1. to provide a procedure facility that has convenient access to the host
environment (the host is the program unit containing the internal
procedure)

2. to provide a multistatement form of the statement function functionality

3. to facilitate modular design and better software engineering

The use of internal procedures can increase programmer productivity and
program reliability by making modular design easier. Safety and reliability are
enhanced because interfaces are known explicitly. Internal procedures can be
expanded easily inline and therefore can increase efficiency.

The form of the internal procedure part (R210) of the host is:

CONTAINS

internal-subprogram
[internal-subprogram] ...

where each internal procedure is either a function (R1215) or subroutine
(R1219):

490 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

function-statement
[specification-part]
[execution-part]

END FUNCTION[function-name]

subroutine-statement
[specification-part]
[execution-part]

END SUBROUTINE[subroutine-name]

An example of an internal procedure is:

PROGRAM WEATHER
. . .

CONTAINS
FUNCTION STORM (CLOUD)

. . .
END FUNCTION STORM

END

Rules and restrictions:

1. Internal procedures must not themselves contain internal procedures—that
is, internal procedures must not be “nested”.

2. Internal procedures must not contain ENTRY statements.

3. Internal procedures must not contain PUBLIC or PRIVATE attributes or
statements.

4. Internal procedures must not be passed as actual arguments.

5. The specification part of an internal procedure may contain the same
statements as the specification part of a main program (11.2.2), plus the
INTENT statement and the OPTIONAL statement.

6. The execution part of an internal procedure may contain the same
statements as the execution part of a main program (11.2.3), plus the
RETURN statement.

7. There must be at least one internal subprogram after the CONTAINS
statement.

Program Units 491

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

An internal procedure can be referenced in the execution part of its host (for
example, the main program that contains it), and in the execution part of any
internal procedure contained in the same host. This includes itself—that is,
internal procedures may be referenced recursively, either directly or indirectly.

An internal procedure name is a local name in the host and therefore is subject
to the rules governing such names. An internal procedure name:

• gives the internal procedure precedence over any external procedure or
intrinsic procedure with the same name

• must be different from the names of other internal procedures in that host
and different from the imported names of any module procedures either
imported into the host or into the internal procedure itself

• must be different from any other local name in the host or itself, and from
names made accessible by a USE statement

The rules governing other names that appear in the host and/or the internal
procedure are described under the topic of “host association” (11.4). Because
the host association rules apply to a module procedure and its host module, as
well as to an internal procedure and its host (such as a main program), they are
described separately in the following section.

11.4 Host Association
The program unit containing an internal procedure is called the host of the
internal procedure. The program unit (which must be a module) containing a
module procedure is called the host of the module procedure. An important
property of internal and module procedures is that the data environment of the
host is available to the procedure (see Figure 11-2). When data in the host are
available within the contained procedure, they are said to be accessible by host
association. Because the internal (or module) procedure also has a local data
environment, rules are needed to determine whether a given reference inside
that procedure identifies a host entity or one local to the procedure.Is there one
TOTAL in the host or two local TOTALs?

In a language in which the attributes of all entities must be declared explicitly,
this is not a problem. In such languages, local declarations typically override
host declarations, and any host declarations not overridden are available in the
contained procedure. Fundamentally these are the rules used in Fortran 90, and

492 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

this clean situation can be simulated by using IMPLICIT NONE in both the
host and the contained procedure; IMPLICIT NONE forces explicit declaration
of all entities.

However, Fortran allows implicit declarations—use of an entity name in the
execution part without an explicit declaration of that name in the specification
part—and that complicates the situation. For example, suppose the variable
TOTAL is referenced in an internal procedure, and neither the internal
procedure nor its host explicitly declares TOTAL. Is TOTAL a host or local
entity? Or worse, suppose that TOTAL is used in two internal procedures in
the same host, without declaration anywhere. Are they (it) the same TOTAL?
The possibilities are shown in Figure 11-3.

The answer to both of these questions is case (b) in Figure 11-3, unless TOTAL
is also referenced in the host, in which case (a) applies. If TOTAL is referenced
in the host, it becomes declared implicitly there and is therefore a host entity.
In this case, any internal procedure use of TOTAL accesses the host entity. The
situation is the same (TOTAL is a host entity) if it is declared but not
referenced in the host and not declared in the internal procedure. Of course, if
TOTAL is declared in the internal procedure, then case (b) applies (TOTAL is
local) regardless of whether TOTAL is declared or referenced in the host.

Host (or containing) program unit

Host entities known in
both the host and the
contained procedure

Entities local to the
contained procedure and

known only in the
contained procedure

Host entities
known onlyl in
the host and not

the contained
procedure

Figure 11-2 Host association

Program Units 493

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Implicit declarations are governed by the implicit typing rules and the use of
the IMPLICIT statement. The detailed rules governing implicit typing in hosts
and contained procedures are given in Section 5.2, and the detailed rules
governing host association are given in Section 14.3.1.3. These rules are
combined and summarized below.

Rules and restrictions:

1. A name (of a variable or other identifiable object) is local if it is declared
explicitly in the contained procedure, regardless of any declarations in the
host. A dummy argument in a contained procedure is an explicit local
declaration, even though the name may be implicitly typed. (A dummy
argument, if not explicitly typed, is typed according to the implicit typing
rules of the contained procedure.)

2. An entity not declared explicitly in a contained procedure is nevertheless
local (via implicit declaration) if and only if it is neither explicitly nor
implicitly declared in the host.

Internal-1 Internal-2

TOTAL

TOTAL=Y+X TOTAL=Y+Z

Internal-1 Internal-2

TOTAL=Y+X TOTAL=Y+Z

Host Host

TOTAL TOTAL

(a) a single host TOTAL (b) two local TOTALS

Figure 11-3 Is there on TOTAL in the host or two local TOTALs?

494 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. If it is not local based on rules 1 and 2 above, the entity is host associated.

4. The default implicit rules (the implicit typing rules in the absence of
IMPLICIT statements) in a contained procedure are the implicit typing
rules of the host, as established by the default implicit rules in the host and
modified by any IMPLICIT statements in the host.

5. IMPLICIT statements in the contained procedure, if any, modify the
implicit typing rules inherited from the host. Note that these modified
rules apply to implicitly typed dummy arguments of the contained
procedure.

A summary of the implicit typing rules is:

host implicit typing rules = host default implicit rules
+ host IMPLICIT statements

contained procedure typing rules = host implicit typing rules
+ contained procedure

IMPLICIT statements

In the expression X = A+B+P+Q+Y in the following example, the operands in
the expression are from different places as determined from the above rules
(see Figure 11-4).

PROGRAM HOST
USE GLOBAL_DATA ! Accesses integer X and real Y
IMPLICIT LOGICAL (E-J)
! implicit typing: A-D real
! E-J logical
! K-N integer
! O-Z real
REAL A, B

. . .
READ *, P ! This reference declares P

! implicitly in host.
. . .

CALL CALC(Z) ! This reference implicitly
. . . ! declares Z.

CONTAINS
. . .

Program Units 495

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

! X declared explicitly in internal procedure CALC
SUBROUTINE CALC (X)

IMPLICIT REAL (G-I)
! Implicit typing: A-D real
! E-F logical
! G-I real
! J logical
! K-N integer
! O-Z real
REAL B

. . .

. . .
X = A + B + P + Q + Y
! In subroutine CALC (all are type real):
! X is local (dummy argument)
! A is host associated
! B is local (explicitly declared)
! P is host associated
! Q is local (implicitly declared)
! Y is use associated (from the module)

. . .
END SUBROUTINE CALC
. . .

END PROGRAM HOST

A particularly interesting case of the host associated implicit rules is when the
host has IMPLICIT NONE. With IMPLICIT NONE, no other implicit
statements are allowed in that scoping unit, and explicit typing is required for
all data objects in the host. IMPLICIT NONE is therefore the default in the
contained procedure, although this may be modified by IMPLICIT statements
in the contained procedure. This can result in some of the letters having
implicit types in the contained procedure and some not. For example, suppose
that the host has IMPLICIT NONE and the contained procedure has the
following IMPLICIT statements:

IMPLICIT COMPLEX (C,Z)
IMPLICIT LOGICAL (J-L)

Then data objects in the contained procedure with names starting with C or Z
may be declared implicitly of type complex; data objects with names starting
with J, K, or L may be declared implicitly of type logical. IMPLICIT NONE
continues to apply to letters A–B, D–I, and M–Y, and data object names
beginning with these letters must be explicitly declared.

496 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.5 External Subprograms
External subprograms are global to the Fortran program; they may be
referenced or called anywhere. An internal procedure, on the other hand, is
known only within its host.

The major difference between external procedures and internal (and module)
procedures is not syntactic; it is the fact that an external procedure interface is
not known at the point of procedure reference. Also, internal (and module)
procedures are compiled with their hosts, whereas external procedures usually
are compiled separately. In these respects external procedures are the same as
in Fortran 77 (but see procedure interface blocks in Chapter 12). For internal
(and module) procedures, on the other hand, interface information is available
at the point of procedure reference. This is a very significant difference and a

 Real Real Integer Real

 Logical Logical

 Real Integer Real

Figure 11-4 How the mapping of implicit typing progresses from host to contained

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Default implicit in host

IMPLICIT LOGICAL (E-J) ... in host ...

 Real Logical Integer Real

Implicit typing in host
and default implicit in
contained procedure

IMPLICIT REAL (G-I) ... in contained procedure ...

Implicit typing rules in
contained procedure

Program Units 497

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

major practical advantage of internal and module procedures; Section 12.6
details the benefits of explicit interfaces, which come automatically with
internal and module procedures, but must be provided for external
procedures.

Another difference between internal and external procedures is that external
procedures may contain internal procedures; internal procedures cannot. There
is no compelling reason for this difference, and a common implementation
extension is likely to allow nesting of internal procedures.

The organization of external subprograms is very much like that of main
programs. External subprograms (R203) come in two flavors, functions (R1215)
and subroutines (R1219):

function-statement
[specification-part]
[execution-part]
[internal-subprogram-part]

END [FUNCTION [function-name]]

subroutine-statement
[specification-part]
[execution-part]
[internal-subprogram-part]

END [SUBROUTINE[subroutine-name]]

Examples of external procedures are:

FUNCTION FOOTBALL (GAME)
INTEGER FOOTBALL
FOOTBALL = N_PLAYERS

. . .
END FUNCTION FOOTBALL

SUBROUTINE SATURDAY (SEVEN)
X = . . .

END

Rules and restrictions:

1. Unlike the main program, the program unit heading (FUNCTION or
SUBROUTINE statement) is required in an external subprogram.

2. The procedure name on the END statement, if present, must be the same as
that in the heading statement.

498 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. OPTIONAL and INTENT attributes and statements for dummy arguments
are allowed in the specification part of an external subprogram, but only
for dummy arguments.

4. The specification and execution parts of an external subprogram may
contain ENTRY statements and the execution part may contain RETURN
statements.

5. External subprograms must not contain PUBLIC or PRIVATE attributes or
statements.

6. External procedures may be directly or indirectly recursive, in which case
the RECURSIVE keyword is required on the heading statement.

7. An external subprogram is the host to any internal procedures defined
within it.

8. An external procedure name may be used as an actual argument in a
procedure reference, corresponding to a dummy procedure argument in
the procedure referenced.

Procedures, including internal, external, and module procedures, are described
in detail in Chapter 12.

11.6 Modules
The module program unit is a new feature in Fortran 90; it offers a wealth of
versatility in packaging data specifications and procedures in one place for use
in any computational task in the program.

This functionality was sorely needed in Fortran 77, primarily for making
information available to more than one program unit. The standard did not
provide it, however, and to prevent errors in the course of duplicating common
block code, most implementations were extended with an INCLUDE facility.
Because this was such a common extension, the INCLUDE line was added to
Fortran 90 (see Section 3.5). It operates as if the included lines of text were
copied into a program unit, which then become part of the local program unit;
included material is treated as if it had been part of the program unit in the
first place.

Program Units 499

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

There is an even greater need in Fortran 90 for a way to locate data “centrally”,
available to all program units. The module program unit provides this
capability. As such, it provides all of the data configuration and declaration
functionality of the INCLUDE line and a lot more, using syntax that is clean
and simple.

Module program units solve the following specific problems for Fortran:

1. The reliability problems associated with the use of common blocks for
global data are legion, and therefore a “name association” rather than
“storage association” form of global data is needed.

2. For similar reliability reasons, there must be a way of defining derived
types in a central location.

3. Certain situations in Fortran 90 require explicit procedure interfaces (see
Section 12.6); thus a way to centrally provide such definitions is needed.

4. “Information hiding” is important for improving program reliability and
therefore Fortran 90 needs better packaging and information hiding
capabilities than Fortran 77.

The major uses of modules are summarized in Section 11.6.5.

Anything required by more than one program unit may be packaged in
modules and made available where needed. A module is not itself executable,
although the procedures it contains can be individually referenced in the
execution part of other program units. The number of modules is not
restricted, and a module may use any number of other modules as long as the
access path does not lead back to itself. Modules, therefore, are powerful tools
for managing program organization and simplifying program design.

11.6.1 Module Organization

The form of a module (R1104) is:

MODULEmodule-name
[specification-part]
[module-subprogram-part]

END [MODULE[module-name]]

The module name on the END statement, if present, must be the same as on
the MODULE statement.

500 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.6.2 The Specification Part

The form of the specification part (R204) of a module is similar to that for other
program units. The statements it may contain are:

ALLOCATABLE POINTER
COMMON PRIVATE
DATA PUBLIC
DIMENSION SAVE
EQUIVALENCE TARGET
EXTERNAL USE
IMPLICIT derived-type definition
INTRINSIC interface block
NAMELIST type declaration statement
PARAMETER

The following rules and restrictions apply to the specification part of a module;
the specification parts of the module procedures, however, have the same rules
as those for external procedures.

Rules and restrictions:

1. OPTIONAL or INTENT attributes or statements are not allowed.

2. ENTRY statements are not allowed.

3. FORMAT statements are not allowed.

4. Automatic objects are not allowed.

5. Statement function statements are not allowed.

6. PUBLIC and PRIVATE attributes and statements are allowed.

The SAVE attribute and statement may be used in the specification part of a
module to ensure that module data object values remain intact. Without SAVE,
module data objects remain defined as long as any program unit using the
module has initiated, but not yet completed, execution. However, when all
such program units become inactive, any data objects in the module not having
the SAVE attribute become undefined. SAVE can be used to specify that
module objects continue to be defined under these conditions.

Program Units 501

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The following is an example of a simple module for providing global data:

MODULE T_DATA
INTEGER :: A, KA
REAL :: X = 7.14
REAL :: Y (10,10), Z (20,20)

END MODULE T_DATA

! This module declares three scalar variables (A, KA, and X)
! and two arrays (Y and Z). X is given an initial value.
! These five variables can be considered to be "global"
! variables that can selectively be made available to
! other program units.

! The USE statement makes A, KA, X, Y, and Z
! available to subroutine TASK_2

SUBROUTINE TASK_2
USE T_DATA
. . .

END SUBROUTINE TASK_2

11.6.3 The Module Subprogram Part

The module subprogram part is similar to the internal procedure part of main
programs and external subprograms. It is a collection of procedures local to the
module and sharing its data environment via host association. The two
principal differences between module subprograms and internal subprograms
are that:

1. The organization, rules, and restrictions of module procedures are those of
external procedures rather than internal procedures. For example, module
procedures may contain internal procedures.

2. Module procedures are not strictly local to the host module, nor are they
global to the program. Only program units using the module can access the
module’s procedures not specified to be PRIVATE.

The form of the module subprogram part (R212) is:

CONTAINS

module-subprogram
[module-subprogram] ...

502 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where each module subprogram is a function (R1215) or subroutine (R1219):

function-statement
[specification-part]
[execution-part]
[internal-subprogram-part]

END FUNCTION[function-name]

subroutine-statement
[specification-part]
[execution-part]
[internal-subprogram-part]

END SUBROUTINE[subroutine-name]

An example of a module procedure is:

MODULE INTERNAL
. . .

CONTAINS
FUNCTION SET_INTERNAL (KEY)

. . .
END FUNCTION

END

The rules for host association and implicit typing in a module procedure are
the same as described for internal procedures in Section 11.4. A module
procedure acquires access to entities in its host module via host association,
but not to entities in a program unit that uses the module. There must be at
least one internal subprogram after the CONTAINS statement.

11.6.4 Using Modules

A program unit may use the specifications and definitions in a module by
referencing (using) the module. This is accomplished with a USE statement in
the program unit requiring access to the specifications and definitions of that
module. Such access causes an association between named objects in the
module and the using program unit and is called use association. USE
statements immediately follow the program unit heading and there is no
restriction on their number.

Each entity in a module has the PUBLIC or PRIVATE attribute, which
determines the accessibility of that entity in a program unit using the module.
A PRIVATE entity is not accessible (that is, is hidden) from program units

Program Units 503

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

using the module. A PUBLIC entity is accessible, although its accessibility may
be further limited by the USE statement itself. Figure 11-5 depicts these
phenomena.

11.6.4.1 Accessing All Public Entities in a Module

The simplest form of the USE statement (R1107) gives the program unit access
to all public entities in the module.

USE module-name

The USE statement with the rename option

USE module-name , rename-list

allows any of the public entities in the module to be renamed to avoid name
conflicts or to blend with the readability flavor in the using program unit. Each
item in the rename list (R1108) has the form:

local-name => module-entity-name

PUBLIC
entities

PRIVATE
entities

(not available
outside the

module)

USE
gets all PUBLIC

entities

USE
gets all PUBLIC

entities

Using

program

units

Module

Figure 11-5 Public and private entities in a module

504 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples:

USE FOURIER
USE S_LIB, PRESSURE => X_PRES

With both USE statements in this example, all public entities in the respective
modules are made accessible. In the case of FOURIER, the names are those
specified in the module. In the case of S_LIB, the entity named X_PRES is
renamed PRESSURE in the program unit using the module. The other entities
accessed from S_LIB have the same name in the using program unit as in the
module. Note the similarity between the rename syntax and pointer
assignment (the only difference is that a rename is part of a statement, not a
complete statement itself); this is because the local name is conceptually similar
to a local pointer to the module entity.

11.6.4.2 Accessing Only Part of the Public Entities

Restricting the entities accessed from a module is accomplished with the ONLY
form of the USE statement (R1107), which is:

USE module-name , ONLY : access-list

In this case the using program unit has access only to those entities explicitly
identified in the ONLY clause of the USE statement. All items in this list must
identify public entities in the module. As with the unrestricted form of the USE
statement, named accessed entities may be renamed for local purposes. The
possible forms for each item in the access list (R1109) are:

[local-name =>] module-entity-name
OPERATOR (defined-operator)
ASSIGNMENT (=)

The local name, if present, specifies the name of the module entity in the using
program unit.

Examples:

USE MTD, ONLY : X, Y, OPERATOR(.ROTATE.)
USE MONTHS, ONLY : JANUARY => JAN, MAY, JUNE => JUN

In the case of MTD, only X, Y, and the defined operator .ROTATE. are accessed,
with no renaming. In the case of MONTHS, only JAN, MAY, and JUN are
accessed from the module. JAN is renamed JANUARY and JUN is renamed
JUNE.

Program Units 505

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.6.4.3 Entities Accessible from a Module

The following may be defined, declared, or specified in a module, and may be
public. They are accessed via the USE statement by other program units, and
any public entity, except a defined operator or an assignment interface, may be
renamed in the using program unit.

1. declared variables

2. named constants

3. derived-type definitions

4. procedure interfaces

5. module and intrinsic procedures

6. generic identifiers

7. namelist groups

Note that this list does not contain the implicit type rules of the module; these
are not accessible via a USE statement.

Common blocks may be placed in modules, and their names are always global.
Therefore, there is no need to access common block names via a USE
statement. However, the variables in the common blocks may be renamed
using the ONLY option in a USE statement.

The default accessibility for all entities in a module is PUBLIC unless this
default has been changed by a PRIVATE statement with an empty entity list.
An entity may be specified to be PRIVATE in a PRIVATE statement or in a type
declaration statement that contains the PRIVATE attribute. If the default has
been turned to PRIVATE, the entity may be made PUBLIC by its appearance in
a PUBLIC statement or in a type declaration that contains the PUBLIC
attribute.

In any event, each named entity in a module is classified as either public or
private. Regardless of this classification, all module entities may be used freely
within the module, including within module procedures in the module; within
a module procedure a module entity is governed only by the rules of host
association. Outside the module, however, only the public entities are
accessible (via the USE statement). Figure 11-6 illustrates these rules.

506 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A module limits access to just those entities of the module designed for use
outside the module. Entities needed only within the module may be PRIVATE
and thus hidden. This is a valuable form of information hiding.

PUBLIC and PRIVATE attributes are prescribed by the module writer, and the
module user has no say in these decisions. However, both the ONLY option on
the USE statement and the renaming provisions give the module user
additional forms of information hiding and environment tailoring. Between
PUBLIC and PRIVATE accessibility and the USE...ONLY feature, the module
facilities provide considerable flexibility for program design that effectively
employs information hiding.

11.6.4.4 Name Conflicts When Using Modules

There are two ways in which name conflicts can occur when using modules:

1. A public entity in a module may have the same name as a local entity in
the using program.

2. Two modules being used may each have a public entity with the same
name.

Private
entities

Public
entities

Module
procedures Local

Host
associationUse

association

Using
program

units

Module

Figure 11-6 Use of public and private module entities

Program Units 507

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Such a name conflict is allowed if and only if that name is never referenced in
the using program. If a name is to be referenced in the using program,
potential conflicts involving that name must be prevented via the rename or
ONLY facilities of the USE statement. This is the case even if the using program
is another module.

For example:

MODULE BLUE
INTEGER A, B, C

END MODULE BLUE

MODULE GREEN
USE BLUE, ONLY : AX => A
REAL B, C

END MODULE GREEN

! in program RED:
! integer A is accessed as AX or A
! integer B is accessed as B
! real B is accessed as BX
! neither C is accessible, because
! there is a name conflict

PROGRAM RED
USE BLUE ! accesses A, B, and C
USE GREEN, BX => B ! accesses A as AX, B as BX, and C

. . .
END

11.6.4.5 Use Association

The USE statement gives a program unit access to other entities not defined or
specified locally within the using program. As mentioned earlier, the
association between a module entity and a local entity in the using program
unit is termed use association. Host association is analogous, but host
association applies only to a module and its module procedures and to internal
procedures and their hosts. There are many similarities between use
association and host association. Their rules, however, are different in the
following two ways.

First, it is not desirable that a module’s implicit typing rules form the default
implicit rules for a using program unit, especially because a program unit may
use any number of modules. Therefore, implicit rules do not “flow into” a

508 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

using program unit from a module like they do in host association. Second,
respecification of a name accessed from a module is disallowed. This is
motivated by the fact that the USE...ONLY provision, which is not feasible with
host association, is a safer approach to excluding entities from the local
environment than by use of an overriding respecification. Thus, in summary,
the two ways that use association differs from host association are:

1. The implicit typing rules of a module have no effect on a using program
unit’s environment.

2. Entities accessed via a USE statement must not be respecified locally.

The only exception to the second rule is that if the using program unit is
another module, then the using module may specify an entity from the used
module to be PRIVATE in the using module, rather than maintaining public
accessibility. This is perhaps best illustrated with an example: program units
using module M2, defined as follows, may access X but not Y, even though Y is
a public entity of M1.

MODULE M2
USE M1, ONLY: X, Y
PRIVATE Y

. . .
END MODULE M2

The prohibition on respecifying entities accessed via use association includes
the use of module data objects in locally specified COMMON and
EQUIVALENCE specifications.

While a name accessed from a module must not be respecified locally, the same
name can be imported from another module under either of the following
conditions:

1. both accesses are to the same entity (for example, if a program unit uses
both M1 and M2 in the above example, both give access to the same X; this
is allowed)

2. the accesses are to different entities, but the using program unit makes no
reference to that name

Program Units 509

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.6.5 Typical Applications of Modules

A number of different Fortran applications are easier to write and understand
using modules. Modules provide a way of packaging:

1. global data, including data structures and common blocks

2. user-defined operators

3. software libraries

4. data abstraction

These uses for modules are summarized in the following sections.

11.6.5.1 Global Data

A module provides an easy way of making type definitions and data
declarations global in a program. Notice that COMMON is not used in the
example below, although it could have been. Data in a module does not have
an implied storage association or an assumption of any form of sequence or
any order of appearance, unless it is a sequence structure or in a common
block. Global data in a module may be of any type or combination of types.

Example:

MODULE MODELS
COMPLEX :: GTX (100, 6)
REAL :: X (100)
REAL, ALLOCATABLE :: Y (:), Z (:, :)
INTEGER CRX, GT, MR2

END MODULE

There are alternative ways to “use” this module. For example,

USE MODELS

makes all the data (and their attributes) of the module available using it.

USE MODELS, ONLY : X, Y

makes only the data named X and Y and their attributes available to the
program using the module.

USE MODELS, T => Z

510 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

makes the data object named Z available, but it is renamed to T for that
particular application. In addition, it makes the other public entities of the
module MODELS available with the same names they have in the module.

11.6.5.2 COMMON Blocks in a Module

One way of packaging common blocks is by putting them in a module. This
makes migration of Fortran 77 programs that use common blocks easier.

For example:

MODULE LATITUDE
COMMON . . .
COMMON . . .
COMMON / BLOCK1 / . . .

END MODULE
. . .

PROGRAM NAVIGATE
USE LATITUDE

. . .
END

The USE statement in this example makes all of the variables in the common
blocks in the module available to the program NAVIGATE. These common
blocks may be made available to other program units in the same way. This
technique minimizes errors in transcription and omission when the module
LATITUDE is used in many routines in the program.

11.6.5.3 Global User-Defined Types

A derived type defined in a module is a user-defined type that can be made
accessible to other program units. The same type definition can be referenced
via a USE statement by more than one program unit.

Example:

MODULE NEW_TYPE
TYPE TAX_PAYER

INTEGER SSN
CHARACTER(20) NAME

END TYPE TAX_PAYER
END MODULE NEW_TYPE

Program Units 511

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The module NEW_TYPE contains the definition of a new type called
TAX_PAYER. Procedures using the module NEW_TYPE may declare objects of
type TAX_PAYER.

11.6.5.4 Operator Extensions

An interface block may declare new operators or give additional meanings to
the intrinsic ones, such as +, .EQ., .OR., and //. The assignment symbol =
also may be given additional meanings and may be redefined for derived-type
intrinsic assignment. (Derived-type assignment is the only instance of intrinsic
operators or assignment that can be redefined.) These extensions require that
the OPERATOR or ASSIGNMENT options be on the interface block, the details
of which appear in Section 12.6. A simple example of an OPERATOR interface
for matrix inversion requires a function and an interface block defining the
new operator. In the following example, which normally (but not necessarily)
would be in a module, the function INVERSE defines the desired operation,
and the operator .INVERSE. may be used in an expression to reference the
function.

INTERFACE OPERATOR (.INVERSE.)
FUNCTION INVERSE (MATRIX_1)

TYPE (MATRIX), INTENT (IN) :: MATRIX_1
TYPE (MATRIX) :: INVERSE

END FUNCTION INVERSE
END INTERFACE

An example of its use might be (assuming + also has been extended to add a
real value and a MATRIX):

1.0 + (.INVERSE. A)

11.6.5.5 Data Abstraction

Data type definitions and operations may be packaged together in a module.
Program units using this module will have the convenience of a new data type
specific to a particular application. A simple example might be:

512 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

MODULE POLAR_COORDINATES

TYPE POLAR
PRIVATE
REAL RHO, THETA

END TYPE POLAR

INTERFACE OPERATOR (*)
MODULE PROCEDURE POLAR_MULT

END INTERFACE

CONTAINS
FUNCTION POLAR_MULT (P1, P2)

TYPE (POLAR) P1, P2, POLAR_MULT
POLAR_MULT = &

POLAR (P1 % RHO * P2 % RHO, &
P1 % THETA + P2 % THETA)

END FUNCTION POLAR_MULT
. . .

END MODULE POLAR_COORDINATES

In the function POLAR_MULT, the structure constructor POLAR computes a
value that represents the result of multiplication of two arguments in polar
coordinates. Any program unit using the module POLAR_COORDINATES has
access to both the type POLAR and the extended intrinsic operator ∗ for polar
multiplication.

11.6.5.6 Procedure Libraries

A module may contain a collection of interface blocks for related procedures.
Argument keywords, as well as optional arguments, may be used to
differentiate various applications using these procedures.

MODULE ENG_LIBRARY
INTERFACE

FUNCTION FOURIER (X, Y)
. . .

END
SUBROUTINE INPUT (A, B, C, L)

OPTIONAL C
. . .

END SUBROUTINE INPUT
END INTERFACE

END MODULE ENG_LIBRARY

Program Units 513

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

An input routine may be called using optional or keyword arguments.

CALL INPUT (AXX, L = LXX, B = BXX)

A collection of related procedures that need to access the same type definitions
and data declarations may be placed in a module.

MODULE BOOKKEEPING
TYPE, PRIVATE :: ID_DATA

INTEGER ID_NUMBER
CHARACTER (20) NAME, ADDRESS (3)
REAL BALANCE_OR_SALARY

END TYPE ID_DATA
REAL, PRIVATE :: GROSS_INCOME, EXPENSES, &

PROFIT, LOSS
INTEGER, PARAMETER :: NUM_CUST = 1000, &

NUM_SUPP = 100, &
NUM_EMP = 10

CONTAINS
SUBROUTINE ACCTS_RECEIVABLE (CUST_ID, AMOUNT)

. . .
END SUBROUTINE ACCTS_RECEIVABLE
SUBROUTINE ACCTS_PAYABLE (CUST_ID, AMOUNT)

. . .
END SUBROUTINE ACCTS_PAYABLE
SUBROUTINE PAYROLL (EMP_ID, AMOUNT)

. . .
END SUBROUTINE PAYROLL
FUNCTION BOTTOM_LINE (AMOUNT)

. . .
END FUNCTION BOTTOM_LINE

END MODULE

11.6.6 Independent Compilation

Independent compilation is the practice of compiling or processing
subprograms in a separate run on the computer and then using the compiled
program unit in a number of applications without the inconvenience or cost of
recompiling that unit. In Fortran 66 and 77, each program unit was entirely
independent of other units. Thus, each unit could be compiled independently
and used in any other program regardless of its source. This was a convenient
way of giving routines to others without providing the Fortran source
statements. It also saved compilation costs.

514 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The INCLUDE facility in Fortran 90 was added to the language because the
INCLUDE line is a popular extension in most implementations of Fortran 77.
The INCLUDE facility behaves as if the source text from another file were
inserted in place of the INCLUDE line prior to compilation. This departs from
pure independent compilation, because the program unit using the INCLUDE
line is now dependent on material from other places. The use of modules is a
departure from pure independent compilation in this same sense, in that a
program unit being compiled is dependent upon information from other
sources.

If the program unit contains a reference to a module, the module must be
available (in some form) when that program unit is compiled. However, if no
modules or INCLUDE lines are used, compilation of a program unit is
completely independent of other sources of information. With regard to
independent compilation, while there are similarities between the use of
INCLUDE and modules, there also could be noticeable differences in any given
implementation.

There are a number of ways modules can be implemented, and different
implementations may choose different approaches. Because a module is a
complete program unit, it may itself be compiled, independent of any using
program units. An advantage is that the module contents may be put into a
form that can be incorporated much more efficiently during compilation of
using program units. Some implementations may require compilation of
modules prior to compilation of any program units that use the modules.

Although there are frequently some dependencies using modules, it is often
possible to put together a self-contained “package” consisting of certain
modules and the program units that use them. This package is independent of
other packages that might be part of the Fortran program; packages may be
used in the same way as independent compilation has been used in the past.
For example, such a module package may be compiled independently of the
main program and external procedures, both of which may be compiled
independently of the module package as long as these external procedures do
not use the module package. In cases where program units use the module
package, such program units are probably required to be compiled after
compilation of the module package.

Program Units 515

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.7 Block Data Program Units
A block data program unit initializes data values in a named common block.
The block data program unit contains data specifications and initial data
values. There are no executable statements in a block data program unit and
the block data program unit is referenced only in EXTERNAL statements in
other program units; its only purpose is to initialize data. The module facility
is a natural extension to the very limited Fortran 77 block data facility, making
block data program units superfluous.

The form of the block data program unit (R1110) is:

BLOCK DATA [block-data-name]
[specification-part]

END [BLOCK DATA [block-data-name]]

An example of a block data program unit is:

BLOCK DATA SUMMER
COMMON / BLOCK_2 / X, Y
DATA X / 1.0 /, Y / 0.0 /

END BLOCK DATA SUMMER

The name SUMMER appears on the BLOCK DATA statement and the END
statement. X and Y are initialized in a DATA statement; both variables are in
named common block BLOCK_2.

Rules and restrictions:

1. There may be only one block data program unit without a name.

2. The block data name on the END statement, if present, must be the same as
on the BLOCK DATA statement.

3. The specification part may contain any of the following statements or
attributes. Other statements are prohibited.

COMMON POINTER
DATA SAVE
DIMENSION TARGET
EQUIVALENCE USE
IMPLICIT derived-type definition
INTRINSIC type declaration
PARAMETER

516 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A USE statement in a block data program unit may give access, in essence,
to a limited set of objects, such as named constans, sequence derived types,
and variables used only as arguments of inquiry functions; most uses are
disallowed by the restrictions on variables in block data programs.

4. The block data program unit may initialize objects in more than one named
common block.

5. It is not necessary to initialize an entire common block.

6. A common block must be completely specified, if any object in it is
initialized.

7. A given named common block may appear in only one block data program
unit.

11.8 Summary

11.8.1 A Fortran Program

A Fortran program contains one or more program units. The program must
contain one and only one main program unit. Other units may be subroutines,
functions, modules, and block data units in any combination. The following
example of a program consists of a main program and an external function
ALLIGATOR.

PROGRAM MAINSAIL
. . .

END

FUNCTION ALLIGATOR (X)
. . .

END

11.8.2 A Main Program

A main program of a Fortran program contains the first statement that is
executed. The main program may be used as the overall driver program for a
collection of procedures. A Fortran program must contain a main program;
other procedures are optional.

Program Units 517

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

PROGRAM SHUTTLE_SIMULATION
. . . ! Specification statements
TEST_NUMBER = 1 ! Executable statement or construct
IF (A_OK) CALL BLAST_OFF (TEST_NUMBER)
. . .

END PROGRAM SHUTTLE_SIMULATION

11.8.3 Procedures

A procedure is either a function or subroutine. It may be external (a stand-
alone program unit) or internal to another program unit. A procedure may be
an external procedure that is defined by a separate program unit or by means
other than Fortran, an internal procedure that is defined within another
executable program unit, a module procedure that is defined in a module
program unit, a procedure that is intrinsic or supplied by the processor, or a
statement function.

11.8.4 External Procedures

An external procedure is a function or subroutine that is defined in a separate
program unit. External procedures are global and may be used by any other
program unit in the executing program. An external procedure must not be
used as a “main program”; that is, it must not contain the first executable
statement of a Fortran program. External procedures may contain internal
procedures. External procedures that are not written in Fortran are permitted.
External procedures may be compiled independently. The following program
consists of a main program BLUE_SKY and an external function POLLUTION.

PROGRAM BLUE_SKY
. . .

OZONE_LEVEL = POLLUTION (TODAY)
. . .

END PROGRAM BLUE_SKY

FUNCTION POLLUTION (DAY)
. . .

END FUNCTION POLLUTION

518 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

11.8.5 Internal Procedures

An internal procedure is local to the host program unit and is contained within
it. Internal procedures may be functions or subroutines. Restrictions are that
there must be no ENTRY statements in an internal procedure, and an internal
procedure must not be used as an actual argument corresponding to a dummy
procedure. In a program unit, internal procedures appear after the other source
text at the end following a “marker” statement called the CONTAINS
statement.

PROGRAM BLUE_SKY
. . .
OZONE_LEVEL = POLLUTION (TODAY)

. . .
CONTAINS

FUNCTION POLLUTION (DAY)
. . .

END FUNCTION POLLUTION
END PROGRAM BLUE_SKY

11.8.6 Module Procedures

A module procedure is defined within a module. That is, a module procedure
is defined by a module subprogram. A module subprogram is similar to an
external subprogram and is contained within a module program unit. A
module subprogram has access to module entities via host association.

11.8.7 Host Association

A program unit that contains an internal procedure or a module procedure is
called a host. A contained procedure has access to the host environment. The
association between the host entities and internal or module procedure entities
is called host association. The rules of host association determine whether an
object is available only in the host, only in the contained procedures, or both.

11.8.8 Modules

A module is a nonexecutable program unit used to collect related common
blocks, specification statements, derived-type definitions, operator definitions,
procedure interfaces, and procedure definitions. A module has some similarity
to a block data program unit, but has far greater capabilities, for example, for

Program Units 519

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

packaging data types along with new operator definitions for that type. Main
programs and other program units may access the module with a USE
statement. The contents of a module are not repeated in other program units
that use it.

PROGRAM HEAVY_METAL
USE GOLD
. . .

END PROGRAM HEAVY_METAL

MODULE GOLD
. . . ! Specifications
. . . ! Module procedures

END MODULE GOLD

To capture all the public specifications and definitions in a module, a program
unit must “use” the module via a USE statement.

USE GOLD

To capture only some of the public entities in a module, a program unit must
restrict the access of entities in the USE statement.

USE GOLD, ONLY : A, B

To use a different name for a module variable, the new name is declared in the
USE statement.

USE GOLD : ATEMP => A

11.8.9 Use Association

Use association is similar to host association in that it makes objects defined or
declared in a scoping unit available in another scoping unit. In the case of use
association, public entities in a module program unit are made available to
other program units.

11.8.10 Block Data Units

A block data program unit initializes data in named common blocks. Only data
specifications and initial values may appear. A block data program unit is not
executable.

520 Fortran 90 Handbook

11

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

BLOCK DATA
COMMON / PLACE / X
DATA X / 42.99 /

. . . ! Data initialization in named common
END

521

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Using Procedures 12

Procedures are very useful in structuring a problem solution into
understandable segments, and therefore the effective use of procedures is an
important aspect of programming. This chapter describes the details for
constructing and using procedures in Fortran 90.

After the overall program design is known, including the relationships of its
constituent procedures, each individual procedure may be developed, refined,
and tested separately before it is incorporated into the more complicated
context of the complete Fortran program. This is especially important when a
large program, which may contain hundreds of procedures, is assigned to
teams of programmers. Organizing such large numbers of procedures is a
formidable task in itself, and Fortran 90 provides mechanisms to help manage
this organizational complexity. For example, related procedures can be
grouped together in modules to form coherent procedure libraries, or just the
interfaces can be collected into procedure interface libraries.

The procedure facilities and concepts of Fortran 77 are all available in
Fortran 90. The new procedure features that have been added, such as
recursion, optional and keyword arguments, defined operators and
assignment, generic procedures, and explicit interfaces, have been integrated
consistently, in a natural way, within the Fortran 77 framework. All arguments,
including those new in Fortran 90, such as array sections and variables with
nondefault kinds, require exact match of type properties across procedure
boundaries, in the same manner as required by Fortran 77.

522 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The procedure paradigm of Fortran 90 may be viewed as a straightforward
extension of Fortran 77, including the ability to explicitly specify procedure
interfaces as needed or desired. A procedure interface is explicit when it is
known in detail to the calling program. Both internal and module procedures
have explicit interfaces by nature. Explicit procedure interfaces not only
provide a tool to eliminate one of the most serious problem areas of Fortran 77
(undetected procedure argument mismatches), but also set the scene for
profound improvements in the engineering of Fortran software.

With explicit interfaces, the integrity of information flow among different parts
of the program is automatically enforced. Such interfaces relieve the
programmer (and maintainer) of the considerable mechanics of ensuring such
integrity and allow software development resources to be concentrated instead
on the functional design of this information flow. The net effect is that a
Fortran program becomes more of an integrated, highly reliable, cohesive
whole, rather than simply an aggregation of separate program units. Thus, the
advantages of modular design are retained, while the effects of a change in one
place on other parts of the program are tracked automatically. The result is
more productive application development and maintenance—in short, better
engineered software.

12.1 Procedure Terms and Concepts
Often a sophisticated technical area gets surrounded and mystified with
“jargon”—short and often esoteric terms or phrases that represent key concepts
in the technical area. Understanding that jargon is an important part of
assimilating an understanding of the technical area. This section is an attempt,
at the outset, to describe some of the basic terms and concepts associated with
Fortran procedures.

12.1.1 Procedure Terms

There are two basic forms procedures take in a Fortran program: one is a
subroutine; the other is a function. These two forms are very similar except in
the way they are invoked.

Using Procedures 523

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.1.1.1 Subroutines

A subroutine is a procedure whose purpose is to produce some side effect,
such as modifying a set of arguments and/or global variables, or performing
input/output. In Fortran 77 a subroutine is invoked with a CALL statement.
This continues to be the case in Fortran 90, but Fortran 90 also provides an
additional form of subroutine reference—the defined assignment. A subroutine
may be used to define a new form of assignment, one that is different from
those intrinsic to Fortran. Such subroutines may be invoked with assignment
syntax (using the = symbol) rather than with the CALL statement.

12.1.1.2 Functions

The purpose of a function is to provide a value needed in an expression;
normally functions do not produce side effects (although they are not
prohibited from having side effects). A function is invoked as an expression
operand, as in Fortran 77, and the result is used as the value of that operand. In
addition, in Fortran 90, a function may be used to define a new operator or
extend the meaning of an intrinsic operator symbol; such a function is invoked
by the appearance of the new or extended operator in the expression along
with the appropriate operand(s). For example, an interpretation for the
operator + may be defined for logical operands, extending the + operation’s
intrinsic definition, because the intrinsic definition of + involves only numeric
operands.

12.1.1.3 Function Results

The main difference between a subroutine and a function is that there is a
function result value associated with a function. More precisely, there is a
result value associated with any particular execution or call to a function. This
result may be of any type, including derived type, and may be array-valued.
The RESULT option in the FUNCTION statement may be used to give the
result a different name than the function name inside the function definition
and is required for a recursive function that calls itself directly.

12.1.1.4 External Procedures

External procedures are stand-alone subroutines and functions that are not part
of any other program unit. They may share information, such as data and
procedures via argument lists, modules, and common blocks, but otherwise

524 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

they do not share information with any other program unit. They may be
developed, compiled, and used completely independently of other procedures
and program units. In fact they need not even be written in Fortran.

12.1.1.5 Intrinsic Procedures

Intrinsic procedures such as sine and cosine are already available in the Fortran
processor. Intrinsic procedures are sometimes called built-in procedures and
are automatically available to any Fortran program unit. There are
approximately 100 intrinsic procedures in Fortran 90, all of which are described
in Chapter 13 and Appendix A. Many of the intrinsic procedures are generic or
elemental, or both. The generic properties (when two or more procedures share
the same name) of an intrinsic procedure may be extended (12.6.3) and the
automatic availability of an intrinsic procedure may be overridden explicitly
by an EXTERNAL statement (12.4.4) or a procedure interface block (12.6.2).
Many of the intrinsic procedures may be called elementally (12.5.8), in which
case an array is supplied instead of a scalar for an actual argument. The
computation is applied element-by-element to those arguments and returns a
conformable array result. User-defined procedures cannot be called
elementally.

12.1.1.6 Internal Procedures

Internal procedures are defined within other program units. The program unit
containing an internal procedure is called the host of the internal procedure.
An internal procedure may be either a subroutine or a function and appears
between the CONTAINS and END statements of its host. An internal
procedure is local to its host and inherits the host’s environment via host
association.

12.1.1.7 Module Procedures

Module procedures are defined within module program units. A module
procedure may be either a subroutine or a function and appears between the
CONTAINS and END statements of its host module. A module procedure
inherits the host module’s environment via host association. A module
procedure may be PRIVATE to the module, and hence available only within the
module, or it may be PUBLIC.

Using Procedures 525

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.1.1.8 Statement Functions

Statement functions are one-statement function definitions in the specification
part of a program unit other than a module or a block data program unit. Their
functionality is extended and essentially superseded by internal functions in
Fortran 90.

12.1.1.9 Procedure Entry

Normally one procedure is associated with a procedure subprogram. However,
a procedure subprogram, which is a syntactic entity, can define any number of
conceptual procedures. The name of the procedure subprogram identifies one
procedure associated with that subprogram. An ENTRY statement (12.4.3) may
be used to specify and identify an additional procedure associated with that
subprogram. These statements are procedure entries and each defines an
additional procedure. This technique is often used in external procedure
subprograms to define different actions involving the data environment of the
subprogram. (The classic example is the use of the same subprogram to define
both the SIN and COS functions, because COS() = SIN().) This sort of
data sharing is provided by host association for internal and module
procedures; therefore, procedure entries are not needed for internal and
module procedures. In fact, in order to provide some simplification, procedure
entries are not even permitted for internal procedures, although they are
permitted in module procedures.

12.1.1.10 Procedure Reference

Procedure reference is the term given to the appearance of a procedure name
in a program in such a way that causes the procedure to be executed. This is
also termed calling or invoking the procedure. In most cases “reference” is
used in this chapter, although occasionally “call” or “invoke” is used. These
terms are used for both functions and subroutines. When a procedure is
invoked, execution of the program making the call is suspended while the
procedure is executed. When execution of the procedure is completed,
execution of the invoking program is resumed.

A subroutine reference is a stand-alone action in the form of a CALL
statement. In some cases the call can take the form of an assignment statement
(12.6.5).

x π 2⁄ x–

526 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A function reference occurs as part of an expression, when the name of the
function and its argument list appears as a primary in the expression. In some
cases a function reference can take the form of a unary or binary operation
involving an operator with the arguments as its operands (12.6.4).

12.1.1.11 Actual Arguments

Actual arguments appear in a procedure reference and specify the actual
entities to be used by the procedure during its execution. These may be
variables, for example, with different values for each reference. Some
arguments are used as input values, others are variables that receive results
from the procedure execution, and some may be both.

12.1.1.12 Dummy Arguments

Dummy arguments are the names by which the actual arguments are known
inside a procedure. These names are specified when the procedure is defined
and are used to represent arguments in computations in the procedure. When
the procedure is referenced during program execution, the actual arguments in
the reference become associated with the dummy arguments via argument
association (12.5). If the procedure interface is explicit, a call to the procedure
may use the dummy argument names as actual argument keywords (12.5.4).

12.1.1.13 Alternate Return

Alternate returns are special arguments allowed only in subroutines. They
permit control to branch immediately to some spot other than the statement
following the call. The actual argument in an alternate return is the label of the
statement to which control should be transferred. This is frequently used in
accommodating “error exits” from the subroutine. With modern control
structures, such as the block-IF and block-CASE, there are usually superior
ways to achieve the desired control.

12.1.1.14 Dummy Procedures

Dummy argument names may be treated within the procedure definition as
procedure names. That is, they may be used as procedure names in procedure
references. This accommodates procedure passing, and the associated actual

Using Procedures 527

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

argument for a dummy procedure must be the name of an actual procedure.
The exceptions are that internal procedures, statement functions, and generic
names cannot be used as actual arguments.

12.1.1.15 Non-Fortran Procedures

Procedure definitions may be written in a language other than Fortran
(assembly language, for example). As long as all references to such a procedure
are consistent in terms of the properties of the interface to this procedure, the
calling program remains standard conforming. It may, however, not be
portable, because the non-Fortran procedure or its method of argument
communication might differ across implementations. Currently, the only way
to guarantee consistent interfaces across implementations is to write all
procedures in standard Fortran.

12.1.2 Argument Association

One of the most pervasive yet elusive concepts pertaining to procedures is that
of argument association. This refers to the “matching up” of data across
procedure boundaries—that is, matching data sources being passed from the
calling side with the appropriate receivers in the called procedure. One helpful
image of this matching up is the plug/socket analogy in Section 12.5.1.

The term argument association refers first to the overall concept that such a
matching up—or association—must take place in order to use procedures and
second to the detailed rules governing the matchups. These rules are described
in detail in Section 12.5.

12.1.3 Recursion

Transcending a long-standing Fortran tradition, Fortran 90 procedures may be
recursive. A procedure involved in either direct or indirect recursion must
have the keyword RECURSIVE added to the FUNCTION or SUBROUTINE
statement of the procedure definition. Many implementations of Fortran 90
may be expected to extend the standard by not requiring the RECURSIVE
keyword. Indeed, many Fortran 77 implementations already support recursion
without the need for such an explicit declaration. These implementations
generate for all procedure calls the dynamic interface required for recursive

528 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

calls, which on some architectures is more expensive (less efficient) than
interfaces required for nonrecursive calls. The RECURSIVE keyword may help
the implementation with the optimization of procedure calls.

An interesting problem that arises in the course of allowing Fortran procedures
to be recursive is the treatment of local variables that have been data
initialized. There are two quite different possibilities, both compatible
extensions of Fortran 77. One possibility is that each layer of recursion has its
own local copy of the variable, each initialized to the specified value. The other
possibility is that each layer of recursion shares a single copy of the variable
and the initialization takes place only once, at the outset of program execution;
this is the approach used by Fortran 90. It is equivalent to also specifying SAVE
for the variable and so is referred to as DATA-implies-SAVE.

Although each Fortran 77 implementation uses one of these two approaches to
implementing initialized local variables, it does not matter to the programmer
writing standard Fortran 77 which one it is because a standard Fortran 77
program cannot take advantage of this implementation detail. A standard
Fortran 77 program produces the same results regardless of which of these
implementation strategies is taken, and so the Fortran 77 standard does not
have to specify “what DATA means” to this level of detail. But that’s not the
case with Fortran 90, because of recursion. Fortran 90 must specify in greater
detail what data initialization means.

Because most Fortran 77 implementations employ the “DATA-implies-SAVE”
model and there is not an overwhelming technical reason for favoring the
other model, DATA-implies-SAVE was chosen for Fortran 90. So this is the rule
now, whether or not the procedure is recursive. As an interesting aside, many
Fortran 77 programmers discovered that their Fortran compiler implemented
DATA-implies-SAVE and used this fact to retain information between
executions of the procedure. The resulting programs were not Fortran 77
standard conforming but, if this is the only nonstandard feature in them,
become standard conforming under Fortran 90.

12.1.4 Host and Use Association

A procedure may access information specified outside its own scope of
definition in four ways:

1. argument association

2. common blocks

Using Procedures 529

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. host association

4. use association

Argument association is fundamentally the same as in Fortran 77 and is
extended naturally for the new features in Fortran 90. Argument association is
described in detail later in this chapter (12.5). Common blocks, extended with
data structures, are the same as in Fortran 77 and are described in detail in
Section 5.10.4. Host and use association are new in Fortran 90 and are
described in detail in Sections 11.4 and 11.6.4.

Host association applies to a procedure defined (contained) within another
(host) program unit. A host may be a main program, module program unit,
external procedure, or module procedure. Data and procedure entities
specified in or accessible to the host are accessible to the contained procedure
through host association. The rules for host association are very similar to the
scoping rules of typical block-structured languages, such as Pascal. The main
difference is that the Fortran 90 host association rules must take into account
implicit as well as explicit declarations. (See Section 11.4 for a complete
description of these rules.)

Use association applies to procedures and program units containing USE
statements. All public entities of a module are available to a using procedure
through use association, although the USE...ONLY mechanism can limit
accessibility as the programmer desires. Use association allows shared data
and procedure entities to be gathered together in a central place, with selective
access to and hiding of these entities as may be appropriate in the specific
situation. See Section 11.6.4.5 for a complete description of use association.

12.1.5 Implicit and Explicit Interfaces

The interface to a procedure is the collection of names and attributes of the
procedure and its arguments. When this information is not made available
explicitly to the calling program, the interface is said to be implicit to the
calling program. In this case the interface information is assumed by the calling
program from the properties of the procedure name and actual arguments in
the procedure call. With implicit interfaces the processor in effect assumes that
the programmer has specified a valid procedure call and has correctly matched
actual argument and dummy argument data types, etc.—for array arguments,
element sequence association is assumed (12.5.2), and for pointer arguments,
the target is passed (12.5.3).

530 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A procedure interface is said to be explicit if the interface information is
known at the point of call and does not have to be assumed. In this case the
processor can check and guarantee the validity of the call. In Fortran 77,
external procedures and statement functions have implicit interfaces and
intrinsic functions have explicit interfaces. The explicit nature of the intrinsic
function interfaces, for example, permits generic intrinsic functions and
keyword calls (both disallowed for statement functions). The processor can,
based on the type of the actual argument, generate a call to the correct specific
intrinsic, because the processor has explicit interface information for all of the
intrinsic functions. In Fortran 77 there are no provisions for explicitly
specifying interface information for external procedures.

Fortran 90 puts greater emphasis on explicit interfaces, and, indeed, explicit
interfaces are a central concept in Fortran 90. Much of the facility and safety of
intrinsic procedures thereby accrues to user-defined procedures as well. The
two new forms of procedures in Fortran 90, internal and module procedures,
by definition have explicit interfaces and therefore have these advantages. The
interface block is provided to allow optional explicit specification of external
procedure interfaces, and is described in detail later in this chapter (12.6).

Several important new features in Fortran 90 require explicit interfaces in order
to allow correct and efficient procedure calls. These include array section actual
arguments, pointer arguments, optional arguments, keyword calls, user-
defined operations, user-defined assignment, and user-defined generic
procedures.

12.2 Subroutines
A subroutine defines a complete process and is self contained. It has an initial
SUBROUTINE statement, a specification part, an execution part that comprises
the algorithm, any internal procedures that perform ancillary processes, and an
END statement. When a subroutine is invoked, its execution begins with the
first executable construct in the subroutine. Data objects and other entities may
be communicated to and from the subroutine through argument association,
host association, use association, or common storage association.

Using Procedures 531

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.2.1 Subroutine Definition

The form of an external, module, or internal subroutine (R1219) is:

[RECURSIVE] SUBROUTINEsubroutine-name &

[([dummy-argument-list])]
[specification-part]
[execution-part]
[internal-subprogram-part]

END [SUBROUTINE[subroutine-name]]

A dummy argument is either a dummy argument name or an asterisk (∗),
where the asterisk designates an alternate return. When a subroutine is
executed, the dummy arguments become associated with the actual arguments
specified in the call (see Section 12.5).

Examples of subroutine statements are:

SUBROUTINE CAMP (SITE)
SUBROUTINE TASK ()
SUBROUTINE INITIALIZE_DATABASE
SUBROUTINE LIGHT (INTENSITY, M, *)
RECURSIVE SUBROUTINE YKTE (Y, KE)

An example of a subroutine subprogram is:

SUBROUTINE TROUT (STREAM, FLY)
CHARACTER *10 STREAM
OPTIONAL FLY
STREAM = . . .

. . .
END SUBROUTINE TROUT

Rules and restrictions:

1. If the END statement contains a subroutine name, it must be the same
name as that in the SUBROUTINE statement.

2. An internal subroutine must not contain an internal subprogram part.

3. An internal subroutine must not contain ENTRY statements.

4. The END statement of an internal or module subroutine must be

END SUBROUTINE[subroutine-name]

532 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

that is, the keyword SUBROUTINE is not optional in this case.

5. The ∗ for alternate returns is an obsolescent feature (see Section 12.5.9).

6. If the subroutine is recursive, that is, it calls itself either directly or
indirectly, the keyword RECURSIVE is not optional in the SUBROUTINE
statement.

7. Dummy argument attributes may be specified explicitly in the body of the
subroutine or may be declared implicitly. Each dummy argument is a local
variable of the subroutine; therefore, its name must be different from that
of any other local variable in the subroutine (14.2).

8. The INTENT and OPTIONAL attributes may be specified for the dummy
arguments of the subroutine, except that an INTENT attribute must not be
specified for a dummy pointer or a dummy procedure.

9. The PRIVATE and PUBLIC attributes must not be specified in a subroutine.

12.2.2 Subroutine Reference

To use or invoke a subroutine, a CALL statement or defined assignment is
placed at that point in a program where the process the subroutine performs is
needed. A subroutine invocation specifies the arguments to be used and, in the
case of a CALL statement, the name of the subroutine. The form of the CALL
statement (R1210) is:

CALL subroutine-name [([subroutine-actual-argument-list])]

and a subroutine actual argument (R1211) has the form:

[keyword =] subroutine-argument

where a keyword is a dummy argument name in the subroutine interface and
each actual argument (R1213) is one of the following:

an expression (including a variable)
a procedure name
* label (an alternate return specifier)

Each actual argument is associated with the corresponding dummy argument,
as described in Section 12.5, by its position in the argument list or the name of
its keyword. A variable is a special case of expression in the context of an

Using Procedures 533

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

actual argument; variables may be associated with dummy arguments used
with any intent (IN, OUT, INOUT), whereas other forms of expressions must
be associated only with dummy arguments used with intent IN.

Rules and restrictions:

1. Positional arguments must appear first in the argument list if both
positional and keyword arguments are used in the same actual argument
list. Once the first keyword is used, the rest of the arguments must be
keyword arguments.

2. Exactly one actual argument is associated with each nonoptional dummy
argument. For an optional dummy argument, the actual argument may be
omitted.

3. The keyword is the name of the dummy argument in the explicit interface
for the subroutine. If a keyword is present, the actual argument is
associated with the dummy argument with that keyword name.

4. If the keyword is omitted, it must be omitted from all preceding actual
arguments in that argument list. If no keyword is used, the arguments all
have a positional correspondence.

5. The label in the alternate return specifier must be a branch target in the
same scoping unit as the CALL statement.

6. An actual argument must not be the name of an internal procedure or
statement function.

7. An actual argument associated with a dummy procedure must be the
specific name of a procedure. (There may be an identical generic name, but
it is the procedure with that specific name that is passed.) Note that certain
specific intrinsic function names must not be used as actual arguments
(13.9).

Examples of subroutine references:

CALL TYR (2.0*A, *99) ! SUBROUTINE TYR (R, *)
. . .

99 . . . ! error recovery
. . .

CALL TEST (X = 1.1 , Y = 4.4) ! SUBROUTINE TEST (Y, X)
. . .

534 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In the first example, an alternate return to statement 99 in the calling program
unit is the last argument. Keyword arguments are used for X and Y in the
second CALL statement; therefore, the order of the actual arguments does not
matter.

Another way to invoke or reference a subroutine is with user-defined
assignment (12.6.5). A subroutine may define forms of assignment different
from intrinsic assignment supplied by the Fortran processor. Defined
assignment is particularly useful with data structures. Defined assignment
subroutines require an ASSIGNMENT interface as described in Section 12.6.5.
They have exactly two arguments, and , both nonoptional and the
first with intent OUT or INOUT and the second with intent IN. Defined
assignment may be invoked with the following assignment syntax:

arg1 = arg2

The attributes of the arguments select the defined assignment, again as
described in Section 12.6.5. This facility, in effect, allows the user to extend the
generic properties of assignment.

Example of defined assignment:

MODULE POLAR_COORDINATES

TYPE POLAR
REAL :: RHO, THETA

END TYPE POLAR

INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE ASSIGN_POLAR_TO_COMPLEX

END INTERFACE

. . .

SUBROUTINE ASSIGN_POLAR_TO_COMPLEX (C, P)
COMPLEX, INTENT(OUT) :: C
TYPE (POLAR), INTENT(IN) :: P
C = CMPLX (P%RHO * COS (P%THETA), &

P%RHO * SIN (P%THETA))
END SUBROUTINE ASSIGN_POLAR_TO_COMPLEX

END MODULE POLAR_COORDINATES

arg1 arg2

Using Procedures 535

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

USE POLAR_COORDINATES
COMPLEX :: CARTESIAN

. . .
CARTESIAN = POLAR (R, PI/6)

This last assignment is equivalent to the subroutine call

CALL ASSIGN_POLAR_TO_COMPLEX (CARTESIAN, POLAR (R, PI/6))

The structure constructor POLAR constructs a value of type POLAR from R
and PI/6 and assigns this value to CARTESIAN according to the computations
specified in the subroutine.

12.3 Functions
A function is similar to a subroutine, except that its principal use is as a
primary in an expression. Analogous to a subroutine, a function has an initial
FUNCTION statement, a specification part, an execution part, possibly internal
procedures, and an END statement. An argument list provides data
communication with the function, but in this case arguments typically serve as
input data for the function. The principal output is delivered as the function
result to the expression invoking the function. Data objects also may be
available to the function via host association, use association, and common
storage association.

12.3.1 Function Definition

The form of an external, module, or internal function subprogram (R1215) is:

[function-prefix] simplest-function-statement &

[RESULT (result-name)]
[specification-part]
[execution-part]
[internal-subprogram-part]

END [FUNCTION [function-name]]

and the various forms of the function prefix (R1217) are:

[type-spec] RECURSIVE

[RECURSIVE] type-spec

536 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

and the simplest function statement is:

FUNCTION function-name ([dummy-argument-name-list])

When a function is executed, the dummy arguments become associated with
the actual arguments specified in the reference (see Section 12.5).

Example function statements are:

FUNCTION HOSPITAL (PILLS)
REAL FUNCTION LASER (BEAM)
FUNCTION HOLD (ME, YOU) RESULT (GOOD)
RECURSIVE CHARACTER*10 FUNCTION POLICE (STATION) &

RESULT (ARREST)

Rules and restrictions:

1. The type of the function may be specified in the function statement or in a
type declaration statement, but not both. If the type is not explicitly
specified in this way, the default typing rules apply.

2. If the function is array valued, or a pointer, the declarations must state
these attributes for the function result name. The function result name may
be declared to be an explicit shape or a deferred shape array. If the function
is an explicit-shape array, the bounds may be nonconstant specification
expressions.

3. Dummy argument attributes may be specified explicitly in the body of the
function or may be declared implicitly. Each dummy argument is a local
variable of the function; therefore, its name must be different from that of
any other local variable in the function (14.2).

4. If the END statement contains the function name, it must be the same
name used in the FUNCTION statement.

5. An internal function must not contain an internal subprogram part.

6. An internal function must not contain ENTRY statements.

7. The END statement of an internal or module function is:

END FUNCTION[function-name]

that is, the keyword FUNCTION is required.

Using Procedures 537

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

8. If there is no result clause, the function name is used as the result variable,
and all referenences to the function are references to the function result
variable.

9. If there is a result clause, the result name is used as the result variable, and
the function name must not be used as the result variable; in this case, all
references to the function name are function references—that is, recursive
calls.

10. The function name must not appear in specification statements if there is a
result clause.

11. If the result of a function is not a pointer, its value must be completely
defined before the end of execution of the function. If the result is an array,
all the elements must be defined; if the result is a structure, all of the
components must be defined.

12. If the result of the function is an array or a pointer to an array, its shape
must be determined before the end of execution of the function.

13. If the result is a pointer, its allocation status must be determined before the
end of execution of the function; that is, a target must be associated with
the pointer, or the pointer must have been explicitly disassociated from a
target.

14. The INTENT and OPTIONAL attributes may be specified for the dummy
arguments of the function, except that an INTENT attribute must not be
specified for a dummy pointer or a dummy procedure.

15. The PRIVATE and PUBLIC attributes must not be specified in a function.

Note that, in the case of direct recursion, both the RECURSIVE keyword and
the RESULT option must be specified; this is the only case in which the
RESULT option is required.

12.3.2 The RESULT Option

As with subroutines, when a function is either directly or indirectly recursive,
RECURSIVE must appear in the FUNCTION statement but is optional for
nonrecursive functions. The RESULT clause specifies a name different from the
function name to hold the function result. The result name may be declared,
defined, and referenced as an ordinary data object. The function name has the

538 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

same attributes as the result name. Upon return from a function with a
RESULT clause, the value of the function is the last value given to the result
name.

Why is there a RESULT option in Fortran 90? In Fortran 77 there is no RESULT
clause and the function name is used as the result data object. This is still the
case in Fortran 90 for functions not having the RESULT option. If the function
is both array valued and directly recursive, however, a recursive reference to
the function may be indistinguishable from a reference to the array-valued
result. The RESULT clause resolves this ambiguity by providing one name for
the result value (the result name) and another name for recursive calls (the
function name). For example, if F is a recursive function that returns a rank-
one array of reals and has a single integer argument, in the statement

A = F(K)

the reference to F(K) could be interpreted as either a reference to the Kth
element of the array-valued result of F or a recursive call to F with actual
argument K. In these cases, Fortran 90 specifies that such references are to be
interpreted as recursive calls. If references to the array element are intended,
then the result name is used in the reference rather than the function name.

A result clause is required when the function is recursive and either the result
variable is referenced for its value or a direct recursive call is made.

Another simple example of a recursive function is REVERSE that reverses the
words in a given phrase.

RECURSIVE FUNCTION REVERSE (PHRASE) RESULT (FLIPPED)
CHARACTER (*) PHRASE
CHARACTER (LEN(PHRASE)) FLIPPED
L = TRIM_LEN (PHRASE)
N = INDEX (PHRASE(1:L), " ", BACK=.TRUE.)
IF (N == 0) THEN; FLIPPED = PHRASE
ELSE; FLIPPED = PHRASE (N+1:L) // " " &

// REVERSE (PHRASE (1:N-1))
END IF

END FUNCTION REVERSE

Using Procedures 539

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.3.3 Function Reference

One way a function may be referenced or invoked is by placing the function
name with its actual arguments as an operand in an expression. The actual
arguments are evaluated, argument association takes place in accordance with
the rules in Section 12.5, and the statements in the body of the function are
executed. The reference results in a value which is then used as the value of
that primary in the expression. For example, in the expression

A + F(B)

where F is a function of one argument that delivers a numeric result, this result
becomes the value of the right-hand operand of the expression.

The form of a function reference (R1209) is:

function-name ([function-actual-argument-list])

the form of a function actual argument (R1211) is:

[keyword =] function-argument

and a function argument (R1213) is one of the following:

an expression (including a variable)
a procedure name

and where a keyword is a dummy argument name in the function interface. As
with subroutines (12.2.2), each actual argument is associated with the
corresponding dummy argument by position or keyword. A variable is a
special case of expression in the context of an actual argument; variables may
be associated with dummy arguments used with any intent (IN, OUT, INOUT),
whereas other forms of expressions must be associated only with dummy
arguments used with intent IN. Note that (A), where A is a variable, is not a
variable, but a more general expression.

The only difference between subroutine and function argument lists is that a
function argument list must not contain an alternate return. Otherwise the
rules and restrictions for actual and dummy arguments are the same for
functions and subroutines and are listed in Section 12.2.2.

Examples of function references are:

Y = 2.3 * CAPS (4*12, K) ! FUNCTION CAPS (SIZE, KK)
PRINT *, TIME (TODAYS_DATE) ! FUNCTION TIME (DATE)

540 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Another way to reference a function is with user-defined operators in an
expression (12.6.4). A number of arithmetic, logical, relational, and character
operators are predefined in Fortran; these are called intrinsic operators. These
operators may be given additional meanings, and new operators may be
defined. Functions define these operations and interface blocks associate them
with the desired operator symbols, as described in Section 12.6.4. A function
may be invoked by using its associated defined operator in an expression. The
rules associated with operator functions are as follows.

Rules and restrictions:

1. Functions of one argument are used to define unary operations; functions
of two arguments are used to define binary operations.

2. The arguments must be not be optional and must have intent IN.

3. New operators must have the dot form, contain only letters (underscores
not allowed) between the dots, have no more than 31 letters, and must not
be the same as the logical literal constants .TRUE. or .FALSE. Possibilities
are .FOURIER., .NEWPLUS., and .BLAHANDBLAAH.

4. If a defined operator is the same as an intrinsic operator (for example, +, ∗,
.EQ., .AND.), it extends the generic properties of this operator, as
described in Section 12.6.4. In such an extension, the attributes of the
arguments must not match exactly those of the operands associated with
an intrinsic meaning of the operator (Table 7-3).

Example:

INTERFACE OPERATOR (.BETA.)
FUNCTION BETA_OP (A, B)

. . . ! attributes of BETA_OP, A, and B
! (including intent IN for A and B)

END FUNCTION
END INTERFACE

. . .
PRINT *, X .BETA. Y

The presence of .BETA. in the expression in the PRINT statement invokes the
function BETA_OP, with X as the first actual argument and Y as the second
actual argument. The function value is returned as the value of X .BETA. Y in
the expression.

Using Procedures 541

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.3.4 Statement Functions

A statement function statement (R1226) is a function definition that consists of
only one Fortran statement. Its form is:

function-name (dummy-argument-name-list) = scalar-expression

A statement function statement may be replaced (except within an internal
procedure) with the following equivalent three-line internal function definition

FUNCTION function-name (dummy-argument-name-list)

function-name = scalar-expression
END FUNCTION

providing the function and its arguments are typed the same in both cases.
Additional rules governing statement functions follow these three examples of
statement functions.

CHARACTER (5) ZIP_5 ! Notice these are scalar
CHARACTER (10) ZIP_CODE ! character strings
ZIP_5 (ZIP_CODE) = ZIP_CODE (1:5)

INTEGER TO_POST, MOVE
TO_POST (MOVE) = MOD(MOVE,10)

REAL FAST_ABS
COMPLEX Z
FAST_ABS (Z) = ABS (REAL (Z)) + ABS (AIMAG (Z))

Rules and restrictions:

1. Note that the function and all the dummy arguments are scalar.

2. The expression must contain only intrinsic operations and must be scalar
valued. (As stated here, this allows the expression to include references to
scalar-valued functions having array arguments, such as SUM (A+B),
where SUM is the array reduction intrinsic function and A and B are
conformable arrays. This is probably the intent of the standard, because
Fortran 77 allows array names as function arguments in a statement
function expression, but the standard is somewhat contradictory on this
point and the intent may have been to disallow general array-valued
expressions in statement functions. Because some implementations may
interpret the statement function rules in this way, perhaps the prudent

542 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

programmer should avoid array expressions completely when using
statement functions and instead use the internal function form when
referencing such expressions.)

3. Note that statement functions are defined in the specification part of a
program unit, internal procedure, or module procedure. Any other
statement function referenced in the expression must have been defined
earlier in the specification part, and hence a statement function cannot be
recursive (either directly or indirectly).

4. Named constants and variables used in the expression must have been
declared earlier in the specification part or made available by use or host
association.

5. If an array element is used in the expression, the parent array must have
been declared earlier in the specification part.

6. The appearance of any entity in the expression that has not previously
been typed explicitly constitutes an implicit type declaration and any
subsequent explicit type declaration for that entity must be consistent with
the implicit type.

7. Statement function dummy arguments have a scope of the statement
function statement.

8. Statement function dummy arguments are assumed to be intent IN (that is,
function references in the expression must not change the value of any
dummy argument of the statement function).

9. A statement function must not be used as an actual argument.

10. A statement function is referenced in the same manner as any other
function, except that statement function interfaces are implicit and
therefore the keyword form of actual arguments is not allowed; the
argument association rules are the same.

Note that statement function interfaces are implicit, not explicit; see Section
12.6.1 for a detailed discussion of explicit interfaces. Explicit interfaces are
associated with those procedures that can have array-valued results, assumed-
shape dummy arguments, pointer arguments, and keyword arguments, and
can have various generic forms. Because none of these apply to statement
functions, statement functions do not have and are not allowed to have an
explicit interface.

Using Procedures 543

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.4 Procedure-Related Statements
Several procedure-related statements—RETURN, CONTAINS, ENTRY,
EXTERNAL, and INTRINSIC—are general in that they apply to both kinds of
procedures (functions and subroutines) or to more than one form of procedures
(for example, external, internal, module).

12.4.1 RETURN Statement

A RETURN statement terminates execution of a procedure and returns control
to the calling program. Often, however, it is not needed because the procedure
END statement performs the same function as well as constituting the physical
end of the procedure. It is occasionally convenient to use RETURN statements,
however, because they may be placed anywhere in the execution part of the
procedure.

The form of the RETURN statement (R1224) is:

RETURN[scalar-integer-expression]

The scalar integer expression option is applicable only to subroutines and is
used in conjunction with alternate returns. This expression must be of type
integer, and its value must be in the range 1:n where n is the number of
alternate returns in the argument list; the value selects which alternate return,
counting from left to right in the argument list, is to be used for this particular
return from the procedure. The effect of an alternate return is the same as

CALL SUBR (..., IRET)
GO TO (label-list) , IRET

where inside SUBR, the dummy argument corresponding to IRET is assigned
the integer expression alternate return value prior to returning from SUBR. In
Fortran 90 there are better ways to achieve the functionality of alternate return,
such as with a CASE construct controlled by a return code with an appropriate
mnemonic value; for this reason alternate return is an obsolescent feature.

12.4.2 CONTAINS Statement

The CONTAINS statement (R1225) separates the internal procedures from the
specification and executable parts of the host and separates module procedures
from the specification part of the module; its form is simply:

544 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

CONTAINS

It is a nonexecutable statement that has the effect of making the execution
sequence bypass everything following the CONTAINS statement up to the
END statement of the program unit. Therefore, if it were executable, the
CONTAINS statement would have the effect of a STOP statement in a main
program and a RETURN statement in a procedure subprogram.

The CONTAINS statement serves only to delimit the procedure part of a
program unit. It is not needed to resolve ambiguities because there are none,
but without it some constructs are not resolvable until the entire program unit
has been analyzed.

12.4.3 ENTRY Statement

The concept of procedure entry was described in Section 12.1.1. A procedure
entry is defined by the appearance of an ENTRY statement in the specification
or execution part of the procedure subprogram. An ENTRY statement (R1223)
has the form:

ENTRY entry-name [([dummy-argument-list])] &

[RESULT (result-name)]

The attributes of the dummy arguments and entry result, if this is an entry in a
function, are prescribed in the specification part of the subprogram.

The ENTRY statement may be thought of as providing auxiliary FUNCTION
statements in function subprograms or SUBROUTINE statements in subroutine
subprograms, each defining another procedure. The entry names must be
different from one another and from the original function or subroutine name.
The example below illustrates the typical way of using the ENTRY statement to
define several procedures in a single subprogram. Following each ENTRY
statement and before the next one, in this example, is the set of executable
statements, the last one being a RETURN statement, that represent the
procedure corresponding to this entry. When the procedure represented by this
entry is called, the procedure is “entered” and execution proceeds from this
point. Execution continues in the procedure in the normal manner, ignoring
any ENTRY statements subsequently encountered, until a RETURN statement
is executed or the end of the procedure is reached.

The following is a typical example of the structure of a subroutine with ENTRY
statements.

Using Procedures 545

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SUBROUTINEname-1 (argument-list-1)

. . .
RETURN

ENTRY name-2 (argument-list-2)

. . .
! This falls through past the next ENTRY statement

ENTRY name-3 (argument-list-3)

. . .
RETURN

END

Often, in practical cases, the computations in these entry bodies are similar,
involving the same data and code. Rather than duplicating this code, in
Fortran 77 a single copy typically is placed at the bottom of the subprogram
and branches are made to it as appropriate. In Fortran 90 such common code
can be packaged as an internal procedure.

All of the entries in a subroutine subprogram define subroutine procedures
and all of the entries in a function subprogram define function procedures. All
of the entries in a function subprogram must be storage association compatible.
The RESULT option on an ENTRY statement has the same form and meaning
as the RESULT option on a FUNCTION statement (12.3.2).

Examples of the ENTRY statement are:

ENTRY FAST (CAR, TIRES)
ENTRY LYING (X, Y) RESULT (DOWN)

Rules and restrictions:

1. If an ENTRY statement appears in a function subprogram, the parentheses
in the ENTRY statement surrounding the optional dummy argument list
must be present.

2. An ENTRY statement may appear only in an external or module
subprogram; an internal subprogram must not contain ENTRY statements.

3. An external or module subprogram may contain any number of ENTRY
statements.

4. An ENTRY statement must not appear in an executable construct (IF, DO,
CASE, or WHERE constructs) or a nonblock DO loop.

546 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. An entry name must not be the same as any dummy argument name in the
subprogram.

6. An entry name must not appear in an EXTERNAL statement, INTRINSIC
statement, or procedure interface block in that subprogram.

7. The RESULT option applies only to function entries and thus may appear
only in function subprograms.

8. If a result name is specified, it must not be the same as any entry name, the
function name, or any other result name. If a result name is specified, the
entry name must not appear in any specification statements in the
subprogram; it inherits all of its attributes from the result name.

9. The keyword RECURSIVE is not used in an entry statement. Instead the
presence or absence of RECURSIVE on the initial SUBROUTINE or
FUNCTION statement of the subprogram applies to each entry in the
procedure.

10. If each entry result in a function subprogram has the same type, kind, and
shape as the function result, each of the entries identifies (is an alias for)
the same result variable. In this case there is no restriction on the nature of
the result. For example, the result could be of derived type, either scalar or
array, and could have the pointer attribute.

11. If all of the entries in a function subprogram (including the function result)
are not the same type, kind, and shape, then they must all be scalar,
without the pointer attribute, and must be “equivalenceable”. This means
they all must be of type default character with the same length or any mix
of default integer, default real, default logical, double precision real, or
default complex. The reason for these rules is that all subprogram entries
are storage associated with the function result.

12. A dummy argument must not appear in an executable statement before the
ENTRY statement specifying that dummy argument. A dummy argument
of the ENTRY statement must not appear in a statement function scalar
expression before the ENTRY statement specifying that dummy argument,
unless it is also a dummy argument of the statement function.

13. An executable statement or statement function depending on a dummy
argument of the procedure that was entered, or upon a local data object
depending on that dummy argument (such as a dynamic local array whose
size depends on the dummy argument), may be executed only if the

Using Procedures 547

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

dummy argument appears in the ENTRY statement of the referenced
procedure. In addition, an associated actual argument must be present if
the dummy argument is optional.

For either a function or subroutine subprogram the order, number, types, kind
type parameters, and names of the dummy arguments in an ENTRY statement
may differ from those in the FUNCTION or SUBROUTINE statement or any
other ENTRY statement in that subprogram. Note, however, that all of the
entry result values of a function subprogram must be equivalenceable to the
function result value, as described in items 9 and 10 above.

The interface to a procedure defined by an ENTRY statement in an external
subprogram may be made explicit in another scoping unit (the calling scoping
unit) by supplying an interface body for it in a procedure interface block. In
this case the ENTRY statement appears as the first statement of the interface
body, but the word ENTRY is replaced by the word FUNCTION or
SUBROUTINE, whichever is the appropriate one. Such an interface body must
include RECURSIVE if the subprogram is recursive and must correctly specify
the dummy argument attributes and the attributes of the result if it is a
function. Entry procedures defined in module procedures already have explicit
interfaces in program units that use the module.

12.4.4 EXTERNAL Statement

Consider the following program segment in a program unit containing no
declarations:

. . .
A = X + Y
CALL B (X, Y)
CALL Q (A, B, C)

. . .

It is clear that A is a variable and B and Q are subroutines, but in this code
fragment, C could be either a variable name or a procedure name. Other
statements in the program might resolve the mystery, and then again they
might not. In the cases where they do not, the processor assumes that the
argument is a variable. But when the programmer wants it to be a procedure
name, there must be some way to so specify. The means for doing this is the
EXTERNAL statement.

548 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The EXTERNAL statement is described completely in Section 5.7.1. Note that
the EXTERNAL statement appears in the program unit in which the procedure
in question is an actual argument; the procedure must be an external procedure
or dummy procedure. Internal procedures, statement functions, and generic
names must not appear as actual arguments. Use association takes care of
module procedures, and intrinsic procedures are handled separately, as
described in the next section. A name that appears in an EXTERNAL statement
must not also appear as a specific procedure name in an interface block in the
same scoping unit. Note that an interface block for the external procedure has
the same effect (as well as providing argument checking and other benefits)
and, therefore, effectively makes the EXTERNAL statement obsolescent for this
purpose. Another minor use of the EXTERNAL statement is to identify the
relevant block data program unit.

12.4.5 INTRINSIC Statement

The INTRINSIC statement does for intrinsic procedures what the EXTERNAL
statement does for external procedures (see the preceding section). The
INTRINSIC statement also is described completely in Section 5.7.2. Note that
an interface block cannot be provided for an intrinsic procedure because that
would specify a duplicate explicit interface; therefore, the INTRINSIC
statement is not effectively obsolescent. For example, in the procedure
reference

CALL Q(A, B, SIN)

if the intrinsic function SIN is intended for the third actual argument, SIN must
be declared in an INTRINSIC statement if it is not otherwise known to be a
procedure name in that scope. (SIN is both a specific and a generic procedure
name—it is the specific name that is involved here.)

12.5 Argument Association
When a procedure is referenced, the actual arguments supply the input data to
be used for this execution of the procedure and specify the variables to receive
any output data. Within the procedure, the dummy arguments assume the
roles of these input and output data objects. Thus, during execution of a
procedure reference, the appropriate “linkage” must be established between
the actual arguments specified in the call and the dummy arguments defined
within the procedure. This linkage is called argument association.

Using Procedures 549

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

As shown in Figure 12-1, the fundamental form that a set of actual arguments
take in a reference is that of a sequence of expressions separated by commas.
The set of names in a procedure definition after the procedure name is a list of
dummy argument names. In each case this is called an “argument list”—an
actual argument list in the former case and a dummy argument list in the
latter case. The arguments are counted from left to right.

In Figure 12-1 the actual arguments are shown as solid boxes because these
represent, or identify, actual data values or locations. The dummy arguments
are shown as dotted boxes to indicate that they do not represent actual data.
The dummy arguments represent “empty names” until they become associated
with actual arguments. In effect the procedure call passes unnamed boxes of
data to the procedure, and in the course of argument association, the dummy
argument names get attached to these boxes. Upon return from the procedure
the dummy argument names are stripped from the boxes, and the original
names in the calling program are restored.

The principal argument association mechanism is positional (but see Section
12.5.4 below); that is, arguments are associated according to their positions in
the respective actual and dummy argument lists—the first dummy argument
becomes associated with (becomes the name of) the first actual argument, the

CALL name (actual-argument-1, actual-argument-2, ...)

actual-argument-1 actual-argument-2

dummy-argument-1 dummy-argument-2

...

...

...)SUBROUTINE name (dummy-argument-1, dummy-argument-2,

Figure 12-1 Actual and dummy argument lists

550 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

second dummy argument becomes associated with the second actual
argument, and so on. The remainder of this section describes the detailed rules
governing this association mechanism and various forms it can take.

This section is also about argument association, in general, and only a portion
of it is about pointers. That portion discusses them as actual and dummy
arguments. However, there is a very interesting parallel between pointers and
argument association—in many respects Fortran 90 pointers are just like
dummy arguments, and targets are just like actual arguments. Until a pointer
becomes associated with a target (via dynamic allocation or pointer
assignment), it is just an “empty box”, like a dummy argument. After it
becomes associated it can be used as if it were the target. Thus, argument
association and pointer association are conceptually identical. The main
difference is the form the association takes—procedure references cause
argument association, whereas dynamic allocation and pointer assignment
cause pointer association.

12.5.1 Type, Kind, and Rank Matching

An actual argument, being an actual data object, has the usual set of data object
attributes. These may be determined by the specification part of the calling
program (see Chapter 5) or, if the actual argument is an expression, by the
rules governing expression results (see Section 7.2.8). The most important of
these attributes, for argument association purposes, are the data type, kind
type parameter, and rank of an object. This trio of attributes will be referred to
as the TKR pattern of the object. Thus, each actual argument, except for
alternate returns and procedures as arguments, has a TKR pattern. Suppose,
for example, that an actual argument ERER has been specified by the statement

REAL ERER (100)

The TKR pattern of ERER is: real, default kind, rank 1.

Similarly, each dummy argument has a declared TKR pattern. Even though a
dummy argument is merely an empty name until it becomes associated with
an actual argument, that name is used within the procedure as if it were a
regular data object. Therefore it has a set of attributes just like any other data
object, and this set includes a TKR pattern. The dummy argument attributes
are specified, either explicitly or implicitly, in the procedure definition.

Using Procedures 551

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The most fundamental rule of argument association is that the TKR patterns of
an actual argument and its associated dummy argument must be the same.
Note that statement function references conform to these rules, except that
dummy argument attributes are defined in the host.

The set of dummy arguments may be thought of as the procedure
“socket”—the means by which the procedure gets connected to the rest of the
program; each dummy argument is one of the holes in this socket. One can
think of the TKR pattern of a dummy argument as determining the shape of
that hole in the socket.

Similarly, the set of actual arguments in a reference to that procedure may be
thought of as a “plug” that connects with the procedure socket (Figure 12-2),
with each actual argument representing one prong of the plug. The TKR
pattern of an actual argument determines the shape of that prong. For the
connection to work properly, the shape of each plug prong must match the
shape of the corresponding socket hole.

Actual arguments Dummy arguments

Figure 12-2 The plug and socket analogy for actual and dummy arguments

552 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Because external procedures and their calling programs are usually compiled
separately, there is normally no detection of TKR mismatches by the
implementation. Therefore, TKR argument matching is extremely error-prone,
and such mismatches are among the most common and elusive errors in
Fortran applications. Explicit procedure interfaces (see Section 12.6.1) solve this
problem by enabling automatic detection of TKR argument mismatches.

Although extremely error-prone with implicit interfaces, this TKR rule is very
simple and straightforward: associated actual and dummy arguments must
have the same data type, the same kind parameter for that type, and the same
rank. This last part means that if one is a scalar, they both must be scalars;
otherwise, they must both be arrays with the same number of dimensions. (See
12.5.2 for an exception to this general rule on rank matching.) Alternate returns
are a special case (12.5.9), as are procedures used as arguments (12.5.10).

Argument associations involving arrays and pointers also have some special
considerations; they are treated in Sections 12.5.2 and 12.5.3, respectively. That
leaves scalar data objects without the pointer attribute to discuss here. The rule
is almost trivially simple: the associated dummy argument for a scalar actual
argument must be scalar and must have the same data type and kind type
parameter value as the actual argument. (See the exception to this in Section
12.5.3, in which an array element—which is a scalar—may be passed to a
dummy array.) Note that array elements, scalar-valued structure components,
and substrings are valid scalar actual arguments. The only slightly complicated
case involves arguments of type character because scalar character objects have
an additional attribute: the character length.

The cleanest situation is, of course, when the associated actual and dummy
argument character lengths are the same. This may be achieved by explicit
declaration of the character length in each case, with the length value specified
to be the same. In many cases this is an impossibly severe condition, however,
because it prevents the development of general-purpose procedures (for
example, procedures that can accept character input of any length). Assumed
length dummy arguments alleviate this problem. In cases involving character
arguments, assumed length generally should be used for the dummy
argument.

Assumed length may be specified only for dummy argument data objects. This
is done by specifying an asterisk (∗) for the character length (Section 5.1.6). An
assumed-length dummy argument does not have a length until it becomes
associated with an actual argument. When it becomes associated, its length

Using Procedures 553

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

becomes the length of the actual argument. In effect, the length of the actual
argument is passed as part of the actual argument and is picked up by the
dummy argument in the course of argument association.

Therefore, in most cases, that is the way to go—assumed length for dummy
arguments of type character. Explicit declared length is permitted for dummy
arguments, however, so there must be rules governing those inevitable
instances when the lengths of the actual argument and its associated dummy
argument are different. Actually, these lengths are not allowed to be different
for nondefault type character arguments, so the following discussion applies
only to default character arguments. For scalars, the easy case is when the
length of the actual argument is greater than that of the dummy argument. In
this instance, the procedure has access to only the leftmost characters of the
actual argument, up to the length of the dummy argument. Even though the
remaining characters of the actual argument are in some sense “passed” by the
call, the procedure cannot “see” them or do anything with them.

But what if the actual argument length is less than the dummy argument
length? In this case, or so it would seem, the procedure “sees” more than is
actually passed. This is, in fact, an untenable situation, so it is disallowed.
Thus, in summary, the lengths of associated actual and dummy character
arguments may be different only for default type characters and only if the
actual argument length is greater than the dummy argument length. Play it
safe and simple: for character arguments always use assumed-length dummy
arguments for both default and nondefault character types.

For arrays, the rules are somewhat complicated and are described in detail in
Section 12.5.2 under the topic of “Array Element Sequence Association”.

12.5.2 Sequence Association

For array arguments the fundamental rule in Fortran 90 is that the shapes of an
actual argument and its associated dummy argument must be the same. That
is, they must have the same rank and the same extent (number of elements) in
each dimension; thus, they also are the same size. To make this simple rule
viable and to make passing array sections viable, a new type of dummy
argument was introduced in Fortran 90—the assumed-shape dummy
argument. Assumed-shape dummy arguments for arrays are analogous to
assumed-length dummy arguments for character arguments in that assumed-
shape dummy arguments assume their shape attributes from the actual
argument upon association. The only requirement for the user of assumed-

554 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

shape dummy arguments is to ensure that the ranks of the actual and dummy
arguments agree as well as the type and kind; the rest follows automatically,
and association is on an element-by-corresponding-element basis. Thus, again,
TKR is the only rule to observe when using assumed-shape dummy
arguments. Assumed-shape dummy arguments are declared as described in
Section 5.3.1.2.

But, alas, Fortran 77 does not have assumed-shape dummy arrays and
therefore does not offer the array argument simplicity they provide. Also,
Fortran 77 is conceptually much more “array element sequence” or “storage
mapping” oriented than Fortran 90, which is conceptually “array object”
oriented. In Fortran 90 an array is considered an object in and of itself, as well
as a sequence of related but separate elements. Being array element sequence
oriented, the Fortran 77 array argument association mechanisms are geared
towards associating array element sequences rather than associating array
objects. These mechanisms are considerably more complicated than the simple
TKR pattern matches described above, although they do offer somewhat more
functionality (described below). Fortran 90, in order to be completely upward
compatible with Fortran 77, provides these separate mechanisms, and much of
the rest of this section is devoted to the description of array element sequence
association.

An analogous need for object association for structures arises as well, but it is
not related to Fortran 77 compatibility because Fortran 77 does not have
structures. The need arises in order to accommodate the development of
external programs that use structure arguments but do not have access to a
module defining the type of the structure. As with arrays, the method of
association is sequence association that relies on a form of storage layout (like
storage association) and is discussed in more detail in Section 12.5.2.4.

12.5.2.1 Array Element Sequence Association

If a dummy argument is declared as an explicit-shape array or an assumed-size
array (the only kinds provided in Fortran 77), then the ranks of the actual
argument and its associated dummy argument do not have to be the same,
although the types and kinds still have to match. In this case the actual
argument is viewed as defining a sequence of objects, each an element of the
actual array. The order of these objects is the array element order (6.4.7) of the
actual array. Briefly, array element order is a linear sequence of the array

Using Procedures 555

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

elements obtained by varying the first subscript most rapidly through its
range, then the second subscript, and so on. The number of objects in this
sequence is the size of the actual array.

Similarly, the dummy array is viewed as defining a linear sequence of dummy
array elements, in array element order of the dummy array. The association of
the dummy array and actual array is the association of corresponding elements
in these sequences. To determine associated elements, the two sequences are
superimposed with the initial elements of each corresponding. This is
illustrated in Figure 12-3, in which a three-dimensional actual array is
associated with a two-dimensional dummy array. In this example, this causes
the actual argument element AA(1,2,2) to become associated with dummy
argument element DA(4,2), for example. The only additional rule that needs to
be observed is that the size of the dummy array cannot exceed the size of the
actual array. An assumed-size dummy array extends to and “cuts off” at the
end of the actual argument array sequence.

For character arrays, the character length issue raises its ugly head again,
because the array element length must be specified in this case. For nondefault
type character arrays the rule is (as with scalars) that the actual and dummy
array element character lengths must be the same. Thus, in this instance, the
situation described above and illustrated in Figure 12-3 applies. But the
situation is different with default characters—the lengths of the actual and
dummy array elements may be different. Here, the actual and dummy
arguments are viewed as sequences of characters. Each array element, in array
element order, contributes a subsequence of characters the size of its length to
the corresponding sequence of characters representing the argument. The
argument association is then on a character-by-corresponding-character basis
of these two character sequences. This not-so-pretty picture can result in array

AA1,1,1 AA2,1,1 AA1,2,1 AA2,2,1 AA1,3,1 AA2,3,1 AA1,1,2 AA2,1,2 AA2,2,2AA1,2,2 AA1,3,2 AA2,3,2

DA1,1 DA2,1 DA3,1 DA4,1 DA5,1 DA1,2 DA2,2 DA3,2 DA4,2 DA5,2

Actual array: REAL AA(2,3,2)

Dummy array: REAL DA(5,2)

Figure 12-3 Example of array element sequence association

556 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

element “boundary crossing” between the actual and dummy arguments, as
illustrated in Figure 12-4. In this case the size rule is that the number of
characters in the dummy array cannot exceed the number of characters in the
actual array. Using the example in Figure 12-4, these rules cause the dummy
argument element DA(4) to be associated with the last character of the actual
argument element AA(2,1) and the first two characters of actual argument
element AA(1,2).

The provision that the ranks of the actual and dummy argument arrays need
not match in array element sequence association has an interesting
asymmetrical end condition—namely when one is a scalar (effectively a rank of
zero). The case of the actual argument having nonzero rank and the dummy
argument being scalar occurs for elemental references to intrinsic functions (see
Section 12.5.8). The reverse, passing a scalar to a dummy array, is allowed in a
limited way in array element sequence association. If the dummy argument
meets the conditions for array element sequence association (that is, it is
declared as an explicit-shape or assumed-size array), the actual argument may
be a single array element but, except for default characters, cannot be any other
kind of scalar. This functionality is provided in Fortran 77 to accommodate the
passing of certain forms of array sections.

AA1,1 AA2,1 AA1,2 AA2,2

Actual array: CHARACTER (5) AA(2,2)

DA1

Actual array: CHARACTER (5) AA(2,2)

DA2 DA3 DA4 DA5 DA6

Figure 12-4 Array element sequence association for default characters

Using Procedures 557

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In the array element sequence association paradigm, the appearance of an
array element as the actual argument causes the sequence of actual array
elements to begin with this element, rather than the first element of the array,
and extend to the end of the array in array element order. This sequence is then
associated with the full dummy argument sequence. Care must be taken to
ensure that the size of the dummy array is not greater than the size of the array
element sequence from the specified array element on. An element of an
assumed-shape or pointer array cannot be passed to a dummy array.

For default characters, the plot thickens still more—the actual argument can be
a substring of an array element. The reason is that for default character
arguments the array sequence is character based rather than array-element
based. The substring provides a third way (together with an array and an array
element) to specify the beginning of the actual argument character sequence.
As with the other two, the sequence extends to the end of the actual array in
array element order. Also, as with the other two, the number of characters in
the associated dummy array must not exceed the number in the specified
portion of the actual array. In addition, as in the array element case, the
substring must not be from an element of an assumed-shape or pointer array.

Doesn’t simple TKR sound good at this point? Use assumed-shape dummy
arrays and assumed-length character dummy arguments, make the TKRs
match, and never be frustrated by argument association again. Passing array
elements and substrings to dummy arrays is not the preferred way to pass
array sections in Fortran 90. Allowing the rank of the actual argument array to
be different from that of the dummy argument does offer some functionality
not available from TKR, but the Fortran 90 array facilities provide superior
alternatives for accomplishing the desired effect. TKR is significantly simpler
and safer and, in general, should be the preferred array argument association
mechanism.

12.5.2.2 Passing Array Sections

The passing of array sections in procedure references represents an important
part of the array processing facility and therefore is a significant feature of
Fortran 90. This is a conceptual extension over Fortran 77, because most array
sections are discontiguous in the array element order sense. Thus, array
element sequence association is not a good mechanism for accommodating the
passing of array sections. Assumed-shape dummy arguments do constitute a
good mechanism for this purpose and provide the normal method of passing
array sections.

558 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

There are three principal ways of forming an array section (see Sections 6.4.4
and 6.4.5):

1. an array reference containing a subscript triplet

2. an array reference containing a vector subscript

3. a structure component reference in which a part other than the rightmost is
array valued

An array section may also be passed to an explicit-shape or assumed-size
dummy array. For reasons of compatibility with Fortran 77 compiled code, the
array arguments of procedures with implicit interfaces are assumed to be
sequence associated with the dummy arguments. In this case the section must
be converted (by the compiler) to a form acceptable for array element sequence
association, and possibly reconverted upon return (for example, if it returns
results from the procedure execution). Such conversion is likely to result in
performance inferior to that obtained from the use of assumed-shape dummy
arguments, but is the price of passing array sections to explicit-shape or
assumed-size arrays. (Note that assumed-shape dummy arguments require
explicit interfaces.)

With this understanding, passing array sections poses no particular conceptual
problems. In the case of assumed-shape dummy arguments, the TKR
association rules apply. Otherwise the array element sequence association rules
apply to the “compacted” section. One restriction that applies to the use of
array sections as actual arguments, regardless of the nature of the dummy
argument, is that array sections generated by vector subscripts are not
definable—that is, they must not be assigned new values by the procedure. The
associated dummy argument must not have intent OUT or intent INOUT, or be
treated as if they did have either of these attributes. The reason is that with
vector subscripts the same actual array element could be part of the array
section more than once, and thereby this actual array element becomes
associated with more than one dummy argument element. If such an object
could be defined, conflicting values could be specified for the same actual
array element.

12.5.2.3 Miscellaneous Array Association Rules

1. If the dummy argument is assumed shape, the actual argument must not
be an assumed-size array. The reason is that assumed-shape dummy
arguments require that complete shape information about the actual

Using Procedures 559

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

argument be supplied to the dummy argument. Because the size of an
assumed-size array is “open-ended’’, complete shape information is not
available for assumed-size arrays. Note that a section of an assumed-size
array may be used as an actual argument, provided such a section is not
open ended (that is, the extent of the last dimension is explicitly specified).

2. Related to the above restriction on not defining dummy arguments
associated with array sections containing vector subscripts, the same data
object coming into a procedure through two or more arguments must not
be defined. For example, if A(1:5) is an actual argument and A(3:9) is
another actual argument, then the three elements A(3:5) have come in
through two arguments. In this case none of the three elements A(3:5) can
be defined in the procedure. This restriction need not involve arrays, and
applies to any data object associated to two dummy arguments. If A in the
above example were a character string, the same associations are possible
and the same restrictions apply. Even for a simple scalar this can be the
case. If K is a scalar integer variable, it may appear twice in the actual
argument list, but if it does, it must not become defined as a result of a
reference to the procedure.

3. Related to the immediately preceding rule, a data object may be available
to a procedure through argument association and by a different method of
association. For example, it might come in as an actual argument and also
be available through use or host association. In this case it can be defined
and referenced only as a dummy argument. It would be illegal to assign A
a value within subroutine S in the following example:

CALL S(A)
. . .

CONTAINS
SUBROUTINE S(D)
D = 5

. . .

4. If the dummy argument is an array that has the pointer attribute, it is
effectively an assumed-shape dummy. Therefore the TKR rules apply to
associated actual arguments. (The argument association rules that apply to
pointers is the topic of the next section.)

5. For generic references, defined operators, or defined assignments, the TKR
method is required for all arguments and operands. Thus, an array element
must not be passed to an array dummy argument under any circumstance.
For example, if SQUIRT is a generic procedure name, then SQUIRT(A(7))

560 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

has a scalar actual argument and the associated dummy argument must be
scalar. If the generic procedure allows both a scalar dummy argument and
an array dummy argument, the specific procedure with the scalar dummy
argument is selected.

6. An array is never passed to an intrinsic procedure (12.5.8) if the actual
argument is an array element—only the array element is passed.

12.5.2.4 Structure Sequence Association

If a structure is a dummy argument of an external procedure, the derived type
for the structure has to be specified so that it is exactly the same type as that
for the corresponding actual argument. The preferred way to do this is to
define a derived type in a module and access the module via a USE statement
both for the external procedure and the program unit referencing it. A second
way is provided in Fortran 90, which uses structure sequence association. This
technique avoids the need for a module but bypasses the error checking
available in the compiler; this technique is not recommended.

Two structures are structure sequence associated if one is an actual argument
and the other is the corresponding dummy argument and the types of the two
structures are equivalent but not the same. Two derived types are equivalent
(4.4.1) if the two types have the same name, are sequence types, have no
components that are private or are of a private type, and have components that
agree in order, name, and attributes. (Note that the same attributes means the
same or equivalent type.) An example of this method of association is provided
by the program BUILD_MACHINE and procedure GET_PART in Section 4.4.1.

When a reference to a procedure is made using structure sequence association,
a storage model for the association may be assumed by the compiler. Because
of the restriction of a sequence type and the same number, order, and attributes
of the components, the calling and called program units can assume a
consistent storage layout that causes the structures to be assoicated correctly,
allowing values to be passed into and out of the procedure from the calling
program.

12.5.3 Pointer Association

In Fortran 90 a data object may have the POINTER attribute, the TARGET
attribute, or neither of these attributes, but not both. Of these three, only the
last is provided in Fortran 77. A dummy argument may be any of these three,

Using Procedures 561

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

as may be an actual argument, but of the nine possible combinations for
associated actual and dummy arguments two are disallowed and of the
remaining cases only the five labeled A–E in Figure 12-5 are distinct (the other
two are equivalent to the cases below them in the figure). A pointer is depicted
by a bold arrow, and a target by a bull’s eye; objects with neither the POINTER
nor TARGET attribute are shown as rectangular boxes.

A

TKR
TKR

or AESA

B

TKR
or AESA

Not
allowed

Not
allowed

TKR
or AESA

C

TKR
or AESA

D

TKR
or AESA

E

TKR
or AESA

Other

Other

Pointers
in calling
program

Actual
argument

Dummy argument

Local and accessible
pointers in procedure

Figure 12-5 Association of objects with POINTER and TARGET attributes

562 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Combination E in Figure 12-5 is where neither the actual nor dummy argument
has either the POINTER or TARGET attribute. This situation is completely
covered by Sections 12.5.1 and 12.5.2. Combinations B, C, and D are similar;
they are the cases in which either the actual or dummy argument, or both, have
the target attribute. As far as argument association, per se, is concerned, these
cases are very much like combination E. That is, either TKR or array element
sequence association (AESA) applies, according to the rules given in Sections
12.5.1.and 12.5.2.

Because cases B, C, and D in Figure 12-5 involve arguments with the target
attribute, there may be pointers associated with these targets. In the calling
program, a target object may be used as an actual argument (cases B and C),
and at the time of the call there may be pointers associated with this target. In
the procedure, a dummy argument may have the target attribute (combinations
B and D), which means that during execution of the procedure a pointer,
including another dummy argument with the pointer attribute, may become
associated with this target argument.

The rules governing the associated pointers of target arguments are:

1. During argument association, any pointers associated with a target actual
argument remain pointer associated with that object, but do not become
pointer associated with the dummy argument. This means that even if the
actual argument has pointers pointing to it, the procedure does not know
what they are, and therefore cannot use this information in any way and
cannot affect any such pointer associations in any way.

2. Upon completion of procedure execution and disassociation of the actual
and dummy arguments, any pointers associated with the actual argument
before the call remain pointing to it.

3. For a dummy argument having the TARGET attribute, its pointer
association status with local pointers before argument association is
undefined. Upon completion of procedure execution and disassociation of
the actual and dummy arguments, the pointer association status of all
previously pointer-associated pointers with a dummy argument having the
TARGET attribute becomes undefined.

Using Procedures 563

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In cases B and D in Figure 12-5, pointer association between the dummy target
and pointers has no effect in the calling program. Rule 3 above says that even
if the calling program passes a pointer and a target as two different actual
arguments, pointer association between these two within the scope of the
calling program cannot be established (or removed) by the called procedure.

Case A in Figure 12-5 illustrates that both the actual argument and the dummy
argument may have the pointer attribute. When the dummy argument is a
pointer, the procedure interface must be explicit in the calling program (see
Section 12.6.1), and the associated actual argument must also be a pointer. In
this case the following rules apply:

1. The TKR association rules apply.

2. Upon argument association, the dummy argument acquires the same
pointer association status as the actual argument and becomes pointer
associated with the same target as is the actual argument, if the actual
argument is associated with a target.

3. During procedure execution, the pointer association status of the dummy
argument may change, and any such changes are reflected in the actual
argument.

The two unlabeled allowed cases in Figure 12-5 are those in which the actual
argument is a pointer but the dummy argument is not. In this case the actual
argument must be associated with a target, and it is this target that becomes
argument associated with the dummy argument. Thus, these two cases are
equivalent to cases B and C. In effect, the appearance of a pointer as an actual
argument, without the dummy argument known to be a pointer, is treated as a
pointer reference. In Fortran 90 a pointer reference is treated as a reference to
the target. The two cases in Figure 12-5 described as “not allowed” are illegal
because the actual arguments would be incompatible with (pointer) operations
allowable on the dummy argument.

In case C the procedure interface may or may not be explicit in the calling
program. In cases A, B, and D the Fortran 90 rules require explicit interfaces
(but in cases B and D there is no real technical need for this requirement).
Thus, for example, calling programs may pass target-associated pointers to
Fortran 77 procedures, because in reality the underlying (pointed to) object is
passed.

564 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.5.4 Argument Keywords

The fundamental “pairing” of arguments in the actual argument list with those
in the dummy argument list is positional, as shown in Figure 12-1. But Fortran
90 also provides an order-independent way of constructing actual argument
lists. With this option the programmer can explicitly specify in the call which
actual argument is to be associated with an dummy argument rather than
using its position in the actual argument list to determine the pairing. To do
this the name of the dummy argument, which in this context is referred to as a
“keyword”, is specified in the actual argument list along with the actual
argument. The form that this takes is:

dummy-argument-name = actual-argument

This form may be used for all of the actual arguments in an actual argument
list, and the arguments may be in any order. A reference may use keywords for
only some of the actual arguments. For those actual arguments not having
keywords, the positional mechanism is used to determine the associated
dummy arguments. Positionally associated actual arguments must appear in
the actual argument list before the keyword actual arguments. After the
appearance of the first keyword actual argument (if any) in the actual
argument list, all subsequent actual arguments must use keywords. Examples
are:

CALL GO (X, HT=40)
CALL TELL (XYLOPHONE, NET=10, QP=PI/6)

Thus, when only some arguments in the actual argument list use keywords, the
first part is positional, with no argument keywords, and the last part uses
keywords. In the keyword portion of the list the order of the arguments is
completely immaterial, and the keyword alone is used to determine which
dummy argument is associated with a given actual argument. Care must be
taken with keyword arguments in each call to make sure that one and only one
actual argument is specified for each nonoptional dummy argument and that
at most one actual argument is specified for each dummy argument.

Keyword actual argument lists can aid readability by decreasing the need to
remember the precise sequence of dummy arguments in dummy argument
lists. This functionality, and the form that it takes, is modeled after keyword
specifiers in input/output statements. The one situation that requires keyword

Using Procedures 565

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

arguments is when an optional argument not at the end of the argument list is
omitted; keyword arguments constitute the only way to “skip” such arguments
in an actual argument list.

To use keyword actual arguments the procedure interface must be explicit in
the scope of the program containing the reference. In this case, the defined
sequence of dummy argument names (keywords) is known to the calling
program, and hence the compiler can generate the proper reference. Intrinsic,
internal, and module procedure interfaces are always explicit, and hence
keyword references can be used with these. An interface block (12.6.2) must be
provided in the calling program for an external procedure before keyword
references can be made to it. This “price” of an interface block comes with an
interesting benefit not available from the automatic explicitness of intrinsic,
internal, and module procedure interfaces—the keywords do not have to be
the same as the dummy argument names in the procedure definition. This
ability to “tailor” the argument keywords to the application is available only
with external procedures.

12.5.5 Optional Arguments

Fortran 90 includes the ability to specify that an argument be optional. This
means that an actual argument need not be supplied for it in a particular
reference, even though it is in the list of dummy arguments. An optional
argument is so specified by giving the dummy argument the optional attribute
(see 5.6.3) either in an entity-oriented declaration that includes the OPTIONAL
attribute or by its inclusion in an OPTIONAL statement in the procedure
definition. The optional attribute can be specified only for a dummy argument.
Any dummy argument in any procedure can be specified to be optional.

In a positional argument list, an optional argument at the right-hand end of the
list may be simply omitted from the reference. To omit an argument from the
keyword part of an actual argument list (12.5.4), that dummy argument name
is not used as one of the keywords. Note that the keyword technique must be
used to omit an optional argument that is not at the end of the list, unless all of
the remaining arguments are also being omitted in this reference. An example
of this is:

566 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

CALL TELL (1.3, T=F(K))
. . .

SUBROUTINE TELL (X, N, T)
OPTIONAL N, T

. . .
END

For this reason, optional arguments require explicit procedure interfaces. Note
also that a number of the new intrinsic procedures in Fortran 90 have optional
arguments. Some of the intrinsic functions from Fortran 77 have been extended
with optional arguments as well.

During execution of a procedure with an optional dummy argument, it is
usually necessary to know in that particular reference if an actual argument
has been supplied for that dummy argument. The PRESENT intrinsic function
is available for that purpose (see Sections 13.3.6 and A.80). It is an inquiry
function and has one argument, the name of an optional argument in the
procedure. Upon execution it returns a value of default logical type, depending
on whether or not the dummy argument is associated with an actual argument
(see rule 4 below). For example,

IF (PRESENT (NUM_CHAR)) THEN
! Processing if an actual argument has been
! supplied for optional dummy argument NUM_CHAR
USABLE_NUM_CHAR = NUM_CHAR

ELSE
! Processing if nothing is supplied for NUM_CHAR
USABLE_NUM_CHAR = DEFAULT_NUM_CHAR

END IF

illustrates how the PRESENT function can be used to control the processing in
the procedure as is appropriate depending on the presence or absence of an
optional argument. For an optional dummy argument not present
(corresponding actual argument not supplied), the following rules apply.

Rules and restrictions:

1. A dummy argument not present must not be referenced or defined.

2. A dummy procedure not present must not be invoked.

3. A dummy argument not present must not be supplied as an actual
argument corresponding to a nonoptional dummy argument, except in a
reference to the PRESENT intrinsic function.

Using Procedures 567

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

4. A dummy argument not present may be supplied as an actual argument
corresponding to an optional dummy argument. In this case, the latter
dummy argument is also considered to be not present.

Because Fortran 77 does not allow arguments to be optional, a common use of
the ENTRY statement (12.4.3) is to define an alternate entry to a procedure
whose only difference was an extra argument. With optional arguments in
Fortran 90, those uses of the ENTRY statement are now obsolescent, especially
when the same procedure name is preferable to separate entry names.

12.5.6 Argument Intent

Any dummy argument, except a procedure or pointer, may be given an
INTENT attribute (see Section 5.6.2). There are three possible forms for this
attribute:

INTENT (IN)

INTENT (OUT)

INTENT (INOUT)

The INTENT attribute may be specified only for dummy arguments and
indicates something about the intended use of the argument in the procedure.
The use of this attribute enables the compiler to detect uses of the argument
within the procedure that are inconsistent with the intent.

INTENT(IN) specifies that an argument is to be used to input data to the
procedure, is therefore defined upon entry to the procedure, is not to be used
to return results to the calling program, and must not be redefined by the
procedure. Attempts to change this argument in the procedure cause errors
that could be detected.

INTENT(OUT) specifies that an argument is to be used to return results to the
calling program and cannot be used to supply input data. A dummy argument
with INTENT(OUT) must not be referenced within the procedure before it is
defined. The actual argument associated with an INTENT(OUT) dummy must
be a definable data object, that is, a variable.

INTENT(INOUT) specifies that an argument has a defined value upon entry to
the procedure and that this value may be redefined during execution of the
procedure; it may be referenced before being changed. This would be the

568 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

intent, for example, of a data object whose value is to be updated by the
procedure. The actual argument associated with an INTENT(INOUT) dummy
must be a definable data object.

Note that actual arguments that are array sections with vector-valued
subscripts are not allowed to be associated with dummy arguments having
INTENT(OUT) or INTENT(INOUT); that is, the associated dummy argument
must not be defined (12.5.2).

The use of the INTENT attribute for a dummy argument does not require an
explicit interface, because it governs use within the procedure. Making the
interface of a procedure containing an INTENT(OUT) or INTENT(INOUT)
dummy argument explicit in the calling program, although not required, can
nevertheless be useful in detecting possible attempts to use nondefinable data
objects for the associated actual argument.

12.5.7 Resolving References to Generic Procedures

User-defined generic procedures (12.6.3) represent significant functionality in
Fortran 90 that is not provided in Fortran 77. Interestingly, generic intrinsic
procedures are provided in Fortran 77, but not generic user-defined procedures.
Thus, Fortran 77 programmers are familiar with the concept and use of generic
procedures, and generic intrinsics have been very popular with Fortran 77
programmers.

Two or more procedures are generic if they can be referenced with the same
name. With such a reference it must be possible to determine which of the
procedures is being called. That is, a generic reference must be resolved to that
specific procedure in the set of procedures sharing the generic name to which
the call applies. The distinguishing property of the reference that is used for
this resolution is the nature of the actual argument list. The sequence of TKR
patterns in the actual argument in effect selects the appropriate specific
procedure to be called. Examples of generic references are:

SQRT (32.6)
SQRT (3D+10)
SQRT ((1.1, 2.2))

The set of specific procedures making up the generic set are restricted such that
any given sequence of actual argument TKR patterns will match only one of
the dummy argument lists of this set. Thus, the requirement of TKR matches in
the argument lists can be used to resolve generic references. The operational

Using Procedures 569

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

rules follow; for further details see Section 14.2.7. Considering the dummy
argument lists of any two procedures in the generic set, one of them must have
a nonoptional dummy argument that satisfies both of the following conditions:

1. It must be in a position in the list at which the other list has no dummy
argument or it has a TKR pattern different from that of the dummy
argument in the same position in the other list.

2. It must have a name different from all the dummy argument names in the
other list or it must have a TKR pattern different from that of the dummy
argument with the same name in the other list.

The reason for the second of these rules is the need for unique resolution with
respect to references with keyword arguments, as well as strictly positional
actual argument lists. Section 12.6.3 contains an example that illustrates why
just the first rule is not enough.

Because resolution of a generic reference requires matching the actual
argument list with the candidate dummy argument lists from the generic set,
clearly the interfaces of the procedures in the generic set must be explicit in the
scoping unit containing the reference. How this is done and how a procedure is
added to a generic set is described in Section 12.6.3.

12.5.8 Elemental References to Intrinsic Procedures

As mentioned briefly in Section 12.5.2, in certain special cases involving
references to intrinsic procedures, the rule that disallows passing an actual
array to a scalar dummy is relaxed. Many intrinsic procedures have scalar
dummy arguments, and many of these may be called with array actual
arguments. These are called elemental intrinsic procedures. In Fortran 90 there
are 64 elemental intrinsic functions and one elemental intrinsic subroutine.

Elemental functions are defined to have scalar results as well as scalar dummy
arguments. For an elemental intrinsic function with one argument, calling that
function with an array argument causes the function to be applied to each
element of that array, with each application yielding a corresponding scalar
result value. This collection of result values, one for each element of the actual
argument, is returned to the calling program as the result of the function call in
the form of an array of the same shape as the actual argument. Thus, the
function is applied element-by-element (hence the term elemental reference) to

570 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the actual argument, resulting in an array of the same shape as the argument
and whose element values are the same as if the function had been
individually applied to the corresponding elements of the argument.

The square root function SQRT is an example of an elemental intrinsic
function. Its dummy argument is a scalar, and it returns a scalar result. A
typical reference to SQRT might be

Y = SQRT(X)

If both X and Y are scalar variables, this would be a normal call to SQRT,
familiar in Fortran 77. In Fortran 90, X and Y can be arrays. Suppose that both
are one-dimensional arrays with bounds X(1:100) and Y(1:100). Then the above
assignment statement is still valid and has a result equivalent to:

DO J = 1, 100
Y (J) = SQRT (X (J))

END DO

except that the elemental call to SQRT does not imply the ordering of the
individual computations that is specified by the DO construct. In this case, X
and Y have the same shape. What would happen in this example if they did
not? Answer: the assignment statement would be invalid, because the result
returned by SQRT(X) has the same shape as X, and the assignment statement
requires conformable objects on both sides of the equal sign.

If the procedure has more than one dummy argument, can it be called
elementally? Yes, if all of the dummy arguments and the result are scalar and
the actual arguments are conformable. Of course, there is always an exception:
if the name of the dummy argument is KIND (which means its value is a kind
type value), its associated actual argument must be scalar; the other actual
arguments may be scalars or arrays, as long as they are conformable, and the
result has the shape of these arrays or a scalar. The KIND actual argument
specifies the kind value for the resulting array.

All of the elemental intrinsic procedures are identified as such in the Appendix
A intrinsic procedure descriptions under the heading class. Many of these have
multiple arguments (including the single intrinsic subroutine MVBITS) and
many have a KIND dummy argument. In the case of MVBITS there is no
function result, of course (one of the arguments returns the result), but the rule
for conformable actual arguments is the same as for the elemental functions.

Using Procedures 571

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Prediction: Elemental references will become very popular with Fortran
programmers, generating pressure to extend this functionality to user-defined
procedures in the next version of the Fortran standard. In some respects
elemental references are to Fortran 90 what generic references are to Fortran
77—allowed for intrinsic procedures, but not yet allowed for user-defined
procedures. Fortran 90 allows generic references for user-defined procedures as
well as intrinsic procedures, and only time will tell if a similar evolution will
take place for elemental references.

12.5.9 Alternate Returns

An alternate return is one of the two kinds of procedure arguments that are not
data objects (the other is a dummy procedure—see Section 12.5.10). Alternate
returns can appear only in subroutine argument lists. They are used to specify
a return different than the normal execution upon completion of the
subroutine. As mentioned in Section 12.1.1, there are usually superior ways of
achieving the desired control, and therefore alternate return is an obsolescent
feature. It could be removed from the next revision of the Fortran standard.

There may be any number of alternate returns in a subroutine argument list,
and they may appear at any position in the list. In the dummy argument list
each alternate return is simply an asterisk. For example, the following dummy
argument list for subroutine CALC_2 has two alternate return indicators, in the
second and fifth argument positions.

SUBROUTINE CALC_2 (A, *, P, Q, *)

Alternate returns cannot be optional, and the associated actual arguments
cannot have keywords.

Actual arguments associated with alternate return dummy arguments must be
asterisks followed by labels of branch targets in the scope of the calling
program. They specify the return points for the corresponding alternate
returns. For example, the following is a valid reference to CALC_2:

CALL CALC_2 (X, *330, Y, Z, *200)

provided the statements labeled 200 and 330 are branch targets. The statement
having the label 330 is the return point for the first alternate return, and the
statement having the label 200 is the return point for the second alternate
return.

572 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Use of an alternate return is accomplished with the extended form of the
RETURN statement (R1224) described in Section 12.4.1. That form is:

RETURNscalar-integer-expression

The scalar integer expression must have an integer value between 1 and the
number of asterisks in the dummy argument list, inclusive. The integer scalar
expression value selects which of the alternate returns, counting from left to
right, is to be utilized. Using the above example call:

RETURN 2 ! returns to statement 200 in the calling program
RETURN (1) ! returns to statement 330
RETURN ! normal return from the call

12.5.10 Dummy Procedures

A dummy argument may be a name that is subsequently used in the procedure
as a procedure name. That is, it may appear in an interface block, in an
EXTERNAL or INTRINSIC statement, or as the name of the procedure
referenced in a function or subroutine reference. The associated actual
argument must be the name (without an argument list) of an external, module,
intrinsic, or dummy procedure.

Rules and restrictions:

1. The actual argument must not be the name of an internal procedure or a
statement function.

2. The actual argument must not be a generic procedure name, unless there is
a specific procedure with the same name; only specific procedures may be
passed in argument lists.

3. If the interface of the dummy procedure is explicit, the associated actual
procedure must be consistent with this interface as described in Section
12.6.2.2.

4. If the dummy procedure is typed, referenced as a function, or has an
explicit function interface, the actual argument must be a function.

5. If the dummy procedure is referenced as a subroutine or has an explicit
subroutine interface, the actual argument must be a subroutine.

Using Procedures 573

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Dummy procedures may be optional, but must not have the INTENT attribute.
They may occur in either function or subroutine subprograms. The associated
actual argument may be specified using a keyword.

12.6 Procedure Interfaces
The term procedure interface refers to those properties of a procedure that
interact with or are of direct concern to a calling program in referencing the
procedure. These properties are the names of the procedure and its dummy
arguments, the attributes of the procedure (if it is a function), and the
attributes and order of the dummy arguments. If these properties are all
known to the calling program—that is, known within the scope of the calling
program—then the procedure interface is said to be explicit in that scope;
otherwise, the interface is implicit in that scope. Examples of explicit interfaces
are Fortran 77 intrinsic procedures; examples of implicit interfaces are Fortran
77 external procedures and statement functions.

Interface blocks may be used in the specification part of a scoping unit to
make explicit a procedure interface (other than a statement function) that
otherwise would be implicit in that scoping unit. In addition, interface blocks
serve four other purposes in Fortran 90:

1. to allow the user to give generic properties to procedures

2. to define new user-defined operators and to extend the generic properties
of intrinsic operators

3. to extend the assignment operation to new data combinations (user-
defined coercions)

4. to specify that a procedure is external

The following sections describe the roles of explicit interfaces, situations in
which explicit interfaces are needed, when a procedure definition provides an
explicit interface, and all of the uses of interface blocks.

574 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.6.1 Explicit Interfaces

The explicit procedure interface is one of the most important features of
Fortran 90, for two principal reasons. First, its use can significantly diminish
what may be the biggest source of errors in Fortran 77: mismatched data types
in procedure references. Second, explicit interfaces enable significant
functionality; the following ten situations require explicit interfaces:

1. optional arguments

2. array-valued functions

3. pointer-valued functions

4. character-valued functions whose lengths are determined dynamically

5. assumed-shape dummy arguments (needed for efficient passing of array
sections)

6. dummy arguments with the pointer or target attribute

7. keyword actual arguments (which allow for better argument identification
and order independence of the argument list)

8. generic procedures (calling different procedures with the same name)

9. user-defined operators (which is just an alternate form for calling certain
functions)

10. user-defined assignment (which is just an alternate form for calling certain
subroutines)

Explicit interfaces are required for items 1 and 7 in this list so that the proper
association between actual and dummy arguments can be established. In
Fortran 90 any of the arguments in the dummy argument list may be declared
to be optional and any such argument may be omitted in a reference to the
procedure. Keyword arguments allow actual arguments to occur in any order
and are needed when omitting an optional argument that is not the last in the
dummy argument list. Consider, for example, the procedure:

SUBROUTINE EX (P, Q, R, S, T); OPTIONAL Q, R, T

The following are all valid calls:

CALL EX (V, W, X, Y, Z)
CALL EX (V, W, X, Y) ! last argument omitted

Using Procedures 575

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

CALL EX (P=V, Q=W, R=X, S=Y, T=Z) ! same as first call
CALL EX (P=V, Q=W, R=X, S=Y) ! same as second call
CALL EX (P=V, S=Y) ! all optional arguments omitted
CALL EX (S=Y, P=V) ! same as fifth call
CALL EX (R=X, S=Y, P=V, Q=W) ! same as second call
CALL EX (S=Y, T=Z, Q=W, P=V) ! an optional argument omitted

The last four of these example CALL statements illustrate why explicit
interfaces are needed for optional and keyword arguments—namely, so that
the calling routine knows the names of the dummy arguments in order that the
proper subroutine reference can be generated.

Items 2 and 4 in the above list involve function results whose size (number of
“things” returned) is determined by the procedure and may be different from
reference to reference. Explicit interfaces convey the necessary information to
the calling routines to process such references correctly. Note that other
means—for example, additional declarations—could have been used to convey
the necessary information. As it happens, the design choice made in Fortran 90
was to specify explicit interfaces, which come “for free” with internal and
module procedures.

Item 3 is another case in which the necessary information could have been
conveyed in other ways, but explicit interfaces are again sufficient and, at least
for internal and module procedures, place a minimal burden on the user. In
this case the calling procedure needs to know that there is a layer of indirection
(the pointer) buffering the actual data involved.

Item 5 represents a significant new functionality in Fortran 90, one that
requires additional information in the calling program that is nicely provided
by explicit interfaces. With discontiguous arrays, additional information must
be passed in the call. The Fortran 77 array passing mechanism requires
contiguous arrays and does not require passing the array shape and size. In
contrast, Fortran 90 also allows passing sections of arrays as arguments, which
may comprise array elements discontiguous in storage, and indeed may
represent very sparse array sections. Assumed-shape dummy arrays are
provided to accommodate this new form of array passing. Any array,
contiguous or not, may be passed to either form of dummy argument,
assumed-shape or otherwise. For implicit interfaces an explicit-shape or
assumed-size (Fortran 77 style) dummy argument is the default, and therefore
assumed-shaped arguments require explicit interfaces. Discontiguous array
sections can be passed to explicit-shape or assumed-size dummy arguments,

576 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

but in this case the processor must pack such sections into contiguous
temporaries on entry to the procedure and unpack them on return, possibly
incurring performance penalties.

Item 6 is on the list because an actual argument may be a pointer, but what is
passed may be either the pointer itself or the target. Which one is passed
depends upon what the procedure expects, and hence whether or not the
dummy argument has the pointer attribute. The explicit interface provides the
required information. The default for implicit interfaces is that the target is
passed. This is consistent with both the basic nature of Fortran 77 and the
Fortran 90 pointer mechanism—except in extenuating circumstances a pointer
reference is a reference to the target. This means that a pointer object can be
passed to a Fortran 77 procedure with the effect of passing the target object.

For generic procedures (item 8) the calling routine must be able to
disambiguate a generic procedure name; that is, because generic means two or
more procedures with the same name, the calling routine must have enough
information to determine which specific procedure to invoke for a given
reference. Explicit interfaces provide this information by making dummy
argument attribute information available to the calling routine. The specific
procedure called is the one for which the dummy argument attribute pattern
matches that for the actual arguments. Generic procedures, including the use
of interface blocks for configuring generic names, are discussed in detail in
Section 12.6.3.

User-defined operators (item 9) merely represent an alternative way to
reference certain functions. They allow the use of infix operator notation,
rather than traditional function notation for two-argument functions. Thus, for
example, A + B can be used in place of RATIONAL_ADD (A, B) if A and B are
of the derived type representing rational numbers, and the operator “+” has
been extended as the operator form of RATIONAL_ADD. An example of using
a new operator, rather than extending an intrinsic operator, is P .SMOOTH. 3,
where P represents a matrix of picture elements to be “smoothed” and 3 is the
size of the smoothing neighborhood. This is alternative syntax for the function
reference PICTURE_SMOOTH (P,3). Such alternative syntax provisions are
similar to generic procedures, and the same sort of interface information is
needed to resolve such references. This topic is treated in detail in Section
12.6.4.

A third form of generic interface provided by Fortran 90 for which explicit
interface information is used to resolve references is that of assignment
coercion (item 10). This allows a value of one data type to be converted to a

Using Procedures 577

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

corresponding value of another data type and assigned to an object of the latter
type. A simple example of coercion, intrinsic to Fortran 77, is K = X + 2.2,
where X is of type real and K is integer. Examples of desirable new coercions
might be R = K where R is of the derived type representing rational numbers,
and K is an integer, and P = M2D where P is of the derived type representing a
two-dimensional picture and M2D is a two-dimensional integer array. In
Fortran 77 these last two effects would be achieved by subroutine calls:

CALL RATINT (R, K)
CALL PXINIT (P, M2D)

In Fortran 90 these coercion operations are performed by the same subroutines,
but these subroutines may be invoked by the assignment syntax rather than
the traditional subroutine call syntax. This topic is treated in more detail in
Section 12.6.5.

12.6.2 Interface Blocks

A procedure interface block is used to

1. make explicit interfaces for external and dummy procedures

2. define a generic procedure name, specify the set of procedures to which
that name applies, and make explicit the interfaces of any external
procedures included in the set

3. define a new operator symbol or specify extension of an intrinsic or
already defined operator, identify the function or functions to which it
applies, and make explicit the interfaces of any of those functions that are
external

4. define one or more new assignment coercions, identify the subroutine or
subroutines involved, and make explicit the interfaces of any of those
subroutines that are external

In all of these cases, the purpose of the interface block is to make the necessary
information available to the calling routine so that a procedure reference can be
processed correctly. Therefore, the interface block must either appear in the
specification part of the calling routine or be in a module used by the calling
routine.

578 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Of the four items listed above, the first is further described below in this
section, the second in Section 12.6.3, the third in Section 12.6.4, and the fourth
in Section 12.6.5. In the remainder of this section, the general form of interface
blocks, covering all four of these cases, is described, followed by a discussion
of the simplified form that applies to just the first case. Sections 12.6.3, 12.6.4,
and 12.6.5 each deal with specific forms of the interface block that apply to
these cases.

12.6.2.1 General Form of Procedure Interface Blocks

Interface blocks (R1201) have the form:

INTERFACE [generic-spec]
[interface-body] ...
[MODULE PROCEDUREprocedure-name-list] ...

END INTERFACE

where a generic specification (R1206) is one of the following three things:

generic-name
OPERATOR (defined-operator)

ASSIGNMENT (=)

and an interface body (R1204) specifies the interface for either a function or a
subroutine:

function-statement
[specification-part]

END [FUNCTION [function-name]]

subroutine-statement
[specification-part]

END [SUBROUTINE [subroutine-name]]

Rules and restrictions:

1. If the generic specification is omitted, the MODULE PROCEDURE option
must also be omitted; the form without the generic specification applies to
case 1 in the list of four above.

2. The choice of a generic name for a generic specification is case 2; the
OPERATOR choice for a generic specification is case 3; and the
ASSIGNMENT choice for a generic specification is case 4.

Using Procedures 579

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. In all cases an interface body must be for an external or dummy procedure.

4. The specification part of an interface body contains specifications
pertaining only to the dummy arguments and, in the case of functions, the
function result. This means, for example, that an interface body cannot
contain an ENTRY statement, DATA statement, FORMAT statement, or
statement function statement.

5. The attributes of the dummy arguments and function result must be
completely specified in the specification part, and these specifications must
be consistent with those specified in the procedure definition. Note that
dummy argument names may be different, but the attributes must be the
same.

6. Because an interface block describes properties defined in an external
scope rather than in its host’s scope, an interface block comprises its own
scoping unit, separate from any other scoping unit; an interface block does
not inherit anything from its host via host association, such as named
constants or implicit type rules.

7. An interface body may contain a USE statement and access entities, such as
derived-type definitions, via use association.

8. A procedure name in a MODULE PROCEDURE statement must be the
name of a module procedure either in that module (if the host of the
interface block is a module) or accessible to the host through use
association. It must not appear in another interface with the same generic
specifier in the same or an accessible scoping unit.

9. An interface block must not contain an ENTRY statement, but an entry
interface may be specified by using the entry name as the function or
subroutine name in an interface body.

10. A procedure must not have more than one explicit interface in a given
scoping unit.

11. An interface block must not appear in a block data program unit.

12. Note that the keywords FUNCTION and SUBROUTINE are optional in the
END statements of interface bodies. This means that the specification and
END statements of an external program can be used to form a valid
interface body.

580 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13. Two or more generic interfaces, specifying the same generic specifier, may
be accessible in the same scoping unit, either directly or by use or host
association. In such a case, they are interpreted as if a single interface block
with the same generic specifier were written.

12.6.2.2 Explicit Interfaces for External Procedures

The simplest use of interface blocks is to make the interfaces for external (and
dummy) procedures explicit. The form of the interface block for this purpose
is:

INTERFACE

[interface-body] ...
END INTERFACE

Rules and restrictions 3–7 and 9–13 apply in this case. Rule 6 means that
IMPLICIT statements, type declarations, and derived-type definitions in the
host do not carry down into an interface block. Rule 10 means that an interface
body for a given external procedure may be specified at most once in a host
program unit. An interface body cannot be specified for intrinsic, internal, and
module procedures, because these procedures already have explicit interfaces.

12.6.3 Generic Procedures

Fortran 77 programmers are familiar with generic procedures, because many of
the intrinsic procedures in Fortran 77 are generic. An example is:

INT (R)
INT (D)

where R and D are respectively real and double precision objects. It looks like
there is only one procedure involved here (INT), but there are really two. There
is a specific procedure lurking around that accepts a real argument and another
one that accepts a double precision argument. Because the purpose of these
two procedures is virtually identical, it is desirable to refer to each of them
with the same generic name. The type of the argument is sufficient to identify
which of the specific procedures is involved in a given reference.

Thus, generic refers to a set of different procedures with different specific
names that all have the same (generic) name. Fortran 77 limits this
functionality to intrinsic procedures with the generic aspects predefined in the
language. This extremely popular feature of Fortran 77 has been extended in

Using Procedures 581

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Fortran 90 to allow users to define additional generic properties involving
intrinsic and user-defined procedures. The mechanism for this is the interface
block, which in this case has the form:

INTERFACE generic-name
[interface-body] ...
[MODULE PROCEDUREprocedure-name-list] ...

END INTERFACE

Rules and restrictions 3–12 in Section 12.6.2.1 apply in this case. The generic
name in the INTERFACE statement, of course, specifies the generic name to be
used in this host. All the procedures being assigned this generic name are
specified in the interface block. This potentially includes both external
procedures and module procedures. In the case of an external procedure, the
procedure is identified by its specific name and its interface, thereby making its
interface explicit as well as defining a generic name for it. In the case of a
module procedure, only the specific name of the procedure is given (in order to
identify the procedure) because its interface is already explicit. Note that
because of rule 10 (Section 12.6.2.1) an external procedure can be included in
only one generic set in a given host. Because the MODULE PROCEDURE
statement does not specify an explicit interface, however, a module procedure
may be included in any number of generic sets.

Note also that internal procedures cannot be given generic names, nor can
statement functions. Similarly, intrinsic procedures cannot be included in an
interface block, but a generic name may be the same as an intrinsic procedure
name, including a generic intrinsic procedure name. For example:

INTERFACE INT
MODULE PROCEDURE RATIONAL_TO_INTEGER

END INTERFACE

is allowed, which extends the generic properties of INT to include a user-
defined procedure. The generic name may also be the same as one of the
specific names of the procedures included in the generic set, or the same as any
other generic name, or completely different. The only real requirement is that
any procedure reference involving a generic procedure name be resolvable to
one specific procedure. Thus, for example, the generic name INT cannot be
applied to a user-defined function that has a single real argument, because
then a reference to INT with a real actual argument would be ambiguous as to
whether the reference was to the corresponding intrinsic function or to the
user-defined function.

582 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Moreover, there may be any number of generic names active in any given
scoping unit. A common situation will be that a number of generic names will
be imported by USE statements. Any of these generic sets may be increased
arbitrarily, as long as any procedure reference can be uniquely resolved to a
specific procedure.

The rules for resolving a generic reference involve the number of arguments
and the type, kind type parameter, and rank of each argument. Based upon
these rules, and only these rules, a given procedure reference must be
consistent with precisely one of the specific procedures in the generic set. This
concept is fairly simple, but there is a subtle aspect to it. Consider, for example,
a simple two-argument subroutine G (P, Q) with generic name G, dummy
argument names P and Q, and neither argument optional. A reference to G,
with actual arguments X and Y could take any of the following four forms:

CALL G (X, Y)
CALL G (X, Q=Y)
CALL G (P=X, Q=Y)
CALL G (Q=Y, P=X)

The last three are allowed because the interface to G is explicit and keyword
references may be used when the interface is explicit. What subroutine H could
be added to the generic set with G? The first of the above four calls rules out
any two-argument H whose first argument has the same type, kind type
parameter, and rank (TKR) as the P argument of G and whose second
argument has the same TKR as the Q argument of G. The third and fourth of
these four calls rules out any subroutine H of the form H (Q, P), whose first
argument is named Q and has the same TKR as the Q (second) argument of G
and whose second argument is named P and has the same TKR as the P (first)
argument of G. The reason for this last case is that a reference to H in which all
the actual arguments had keywords would look exactly like a call to G, in
terms of TKR patterns; such a reference would not be uniquely resolvable to
either a call to G only or to H only. Any other H could be included in the
generic set with G.

Thus, the essence of the generic reference resolution rules is uniqueness with
respect to TKR patterns under both positional or keyword references. The
complete formal rules for this are given in Section 14.2.7.

A procedure may always be referenced by its specific name. It may also be
referenced by any generic name it might also have been given.

Using Procedures 583

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.6.4 Defined Operators

Just as generic names allow the user to give procedures alternative and
presumably “better” forms of reference, so do defined operators. In this case
functions of one or two nonoptional arguments are involved.

Often the purpose of a function is to perform some computation (operation) on
the values represented by its arguments and to return the result for
computational use in the calling program. In mathematical tradition, such
operations of one or two arguments are usually expressed as operators in an
expression, with the arguments as the operands. A good example is the
INVERSE function given in Section 11.6.5.4. The defined operator provisions of
the interface block give users the option of specifying a function reference with
operator syntax. Conceptually, it is very similar to that of generic procedures,
although syntactically quite different, and may be considered a special form of
generic functions.

The form of the interface block for defining a new operator or extending the
generic properties of an existing operator is:

INTERFACE OPERATOR (defined-operator)

[interface-body] ...
[MODULE PROCEDUREprocedure-name-list] ...

END INTERFACE

Pretty much the same rules apply here as in the generic name case. In addition,
each interface body must be for a one- or two-argument function, and each
procedure name in the MODULE PROCEDURE statement must be that of a
one- or two-argument function. The arguments must all be nonoptional and all
must be specified with INTENT(IN).

The defined operator in the INTERFACE statement specifies the operator that
can be used in the operation form of reference for each of the functions
identified in the interface block. The operation takes the infix (operator
between the arguments) form for two-argument functions and takes the prefix
form for one-argument functions. For example:

584 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

INTERFACE OPERATOR (+)
FUNCTION INTEGER_PLUS_INTERVAL (X, Y)

USE INTERVAL_ARITHMETIC
TYPE (INTERVAL) :: INTEGER_PLUS_INTERVAL
INTEGER, INTENT (IN) :: X
TYPE (INTERVAL), INTENT (IN) :: Y

END FUNCTION INTEGER_PLUS_INTERVAL
MODULE PROCEDURE RATIONAL_ADD

END INTERFACE

extends the “+” operator to two user-defined functions, an external function
INTEGER_PLUS_INTERVAL that presumably computes an appropriate value
for the sum of an integer value and something called an “interval”, and a
module function RATIONAL_ADD that probably computes the sum of two
“rational numbers”. Both functions now can be called in the form A+B, where
A and B are the two actual arguments. An example of new operator definition,
rather than extending existing operators, is:

INTERFACE OPERATOR (.INVERSETIMES.)
MODULE PROCEDURE MATRIX_INVERSE_TIMES

END INTERFACE

Now the inverse of matrix A can be multiplied by B using the expression
A .INVERSETIMES. B, which produces , and in effect solves the
system of linear equations, A = B, for .

Functions with operator interfaces may be referenced with the operator form,
but they also may be referenced via the traditional functional form using the
specific function name.

Note that the two forms for a defined operator given by (R311, R704, R724):

intrinsic-operator

. letter [letter]
are the same as some of the intrinsic operators and that neither .TRUE. nor
.FALSE. may be chosen as a defined operator. Note also that if an operator has
the same name as an intrinsic operator, it must have the same number of
operands as the intrinsic operator; for example, .NOT. must not be defined as
a binary operator.

Operator interfaces define a set of generic procedures, with the operator being
the “generic name”. This is particularly obvious with intrinsic operators, as
each intrinsic operation may be thought of as being performed by a “hidden

'A 1– 'B×
x x

Using Procedures 585

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

intrinsic function” and the operator interface merely extends the set of
functions that share that operator form. As with the use of generic procedure
names, a function reference via a generic operator must resolve to a unique
specific function. The resolution rules in this case are exactly the same TKR
rules used for the generic name case when the functional form is used (see the
previous section), but are somewhat simpler when the operator syntax is used,
because this syntax does not allow the use of argument keywords. Thus, the
argument TKR pattern must be unique solely on the basis of argument
position.

This means, for example, that “+” cannot be specified in an operator interface
for a function with a scalar integer argument and a scalar real argument,
because “+” already has a meaning for any such TKR pattern. Specifying such
an operator extension would mean that I+R, where I is a scalar integer and R is
a scalar real, would be ambiguous between the intrinsic meaning and the
extended meaning. Therefore, the Fortran 90 TKR rules disallow such
extensions. Of course, because the interfaces of all generic procedures,
including defined operators, are explicit, the compiler can detect when a
violation of these TKR rules is attempted.

12.6.5 Defined Assignment

The last form of generic procedures in Fortran 90 is assignment (or conversion)
subroutines. These specify the conversion of data values (see Section 12.6.3)
with one set of TKR attributes into another set with a different pattern of TKR
attributes. Although such conversions can be performed by ordinary
subroutines, it is convenient and “natural” to express their use with
assignment syntax, and hence defined assignment extensions. If one wishes to
think of assignment as an “operation”, then defined assignment is precisely the
same as defined operators, except that there is only one defined assignment
operator symbol (=), and all defined assignment procedures are two-argument
subroutines rather than functions. As with the other forms of generic
procedures, the interface block is used to specify defined assignments.

The form of the interface block for defining new assignment operations is:

INTERFACE ASSIGNMENT (=)

[interface-body] ...
[MODULE PROCEDUREprocedure-name-list] ...

END INTERFACE

586 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Again, most of the same rules apply here as in the generic name case, except
that each interface body must be for a two-argument external subroutine and
each procedure name in the MODULE PROCEDURE statement must be that of
an accessible two-argument module subroutine. Neither argument may be
optional. The first argument must have the attribute INTENT(OUT) or
INTENT(INOUT); this is the location for the converted value. The second
argument must have the attribute INTENT(IN); this is the value to be
converted.

The assignment interface specifies that an assignment statement can be used in
place of a traditional subroutine call for the subroutines identified in the
interface block. The form of this assignment is:

variable = expression

where the variable would be the first actual argument in a traditional call to
the subroutine and the expression would be the second argument. The variable
must be a variable designator legitimate for the left-hand side of an
assignment. The traditional subroutine call may continue to be used as well as
the assignment syntax.

An example of an assignment interface block is:

INTERFACE ASSIGNMENT (=)
SUBROUTINE ASSIGN_STRING_TO_CHARACTER (C, S)

USE STRING_DATA
CHARACTER (*), INTENT (OUT) :: C
TYPE (STRING), INTENT (IN) :: S

END SUBROUTINE ASSIGN_STRING_TO_CHARACTER
MODULE PROCEDURE RATIONAL_TO_INTEGER

END INTERFACE

This interface block allows ASSIGN_STRING_TO_CHARACTER (which
extracts the character value) to be called in the form:

C = S

In addition, RATIONAL_TO_INTEGER may be called in the form

R = K

where R is of derived type RATIONAL and K is an integer. The purpose of
RATIONAL_TO_INTEGER presumably is to convert an integer value into the
appropriate RATIONAL form.

Using Procedures 587

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In analogy with the discussion of generic operators in the preceding section,
each intrinsically defined assignment operation may be thought of as being
performed by a hidden intrinsic subroutine. Thus, the assignment symbol is
the generic name of a set of generic subroutines. The assignment interface
block allows the user to add user-defined external and module subroutines to
that generic set. In analogy with generic operators, any given assignment must
be resolvable to the specific subroutine. Not surprisingly, when assignment
syntax is used, it is the TKR pattern rules (see Section 12.6.3) without the
keyword argument complication that are applied to perform this resolution,
exactly as with defined operators.

This means, for example, that an assignment interface cannot be specified for a
subroutine whose first argument is a scalar of type integer and whose second
argument is a scalar of type real. All such coercions have intrinsic meanings,
and thus an assignment interface block of this form would introduce an
unresolvable ambiguity. The TKR rules prevent this from happening, and the
compiler can detect when a violation of these rules is attempted.

12.7 Summary

12.7.1 Procedure Properties

Table 12-1 summarizes the properties of Fortran procedures.

12.7.2 Subroutine

A user-defined subroutine is either an external, a module, or an internal
procedure. Five intrinsic procedures are subroutines. A subroutine consists of a
self-contained body of statements describing a particular task that may be
called upon in a Fortran program. Subroutines are invoked with a CALL
statement. The subroutine argument list contains both input and output data
objects. (See Section 12.2.)

SUBROUTINE MARY (X, ROBERT, DUST)
REAL, OPTIONAL :: X, ROBERT, DUST
. . .

END SUBROUTINE MARY
. . .

CALL MARY (DUST = 21, X = 4.3)

588 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.7.3 Function

A user-defined function is either an external, a module, or an internal
procedure. There are over 100 intrinsic functions. Functions and subroutines
are similar in definition. A function is referenced as an operand in an
expression by using its name followed by actual arguments, if any. The
arguments to a function serve primarily as input to the function; the function
result is the principal output. (See Section 12.3.)

FUNCTION PRESSURE (TE)
. . .

END
. . .

X = PRESSURE (Y*2.3) + XSET

Table 12-1 Summary of Fortran procedure properties

Type of procedure

Property of procedure External Intrinsic Module Internal
Statement
function

Dummy arguments may be optional Yes Yes Yes Yes No

Call may use keywords Yes Yes Yes Yes No

Call may be recursive Yes N/A Yes Yes No

Definition may have CONTAINS Yes Yes Yes No No

May be passed Yes Yes Yes No No

May appear in an interface body Yes No No No No

Interface automatically explicit No Yes Yes Yes No

May be called elementally No Yes No No No

May be used to define operators Yes No Yes No No

May be generic Yes Yes Yes No No

May contain ENTRY statements Yes N/A Yes No N/A

Using Procedures 589

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.7.4 ENTRY Statement

The ENTRY statement defines an additional procedure associated with a
subprogram. The number of procedures defined by a procedure subprogram is

, where is the number of ENTRY statements in the subprogram. (See
Section 12.4.3.)

ENTRY GG (X)

12.7.5 Statement Function

The statement function is a facility that allows the programmer to encapsulate
a computation that can be defined with a single scalar expression. (See Section
12.3.4.)

FCOS (Y) = Y * Q
. . .

TEMP = FCOS (T) ** 5

12.7.6 Assignment Subroutines

A subroutine may be configured as a defined assignment, which extends the
use of the assignment statement for making coercions and assigning values.
(See Section 12.6.5.)

INTERFACE ASSIGNMENT (=)
SUBROUTINE ASSIGN_ARRAY_MATRIX (MATRIX, ARRAY)

TYPE (MATRIX_TYPE), INTENT (OUT) :: MATRIX
REAL, INTENT (IN) :: ARRAY(:,:)

END SUBROUTINE
END INTERFACE
TYPE (MATRIX_TYPE) MATRIX_A
REAL A(10,10)

. . .
MATRIX_A = A

12.7.7 Operator Functions

A function may be configured as a defined operation. New operators may be
defined, and intrinsic operators extended. (See Section 12.6.4.)

n 1+ n

590 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

INTERFACE OPERATOR (.SQUARE.)
FUNCTION OP (X)

 INTENT (IN) X
END FUNCTION OP

END INTERFACE
. . .

PRINT * , A + .SQUARE. B

12.7.8 Generic Procedures

A set of procedures may be given a generic name, and generic intrinsic names
may be applied to user-defined procedures. (See Section 12.6.3.)

12.7.9 Explicit Interfaces

The interfaces of intrinsic, module, and internal procedures are always explicit.
The interface of an external procedure is normally implicit, but may be made
explicit with an interface block. The interfaces of statement functions are
always implicit. (See Section 12.6.1.)

12.7.10 Optional Arguments

Arguments may be specified as optional in external, module, and internal
procedures. Some of the intrinsic procedures have optional arguments. The
PRESENT intrinsic function allows user-defined procedures to determine the
presence or absence of an actual argument associated with an optional dummy
argument. (See Section 12.5.5.)

12.7.11 Keyword Arguments

Actual arguments may be specified with keywords, which provide order
independence and accommodate the omission of optional arguments.
Keywords are dummy argument names, and their use requires explicit
interfaces. (See Section 12.5.4.)

Using Procedures 591

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

12.7.12 Recursion

External, module, and internal procedures may be directly and indirectly
recursive. Recursive procedures require use of the RECURSIVE keyword in the
procedure definition, and recursive functions often require use of the RESULT
clause. (See Sections 12.1.2, 12.2.1, 12.3.1, and 12.3.2.)

RECURSIVE FUNCTION F(I) RESULT (R)
IF (I<0) THEN; R = 1
ELSE; R = I*G(I-1)
END IF

END FUNCTION F

RECURSIVE FUNCTION G(I) RESULT (R)
IF (I<0) THEN; R = 1
ELSE; R = I+F(I-1)
END IF

END FUNCTION G

592 Fortran 90 Handbook

12

Copyright © J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

593

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Intrinsic Procedures 13

Intrinsic procedures are functions and subroutines that are part of any
standard-conforming implementation of Fortran 90; they are specified in the
standard and thus are called intrinsic. Examples of intrinsic procedures are
SIN, COS, SUM, RANDOM_NUMBER, and SHAPE. There are 113 intrinsic
procedures available in Fortran 90—five intrinsic subroutines and 108 intrinsic
functions.

Intrinsic procedures are always “there”, and may be called from any program
unit or subprogram. However, a user-written function or subroutine with the
same name as an intrinsic function or subroutine takes precedence over the
intrinsic procedure in a given scoping unit if its interface is explicit, it is listed
in an EXTERNAL statement in that scoping unit, or it is a statement function.
The intrinsic procedure takes precedence if and only if there is no statement
function with this name, and it is either listed in an INTRINSIC statement or
the user-defined procedure’s interface is implicit in that scoping unit. For
example, a module or internal procedure always overrides an intrinsic
procedure with the same name (in the absence of an applicable INTRINSIC
statement) because its interface is explicit.

All of the Fortran 90 intrinsic procedures are listed in Table 13-1, and each of
these procedures is described in detail in Appendix A.

594 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13.1 Intrinsic Procedure Terms and Concepts
Intrinsic procedures are “pre-defined” by the language, but otherwise conform
to the principles and rules for procedures as described in Chapter 12. In
particular, intrinsic procedures are invoked in the same way as other
procedures (12.2.2 and 12.3.3) and employ the same argument association
mechanisms (12.5). An intrinsic procedure’s interface is explicit in all scoping
units, but may be superseded by a user-defined procedure. The intrinsic
procedure interfaces, including the argument keywords (dummy argument
names) and argument optionality, are all described partially in Section 13.8 and
completely in Appendix A.

Generic Procedures. All the intrinsic procedures except four functions (LGE,
LGT, LLE, LLT) are generic and each corresponds to two or more underlying
specific intrinsic procedures. Each specific intrinsic procedure has a specific
type/kind pattern and sometimes rank requirements for its argument list, and
resolution of a reference to a generic intrinsic procedure is based upon this
pattern as described in Section 12.5.7.

Some of the specific intrinsic functions have names, which are listed in Table
13-2. The specific names may be used in procedure references, although this is
not recommended. When passing intrinsic functions as actual arguments, the
specific names must be used; thus, only the specific intrinsic functions listed in
Table 13-2 can be passed. Note that several of these (marked with an asterisk)
are explicitly disallowed from being used as actual arguments. Note also from
Table 13-2 that some of the specific intrinsic names are the same as the generic
names.

Elemental Procedures. As mentioned in Section 12.5.8, many of the intrinsic
functions and one intrinsic subroutine may be referenced elementally. This
extends those intrinsic procedures to array arguments and results in a natural
way. The intrinsic procedures that can be called elementally are the conversion
functions (13.4), the computation functions (13.5, except for REPEAT, TRIM,
and the vector and matrix multiplication functions DOT_PRODUCT and
MATMUL), and the MVBITS subroutine. The inquiry and numeric
manipulation functions (13.3) and array functions (13.6) are not elemental.

Transformational Procedures. A transformational intrinsic procedure is one
that is not elemental. A transformational procedure has either a dummy
argument that is array valued (for example, the SUM function) or an actual
argument that is array valued without causing an elemental interpretation (for
example, the SHAPE function). The inquiry and numeric manipulation

Intrinsic Procedures 595

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

functions (13.3), the array functions (13.6), and the vector and matrix
multiplication functions DOT_PRODUCT and MATMUL (13.5) are all
transformational. In essence, a transformational function “transforms” an array
actual argument into a scalar result or another array, rather than applying the
argument element-by-element.

Argument Keywords. Intrinsic procedure references may use keyword
arguments, as described in Section 12.5.4. A number of Fortran 90 intrinsic
procedure arguments are optional (12.5.5), and the use of keywords helps in
omitting corresponding actual arguments. For example, in

CALL RANDOM_SEED (PUT=SEED_VALUE)

the keyword form shown must be used because the optional first argument
SIZE is omitted.

Intrinsic procedure keywords (dummy argument names) have been made as
consistent as possible, including using the same name in different intrinsic
procedures for dummy arguments that play a corresponding or identical role.
These include DIM, MASK, KIND, and BACK.

DIM is used, mostly in the array reduction functions and in some of the other
array functions (13.6), to specify which dimension of the array is involved, if
not the whole array. DIM is a scalar integer and usually is optional.

MASK is used, mostly in the array functions, to “mask out” elements of an
array that are not to be involved in the operation. For example, in the function
SUM, any element of the array that is not to be included in the sum of the
elements can be excluded by use of an appropriate mask. The MASK is a
logical array with the same shape as the array it is masking; it usually is an
optional argument.

KIND is an argument that is used mainly in the transfer and conversion
functions (13.4) to specify the kind type parameter of the function result. The
KIND actual argument must be a scalar integer initialization expression, even
in elemental references; it is usually optional.

BACK is an optional logical argument used in several of the intrinsic functions
to specify reverse order (backward) processing. For example, if BACK=.TRUE.
in the INDEX function, then the search is performed beginning from the right
end of the string rather than the left end.

596 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13.2 Representation Models
Some of the Fortran 90 intrinsic functions compute values related to how data
is represented. These values are based upon and determined by the underlying
representation model. There are three such models in Fortran 90: the bit
model, the integer number system model, and the real number system
model.

These models, and the corresponding functions returning values related to the
models, allow development of robust and portable code. For example, by
obtaining information about the spacing of real numbers, the convergence of a
numerical algorithm can be controlled so that maximum accuracy may be
achieved while attaining convergence.

In a given implementation the model parameters are chosen to match the
implementation as closely as possible, but an exact match is not required and
the model does not impose any particular arithmetic on the implementation.

13.2.1 The Bit Model

The bit model interprets a nonnegative scalar data object of type integer as a
sequence of binary digits (bits), based upon the model

where is the number of bits and each has a bit value of 0 or 1. The bits are
numbered from right to left beginning with 0.

The bit computation functions in Section 13.5 are based upon the bit model.
The model deals only with nonnegative integers interpreted through these
functions and the MVBITS subroutine, and it is not necessarily related to the
implementation of the integer data type. It also is independent of the BOZ
constants (4.3.1.4).

13.2.2 The Integer Number System Model

The integer number system is modeled by

bk2k

k 0=

n 1–

∑

n bk

i s dkrk

k 0=

q 1–

∑=

Intrinsic Procedures 597

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where

is the integer value
is the sign (+1 or –1)
is the radix (integer greater than 1)
is the number of digits (integer greater than 0)
is the th digit and is an integer

The integer number system model may model the implementation’s integer
data type exactly, but it need not. It does, however, provide accurate
information about the implementation, such as its largest integer value.

13.2.3 The Real Number System Model

The real number system is modeled by

 where

is the real value
is the sign (+1 or –1)
is the base (real radix) and is an integer greater than 1
is an integer between some minimum and maximum value
is the number of mantissa digits and is an integer greater than 1
is the th digit and is an integer ,

but may be zero only if all the are zero

The real number system model may model the implementation’s real data type
exactly, but it need not. One common implementation is the IEEE floating point
standard, which has single precision model numbers:

 = 2
 = 24

This IEEE standard does not represent , which is presumed to be 1. Thus, the
mantissa, including its sign, can be represented in 24 bits. The exponent,
including sign, takes 8 bits, for a total of 32 bits in the single precision
representation. What normally would be an exponent value of –127 is not

i
s
r
q
dk k 0 dk≤ r<

x sbe fkb k–

k 1=

p

∑=

x
s
b
e
p
fk k 0 fk≤ b<

f1 fk

b
p

126– e 127≤ ≤

f1

598 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

included in the exponent range; rather, IEEE uses this case to identify, for
example, the real value zero (the one case in which is 0) and NaNs (illegal or
out-of-range values).

The numeric inquiry and manipulation functions return much useful
information about the real number system model pertaining to an
implementation.

13.3 Inquiry and Numeric Manipulation Functions
Fortran 90 has a number of intrinsic functions known as inquiry functions and
numeric manipulation functions. These are sometimes called the
“environmental intrinsics”. These functions, rather than performing some
computation with their arguments, return information concerning the status or
nature of the argument. An inquiry function returns information about the
data type of its argument, and the returned value is independent of the value
of the argument; the actual argument of a reference to such a function need not
be defined. A numeric manipulation function, on the other hand, returns
numeric environmental information dependent on the value of the actual
argument; the actual argument of a reference to such a function must be
defined. Fortran 77 has one inquiry function, LEN, that returned the declared
length (number of characters) of the argument character string, and no numeric
manipulation functions. Fortran 90 has a large set of inquiry and numeric
manipulation functions.

Character Inquiry Function (LEN). The LEN intrinsic function, as in
Fortran 77, returns the declared length (number of characters) of the argument
character string. The argument need not be defined, as its value is not required
in order to determine its length. For assumed-length dummy arguments, LEN
returns the length of the actual argument.

Bit Inquiry Function (BIT_SIZE). The BIT_SIZE function returns the number
of bits provided by the bit model (13.2.1) in a scalar data object of type
integer. The argument for BIT_SIZE is an integer, which need not be defined.

Kind Functions. The KIND inquiry function returns the kind type parameter
of its argument, which may be of any intrinsic type. The value of the argument
need not be defined. Somewhat related to the KIND function, but providing a
complementary functionality, are two transformational functions,
SELECTED_REAL_KIND and SELECTED_ INT_KIND.

f1

n

Intrinsic Procedures 599

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SELECTED_REAL_KIND returns the real kind type parameter corresponding
to the decimal precision and exponent range specified by its arguments.
SELECTED_INT_KIND returns the integer kind type parameter corresponding
to the decimal exponent range specified by its argument. Figure 13-1 illustrates
these three functions. KIND maps “variable space” into kind values.
SELECTED_INTEGER_KIND maps “decimal integer model space” into kind
values. The SELECTED_ REAL_KIND function maps “decimal real model
space” into kind values.

Numeric Inquiry Functions. There are nine environmental intrinsic inquiry
functions that together describe the numerical environment in terms of the
integer model (13.2.2) and real model (13.2.3).

Integer number
system model

Desired decimal
exponenet range

Any variable
Any type

Real number
system model

Desired decimal
precision and

exponential range

Kind
value

Figure 13-1 The three intrinsic functions returning KIND values

600 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Function Value returned

DIGITS for an integer argument and for a real argument
EPSILON for a real argument (small compared to 1)
HUGE Largest number in the model (real or integer)
MINEXPONENT The minimum value of for a real argument
MAXEXPONENT The maximum value of for a real argument
PRECISION Decimal precision (real or complex)
RADIX The base of the model (real or integer)
RANGE Decimal exponent range (real, complex, or integer)
TINY Smallest positive value for a real argument

The arguments for these nine functions need not be defined. Note that all are
generic in that each can be used with any kind of real argument, and all but
MINEXPONENT, MAXEXPONENT, and EPSILON can be used with any kind
of integer argument as well.

There are seven numeric manipulation functions that deal with values, based
upon the real number model associated with a single numeric object, rather
than the model properties that apply to the entire type kind. Therefore, the
actual arguments of these seven must be defined before the function is
referenced.

Function Value returned

EXPONENT Value of for the real value
FRACTION Fractional part of a real value
NEAREST Nearest processor number in a given direction
RRSPACING Reciprocal of the relative spacing near the argument
SCALE Change the value of by a specified value
SET_EXPONENT Set the value of to a specified value
SPACING Model absolute spacing near the argument

These seven functions apply only to the real environment but are generic over
all of the kinds of real supported by the implementation and may be called
elementally.

Array Inquiry Functions. Many of the intrinsic functions added in Fortran 90
are related to arrays and constitute a rich set of array operations. The array
inquiry functions allow certain properties of an array to be determined
dynamically.

q p
b1 p–

e
e

b

e

e
e

Intrinsic Procedures 601

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Function Value returned

ALLOCATED Allocation status of the argument array
LBOUND Lower bound(s) of an array or a dimension of an array
SHAPE Number of elements in each dimension of an array
SIZE The size (total number of elements) of an array
UBOUND Upper bound(s) of an array or a dimension of an array

The array argument for these five functions need not be defined, but the
optional DIM argument must be defined if it is used (in SIZE, LBOUND, or
UBOUND).

Pointer Association Status Inquiry Function (ASSOCIATED). The inquiry
function ASSOCIATED returns true if the argument, which must have the
pointer attribute, is currently associated with a target. If the optional second
argument is supplied, ASSOCIATED returns true if the pointer is currently
associated with this second argument; if the second argument is a pointer,
ASSOCIATED returns true if both arguments are associated with the same
target.

Argument Presence Inquiry Function (PRESENT). The inquiry function
PRESENT permits the programmer to determine if an actual argument has
been supplied for a dummy argument specified as optional. The argument to
the PRESENT function must be the name of an optional dummy argument. In
general, PRESENT returns true if an actual argument has been supplied and
returns false otherwise (but see 12.5.5 for the details).

13.4 Transfer and Conversion Functions
Fortran 90 contains a number of intrinsic functions to transfer or convert data
values from one type and kind (TK) combination to another TK combination.
Most of these are also intrinsic functions in Fortran 77, though the optional
KIND argument has been added to many in Fortran 90. Most are also generic,
as they are in Fortran 77, providing the appropriate conversion for a number of
different argument TK patterns.

Function Value returned

ACHAR Character in the specified position of the ASCII character
set

AIMAG The imaginary part of a complex argument value
AINT A real value truncated to an integer (result is still real)

602 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

ANINT A real value rounded to the nearest integer (result is still
real)

CHAR Character in the specified position of the processor
character set

CMPLX The corresponding complex value of the argument
CONJG The complex conjugate of a complex argument
DBLE The corresponding double precision value of the argument
IACHAR Position of the specified character in the ASCII character

set
IBITS A specified substring of bits of an integer argument
ICHAR Position of the specified character in the processor

character set
INT The corresponding (truncated) integer value of the

argument
LOGICAL The corresponding logical value of the argument
NINT A real value rounded to the nearest integer
REAL The corresponding real value of the argument

All of the functions in this list may be called elementally.

The TRANSFER Intrinsic Function. The TRANSFER function allows “binary
transfer” of data between different TK patterns without conversion of any sort.
The physical representation (for example, bit pattern) of the source data is
transferred to the function result unchanged; the TK pattern of the function
result is that of the MOLD argument. The TRANSFER function is
transformational, not elemental. Note that the TRANSFER function cannot
produce portable results.

13.5 Computation Functions
The computation intrinsic functions perform certain computational operations,
delivering the results of these computations as the function results. These 47
computation functions are organized into three groups: numeric computation
functions (26), character computation functions (12), and bit computation
functions (9).

Because of the dependence on the number of bits in the bit model, the bit
manipulation procedures may yield nonportable results.

Intrinsic Procedures 603

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Function Value returned

ABS The absolute value of the argument
ACOS The arc cosine of the argument
ASIN The arc sine of the argument
ATAN The arc tangent of the argument
ATAN2 The angle in radians of a complex argument (X,Y)
CEILING The smallest integer greater than or equal to the argument

value
COS The cosine of the argument
COSH The hyperbolic cosine of the argument
DIM The difference of two values, if positive, or zero otherwise
DOT_PRODUCT The dot product of two vectors
DPROD The double precision product of two single precision

values
EXP The natural exponential function
FLOOR The greatest integer less than or equal to the argument

value
LOG The natural logarithm function
LOG10 The logarithm to the base 10
MATMUL Matrix multiplication
MAX The maximum of a set of values
MIN The minimum of a set of values
MOD The remainder function, having the sign of the first

argument
MODULO The remainder function, having the sign of the second

argument
SIGN Apply a given sign to a given value
SIN The sine of the argument
SINH The hyperbolic sine of the argument
SQRT The square root of the argument
TAN The tangent of the argument
TANH The hyperbolic tangent of the argument

Function Value returned

ADJUSTL Remove leading blanks (and place them on the right)
ADJUSTR Remove trailing blanks (and place them on the left)
INDEX Find the location of a given substring in a character string
LEN_TRIM Length of a string after trailing blanks have been removed
LGE Greater than or equal to comparison based on ASCII

604 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

LGT Greater than comparison based on ASCII
LLE Less than or equal to comparison based on ASCII
LLT Less than comparison based on ASCII
REPEAT Concatenate several copies of a character string
SCAN Scan a string for any one of a given set of characters
TRIM The argument with trailing blank characters removed
VERIFY Location of a character in a string that is not one of a given

set

Function Value returned

BTEST The bit value of a specified position in an integer argument
IAND Logical AND of two integer arguments
IBCLR Clear a specified bit to zero in the integer argument
IBSET Set a specified bit to one in the integer argument
IEOR Logical exclusive-OR of two integer arguments
IOR Logical inclusive-OR of two integer arguments
ISHFT Logical end-off shift of the bits in the argument
ISHFTC Logical circular shift of the bits in the argument
NOT Logical complement of an integer argument

All of these functions, in all three groups, are generic except for LGE, LGT,
LLE, and LLT, and all are elemental except DOT_PRODUCT, MATMUL,
REPEAT, and TRIM. Note that the bit computation function cannot produce
portable results.

13.6 Array Functions
The 17 array functions provide various generic array operations and may be
classified as reduction (7), construction (4), reshape (1), manipulation (3), and
location functions (2). All are transformational except MERGE, which is
elemental.

Array Reduction Functions. The reduction functions “reduce” an argument
array in the sense that all of the array elements are reflected in (reduced to) a
scalar result, or the reduction takes place not over the whole array but rather
along a specified dimension. In the latter case the function result is an array
whose rank is one less than that of the argument array.

Intrinsic Procedures 605

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Function Value returned

ALL True if all of the argument array elements are true
ANY True if any of the argument array elements are true
COUNT The number of true elements in the argument array
MAXVAL Maximum value of the argument array elements
MINVAL Minimum value of the argument array elements
PRODUCT The product of the argument array elements
SUM The sum of the argument array elements

Array Construction Functions. The construction functions construct new array
values from the elements of existing arrays.

Function Value returned

MERGE Combines two (conformable) arrays under control of a
mask

PACK Packs a masked array into a vector
SPREAD Replicates an array by adding a dimension
UNPACK Unpacks a masked array from a vector

The Array Reshape Function (RESHAPE). The RESHAPE function allows the
reshaping of the elements of a rank-one array into an array with any specified
shape.

Array Manipulation Functions. The manipulation functions rearrange the
elements of an array.

Function Value returned

CSHIFT Circular shift of the elements of the argument array
EOSHIFT End-off shift of the elements of the argument array
TRANSPOSE The matrix transpose of the argument array

Array Location Functions. The location functions locate the maximum and
minimum values in the array or along a specified dimension.

Function Value returned

MAXLOC The rank-one array which is the location of the maximum
element

MINLOC The rank-one array which is the location of the minimum
element

606 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13.7 Intrinsic Subroutines
Intrinsic subroutines are new in Fortran 90; Fortran 77 has only intrinsic
functions. There are five intrinsic subroutines: DATE_AND_TIME, MVBITS,
RANDOM_NUMBER, RANDOM_SEED, and SYSTEM_ CLOCK. These are
referenced in the same way as any other subroutine, as described in Section
12.2.2. None of these intrinsic subroutines may be used as actual arguments
(that is, intrinsic subroutines must not be passed).

DATE_AND_TIME. This subroutine returns date and time information in
several INTENT (OUT) arguments.

MVBITS. This subroutine copies a sequence of bits from one integer data
object to another. It is the only elemental intrinsic subroutine.

RANDOM_NUMBER. This subroutine returns a pseudorandom number or an
array of pseudorandom numbers as the value of its argument. It is a
subroutine rather than a function because its execution has the side effect of
changing the value of the underlying random number generator seed; intrinsic
functions have no side effects.

RANDOM_SEED. This subroutine allows the value of the random number
generator seed value to be initialized or retrieved.

SYSTEM_CLOCK. This subroutine returns data from the processor’s real-time
system clock in various formats in several INTENT (OUT) arguments.

13.8 Alphabetical List of All Intrinsic Procedures
The following table lists all of the intrinsic procedures in Fortran 90. The
argument names shown are the keywords for keyword argument calls. All of
the optional arguments are noted as such. These procedures are described in
detail, in alphabetical order, in Appendix A.

Table 13-1 List of intrinsic procedures and arguments

Function Optional arguments

ABS (A)

ACHAR (I)

ACOS (X)

Intrinsic Procedures 607

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

ADJUSTL (STRING)

ADJUSTR (STRING)

AIMAG (Z)

AINT (A, KIND) KIND

ALL (MASK, DIM) DIM

ALLOCATED (ARRAY)

ANINT (A, KIND) KIND

ANY (MASK, DIM) DIM

ASIN (X)

ASSOCIATED (POINTER, TARGET) TARGET

ATAN (X)

ATAN2 (Y, X)

BIT_SIZE (I)

BTEST (I, POS)

CEILING (A)

CHAR (I, KIND) KIND

CMPLX (X, Y, KIND) Y, KIND

CONJG (Z)

COS (X)

COSH (X)

COUNT (MASK, DIM) DIM

CSHIFT (ARRAY, SHIFT, DIM) DIM

DATE_AND_TIME
(DATE, TIME, ZONE, VALUES)

DATE, TIME, ZONE, VALUES

DBLE (A)

Table 13-1 (Continued) List of intrinsic procedures and arguments

Function Optional arguments

608 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

DIGITS (X)

DIM (X, Y)

DOT_PRODUCT (VECTOR_A, VECTOR_B)

DPROD (X, Y)

EOSHIFT
(ARRAY, SHIFT, BOUNDARY, DIM)

BOUNDARY, DIM

EPSILON (X)

EXP (X)

EXPONENT (X)

FLOOR (A)

FRACTION (X)

HUGE (X)

IACHAR (C)

IAND (I, J)

IBCLR (I, POS)

IBITS (I, POS, LEN)

IBSET (I, POS)

ICHAR (C)

IEOR (I, J)

INDEX (STRING, SUBSTRING, BACK) BACK

INT (A, KIND) KIND

IOR (I, J)

ISHFT (I, SHIFT)

ISHFTC (I, SHIFT, SIZE) SIZE

KIND (X)

Table 13-1 (Continued) List of intrinsic procedures and arguments

Function Optional arguments

Intrinsic Procedures 609

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

LBOUND (ARRAY, DIM) DIM

LEN (STRING)

LEN_TRIM (STRING)

LGE (STRING_A, STRING_B)

LGT (STRING_A, STRING_B)

LLE (STRING_A, STRING_B)

LLT (STRING_A, STRING_B)

LOG (X)

LOG10 (X)

LOGICAL (L, KIND) KIND

MATMUL (MATRIX_A, MATRIX_B)

MAX (A1, A2, A3, ...) A3, ...

MAXEXPONENT (X)

MAXLOC (ARRAY, MASK) MASK

MAXVAL (ARRAY, DIM, MASK) DIM, MASK

MERGE (TSOURCE, FSOURCE, MASK)

MIN (A1, A2, A3, ...) A3, ...

MINEXPONENT (X)

MINLOC (ARRAY, MASK) MASK

MINVAL (ARRAY, DIM, MASK) DIM, MASK

MOD (A, P)

MODULO (A, P)

MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)

NEAREST (X, S)

Table 13-1 (Continued) List of intrinsic procedures and arguments

Function Optional arguments

610 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

NINT (A, KIND) KIND

NOT (I)

PACK (ARRAY, MASK, VECTOR) VECTOR

PRECISION (X)

PRESENT (A)

PRODUCT (ARRAY, DIM, MASK) DIM, MASK

RADIX (X)

RANDOM_NUMBER (HARVEST)

RANDOM_SEED (SIZE, PUT, GET) SIZE, PUT, GET

RANGE (X)

REAL (X, KIND) KIND

REPEAT (STRING, NCOPIES)

RESHAPE (SOURCE, SHAPE, PAD, ORDER) PAD, ORDER

RRSPACING (X)

SCALE (X, I)

SCAN (STRING, SET, BACK) BACK

SELECTED_INT_KIND (R)

SELECTED_REAL_KIND (P, R) P, R

SET_EXPONENT (X, I)

SHAPE (SOURCE)

SIGN (A, B)

SIN (X)

SINH (X)

SIZE (ARRAY, DIM) DIM

Table 13-1 (Continued) List of intrinsic procedures and arguments

Function Optional arguments

Intrinsic Procedures 611

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SPACING (X)

SPREAD (SOURCE, DIM, NCOPIES)

SQRT (X)

SUM (ARRAY, DIM, MASK) DIM, MASK

SYSTEM_CLOCK (COUNT, COUNT_RATE,
COUNT_MAX)

COUNT, COUNT_RATE,
COUNT_MAX

TAN (X)

TANH (X)

TINY (X)

TRANSFER (SOURCE, MOLD, SIZE) SIZE

TRANSPOSE (MATRIX)

TRIM (STRING)

UBOUND (ARRAY, DIM) DIM

UNPACK (VECTOR, MASK, FIELD)

VERIFY (STRING, SET, BACK) BACK

Table 13-1 (Continued) List of intrinsic procedures and arguments

Function Optional arguments

612 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13.9 Specific Names for Generic Intrinsic Procedures
The intrinsic functions having specific names may be called with those names
as well as with the generic names. To pass an intrinsic procedure as an actual
argument, however, the specific name must be used. The following table gives
the specific intrinsic procedure names available in Fortran 90, but the ones
marked with an asterisk (for example, CHAR) must not be used as actual
arguments.

Table 13-2 List of intrinsic procedures and arguments

Generic name Specific name and arguments Specific argument types

ABS

ABS (A)
CABS (A)
DABS (A)
IABS (A)

Default real
Default complex
Double precision real
Default integer

ACOS
ACOS (X)
DACOS (X)

Default real
Double precision real

AIMAG AIMAG (Z) Default complex

AINT
AINT (A)
DINT (A)

Default real
Double precision real

ANINT
ANINT (A)
DNINT (A)

Default real
Double precision real

ASIN
ASIN (X)
DSIN (X)

Default real
Double precision real

ATAN
ATAN (A)
DTAN (A)

Default real
Double precision real

ATAN2
ATAN2 (A)
DTAN2 (A)

Default real
Double precision real

CHAR * CHAR (I) Default integer

COS
COS (X)
CCOS (X)
DCOS (X)

Default real
Default complex
Double precision real

CONJG CONJG (X) Default complex

Intrinsic Procedures 613

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

COSH
COSH (X)
DCOSH (X)

Default real
Double precision real

DIM
DIM (X,Y)
IDIM (X,Y)

Default real
Default integer

DPROD DPROD (X,Y) Default real

EXP
EXP (X)
CEXP (X)
DEXP (X)

Default real
Default complex
Double precision real

ICHAR * ICHAR (C) Default character

INDEX INDEX (STRING, SUBSTRING) Default character

INT
* INT (A)
* IFIX (A)
* IDINT (A)

Default real
Default real
Double precision real

LEN LEN (STRING) Default character

LGE * LGE (STRING_A, STRING_B) Default character

LGT * LGT (STRING_A, STRING_B) Default character

LLE * LLE (STRING_A, STRING_B) Default character

LLT * LLT (STRING_A, STRING_B) Default character

LOG
ALOG (X)
CLOG (X)
DLOG (X)

Default real
Default complex
Double precision real

LOG10
ALOG10 (X)
DLOG10 (X)

Default real
Double precision real

MAX
* MAX0 (A1, A2, A3 ...)
* AMAX1 (A1, A2, A3 ...)
* DMAX1 (A1, A2, A3 ...)

Default integer
Default real
Double precision real

Note 1 * MAX1 (A1, A2, A3 ...) Default real

Note 2 * AMAX0 (A1, A2, A3 ...) Default integer

Table 13-2 (Continued) List of intrinsic procedures and arguments

Generic name Specific name and arguments Specific argument types

614 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

MIN
* MIN0 (A1, A2, A3 ...)
* AMIN1 (A1, A2, A3 ...)
* DMIN1 (A1, A2, A3 ...)

Default integer
Default real
Double precision real

Note 1 * MIN1 (A1, A2, A3 ...) Default real

Note 2 * AMIN0 (A1, A2, A3 ...) Default integer

MOD
MOD (A, P)
AMOD (A, P)
DMOD (A, P)

Default integer
Default real
Double precision real

NINT
NINT (A)
IDNINT (A)

Default real
Double precision real

REAL
* REAL (A)
* FLOAT (A)
* SNGL (A)

Default integer
Default integer
Double precision real

SIGN
SIGN (A, B)
DSIGN (A, B)
ISIGN (A, B)

Default real
Double precision real
Default integer

SIN
SIN (X)
CSIN (X)
DSIN (X)

Default real
Default complex
Double precision real

SINH
SINH (X)
DSINH (X)

Default real
Double precision real

SQRT
SQRT (X)
CSQRT (X)
DSQRT (X)

Default real
Default complex
Double precision real

TAN
TAN (X)
DTANH (X)

Default real
Double precision real

TANH
TANH (X)
DTANH (X)

Default real
Double precision real

Note 1: The result of this function is of type default integer and has no generic name.

Note 2: The result of this function is of type default real and has no generic name.

Table 13-2 (Continued) List of intrinsic procedures and arguments

Generic name Specific name and arguments Specific argument types

Intrinsic Procedures 615

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13.10 Summary
There are 113 intrinsic procedures in Fortran 90—108 intrinsic functions and 5
intrinsic subroutines. All 113 intrinsic procedures are described in detail in
Appendix A.

13.10.1 Generic Procedures

Two or more procedures may be referenced with the same name if they each
have a unique set of argument attributes. Such procedures are called generic
procedures. SQRT is an example of a generic procedure.

13.10.2 Specific Procedures

A specific procedure is one that has a name that is not shared by any other
procedure. Many of the procedures sharing a generic name also have specific
names. The specific name must be used if the procedure is passed as an actual
argument. CSQRT is an example of a specific procedure.

13.10.3 Elemental Procedures

Many of the intrinsic procedures have a scalar dummy argument and deliver a
corresponding scalar result. Except for TRIM, these intrinsic procedures may
be called elementally—that is, they may be called with an array actual
argument. In this case the result is an array conformable with the argument,
with each result element having the value that would be returned if the
procedure were called with the corresponding actual argument element. SQRT
is an example of an elemental procedure.

13.10.4 Transformational Procedures

Transformational procedures are those that have array dummy arguments. The
result of a transformational procedure may be an array, but the result value is
not related to the arguments in the same way as with elemental procedures.
MATMUL is an example of a transformational procedure.

616 Fortran 90 Handbook

13

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

13.10.5 Inquiry and Numeric Manipulation Functions

There are 28 inquiry and numeric manipulation functions. These functions
return information about data objects and their representation. LEN is an
example of an inquiry function; NEAREST is an example of a numeric
manipulation function.

13.10.6 Transfer and Conversion Functions

There are 16 transfer and conversion functions. These functions convert values
from one type and kind combination to another type and kind combination.
INT is an example of a conversion function.

13.10.7 Computation Functions

There are 47 computation functions: 26 numeric, 12 character, and 9 bit. These
functions perform various computations on the supplied argument values.
SQRT is an example of a computation function.

13.10.8 Array Functions

There are 17 array functions. These functions perform various reduction,
construction, reshape, manipulation, and location operations on their
arguments. SUM is an example of an array reduction function.

13.10.9 Intrinsic Subroutines

There are five intrinsic subroutines: DATE_AND_TIME, MVBITS,
RANDOM_NUMBER, RANDOM_SEED, and SYSTEM_CLOCK. Fortran 90
marks the first time that Fortran has included standard intrinsic subroutines.

617

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Scope, Association, and Definition 14

This handbook began with a sneak preview of the new features in Fortran 90
and ends with a discussion of three of the oldest concepts in Fortran. Scope,
association, and definition have always been the glue binding Fortran into a
powerful greater-than-the-sum-of-its-parts whole. Yet, until fully understood
and assimilated, these concepts may seem daunting and leave one feeling like
their first-letter acronym rather than with the comfortable sense of a firm grip
on the language.

The reason for the importance of scope, association, and definition is
communication; they provide the communication pathways among the
different parts of the program. As with any other organism whose function is
made up of interacting parts (say a business), without effective communication
among its parts a Fortran program would have limited capabilities. Scope,
association, and definition provide Fortran with a very good communications
framework.

With the new data types, program units, and procedure provisions, Fortran 90
builds significantly on the concepts of scope, association, and definition,
making these concepts even more comprehensive and central to the working of
Fortran. Fully understanding them is the key to understanding Fortran 90.
Although perhaps initially daunting, assimilating these concepts is a bit like
learning to ride a bicycle—seemingly impossible at first, but once you get the
hang of it nothing could be simpler and it becomes natural and thrilling. The
purpose of this chapter is to facilitate a similar mastery of scope, association,
and definition.

618 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Various aspects of scope, association, and definition have already been
discussed throughout the earlier chapters of this handbook. The only reason
this material is not presented completely in these chapters is that a
comprehensive and thorough understanding of the entire language is needed
to fully assimilate these topics. Fortunately, all of the detailed rules and
conditions presented in this chapter usually are not necessary in order to
construct pieces of Fortran programs. If simple programming disciplines are
followed, many of the subtle issues and concerns related to scope, association,
and definition can be avoided in writing correct programs. However, there are
some situations in which it is necessary to know all the details, particularly
when modifying or maintaining programs, looking for subtle bugs, or, of
course, when implementing a compiler.

Scope is introduced in Chapter 2. Recall that it specifies that part of a program
in which a particular entity is known and accessible. The spectrum of scope
varies from an entire program (global) to individual program units (local) to
statements or parts of statements. But, to both communicate data between
program units and limit and control accessibility of data, the language defines
the concept of association which relates local objects within and between
program units. The association methods have all been introduced in the early
chapters and include association via arguments (argument association),
association via storage (storage association), association via modules (use
association), association via hosts (host association), and association via name
aliases (pointer association).

Once objects can be associated, there may be multiple ways to define values for
them. For example, assignment statements and input statements define objects
directly by name, which may also cause associated items to become defined. In
some cases, such associated object values may be unpredictable or unreliable.
For example, if a real object is equivalenced (storage associated) with an
integer object, defining the real object with a valid real value causes the integer
object to acquire a “meaningless” value. Referencing such unpredictable values
causes the program to be nonportable, and therefore such references must be
avoided. The mechanism for addressing this problem is the concept of
undefined value, introduced in Fortran 66 and continued in both Fortran 77
and Fortran 90. In certain cases, such as for the integer object in the preceding
example, certain values are considered to be undefined; references to
undefined values are nonstandard conforming.

Scope, Association, and Definition 619

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Thus, the three topics, scope, association, and definition, are related. Scope
specifies the part of a program where an entity is known and accessible.
Association is the pathway along which entities in the same or different scopes
communicate. Definition, and its opposite, undefinition, characterize the ways
in which variables are defined and become undefined indirectly as a
consequence of being associated with other objects.

14.1 The Use of Names
Picking names for variables, functions, and other entities is a more important
and more complicated matter than it may at first seem. On the one hand, wise
choice of names makes the program “readable”—the names correctly
communicate the algorithm to the reader of the program. This can lead, on the
other hand, to conflicting use of names, which, of course, must be avoided.

One philosophy might be to pick a unique name for everything in the program
that has a name so that there is no possibility of conflicting uses of a name.
This approach, taken to its extreme, would require avoiding all intrinsic
procedure (and keyword) names for programmer-chosen names. For example,
the names CASE, CHAR, SIZE, and SUM could not be used as variable names.
Actually, the use of such a name for a variable causes no real problem, unless
later an intrinsic function with that name is needed.

There are more serious problems with this approach, however. First, such a
system generates too many different names, particularly for large programs. It
inhibits the choice of mnemonic and common names, appropriate for the
programming task at hand. Finally, it makes it difficult to modularize the
development of programs and to write parts of the program independently. In
fact, for most software programming projects, this approach is unworkable.

Despite this, the good programmer will apply this philosophy to small
programs or within the confines of a program unit. A good programmer knows
as many keywords, statement names, intrinsic names, etc., as possible and
avoids them simply for the reason that confusion can result otherwise.

With the possibility that different parts of a program are developed by
different programmers, it is reasonable to allow and expect that something
named X in one subprogram, for example, has nothing (necessarily) to do with
something named X in another subprogram. This permits different
programmers to work independently. The concepts of scope and classes of
names are the mechanisms that provide this capability and eliminate the need

620 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

to strictly adhere to the scheme of picking a different name for everything.
These concepts are not new in Fortran 90, but are more pervasive than in
earlier versions of Fortran due to the introduction of internal procedures,
modules, derived data types, interface blocks, and array constructors. Fortran
has always allowed the programmer great latitude to use the same name for as
many different things as possible, and this becomes even more important as
programming tools and applications become more complex and sophisticated.

Because it is possible to use X to mean two different things, the natural
question is: Where does X mean what? This is what scope is all about.

14.2 Scope
Named things such as variables, constants, procedures, block data
subprograms, modules, and namelist groups, have scope. Other (unnamed)
entities that have scope are operator symbols, the assignment symbol, labels,
and input/output unit numbers.

The scope of an entity is that part of a Fortran program in which that entity has
a given meaning and can be used, defined, or referenced by its designator. The
scope of an entity might be as large as the whole executable program or as
small as part of a Fortran statement. Entities that can be used with the same
meaning throughout the executable program are said to be global entities and
have a global scope. An example of a global entity is an external procedure
name. Entities that can be used only within the smaller context of a
subprogram are said to be local entities and have a local scope. An example of
a local entity is a statement label. An even smaller context for scope might be a
Fortran statement (or part of one); entities valid for only this context are said to
be statement entities, such as the dummy arguments in a statement function.

The terms scope and scoping unit are not defined in Fortran 77, but the concept
of scope and the global, local, and statement varieties of scope are all implicitly
part of Fortran 77. Scoping units in Fortran 77 are program units, with each
program unit being a separate scoping unit. To this Fortran 90 adds internal
procedures, interface blocks, and derived-type definitions as separate scoping
units. (Certain entities in statement functions and implied-dos have their
scopes limited to these constructs, but statement functions and implied-dos are
not considered to be scoping units.)

Scope, Association, and Definition 621

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Some scoping units can contain other scoping units. For example, an external
function can contain interface blocks and internal procedures. In such cases,
different scoping units are properly thought of as “nonoverlapping” rather
than “nested”. Putting an interface block, say, into a subprogram causes a
“hole” in the subprogram scoping unit that is filled with the scoping unit of the
interface block. Scoping units surrounded by another scoping unit may or may
not inherit properties from the surrounding scope. For example, internal
procedures, module procedures, and derived-type definitions inherit implicit
type rules from the surrounding scope; interface blocks, on the other hand, do
not inherit implicit type rules from the surrounding scope.

A scoping unit in Fortran 90 is one of the following:

1. a derived-type definition

2. a procedure interface body, excluding any derived-type definitions and
procedure interface bodies contained within it

3. a program unit or subprogram, excluding derived-type definitions,
procedure interface bodies, and subprograms contained within it

To visualize the concept of scope and scoping units, consider Figure 14-1. The
outer rectangle bounds the pieces of an executable Fortran program; it is not a
scoping unit but could be said to represent global scope. Within the executable
program four other rectangles depict program units. One is the main program,
two others are external subprogram units, and the fourth one is a module
program unit.

All four of these program unit rectangles represent scoping units, excluding
any rectangles within them. The main program in this example encloses no
rectangle and so is an integral scoping unit without holes. External
subprogram A has two internal procedures within it, and therefore procedure
A’s scoping unit is this rectangle, excluding internal procedures B and C.
External subprogram D has an interface block in it and no internal procedures.
Its scoping unit is procedure D, excluding the interface block. Module E has a
derived-type definition and two module procedures within it. Its scoping unit
is similarly the module program unit, excluding the derived-type definition
and the module procedures.

622 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In addition, the interface block, the derived-type definition, and each of the
internal and module procedures are scoping units. In this example, these latter
scoping units have no holes, as they do not themselves contain internal

Fortran program

Main program
 .
 .
 .

External procedure D

 Interface block . . .

 . . .

Extermal procedure A
 .
 .
 .
CONTAINS

 Internal procedure B . . .

 Internal procedure C . . .

 .
 .
 .

Module E

 Derived-type definition

 .
 .
 .
CONTAINS

 .
 .
 .

 Module procedure F . . .

 Module procedure G . . .

Figure 14-1 Scoping units

Scope, Association, and Definition 623

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

procedures, module procedures, interface blocks, or derived-type definitions,
although they could in general.

14.2.1 Scope of Names

A name has one of the following scopes:

1. global—scope of an executable program (for example, an external function
name)

2. local—scope of a scoping unit (for example, an array name in a subroutine
subprogram)

3. statement—scope of a Fortran statement (for example, a statement function
argument) or a part of a Fortran statement (for example, an implied-do
variable)

14.2.1.1 Names as Global Entities

The name of a main program, an external procedure, a module, a block data
program unit, or a common block has global scope. No two global entities may
have the same name. For example, the main program name may not also be
used as the name of an external procedure or a common block.

14.2.1.2 Names as Local Entities

There are three classes of names having local scope:

1. names of variables, constants, control constructs, statement functions,
internal procedures, module procedures, dummy procedures, intrinsic
procedures, user-defined generic procedures, derived types, and namelist
groups

2. names of the components of a derived type—there is a separate class of
names for each derived type, which means that two different derived types
can have the same component names

3. names of argument keywords—there is a separate class of names for each
procedure with an explicit interface, which means that two different
procedures can have the same argument keyword names

624 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Rules and restrictions:

1. A global entity name may not be used to identify a local entity, except that
a local entity may have the same name as a common block.

2. A nongeneric local name is unique within the same scoping unit and
within the same class; that is, it identifies exactly one entity. That name
may also be used to identify a different object in a different scoping unit or
a different object in a different class in the same scoping unit. When that
name or a different name is used in other scoping units, it usually
represents a different entity but may represent the same entity because of
association.

3. A generic local name may be used for two or more different procedures in
that scoping unit. The rules for generic names are described in Sections
14.2.6 and 14.2.7.

4. A local name may be used for another local entity in a different class in
that scoping unit. For example, a structure component of type logical may
have the same name as a local integer variable.

5. Components of a derived type have the scope of the derived-type
definition, and when used in a qualified structure reference have the scope
of the structure reference itself.

6. Argument keywords are local entities, and are in a separate class for each
procedure with an explicit interface. This means that an argument keyword
used for one procedure can be used as an argument keyword for another
procedure, as a local variable or procedure name, and as a component
name of a derived type.

7. If a common block name is the same as the name of a local entity, the name
is the local entity except where it appears to identify the common block.
Uniqueness of the reference is determined by the context of the name. For
example, a name enclosed in slashes in a SAVE statement must be a
common block name rather than the name of a local variable of the same
name.

8. The name of an intrinsic function (and there are many of them) may be
used as a local entity provided the intrinsic function itself is not used in
that scoping unit. For example, if the scoping unit uses the name SIN as a
local variable name, the intrinsic function SIN may not be used in the same
program unit.

Scope, Association, and Definition 625

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

9. For each function and function entry that does not have a result variable,
there is a local variable within the function subprogram scoping unit
whose name is the same as the function or entry name. This local variable
is used to define the value of the function or entry name within the
function subprogram.

10. For each internal or module procedure, the name of the procedure is also a
name local to the host scoping unit. Similarly, for any entry name used in a
module procedure, the name of the entry is also a name local to the host
scoping unit.

14.2.1.3 Names as Statement Entities

The name of a dummy argument in a statement function statement, or a DO
variable in an implied-do list of a DATA statement or array constructor, has a
scope that is the statement or part of the statement. Such a name may be used
elsewhere as a scalar variable name or common block name without a name
conflict and refers to a different entity when so used.

Rules and restrictions:

1. The name of a dummy argument used in a statement function statement
has the scope of the statement. The type and type parameters of the name
are determined by the declarations in the containing scoping unit.

2. The DO variable in an array constructor or an implied-do loop in a DATA
statement has the scope of that part of the statement in which it appears.
The type, which must be integer, and type parameters of the name are
determined by the declarations in the containing scoping unit. (Note that
the scope of the DO variable in these implied-do lists is part of a statement,
whereas the scope of the DO variable in a DO construct is local to the
scoping unit containing the DO construct.)

Note that the DO variable of an implied-do in an input/output item list has the
scope of the program unit containing the input/output statement.

14.2.2 Scope of Labels

A label is a local entity. No two statements in the same scoping unit may have
the same label, but the same label may be used in different scoping units.

626 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

14.2.3 Scope of Input/Output Units

External input/output unit numbers are global entities and have global scope.
Within an executable program, a unit number refers to the same input/output
unit wherever it appears in a unit number context in an input/output
statement.

14.2.4 Scope of Operators

Operator symbols are either intrinsic or defined. Intrinsic operators have global
scope; the scope of a defined operator is local to a scoping unit. An operator
symbol may refer to both an intrinsic operator and a defined operator. For
example, the operator symbol + can be both global (its intrinsic meaning) and
local (its defined meaning). Operators may be generic; that is, two or more
operators may be designated by the same operator symbol. The types, kind
parameter values, and the ranks of the operands distinguish which operator is
used (see Section 7.3.2).

14.2.5 Scope of Assignment

Like operators (14.2.4), intrinsic assignment has global scope; defined
assignment has the scope of a scoping unit. The assignment symbol (=) always
has global meanings and may, like operator symbols, also have local meanings.
Assignment is generic; many assignment operations are designated by the
same operator symbol. The types, kind parameter values, and the ranks of the
entities on the left and right sides of the equal sign distinguish which
assignment is used (see Section 7.5.2).

14.2.6 Scope of Unambiguous Procedure References

A procedure reference is unambiguous if the procedure name in the reference
is a specific procedure name that is not the same as any generic procedure
name in that scoping unit. This is the case in references to

1. internal procedures

2. module and external procedures not appearing in an interface block with a
generic specification in that scoping unit or available via use or host
association

Scope, Association, and Definition 627

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

3. nongeneric specific names of intrinsic functions

4. statement functions

5. dummy procedures

Specific names of external and intrinsic procedures are global; all other specific
procedure names are local.

Procedure references involving generic procedure names are also unambiguous
if the two rules of Section 12.5.7 apply. These rules are repeated here.
Considering the dummy argument lists of any two procedures sharing the
same generic name, one of these lists must have a nonoptional dummy
argument that satisfies both of the following conditions:

1. Either it is in a position in the list at which the other list has no dummy
argument or it has a type, kind type parameter, and rank (TKR) pattern
different from that of the dummy argument in the same position in the
other list.

2. It is either a name different from all the dummy argument names in the
other list or has a TKR pattern different from that of the dummy argument
with the same name in the other list.

These rules apply regardless of whether the generic names are intrinsic,
defined by interface blocks with generic specifications, or both. They also
apply to generic operator and assignment symbols. Generic names of intrinsic
functions are global, and defined generic names are local.

14.2.7 Resolving Procedure References

A procedure reference is involved in

1. executing a CALL statement

2. executing a defined assignment statement

3. evaluating a defined operation

4. evaluating an expression containing a function reference

628 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

In this last case, an expression contains a function reference if the form of one
of the operands is a name followed by a parenthesized list ofexpressions and
procedure names and that name is not declared in the scoping unit to be an
array name.

In case 2, a generic “name” (the assignment symbol, =) is involved, and there
must be an interface block with an ASSIGNMENT generic specification in the
scoping unit or available through use or host association that identifies a
specific external or module subroutine that defines this assignment. The rules
of Sections 12.5.7, 12.6.5, and 14.2.6 determine which specific subroutine is
involved in the reference.

In case 3, a generic “name” (the operator symbol) is involved, and there must
be an interface block with an OPERATOR generic specification in the scoping
unit or available through use or host association that identifies a specific
external or module function that defines this operation. The rules of Sections
12.5.7, 12.6.4, and 14.2.6 determine which specific function is involved in the
reference.

In cases 1 and 4, the following sequence of rules may be used to resolve the
reference (that is, determine which specific procedure is involved in the
reference). The first of these rules that applies, taken in order, resolves the
reference.

1. If the procedure name in the reference is a dummy argument in that
scoping unit, then the dummy argument is a dummy procedure and the
reference is to that dummy procedure. Thus, the procedure invoked by the
reference is the procedure supplied as the associated actual argument.

2. If the procedure name appears in an EXTERNAL statement in that scoping
unit, the reference is to an external procedure with that name.

3. If the procedure name is that of an accessible internal procedure or
statement function, the reference is to that internal procedure or statement
function.

4. If the procedure name is specified as a generic name in an interface in that
scoping unit or in an interface block made accessible by use or host
association, and the reference is consistent with one of the specific
interfaces for that generic name, the reference is to that specific procedure.
The rules of Section 12.5 determine which specific procedure is invoked
(the rules of Sections 12.5.7 and 14.2.6 guarantee that there will be at most
one such procedure).

Scope, Association, and Definition 629

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

5. If the procedure name appears in an INTRINSIC statement in that scoping
unit, the reference is to the corresponding specific intrinsic procedure.

6. If the procedure name is accessible via use association, the reference is to
that specific procedure. Note that it is possible, because of the renaming
facility, for the procedure name in the reference to be different from that in
the module.

7. If the scoping unit of the reference has a host scoping unit, and if
application in the host of the preceding six rules resolves the reference,
then the reference is so resolved.

8. If the procedure name is either the specific or generic name of an intrinsic
procedure and the actual arguments match the characteristics of a
particular intrinsic procedure, the reference is to the corresponding specific
intrinsic procedure.

9. If the procedure name is not a generic name, the reference is to an external
procedure with that name.

10. Otherwise the reference cannot be resolved and is not standard
conforming.

14.3 Association
Fortran uses the concept of scoping so that the same name can be used for
different things in different parts of a program. This is desirable so that
programmers do not have to worry about conflicting uses of a name.

However, there are times when just the opposite is desired: the programmer
wants different names in the same or different parts of a program to refer to
the same entity. For example, there may be a need to have one data value that
may be examined and modified by all of the procedures of a program. In
general, particularly with external program units, the names used will be
different in the different parts of the program, but they can be the same.

Association is the mechanism used to indicate that local names in different
scoping units or different local names in the same scoping unit refer to the
same entity. There are four forms of association:

1. Name association involves the use of names, always in different scoping
units, to establish an association.

630 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

2. Pointer association allows dynamic association of names within a scoping
unit and is essentially an aliasing mechanism.

3. Storage association involves the use of storage sequences to establish an
association between data objects. The association may be between two
objects in the same scoping unit (EQUIVALENCE) or in different scoping
units (COMMON).

4. Sequence association is a combination of name association and storage
association. It applies to the association of actual and array, character, and
sequence structure dummy arguments using storage sequence association.
It associates names in different scoping units.

Figures 14-2 and 14-3 illustrate the various kinds of association in an
executable program.

14.3.1 Name Association

Name association permits access to the same entity (either data or a procedure)
from different scoping units by the same or a different name. There are three
forms of name association: argument, use, and host.

14.3.1.1 Argument Association

Argument association is explained in detail in Section 12.5. It establishes a
correspondence between the actual argument in the scoping unit containing
the procedure reference and the dummy argument in the scoping unit defining
the procedure. An actual argument may be the name of a variable or
procedure, or it may be an expression. The dummy argument name is used in
the procedure definition to refer to the actual argument, whether it is a name
or an expression. When the program returns from the procedure, the actual
and dummy arguments become disassociated.

14.3.1.2 Use Association

Use association causes an association between entities in the scoping unit of a
module and the scoping unit containing a USE statement referring to the
module. It provides access to entities specified in the module. The default
situation is that all public entities in the module are accessed by the name used

Scope, Association, and Definition 631

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

in the module, but entities can be renamed selectively in the USE statement
and excluded with the ONLY option. Use association is explained in Section
11.6.4.5.

Executable program

External program unit
 (main program or procedure subprogram)
COMMON /A/ . . .
REAL, POINTER :: P(:)
REAL, TARGET :: R(10)
EQUIVALENCE (..., ← storage association → ...)
 . . .
P => R pointer association
CALL S (... actual arguments ...)
 . . .

Storage association — Storage and sequence association

External procedure S (... dummy arguments ...)
COMMON /A/ . . .
REAL X
CALL B (... actual arguments ...)
CONTAINS

Host association — Storage and sequence association

SUBROUTINE B (... dummy arguments ...)
 . . .
X = X + 1 name (host) association
 . . .

Figure 14-2 Associations between two nonmodule scoping units

632 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

14.3.1.3 Host Association

Host association causes an association between entities in a host scoping unit

Executable program
St

or
ag

e
as

so
ci

at
io

n

U
se

 a
ss

oc
ia

ti
on

U
se

 a
ss

oc
ia

ti
on

IP
 h

os
t a

ss
oc

ia
te

d
ar

gu
m

en
ts

 s
to

ra
ge

 a
nd

se
qu

en
ce

 a
ss

oc
ia

te
d

M
P

us
e

as
so

ci
at

ed
ar

gu
m

en
ts

 s
to

ra
ge

 a
nd

se
qu

en
ce

 a
ss

oc
ia

te
d

External program unit
(main program or procedure subprogram)
USE M
COMMON /A/ . . .
TYPE (T) S1
 . . .
 Y = . . .
 CALL IP (. . .)
 CALL MP (. . .)
 . . .

SUBROUTINE IP (. . .)
 . . .

MODULE M
COMMON /A/ . . .
TYPE T
 . . .
END TYPE T
REAL Y

SUBROUTINE MP (. . .)
 . . .

Figure 14-3 Associations between a module scoping unit and a nonmodule
scoping unit

Scope, Association, and Definition 633

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

and the scoping unit of either an internal procedure, module procedure, or
derived-type definition. The basic idea of host association is that entities in the
host (for example, host variables) are also available in any procedures or
derived-type definitions within the host. As with default use association, such
entities are known by the same name in the internal or module procedure or
derived-type definition as they are known in the host. There is no mechanism
for renaming entities, but the association of names between the host and the
contained scoping unit can be replaced by the local declaration of an entity
with that name; such a declaration blocks access to the entity of the same name
in the host scoping unit. Host association is described in Section 11.4.

Figure 14-4 Associations between a module scoping unit and a nonmodule scoping unit

Rules and restrictions:

1. If renaming occurs by a USE statement, the type, type parameters, and
other attributes of the local name are those of the module entity. No
respecification can occur in the scoping unit containing the USE statement.

2. When an entity is renamed by a USE statement, the original name in the
module can be used as a local name for a different entity in the scoping
unit containing the USE statement. There would be no name conflict.

3. The PUBLIC and PRIVATE access specifications are determined in the
module scoping unit referenced in the USE statement, and cannot be
changed or overridden by the referencing scoping unit (but see the
example in 11.6.4.5).

14.3.2 Pointer Association

A pointer is a variable with the pointer attribute. During program execution,
the pointer variable is undefined, disassociated, or associated with a scalar or
an array data object or function result. The association of pointers is dynamic
throughout a program; that is, it can be changed as needed during execution.

Rules and restrictions:

1. Pointers are initially undefined.

2. There are two ways that pointers may be associated:

634 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

a. by pointer assignment, pointers are associated with other pointers or
with scalar or array data objects that have the TARGET attribute

b. by execution of an ALLOCATE statement, pointers are associated with
previously unnamed space

3. Associated pointers may become disassociated or undefined. Disassociated
pointers may become associated or undefined. Undefined pointers may
become associated.

4. Associated pointers become disassociated when the association is nullified
(NULLIFY statement) or when the pointer is deallocated (DEALLOCATE
statement).

14.3.3 Storage Association

Storage association is the provision that two or more variables may share the
same memory space. This allows the same value to be referenced by more than
one name, achieving an effect similar to that of name association and pointer
association. Consider the following simple example:

EQUIVALENCE (X, Y)

Variables X and Y share the same computer memory; changing the value of
either one affects the value of the other.

The effects of EQUIVALENCE and COMMON statements can be complicated
because of partially overlapping variables and storage association between
different data types. The concept of storage association is used to describe
these effects. Note that, although terms like “computer memory” are used in
this discussion, implementation of Fortran does not require any particular
method of storing values. However, implementations commonly use memory
to store values in a way that closely reflects this description.

14.3.3.1 Storage Units and Storage Sequence

A storage unit corresponds to a particular part of memory that usually holds a
single Fortran value. Thus, memory may be thought of as a sequence of storage
units, each possibly holding a Fortran value. A storage unit may be a numeric
storage unit, character storage unit, or an unspecified storage unit.

Scope, Association, and Definition 635

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A sequence of any number of consecutive storage units is a storage sequence.
A storage sequence has a size, which is the number of storage units in the
sequence.

14.3.3.2 Fortran Data and Storage Units

Some of the relationships between Fortran data and storage units are as
follows. All of the following data objects are nonpointer values unless
explicitly specified otherwise.

• A scalar data object of type default integer, default real, or default logical
occupies one numeric storage unit. Default complex and double precision
real values occupy two consecutive numeric storage units.

• A single default character occupies one character storage unit.

• All other values, that is, pointers and all values with nondefault kinds,
occupy unspecified storage units. An unspecified storage unit is treated as
a different object for each of these types of values. For example, a storage
unit for a pointer to a default integer occupies an unspecified storage unit
that is different than the unspecified storage unit for an integer of
nondefault type.

Composite objects occupy storage sequences, depending on their form.

• A default scalar character object of length has consecutive
character storage units.

• An array occupies a storage sequence consisting of one storage unit of the
appropriate sort for each element of the array in array element order.

• A scalar of a sequence derived type occupies a storage sequence consisting
of storage units corresponding to the components of the structure, in the
order they occur in the derived-type definition. Recall that to be a sequence
type, the derived type must contain the SEQUENCE statement.

• Each common block has a storage sequence as described in Section 5.10.4.

• Each ENTRY statement in a function subprogram has a storage sequence as
described in Section 12.4.3.

• EQUIVALENCE statements create storage sequences from the storage units
of the objects making up the equivalence lists.

len len

636 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Two objects that occupy the same storage sequence are storage associated. Two
objects that occupy parts of the same storage sequence are partially storage
associated.

14.3.3.3 Partial Association

Partial association applies to character data and other composite objects in
COMMON, EQUIVALENCE, or ENTRY statements. When such objects only
partially overlap in storage, they are then said to be partially associated. For
example, two character strings are partially associated if substrings of each
share the same storage but the entire strings do not.

14.3.3.4 Examples

In this section are examples of storage sequences of various sorts and
illustrations of how equivalencing causes association of storage sequences and
the data objects in them. First, a simple example involving numeric storage
units is:

COMPLEX :: C
REAL :: X (0:5)
EQUIVALENCE (C, X(3))

The storage sequence occupied by C consists of two numeric storage units, one
for the real part and one for the imaginary part.

The storage sequence occupied by X consists of six numeric storage units, one
for each element of the array.

Cr Ci

X(0) X(1) X(2) X(3) X(4) X(5)

Scope, Association, and Definition 637

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The EQUIVALENCE statement indicates that X(3) and the real part of C
occupy the same storage unit, creating the following association; items above
and below each other are storage associated.

Next, consider an example with character data. If two character objects are to
become associated, they must have the same kind type parameter.

CHARACTER (KIND = GREEK) A(2,2)*2, B(2)*3, C*5
EQUIVALENCE (A (2,1) (1:1), B (1) (2:3), C (3:5))

A, B, and C occupy character storage sequences of size 8, 6, and 5 respectively,
and the EQUIVALENCE statement sets up the following associations.

14.3.4 Sequence Association

Sequence association is a special form of argument association that applies to
character, array, and sequence structure arguments. The rules for such
association are found in Section 12.5.2.

14.4 Definition Status
When can the value of a variable be used safely? Answer: when that value is
well-defined and predictable. There are a number of things, exhaustively listed
below, that can cause a variable’s value to become ill-defined or unpredictable
during the course of program execution. For example, an I/O error can corrupt

X(0) X(1) X(2) X(3) X(4) X(5)

Cr Ci

A(1,1)(2:2) A(2,1)(1:1) A(2,1)(2:2) A(1,2)(1:1) A(1,2)(2:2) A(2,2)(1:1) A(2,2)(2:2)

B(1)(1:1) B(1)(2:2) B(1)(3:3) B(2)(1:1) B(2)(2:2) B(2)(3:3)

C(1:1) C(2:2) C(3:3) C(4:4) C(5:5)

A(1,1)(1:1)

638 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

a variable’s value; another example is assigning a value to an integer variable,
which makes the value of any storage-associated real variable unpredictable
(in any portable sense). Informally, “defined” is the Fortran term given to a
variable whose value is well-defined and predictable; “undefined” is the term
given to a variable whose value is ill-defined or unpredictable.

The use of undefined values is not portable, and hence is not standard
conforming. Unfortunately, because either the compiler cannot always check
for undefined conditions, or it might be too costly to do so, the responsibility
for avoiding the use of undefined values rests mainly with the programmer.

During execution of a program, variables are said to be defined or undefined.
If a variable is defined, it has a value established during some statement
execution (or event) in the program. If a variable is undefined, it is considered
to not have a value. Variables are initially undefined except for initial values
specified in DATA statements and type statements. As execution proceeds,
other events may cause a variable to become defined or undefined. There is no
specific representation for an undefined variable. Undefined variables must not
be referenced in a context in which the value of the variable is used.

14.4.1 Definition Status of Subobjects

An array element or array section is part of an array. A substring is part of a
character variable. A component is part of a structure. An object of type
complex consists of two parts, its real and imaginary parts. All parts of an
object must be defined for the object to be defined. If any part of an object is
undefined, that object is undefined. Zero-sized arrays and zero-length strings
are always defined.

14.4.2 Events that Affect Definition Status of Variables

Assignment defines the value of the variable on the left of the equal sign.
Similarly, reading input establishes values for variables in the input list.
Certain specifier variables are defined when a statement such as the INQUIRE
statement is executed.

Returning from a procedure causes all unsaved local variables to become
undefined. Deallocation and disassociation during program execution causes
variables to become undefined. In addition, the process of defining an entity

Scope, Association, and Definition 639

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

may cause certain associated or partially associated entities to become
undefined. Lists of events that cause variables to be defined and undefined
follow.

14.4.3 Events that Cause Variables to Become Defined

Variables become defined as follows:

1. Execution of an intrinsic assignment statement other than a masked array
assignment statement causes the variable that precedes the equal sign to
become defined. Execution of a defined assignment statement may cause
all or part of the variable that precedes the equal sign to become defined.

2. Execution of a masked array assignment statement may cause some or all
of the array elements in the assignment statement to become defined.

3. As execution of an input statement proceeds, each variable that is assigned
a value from the input file becomes defined at the time that data is
transferred to it. Execution of a WRITE statement whose unit specifier
identifies an internal file causes each record that is written to become
defined.

4. Execution of a DO statement causes the DO variable, if any, to become
defined.

5. Beginning execution of the action specified by an implied-do list in an
input/output statement causes the implied-do variable to become defined.

6. Execution of an ASSIGN statement causes the variable in the statement to
become defined with a statement label value.

7. A reference to a procedure causes a dummy argument data object to
become defined if the associated actual argument is defined with a value
that is not a statement label. If only a subobject of an actual argument is
defined, only the corresponding subobject of the associated dummy
argument is defined.

8. Execution of an input/output statement containing an input/output
IOSTAT= specifier causes the specified integer variable to become defined.

9. Execution of a READ statement containing a SIZE= specifier causes the
specified integer variable to become defined.

640 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

10. Execution of an INQUIRE statement causes any variable that is assigned a
value during the execution of the statement to become defined if no error
condition exists.

11. When a character storage unit becomes defined, all associated character
data objects become defined.

12. When a numeric storage unit becomes defined, all associated numeric data
objects of the same type become defined, except that variables associated
with the variable in an ASSIGN statement become undefined when the
ASSIGN statement is executed. When an entity of double precision real
type becomes defined, all totally associated entities of double precision real
type become defined.

13. When an unspecified storage unit becomes defined, all associated data
objects become defined.

14. When a default complex entity becomes defined, all partially associated
default real entities become defined.

15. When both parts of a default complex entity become defined as a result of
partially associated default real or default complex entities becoming
defined, the default complex entity becomes defined.

16. When all components of a numeric sequence structure or character
sequence structure become defined as a result of partially associated
objects becoming defined, the structure becomes defined.

17. Execution of an ALLOCATE or DEALLOCATE statement with a STAT=
specifier causes the variable specified by the STAT= specifier to become
defined.

18. Execution of a pointer assignment statement that associates a pointer with
a target that is defined causes the pointer to become defined.

14.4.4 Events that Cause Variables to Become Undefined

Variables become undefined as follows:

1. When a variable of a given type becomes defined, all associated variables
of different type become undefined. However, when a variable of type
default real is partially associated with a variable of type default complex,
the complex variable does not become undefined when the real variable

Scope, Association, and Definition 641

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

becomes defined and the real variable does not become undefined when
the complex variable becomes defined. When a variable of type default
complex is partially associated with another variable of type default
complex, definition of one does not cause the other to become undefined.

2. Execution of an ASSIGN statement causes the variable in the statement to
become undefined as an integer. Variables that are associated with the
variable also become undefined as integers.

3. If the evaluation of a function may cause an argument of the function or a
variable in a module or in a common block to become defined, and if a
reference to the function appears in an expression in which the value of the
function is not needed to determine the value of the expression, the
argument or variable becomes undefined when the expression is evaluated.

4. The execution of a RETURN statement or an END statement within a
subprogram causes all variables local to its scoping unit or local to the
current instance of its scoping unit for a recursive invocation to become
undefined as integers, except for the following:

a. variables with the SAVE attribute

b. variables in blank common

c. variables in a named common block that appears in the subprogram
and appears in at least one other scoping unit that is making either a
direct or indirect reference to the subprogram

d. variables accessed from the host scoping unit

e. variables accessed from a module that also is accessed in at least one
other scoping unit that is making either a direct or indirect reference to
the module

f. variables in a named common block that are initially defined and that
have not been subsequently defined or redefined

5. When an error condition or end-of-file condition occurs during execution
of an input statement, all of the variables specified by the input list or
namelist group of the statement become undefined.

6. When an error or end-of-file condition occurs during execution of an
input/output statement, some or all of the implied-do variables may
become undefined.

642 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7. Execution of a defined assignment statement may leave all or part of the
variable that precedes the equal sign undefined.

8. Execution of a direct access input statement that specifies a record that has
not been written previously causes all of the variables specified by the
input list of the statement to become undefined.

9. Execution of an INQUIRE statement may cause the NAME=, RECL=, and
NEXTREC= variables to become undefined.

10. When a character storage unit becomes undefined, all associated character
data objects units become undefined.

11. When a numeric storage unit becomes undefined, all associated numeric
data objects units become undefined unless the undefinition is a result of
defining an associated numeric data object of different type (see 1 above).

12. When an entity of double precision real type becomes undefined, all totally
associated entities of double precision real type become undefined.

13. When an unspecified storage unit becomes undefined, all associated data
objects become undefined.

14. A reference to a procedure causes part of a dummy argument to become
undefined if the corresponding part of the actual argument is defined with
a value that is a statement label.

15. When an allocatable array is deallocated, it becomes undefined. Successful
execution of an ALLOCATE statement creates an array that is undefined.

16. Execution of an INQUIRE statement causes all inquire specifier variables to
become undefined if an error condition exists, except for the variable in the
IOSTAT= specifier, if any.

17. When a procedure is invoked:

a. An optional dummy argument that is not associated with an actual
argument is undefined.

b. A dummy argument with INTENT (OUT) is undefined.

c. An actual argument associated with a dummy argument with INTENT
(OUT) becomes undefined.

d. A subobject of a dummy argument is undefined if the corresponding
subobject of the actual argument is undefined.

Scope, Association, and Definition 643

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

e. The result variable of a function is undefined.

18. When the association status of a pointer becomes undefined or
disassociated, the pointer becomes undefined.

644 Fortran 90 Handbook

14

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

645

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Intrinsic Procedures A

This appendix contains detailed specifications of the generic intrinsic
procedures in alphabetical order.

For each procedure there are examples. The examples use type kind
parameters for which the following assumptions are made:

1. The default real type has eight decimal digits of precision.

2. The value of the integer named constant HIGH is a kind parameter value
for a real data type with 14 decimal digits of precision and an exponent
range of at least 100.

3. The value of the integer named constant GREEK is a kind parameter value
for a character data type that contains Greek letters.

4. The value of the integer named constant BIT is a kind parameter value for
a logical data type that is an alternative to the default logical data type.

5. The value of the integer named constant SHORT is a kind parameter value
for an integer data type with eight bits to represent integer values, that is,

 in the bit model (13.2.1) for this integer type is 8.

All real values cannot be represented exactly in any processor; therefore, when
the following text says something like “ACOS (.1_HIGH) has the value
1.4706289056333”, it means that the value is a processor approximation to
1.4706289056333. The Fortran 90 standard does not specify how accurate the
approximation must be.

s

646 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.1 ABS (A)
Description. Absolute value.

Class. Elemental function.

Argument. A must be of type integer, real, or complex.

Result Type and Type Parameter. The same as A except that if A is complex,
the result is real.

Result Value. If A is of type integer or real, the value of the result is |A|; if A
is complex with value , the result is equal to a processor-dependent

approximation to .

Examples. ABS (–1) has the value 1. ABS (–1.5) has the value 1.5.
ABS ((3.0, 4.0)) has the value 5.0.

A.2 ACHAR (I)
Description. Returns the character in a specified position of the ASCII collating
sequence. It is the inverse of the IACHAR function.

Class. Elemental function.

Argument. I must be of type integer.

Result Type and Type Parameter. Character of length one with kind type
parameter value KIND (’A’).

Result Value. If I has a value in the range , the result is the
character in position I of the ASCII collating sequence, provided the processor
is capable of representing that character; otherwise, the result is processor
dependent. If the processor is not capable of representing both uppercase and
lowercase letters and I corresponds to a letter in a case that the processor is not
capable of representing, the result is the letter in the case that the processor is
capable of representing. ACHAR (IACHAR (C)) must have the value C for any
character C capable of representation in the processor.

Examples. ACHAR (88) is ’X’. ACHAR (42) is ’∗’.

x y,()

x2 y2+

0 'I 127≤ ≤

Intrinsic Procedures 647

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.3 ACOS (X)
Description. Arccosine (inverse cosine) function.

Class. Elemental function.

Argument. X must be of type real with a value that satisfies the inequality
.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to arccos(X), expressed in radians. It lies in the range

.

Examples. ACOS (0.54030231) has the value 1.0. ACOS (.1_HIGH) has the
value 1.4706289056333 with kind HIGH.

A.4 ADJUSTL (STRING)
Description. Adjust to the left, removing leading blanks and inserting trailing
blanks.

Class. Elemental function.

Argument. STRING must be of type character.

Result Type. Character of the same length and kind type parameter as
STRING.

Result Value. The value of the result is the same as STRING except that any
leading blanks have been deleted and the same number of trailing blanks have
been inserted.

Examples. ADJUSTL (’ WORD’) is ’WORD ’. ADJUSTL (GREEK_’ τρια’) is
GREEK_’τρια ’.

A.5 ADJUSTR (STRING)
Description. Adjust to the right, removing trailing blanks and inserting
leading blanks.

Class. Elemental function.

'X 1≤

0 ACOS (X) π≤ ≤

648 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Argument. STRING must be of type character.

Result Type. Character of the same length and kind type parameter as
STRING.

Result Value. The value of the result is the same as STRING except that any
trailing blanks have been deleted and the same number of leading blanks have
been inserted.

Examples. ADJUSTR (’WORD ’) has the value ’ WORD’. ADJUSTR
(GREEK_’τρια ’) has the value GREEK_’ τρια’.

A.6 AIMAG (Z)
Description. Imaginary part of a complex number.

Class. Elemental function.

Argument. Z must be of type complex.

Result Type and Type Parameter. Real with the same kind type parameter as
Z.

Result Value. If Z has the value , the result has value .

Examples. AIMAG ((2.0, 3.0)) has the value 3.0. AIMAG ((2.0_HIGH, 3.0)) has
the value 3.0 with kind HIGH; the parts of a complex literal constant have the
same precision, which is that of the part with the greatest precision.

A.7 AINT (A, KIND)
Optional Argument. KIND

Description. Truncation to a whole number.

Class. Elemental function.

Arguments.

A must be of type real.

KIND (optional) must be a scalar integer initialization expression.

x y,() y

Intrinsic Procedures 649

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Type and Type Parameter. The result is of type real. If KIND is present,
the kind type parameter is that specified by KIND; otherwise, the kind type
parameter is that of A.

Result Value. If , AINT (A) has the value 0; if , AINT (A) has a
value equal to the integer whose magnitude is the largest integer that does not
exceed the magnitude of A and whose sign is the same as the sign of A.

Examples. AINT (2.783) has the value 2.0. AINT (–2.783) has the value –2.0.
AINT (2.1111111111111_HIGH) and AINT (2.1111111111111, HIGH) have the
value 2.0 with kind HIGH.

A.8 ALL (MASK, DIM)
Optional Argument. DIM

Description. Determine whether all values are true in MASK along dimension
DIM.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with value in the
range where is the rank of MASK. The
corresponding actual argument must not be an
optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type logical with the
same kind type parameter as MASK. It is scalar if DIM is absent or MASK has
rank one; otherwise, the result is an array of rank and of shape (, , ...,

, , ...,) where (, , ...,) is the shape of MASK.

Result Value.

Case (i): The result of ALL (MASK) has the value true if all elements of
MASK are true or if MASK has size zero, and the result has value
false if any element of MASK is false.

'A 1< 'A 1≥

1 DIM n≤ ≤ n

n 1– d1 d2
dDIM 1– dDIM 1+ dn d1 d2 dn

650 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Case (ii): If MASK has rank one, ALL (MASK, DIM) has a value equal to that
of ALL (MASK). Otherwise, the value of element (, , ...,

, , ...,) of ALL (MASK, DIM) is equal to ALL
(MASK (, , ..., , :, , ...,)).

Examples.

Case (i): The value of ALL ((/ .TRUE., .FALSE., .TRUE. /)) is false. ALL
((/ .TRUE._BIT, .TRUE._BIT, .TRUE._BIT /)) is the value true with
kind parameter BIT. Note that all values in an array constructor
must have the same type and type parameter (4.6).

Case (ii): If B is the array and C is the array then ALL

(B .NE. C, DIM = 1) is (true, false, false) and ALL (B .NE. C,
DIM = 2) is (false, false).

A.9 ALLOCATED (ARRAY)
Description. Indicate whether or not an allocatable array is currently allocated.

Class. Inquiry function.

Argument. ARRAY must be an allocatable array.

Result Type, Type Parameter, and Shape. Default logical scalar.

Result Value. The result has the value true if ARRAY is currently allocated
and has the value false if ARRAY is not currently allocated. The result is
undefined if the allocation status (6.5.1.1) of the array is undefined.

Example. If the following statements are processed

REAL, ALLOCATABLE :: A(:,:)
ALLOCATE (A(10,10))
PRINT *, ALLOCATED (A)

then T is printed.

s1 s2
sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn

1 3 5

2 4 6

0 3 5

7 4 8

Intrinsic Procedures 651

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.10 ANINT (A, KIND)
Optional Argument. KIND

Description. Nearest whole number.

Class. Elemental function.

Arguments.

A must be of type real.

KIND (optional) must be a scalar integer initialization expression.

Result Type and Type Parameter. The result is of type real. If KIND is present,
the kind type parameter is that specified by KIND; otherwise, the kind type
parameter is that of A.

Result Value. If , ANINT (A) has the value AINT (A + 0.5); if ,
ANINT (A) has the value AINT (A – 0.5).

Examples. ANINT (2.783) has the value 3.0. ANINT (–2.783) has the value –3.0.
ANINT (2.7837837837837_HIGH) and ANINT (2.7837837837837, HIGH) have
the value 3.0 with kind HIGH.

A.11 ANY (MASK, DIM)
Optional Argument. DIM

Description. Determine whether any value is true in MASK along dimension
DIM.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of MASK. The
corresponding actual argument must not be an
optional dummy argument.

'A 0> 'A 0≤

1 DIM n≤ ≤ n

652 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Type, Type Parameter, and Shape. The result is of type logical with the
same kind type parameter as MASK. It is scalar if DIM is absent or MASK has
rank one; otherwise, the result is an array of rank and of shape (, , ...,

, , ...,) where (, , ...,) is the shape of MASK.

Result Value.

Case (i): The result of ANY (MASK) has the value true if any element of
MASK is true and has the value false if no elements are true or if
MASK has size zero.

Case (ii): If MASK has rank one, ANY (MASK, DIM) has a value equal to
that of ANY (MASK). Otherwise, the value of element (, , ...,

, , ...,) of ANY (MASK, DIM) is equal to
ANY (MASK (, , ..., , :, , ...,)).

Examples.

Case (i): The value of ANY ((/ .TRUE., .FALSE., .TRUE. /)) is true. ANY
((/ .FALSE._BIT, .FALSE._BIT, .FALSE._BIT /)) is false with kind
parameter BIT.

Case (ii): If B is the array and C is the array , ANY (B .NE. C,

DIM = 1) is (true, false, true) and ANY (B .NE. C, DIM = 2) is
(true, true).

A.12 ASIN (X)
Description. Arcsine (inverse sine) function.

Class. Elemental function.

Argument. X must be of type real. Its value must satisfy the inequality .

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to arcsin(X), expressed in radians. It lies in the range

.

Examples. ASIN (0.84147098) has the value 1.0. ASIN (1.0_HIGH) has the value
1.5707963267949 with kind HIGH.

n 1– d1 d2
dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2
sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn

1 3 5

2 4 6

0 3 5

7 4 8

'X 1≤

π 2⁄– ASIN (X) π 2⁄≤ ≤

Intrinsic Procedures 653

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.13 ASSOCIATED (POINTER, TARGET)
Optional Argument. TARGET

Description. Returns the association status of its pointer argument or indicates
the pointer is associated with the target.

Class. Inquiry function.

Arguments.

POINTER must be a pointer and may be of any type. Its pointer
association status must not be undefined.

TARGET (optional) must be a pointer or target. If it is a pointer, its pointer
association status must not be undefined.

Result Type. The result is of type default logical.

Result Value.

Case (i): If TARGET is absent, the result is true if POINTER is currently
associated with a target and false if it is not.

Case (ii): If TARGET is present and is a target, the result is true if POINTER
is currently associated with TARGET and false if it is not.

Case (iii): If TARGET is present and is a pointer, the result is true if both
POINTER and TARGET are currently associated with the same
target, and is false otherwise. If either POINTER or TARGET is
disassociated, the result is false.

Examples.

Case (i): ASSOCIATED (PTR) is true if PTR is currently associated with a
target.

Case (ii): ASSOCIATED (PTR, TAR) is true if the following statements have
been processed:

REAL, TARGET :: TAR (0:100)
REAL, POINTER :: PTR(:)
PTR => TAR

The subscript range for PTR is 0:100. If the pointer assignment
statement is either of

654 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

PTR => TAR (:)
PTR => TAR (0:100)

ASSOCIATED (PTR, TAR) is still true, but in both cases the
subscript range for PTR is 1:101 (5.3.1.3). However, if the pointer
assignment statement is

PTR => TAR (0:99)

ASSOCIATED (PTR, TAR) is false, because TAR (0:99) is not the
same as TAR.

Case (iii): ASSOCIATED (PTR1, PTR2) is true if the following statements
have been processed:

REAL, POINTER :: PTR1(:), PTR2(:)
ALLOCATE (PTR1(0:10))
PTR2 => PTR1

After the execution of either of the statements:

NULLIFY (PTR1)

NULLIFY (PTR2)

ASSOCIATED (PTR1, PTR2) is false.

A.14 ATAN (X)
Description. Arctangent (inverse tangent) function.

Class. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to arctan(X), expressed in radians, that lies in the range

.

Examples. ATAN (1.5574077) has the value 1.0. ATAN (2.0_HIGH/3.0) has the
value 0.58800260354757 with kind HIGH.

π 2⁄– ATAN (X) π 2⁄≤ ≤

Intrinsic Procedures 655

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.15 ATAN2 (Y, X)
Description. Arctangent (inverse tangent) function. The result is the principal
value of the argument of the nonzero complex number (X, Y).

Class. Elemental function.

Arguments.

Y must be of type real.

X must be of the same type and kind type parameter as Y.
If Y has the value zero, X must not have the value zero.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to the principal value of the argument of the complex number
(X, Y), expressed in radians. It lies in the range and is
equal to a processor-dependent approximation to a value of arctan(Y/X) if

. If , the result is positive. If , the result is zero if and
the result is if . If , the result is negative. If , the absolute
value of the result is .

Examples. ATAN2 (1.5574077, 1.0) has the value 1.0. If Y has the value

and X has the value , the value of ATAN2 (Y, X) is .

A.16 BIT_SIZE (I)
Description. Returns the number of bits defined by the model of 13.2.1 for
integers with the kind parameter of the argument.

Class. Inquiry function.

Argument. I must be of type integer.

π– ATAN2 (Y, X)< π≤

'X 0≠ 'Y 0> 'Y 0= 'X 0>
π 'X 0< 'Y 0< 'X 0=

π 2⁄

1 1

1– 1–

1– 1

1– 1

3π
4

------ π
4

3π–
4

--------- π
4
---–

s

656 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Type, Type Parameter, and Shape. Scalar integer with the same kind
type parameter as I.

Result Value. The result has the value of the number of bits in the model
integer defined for bit manipulation contexts in 13.2.1 for integers with the
kind parameter of the argument.

Examples. BIT_SIZE (1) has the value 32 if in the model is 32. BIT_SIZE
(1_SHORT) is 8 with kind SHORT.

A.17 BTEST (I, POS)
Description. Tests a bit of an integer value.

Class. Elemental function.

Arguments.

I must be of type integer.

POS must be of type integer. It must be nonnegative and be
less than BIT_SIZE (I).

Result Type. The result is of type default logical.

Result Value. The result has the value true if bit POS of I has the value 1 and
has the value false if bit POS of I has the value 0. The model for the
interpretation of an integer value as a sequence of bits is in 13.2.1.

Examples. BTEST (8, 3) has the value true. BTEST (8_SHORT, 3) has the value

true. If A has the value , the value of BTEST (A, 2) is , and the

value of BTEST (2, A) is .

s

s

1 2

3 4

false false

false true

true false

false false

Intrinsic Procedures 657

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.18 CEILING (A)
Description. Returns the least integer greater than or equal to its argument.

Class. Elemental function.

Argument. A must be of type real.

Result Type and Type Parameter. Default integer.

Result Value. The result has a value equal to the least integer greater than or
equal to A. The result is undefined if the processor cannot represent this value
in the default integer type.

Examples. CEILING (3.7) has the value 4. CEILING (–3.7) has the value –3.
CEILING (20.0_HIGH/3) has the value 7.

A.19 CHAR (I, KIND)
Optional Argument. KIND

Description. Returns the character in a given position of the processor
collating sequence associated with the specified kind type parameter. It is the
inverse of the function ICHAR.

Class. Elemental function.

Arguments.

I must be of type integer with a value in the range
, where is the number of characters in the

collating sequence associated with the specified kind
type parameter.

KIND (optional) must be a scalar integer initialization expression.

Result Type and Type Parameters. Character of length one. If KIND is present,
the kind type parameter is that specified by KIND; otherwise, the kind type
parameter is that of default character type.

0 'I n 1–≤ ≤ n

658 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. The result is the character in position I of the collating sequence
associated with the specified kind type parameter. ICHAR (CHAR (I, KIND
(C))) must have the value I for and CHAR (ICHAR (C), KIND (C))
must have the value C for any character C capable of representation in the
processor.

Examples. CHAR (88) is ’X’ on a processor using the ASCII collating sequence.
CHAR (97, GREEK) might be ’α’ on a processor that supports a character type
containing Greek letters.

A.20 CMPLX (X, Y, KIND)
Optional Arguments. Y, KIND

Description. Convert to complex type.

Class. Elemental function.

Arguments.

X must be of type integer, real, or complex.

Y (optional) must be of type integer or real. It must not be present if
X is of type complex.

KIND (optional) must be a scalar integer initialization expression.

Result Type and Type Parameter. The result is of type complex. If KIND is
present, the kind type parameter is that specified by KIND; otherwise, the kind
type parameter is that of default real type.

Result Value. If Y is absent and X is not complex, it is as if Y were present
with the value zero. If Y is absent and X is complex, it is as if Y were present
with the value AIMAG (X). CMPLX (X, Y, KIND) has the complex value whose
real part is REAL (X, KIND) and whose imaginary part is REAL (Y, KIND).

Examples. CMPLX (–3) is –3.0 + 0ι. CMPLX ((4.1, 0.0), KIND=HIGH), CMPLX
((4.1, 0), KIND=HIGH), and CMPLX (4.1, KIND=HIGH) are each 4.1 + 0ι with
kind HIGH.

0 'I n 1–≤ ≤

Intrinsic Procedures 659

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.21 CONJG (Z)
Description. Conjugate of a complex number.

Class. Elemental function.

Argument. Z must be of type complex.

Result Type and Type Parameter. Same as Z.

Result Value. If Z has the value , the result has the value .

Examples. CONJG ((2.0, 3.0)) is 2.0 – 3.0ι. CONJG ((0, –4.1_HIGH)) is 0 + 4.1ι
with kind HIGH.

A.22 COS (X)
Description. Cosine function.

Class. Elemental function.

Argument. X must be of type real or complex.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to cos(X). If X is of type real, it is regarded as a value in radians.
If X is of type complex, its real part is regarded as a value in radians.

Examples. COS (1.0) has the value 0.54030231. COS ((1.0_HIGH, 1.0)) has the
value 0.83373002513115 – 0.98889770576287ι with kind HIGH.

A.23 COSH (X)
Description. Hyperbolic cosine function.

Class. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to cosh(X).

x y,() x y–,()

660 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples. COSH (1.0) has the value 1.5430806. COSH (0.1_HIGH) has the
value 1.0050041680558 with kind HIGH.

A.24 COUNT (MASK, DIM)
Optional Argument. DIM

Description. Count the number of true elements of MASK along dimension
DIM.

Class. Transformational function.

Arguments.

MASK must be of type logical. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of MASK. The
corresponding actual argument must not be an
optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default integer.
It is scalar if DIM is absent or MASK has rank one; otherwise, the result is an
array of rank and of shape (, , ..., , , ...,) where

(, , ...,) is the shape of MASK.

Result Value.

Case (i): The result of COUNT (MASK) has a value equal to the number of
true elements of MASK or has the value zero if MASK has size
zero.

Case (ii): If MASK has rank one, COUNT (MASK, DIM) has a value equal to
that of COUNT (MASK). Otherwise, the value of element (, ,
..., , , ...,) of COUNT (MASK, DIM) is equal to
COUNT (MASK (, , ..., , :, , ...,)).

Examples.

Case (i): The value of COUNT ((/ .TRUE., .FALSE., .TRUE. /)) is 2.

1 DIM n≤ ≤ n

n 1– d1 d2 dDIM 1– dDIM 1+ dn

d1 d2 dn

s1 s2
sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn

Intrinsic Procedures 661

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Case (ii): If B is the array and C is the array , COUNT

(B .NE. C, DIM = 1) is (2, 0, 1) and COUNT (B .NE. C, DIM = 2) is
(1, 2).

A.25 CSHIFT (ARRAY, SHIFT, DIM)
Optional Argument. DIM

Description. Perform a circular shift on an array expression of rank one or
perform circular shifts on all the complete rank one sections along a given
dimension of an array expression of rank two or greater. Elements shifted out
at one end of a section are shifted in at the other end. Different sections may be
shifted by different amounts and in different directions (positive for left shifts,
negative for right shifts).

Class. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

SHIFT must be of type integer and must be scalar if ARRAY
has rank one; otherwise, it must be scalar or of rank

 and of shape (, , ..., , , ...,)
where (, , ...,) is the shape of ARRAY.

DIM (optional) must be a scalar and of type integer with a value in the
range , where is the rank of ARRAY. If
DIM is omitted, it is as if it were present with the value
1.

Result Type, Type Parameter, and Shape. The result is of the type and type
parameters of ARRAY, and has the shape of ARRAY.

Result Value.

Case (i): If ARRAY has rank one, element of the result is ARRAY (1 +
MODULO (+ SHIFT – 1, SIZE (ARRAY))).

1 3 5

2 4 6

0 3 5

7 4 8

n 1– d1 d2 dDIM 1– dDIM 1+ dn
d1 d2 dn

1 DIM n≤ ≤ n

i
i

662 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Case (ii): If ARRAY has rank greater than one, section (, , ..., , :,
,,) of the result has a value equal to CSHIFT (ARRAY

(, , ..., , :, ,,), , 1), where is SHIFT or
SHIFT (, , ..., , , ...,).

Examples.

Case (i): If V is the array (1, 2, 3, 4, 5, 6), the effect of shifting V circularly to
the left by two positions is achieved by CSHIFT (V, SHIFT = 2)
which has the value (3, 4, 5, 6, 1, 2); CSHIFT (V, SHIFT = –2)
achieves a circular shift to the right by two positions and has the
value (5, 6, 1, 2, 3, 4).

Case (ii): The rows of an array of rank two may all be shifted by the same

amount or by different amounts. If M is the array , the

value of CSHIFT (M, SHIFT = –1, DIM = 2) is , and the

value of CSHIFT (M, SHIFT = (/ –1, 1, 0 /), DIM = 2) is .

A.26 DATE_AND_TIME (DATE, TIME, ZONE, VALUES)
Optional Arguments. DATE, TIME, ZONE, VALUES

Description. Returns data on the real-time clock and date in a form compatible
with the representations defined in ISO 8601:1988.

Class. Subroutine.

Arguments.

DATE (optional) must be scalar and of type default character, and must
be of length at least 8 in order to contain the complete
value. It is an INTENT (OUT) argument. Its leftmost 8
characters are set to a value of the form CCYYMMDD,

s1 s2 sDIM 1–
sDIM 1+ sn
s1 s2 sDIM 1– sDIM 1+ sn sh sh

s1 s2 sDIM 1– sDIM 1+ sn

1 2 3

4 5 6

7 8 9

3 1 2

6 4 5

9 7 8

3 1 2

5 6 4

7 8 9

Intrinsic Procedures 663

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

where CC is the century, YY the year within the
century, MM the month within the year, and DD the
day within the month. If there is no date available, they
are set to blank.

TIME (optional) must be scalar and of type default character, and must
be of length at least 10 in order to contain the complete
value. It is an INTENT (OUT) argument. Its leftmost 10
characters are set to a value of the form hhmmss.sss,
where hh is the hour of the day, mm is the minutes of
the hour, and ss.sss is the seconds and milliseconds of
the minute. If there is no clock available, they are set to
blank.

ZONE (optional) must be scalar and of type default character, and must
be of length at least 5 in order to contain the complete
value. It is an INTENT (OUT) argument. Its leftmost 5
characters are set to a value of the form ±hhmm, where
hh and mm are the time difference with respect to
Coordinated Universal Time (UTC) in hours and parts
of an hour expressed in minutes, respectively. If there
is no clock available, they are set to blank.

VALUES (optional) must be of type default integer and of rank one. It is an
INTENT (OUT) argument. Its size must be at least 8.
The values returned in VALUES are as follows:

VALUES (1) the year (for example, 1990), or –HUGE (0) if there is
no date available;

VALUES (2) the month of the year, or –HUGE (0) if there is no date
available;

VALUES (3) the day of the month, or –HUGE (0) if there is no date
available;

VALUES (4) the time difference with respect to Coordinated
Universal Time (UTC) in minutes, or –HUGE (0) if this
information is not available;

VALUES (5) the hour of the day, in the range of 0 to 23, or
–HUGE (0) if there is no clock;

664 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

VALUES (6) the minutes of the hour, in the range 0 to 59, or
–HUGE (0) if there is no clock;

VALUES (7) the seconds of the minute, in the range 0 to 60, or
–HUGE (0) if there is no clock;

VALUES (8) the milliseconds of the second, in the range 0 to 999, or
–HUGE (0) if there is no clock.

HUGE is described in A.38.

Example.

INTEGER DATE_TIME (8)
CHARACTER (LEN = 10) BIG_BEN (3)
CALL DATE_AND_TIME (BIG_BEN (1), BIG_BEN (2), &

BIG_BEN (3), DATE_TIME)

if called in Geneva, Switzerland on 1985 April 12 at 15:27:35.5 would have
assigned the value "19850412 " to BIG_BEN (1), the value "152735.500" to
BIG_BEN (2), and the value "+0100 " to BIG_BEN (3), and the following
values to DATE_TIME: 1985, 4, 12, 60, 15, 27, 35, 500.

Note that UTC is defined by CCIR Recommendation 460-2 (and is also known
as Greenwich Mean Time).

A.27 DBLE (A)
Description. Convert to double precision real type.

Class. Elemental function.

Argument. A must be of type integer, real, or complex.

Result Type and Type Parameter. Double precision real.

Result Value.

Case (i): If A is of type double precision real, DBLE (A) = A.

Case (ii): If A is of type integer or real, the result is as much precision of the
significant part of A as a double precision real datum can contain.

Intrinsic Procedures 665

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Case (iii): If A is of type complex, the result is as much precision of the
significant part of the real part of A as a double precision real
datum can contain.

Examples. DBLE (–.3) is –0.3 of type double precision real. DBLE
(1.0_HIGH/3) is 0.33333333333333 of type double precision real.

A.28 DIGITS (X)
Description. Returns the number of significant digits in the model
representing numbers of the same type and kind type parameter as the
argument.

Class. Inquiry function.

Argument. X must be of type integer or real. It may be scalar or array valued.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has the value if X is of type integer and if X is of
type real, where and are as defined in 13.2 for the model representing
numbers of the same type and kind type parameter as X.

Examples. DIGITS (X) has the value 24 for real X whose model described in
13.2.3. DIGITS (ARRAY_A), where ARRAY_A is declared as

REAL (KIND=HIGH) ARRAY_A (100)

might have the value 48 for a model somewhat different from the one
described in 13.2.3.

A.29 DIM (X, Y)
Description. The difference X–Y if it is positive; otherwise zero.

Class. Elemental function.

Arguments.

X must be of type integer or real.

Y must be of the same type and kind type parameter as
X.

q p
q p

666 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Type and Type Parameter. Same as X.

Result Value. The value of the result is X–Y if X > Y and zero otherwise.

Examples. DIM (5, 3) has the value 2. DIM (–3.0, 2.0) has the value 0.0.

A.30 DOT_PRODUCT (VECTOR_A, VECTOR_B)
Description. Performs dot-product multiplication of numeric or logical
vectors.

Class. Transformational function.

Arguments.

VECTOR_A must be of numeric type (integer, real, or complex) or
of logical type. It must be array valued and of rank
one.

VECTOR_B must be of numeric type if VECTOR_A is of numeric
type or of type logical if VECTOR_A is of type logical.
It must be array valued and of rank one. It must be of
the same size as VECTOR_A.

Result Type, Type Parameter, and Shape. If the arguments are of numeric
type, the type and kind type parameter of the result are those of the expression
VECTOR_A ∗ VECTOR_B determined by the types of the arguments according
to 7.2.8. If the arguments are of type logical, the result is of type logical with
the kind type parameter of the expression VECTOR_A .AND. VECTOR_B
according to 7.2.8. The result is scalar.

Result Value.

Case (i): If VECTOR_A is of type integer or real, the result has the value
SUM (VECTOR_A∗VECTOR_B). If the vectors have size zero, the
result has the value zero.

Case (ii): If VECTOR_A is of type complex, the result has the value SUM
(CONJG (VECTOR_A)∗VECTOR_B). If the vectors have size zero,
the result has the value zero.

Case (iii): If VECTOR_A is of type logical, the result has the value ANY
(VECTOR_A .AND. VECTOR_B). If the vectors have size zero, the
result has the value false.

Intrinsic Procedures 667

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples.

Case (i): DOT_PRODUCT ((/ 1, 2, 3 /), (/ 2, 3, 4 /)) has the value 20.

Case (ii): DOT_PRODUCT ((/ (1.0, 2.0), (2.0, 3.0) /), (/ (1.0, 1.0), (1.0,
4.0) /)) has the value 17 + 4ι.

Case (iii): DOT_PRODUCT ((/ .TRUE., .FALSE. /), (/ .TRUE., .TRUE. /))
has the value true.

A.31 DPROD (X, Y)
Description. Double precision real product.

Class. Elemental function.

Arguments.

X must be of type default real.

Y must be of type default real.

Result Type and Type Parameters. Double precision real.

Result Value. The result has a value equal to a processor-dependent
approximation to the product of X and Y.

Example. DPROD (–3.0, 2.0) has the value –6.0 of type double precision real.

A.32 EOSHIFT (ARRAY, SHIFT, BOUNDARY, DIM)
Optional Arguments. BOUNDARY, DIM

Description. Perform an end-off shift on an array expression of rank one or
perform end-off shifts on all the complete rank-one sections along a given
dimension of an array expression of rank two or greater. Elements are shifted
off at one end of a section and copies of a boundary value are shifted in at the
other end. Different sections may have different boundary values and may be
shifted by different amounts and in different directions (positive for left shifts,
negative for right shifts).

Class. Transformational function.

668 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Arguments.

ARRAY may be of any type. It must not be scalar.

SHIFT must be of type integer and must be scalar if ARRAY
has rank one; otherwise, it must be scalar or of rank

 and of shape (, , ..., , , ...,)
where (, , ...,) is the shape of ARRAY.

BOUNDARY (optional)must be of the same type and type parameters as
ARRAY and must be scalar if ARRAY has rank one;
otherwise, it must be either scalar or of rank and
of shape (, , ..., , , ...,).
BOUNDARY may be omitted for the data types in the
following table and, in this case, it is as if it were
present with the scalar value shown.

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of ARRAY. If
DIM is omitted, it is as if it were present with the value
1.

Result Type, Type Parameter, and Shape. The result has the type, type
parameters, and shape of ARRAY.

Result Value. Element (, , ...,) of the result has the value ARRAY (,
, ..., , , , ...,) where is SHIFT or SHIFT (, ,

..., , , ...,) provided the inequality LBOUND (ARRAY,
DIM) UBOUND (ARRAY, DIM) holds and is otherwise
BOUNDARY or BOUNDARY (, , ..., , , ...,).

Type of ARRAY Value of BOUNDARY

Integer 0

Real 0.0

Complex (0.0, 0.0)

Logical false

Character (len) len blanks

n 1– d1 d2 dDIM 1– dDIM 1+ dn
d1 d2 dn

n 1–
d1 d2 dDIM 1– dDIM 1+ dn

1 DIM n≤ ≤ n

s1 s2 sn s1
s2 sDIM 1– sDIM sh+ sDIM 1+ sn sh s1 s2

sDIM 1– sDIM 1+ sn
sDIM sh+≤ ≤

s1 s2 sDIM 1– sDIM 1+ sn

Intrinsic Procedures 669

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples.

Case (i): If V is the array (1, 2, 3, 4, 5, 6), the effect of shifting V end-off to
the left by 3 positions is achieved by EOSHIFT (V, SHIFT = 3)
which has the value (4, 5, 6, 0, 0, 0); EOSHIFT (V, SHIFT = –2,
BOUNDARY = 99) achieves an end-off shift to the right by 2
positions with the boundary value of 99 and has the value
(99, 99, 1, 2, 3, 4).

Case (ii): The rows of an array of rank two may all be shifted by the same
amount or by different amounts and the boundary elements can be

the same or different. If M is the array , then the value of

EOSHIFT (M, SHIFT = –1, BOUNDARY = ’∗’, DIM = 2) is ,

and the value of EOSHIFT (M, SHIFT = (/ –1, 1, 0 /),

BOUNDARY = (/ ’∗’, ’/’, ’?’ /), DIM = 2) is .

A.33 EPSILON (X)
Description. Returns a positive model number that is almost negligible
compared to unity in the model representing numbers of the same type and
kind type parameter as the argument.

Class. Inquiry function.

Argument. X must be of type real. It may be scalar or array valued.

Result Type, Type Parameter, and Shape. Scalar of the same type and kind
type parameter as X.

Result Value. The result has the value where and are as defined in
13.2.3 for the model representing numbers of the same type and kind type
parameter as X.

'A 'B 'C

'D 'E 'F

'G 'H I

∗ 'A 'B

∗ 'D 'E

∗ 'G 'H

∗ 'A 'B

'E 'F /

'G 'H 'I

b1 p– b p

670 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples. EPSILON (X) has the value for real X whose model is described
in 13.2.3. EPSILON (Y), where Y has kind parameter HIGH, would be if
is 48 for the model of kind HIGH.

A.34 EXP (X)
Description. Exponential.

Class. Elemental function.

Argument. X must be of type real or complex.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent

approximation to . If X is of type complex, its imaginary part is regarded as
a value in radians.

Examples. EXP (1.0) has the value 2.7182818. EXP (2.0_HIGH/3.0) has the
value 1.9477340410547 with kind HIGH.

A.35 EXPONENT (X)
Description. Returns the exponent part of the argument when represented as a
model number.

Class. Elemental function.

Argument. X must be of type real.

Result Type. Default integer.

Result Value. The result has a value equal to the exponent of the model
representation (13.2.3) for the value of X, provided X is nonzero and is within
the range for default integers. The result is undefined if the processor cannot
represent in the default integer type. EXPONENT (X) has the value zero if X
is zero.

Examples. EXPONENT (1.0) has the value 1 and EXPONENT (4.1) has the
value 3 for reals whose model is described in 13.2.3.

2 23–

2 47– p

e 'X

e
e

e

Intrinsic Procedures 671

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.36 FLOOR (A)
Description. Returns the greatest integer less than or equal to its argument.

Class. Elemental function.

Argument. A must be of type real.

Result Type and Type Parameter. Default integer.

Result Value. The result has value equal to the greatest integer less than or
equal to A. The result is undefined if the processor cannot represent this value
in the default integer type.

Examples. FLOOR (3.7) has the value 3. FLOOR (–3.7) has the value –4.
FLOOR (10.0_HIGH/3) has the value 3.

A.37 FRACTION (X)
Description. Returns the fractional part of the model representation of the
argument value.

Class. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameter. Same as X.

Result Value. The result has the value , where and are as defined in
13.2.3 for the model representation of X. If X has the value zero, the result has
the value zero.

Example. FRACTION (3.0) has the value 0.75 for reals whose model is
described in 13.2.3.

A.38 HUGE (X)
Description. Returns the largest number in the model representing numbers of
the same type and kind type parameter as the argument.

Class. Inquiry function.

Argument. X must be of type integer or real. It may be scalar or array valued.

'X b e–× b e

672 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Type, Type Parameter, and Shape. Scalar of the same type and kind
type parameter as X.

Result Value. The result has the value if X is of type integer and

 if X is of type real, where , , , , and are as defined in

13.2.3 for the model representing numbers of the same type and kind type
parameter as X.

Example. HUGE (X) has the value for real X whose model is
described in 13.2.3.

A.39 IACHAR (C)
Description. Returns the position of a character in the ASCII collating
sequence.

Class. Elemental function.

Argument. C must be of type default character and of length one.

Result Type and Type Parameter. Default integer.

Result Value. If C is in the collating sequence defined by the codes specified in
ISO 646:1983 (International Reference Version), the result is the position of C in
that sequence and satisfies the inequality (). A processor-
dependent value is returned if C is not in the ASCII collating sequence. The
results are consistent with the LGE, LGT, LLE, and LLT lexical comparison
functions. For example, if LLE (C, D) is true, IACHAR (C) .LE. IACHAR (D) is
true where C and D are any two characters representable by the processor.

Examples. IACHAR (’X’) has the value 88. IACHAR (’∗’) has the value 42.

A.40 IAND (I, J)
Description. Performs a logical AND.

Class. Elemental function.

rq 1–

1 b p––() bemax r q b p emax

1 2 24––() 2127×

0 IACHAR (C) 127≤ ≤

Intrinsic Procedures 673

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Arguments.

I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result Type and Type Parameter. Same as I.

Result Value. The result has the value obtained by combining I and J bit-by-bit
according to the following truth table:

The model for the interpretation of an integer value as a sequence of bits is in
13.2.1.

Examples. IAND (1, 3) has the value 1. IAND (2_SHORT, 10_SHORT) is 2 with
kind SHORT.

A.41 IBCLR (I, POS)
Description. Clears one bit to zero.

Class. Elemental function.

Arguments.

I must be of type integer.

POS must be of type integer. It must be nonnegative and
less than BIT_SIZE (I).

Result Type and Type Parameter. Same as I.

Result Value. The result has the value of the sequence of bits of I, except that
bit POS of I is set to zero. The model for the interpretation of an integer value
as a sequence of bits is in 13.2.1.

 I J IAND (I, J)

1 1 1

1 0 0

0 1 0

0 0 0

674 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples. IBCLR (14, 1) has the result 12. If V has the value (1, 2, 3, 4), the
value of IBCLR (POS = V, I = 31) is (29, 27, 23, 15). The value of IBCLR
((/ 15_SHORT, 31_SHORT, 7_SHORT /), 3) is (7, 23, 7) with kind SHORT.

A.42 IBITS (I, POS, LEN)
Description. Extracts a sequence of bits.

Class. Elemental function.

Arguments.

I must be of type integer.

POS must be of type integer. It must be nonnegative and
POS + LEN must be less than or equal to BIT_SIZE (I).

LEN must be of type integer and nonnegative.

Result Type and Type Parameter. Same as I.

Result Value. The result has the value of the sequence of LEN bits in I
beginning at bit POS right-adjusted and with all other bits zero. The model for
the interpretation of an integer value as a sequence of bits is in 13.2.1.

Examples. IBITS (14, 1, 3) has the value 7. The value of IBITS ((/ 15_SHORT,
31_SHORT, 7_SHORT /), 2_SHORT, 3_SHORT) is (3, 7, 1) with kind SHORT.

A.43 IBSET (I, POS)
Description. Sets one bit to one.

Class. Elemental function.

Arguments.

I must be of type integer.

POS must be of type integer. It must be nonnegative and
less than BIT_SIZE (I).

Result Type and Type Parameter. Same as I.

Intrinsic Procedures 675

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. The result has the value of the sequence of bits of I, except that
bit POS of I is set to one. The model for the interpretation of an integer value as
a sequence of bits is in 13.2.1.

Examples. IBSET (12, 1) has the value 14. If V has the value (1, 2, 3, 4), the
value of IBSET (POS = V, I = 0) is (2, 4, 8, 16). The value of
IBSET ((/ 15_SHORT, 31_SHORT, 7_SHORT /), 3) is (15, 31, 15) with kind
SHORT.

A.44 ICHAR (C)
Description. Returns the position of a character in the processor collating
sequence associated with the kind type parameter of the character.

Class. Elemental function.

Argument. C must be of type character and of length one. Its value must be
that of a character capable of representation in the processor.

Result Type and Type Parameter. Default integer.

Result Value. The result is the position of C in the processor collating
sequence associated with the kind type parameter of C and is in the range

, where is the number of characters in the collating
sequence. For any characters C and D capable of representation in the
processor, C .LE. D is true if and only if ICHAR (C) .LE. ICHAR (D) is true and
C .EQ. D is true if and only if ICHAR (C). EQ. ICHAR (D) is true.

Examples. ICHAR (’X’) has the value 88 on a processor using the ASCII
collating sequence for the default character type. ICHAR (’∗’) has the value 42
on such a processor.

A.45 IEOR (I, J)
Description. Performs an exclusive OR.

Class. Elemental function.

0 ICHAR (C) n 1–≤ ≤ n

676 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Arguments.

I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result Type and Type Parameter. Same as I.

Result Value. The result has the value obtained by combining I and J bit-by-bit
according to the following truth table:

The model for the interpretation of an integer value as a sequence of bits is in
13.2.1.

Examples. IEOR (1, 3) has the value 2. IEOR ((/ 3_SHORT, 10_SHORT /),
2_SHORT) is (1, 8) with kind SHORT.

A.46 INDEX (STRING, SUBSTRING, BACK)
Optional Argument. BACK

Description. Returns the starting position of a substring within a string.

Class. Elemental function.

Arguments.

STRING must be of type character.

SUBSTRING must be of type character with the same kind type
parameter as STRING.

BACK (optional) must be of type logical.

Result Type and Type Parameter. Default integer.

I J IEOR (I, J)

1 1 0

1 0 1

0 1 1

0 0 0

Intrinsic Procedures 677

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value.

Case (i): If BACK is absent or present with the value false, the result is the
minimum positive value of I such that STRING (I : I + LEN
(SUBSTRING) – 1) = SUBSTRING or zero if there is no such value.
Zero is returned if LEN (STRING) < LEN (SUBSTRING) and one is
returned if LEN (SUBSTRING) = 0.

Case (ii): If BACK is present with the value true, the result is the maximum
value of I less than or equal to LEN (STRING) – LEN
(SUBSTRING) + 1 such that STRING (I : I + LEN (SUBSTRING) – 1)
= SUBSTRING or zero if there is no such value. Zero is returned if
LEN (STRING) < LEN (SUBSTRING) and LEN (STRING) + 1 is
returned if LEN (SUBSTRING) = 0.

Examples. INDEX (’FORTRAN’, ’R’) has the value 3. INDEX (’FORTRAN’, ’R’,
BACK = .TRUE.) has the value 5. INDEX (GREEK_"τρια", GREEK_"ι") has the
value 3. INDEX ("XXX", "") has the value 1. INDEX ("XXX", "", BACK=.TRUE.)
has the value 4.

A.47 INT (A, KIND)
Optional Argument. KIND

Description. Convert to integer type.

Class. Elemental function.

Arguments.

A must be of type integer, real, or complex.

KIND (optional) must be a scalar integer initialization expression.

Result Type and Type Parameter. Integer. If KIND is present, the kind type
parameter is that specified by KIND; otherwise, the kind type parameter is that
of default integer type.

678 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value.

Case (i): If A is of type integer, INT (A) = A.

Case (ii): If A is of type real, there are two cases: if , INT (A) has the
value 0; if , INT (A) is the integer whose magnitude is the
largest integer that does not exceed the magnitude of A and whose
sign is the same as the sign of A.

Case (iii): If A is of type complex, INT (A) is the value obtained by applying
the case (ii) rule to the real part of A. The result is undefined if the
processor cannot represent the result in the specified integer type.

Examples. INT (–3.7) has the value –3. INT (9.1_HIGH/4.0_HIGH, SHORT) is 2
with kind SHORT.

A.48 IOR (I, J)
Description. Performs an inclusive OR.

Class. Elemental function.

Arguments.

I must be of type integer.

J must be of type integer with the same kind type
parameter as I.

Result Type and Type Parameter. Same as I.

Result Value. The result has the value obtained by combining I and J bit-by-bit
according to the following truth table:

I J IOR (I, J)

1 1 1

1 0 1

0 1 1

0 0 0

'A 1<
'A 1≥

Intrinsic Procedures 679

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

The model for the interpretation of an integer value as a sequence of bits is in
13.2.1.

Examples. IOR (1, 3) has the value 3. IOR ((/ 3_SHORT, 2_SHORT /),
(/ 1_SHORT, 10_SHORT /)) is (3, 10) with kind SHORT.

A.49 ISHFT (I, SHIFT)
Description. Performs a logical shift.

Class. Elemental function.

Arguments.

I must be of type integer.

SHIFT must be of type integer. The absolute value of SHIFT
must be less than or equal to BIT_SIZE (I).

Result Type and Type Parameter. Same as I.

Result Value. The result has the value obtained by shifting the bits of I by
SHIFT positions. If SHIFT is positive, the shift is to the left; if SHIFT is
negative, the shift is to the right; and if SHIFT is zero, no shift is performed.
Bits shifted out from the left or from the right, as appropriate, are lost. Zeros
are shifted in from the opposite end. The model for the interpretation of an
integer value as a sequence of bits is in 13.2.1.

Examples. ISHFT (3, 1) has the value 6. ISHFT (3, –1) has the value 1.

A.50 ISHFTC (I, SHIFT, SIZE)
Optional Argument. SIZE

Description. Performs a circular shift of the rightmost bits.

Class. Elemental function.

Arguments.

I must be of type integer.

SHIFT must be of type integer. The absolute value of SHIFT
must be less than or equal to SIZE.

680 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SIZE (optional) must be of type integer. The value of SIZE must be
positive and must not exceed BIT_SIZE (I). If SIZE is
absent, it is as if it were present with the value of
BIT_SIZE (I).

Result Type and Type Parameter. Same as I.

Result Value. The result has the value obtained by shifting the SIZE rightmost
bits of I circularly by SHIFT positions. If SHIFT is positive, the shift is to the
left; if SHIFT is negative, the shift is to the right; and if SHIFT is zero, no shift
is performed. No bits are lost. The unshifted bits are unaltered. The model for
the interpretation of an integer value as a sequence of bits is in 13.2.1.

Examples. ISHFTC (3, 2, 3) has the value 5. ISHFTC (3_SHORT, –2_SHORT) is
192 with kind SHORT.

A.51 KIND (X)
Description. Returns the value of the kind type parameter of X.

Class. Inquiry function.

Argument. X may be of any intrinsic type.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has a value equal to the kind type parameter value of
X.

Examples. KIND (0.0) has the kind type parameter value of default real. KIND
(1.0_HIGH) has the value of the named constant HIGH.

A.52 LBOUND (ARRAY, DIM)
Optional Argument. DIM

Description. Returns all the lower bounds or a specified lower bound of an
array.

Class. Inquiry function.

Intrinsic Procedures 681

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Arguments.

ARRAY may be of any type. It must not be scalar. It must not be
a pointer that is disassociated or an allocatable array
that is not allocated.

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of ARRAY. The
corresponding actual argument must not be an
optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default integer.
It is scalar if DIM is present; otherwise, the result is an array of rank one and
size , where is the rank of ARRAY.

Result Value.

Case (i): For an array section or for an array expression, other than a whole
array or array structure component, LBOUND (ARRAY, DIM) has
the value 1; otherwise, it has a value equal to the lower bound for
subscript DIM of ARRAY if dimension DIM of ARRAY does not
have size zero and has the value 1 if dimension DIM has size zero.

Case (ii): LBOUND (ARRAY) has a value whose ith component is equal to
LBOUND (ARRAY,), for = 1, 2, ..., , where is the rank of
ARRAY.

Examples. If the following statements are processed

REAL, TARGET :: A (2:3, 7:10)
REAL, POINTER, DIMENSION (:,:) :: B, C, D
B => A
C => A(:,:)
ALLOCATE (D(-3:3,-7:7))

LBOUND (A) is (2, 7), LBOUND (A, DIM=2) is 7, LBOUND (B) is (2,7),
LBOUND (C) is (1,1), LBOUND (D) is (–3,–7),

1 DIM n≤ ≤ n

n n

i i n n

682 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.53 LEN (STRING)
Description. Returns the length of a character entity.

Class. Inquiry function.

Argument. STRING must be of type character. It may be scalar or array valued.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has a value equal to the number of characters in
STRING if it is scalar or in an element of STRING if it is array valued.

Example. If C and D are declared by the statements

CHARACTER (11) C (100)
CHARACTER (KIND=GREEK, LEN=31) D

LEN (C) has the value 11 and LEN (D) has the value 31.

A.54 LEN_TRIM (STRING)
Description. Returns the length of the character argument without counting
trailing blank characters.

Class. Elemental function.

Argument. STRING must be of type character.

Result Type and Type Parameter. Default integer.

Result Value. The result has a value equal to the number of characters
remaining after any trailing blanks in STRING are removed. If the argument
contains no nonblank characters, the result is zero.

Examples. LEN_TRIM (’ A B ’) has the value 4 and LEN_TRIM (’ ’) has
the value 0.

A.55 LGE (STRING_A, STRING_B)
Description. Test whether a string is lexically greater than or equal to another
string, based on the ASCII collating sequence.

Class. Elemental function.

Intrinsic Procedures 683

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Arguments.

STRING_A must be of type default character.

STRING_B must be of type default character.

Result Type and Type Parameters. Default logical.

Result Value. If the strings are of unequal length, the comparison is made as if
the shorter string were extended on the right with blanks to the length of the
longer string. If either string contains a character not in the ASCII character set,
the result is processor dependent. The result is true if the strings are equal or if
STRING_A follows STRING_B in the ASCII collating sequence; otherwise, the
result is false. Note that the result is true if both STRING_A and STRING_B are
of zero length.

Example. LGE (’ONE’, ’TWO’) has the value false.

A.56 LGT (STRING_A, STRING_B)
Description. Test whether a string is lexically greater than another string,
based on the ASCII collating sequence.

Class. Elemental function.

Arguments.

STRING_A must be of type default character.

STRING_B must be of type default character.

Result Type and Type Parameters. Default logical.

Result Value. If the strings are of unequal length, the comparison is made as if
the shorter string were extended on the right with blanks to the length of the
longer string. If either string contains a character not in the ASCII character set,
the result is processor dependent. The result is true if STRING_A follows
STRING_B in the ASCII collating sequence; otherwise, the result is false. Note
that the result is false if both STRING_A and STRING_B are of zero length.

Example. LGT (’ONE’, ’TWO’) has the value false.

684 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.57 LLE (STRING_A, STRING_B)
Description. Test whether a string is lexically less than or equal to another
string, based on the ASCII collating sequence.

Class. Elemental function.

Arguments.

STRING_A must be of type default character.

STRING_B must be of type default character.

Result Type and Type Parameters. Default logical.

Result Value. If the strings are of unequal length, the comparison is made as if
the shorter string were extended on the right with blanks to the length of the
longer string. If either string contains a character not in the ASCII character set,
the result is processor dependent. The result is true if the strings are equal or if
STRING_A precedes STRING_B in the ASCII collating sequence; otherwise, the
result is false. Note that the result is true if both STRING_A and STRING_B are
of zero length.

Example. LLE (’ONE’, ’TWO’) has the value true.

A.58 LLT (STRING_A, STRING_B)
Description. Test whether a string is lexically less than another string, based
on the ASCII collating sequence.

Class. Elemental function.

Arguments.

STRING_A must be of type default character.

STRING_B must be of type default character.

Result Type and Type Parameters. Default logical.

Result Value. If the strings are of unequal length, the comparison is made as if
the shorter string were extended on the right with blanks to the length of the
longer string. If either string contains a character not in the ASCII character set,

Intrinsic Procedures 685

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

the result is processor dependent. The result is true if STRING_A precedes
STRING_B in the ASCII collating sequence; otherwise, the result is false. Note
that the result is false if both STRING_A and STRING_B are of zero length.

Example. LLT (’ONE’, ’TWO’) has the value true.

A.59 LOG (X)
Description. Natural logarithm.

Class. Elemental function.

Argument. X must be of type real or complex. If X is real, its value must be
greater than zero. If X is complex, its value must not be zero.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to . A result of type complex is the principal value with
imaginary part in the range . The imaginary part of the result is
only when the real part of the argument is less than zero and the imaginary
part of the argument is zero.

Examples. LOG (10.0) has the value 2.3025851. LOG ((–0.5_HIGH,0)) has the
value –0.69314718055994 + 3.1415926535898ι with kind HIGH.

A.60 LOG10 (X)
Description. Common logarithm.

Class. Elemental function.

Argument. X must be of type real. The value of X must be greater than zero.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to .

Examples. LOG10 (10.0) has the value 1.0. LOG10 (10.0E1000_HIGH) has the
value 1001.0 with kind HIGH.

logex
ω π– ω< π≤ π

log10'X

686 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.61 LOGICAL (L, KIND)
Optional Argument. KIND

Description. Converts between kinds of logical.

Class. Elemental function.

Arguments.

L must be of type logical.

KIND (optional) must be a scalar integer initialization expression.

Result Type and Type Parameter. Logical. If KIND is present, the kind type
parameter is that specified by KIND; otherwise, the kind type parameter is that
of default logical.

Result Value. The value is that of L.

Examples. LOGICAL (L .OR. .NOT. L) has the value true and is of type default
logical, regardless of the kind type parameter of the logical variable L.
LOGICAL (L, BIT) has kind parameter BIT and has the same value as L.

A.62 MATMUL (MATRIX_A, MATRIX_B)
Description. Performs matrix multiplication of numeric or logical matrices.

Class. Transformational function.

Arguments.

MATRIX_A must be of numeric type (integer, real, or complex) or
of logical type. It must be array valued and of rank one
or two.

MATRIX_B must be of numeric type if MATRIX_A is of numeric
type and of logical type if MATRIX_A is of logical type.
It must be array valued and of rank one or two. If
MATRIX_A has rank one, MATRIX_B must have rank
two. If MATRIX_B has rank one, MATRIX_A must
have rank two. The size of the first (or only) dimension
of MATRIX_B must equal the size of the last (or only)
dimension of MATRIX_A.

Intrinsic Procedures 687

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Type, Type Parameter, and Shape. If the arguments are of numeric
type, the type and kind type parameter of the result are determined by the
types of the arguments according to 7.2.8.2. If the arguments are of type logical,
the result is of type logical with the kind type parameter of the arguments
according to 7.2.8.2. The shape of the result depends on the shapes of the
arguments as follows:

Case (i): If MATRIX_A has shape and MATRIX_B has shape ,
the result has shape .

Case (ii): If MATRIX_A has shape and MATRIX_B has shape ,
the result has shape .

Case (iii): If MATRIX_A has shape and MATRIX_B has shape , the
result has shape .

Result Value.

Case (i): Element of the result has the value SUM (MATRIX_A (, :) ∗
MATRIX_B (:,)) if the arguments are of numeric type and has the
value ANY (MATRIX_A (, :) .AND. MATRIX_B (:,)) if the
arguments are of logical type.

Case (ii): Element () of the result has the value SUM (MATRIX_A (:) ∗
MATRIX_B (:,)) if the arguments are of numeric type and has the
value ANY (MATRIX_A (:) .AND. MATRIX_B (:,)) if the
arguments are of logical type.

Case (iii): Element () of the result has the value SUM (MATRIX_A (, :) ∗
MATRIX_B (:)) if the arguments are of numeric type and has the
value ANY (MATRIX_A (, :) .AND. MATRIX_B (:)) if the
arguments are of logical type.

Examples. Let A and B be the matrices and ; let X and Y be the

vectors (1, 2) and (1, 2, 3).

Case (i): The result of MATMUL (A, B) is the matrix-matrix product AB

with the value .

n m,() m k,()
n k,()

m() m k,()
k()

n m,() m
n

i j,() i
j

i j

j
j

j

i i

i

1 2 3

2 3 4

1 2

2 3

3 4

14 20

20 29

688 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Case (ii): The result of MATMUL (X, A) is the vector-matrix product XA
with the value (5, 8, 11).

Case (iii): The result of MATMUL (A, Y) is the matrix-vector product AY with
the value (14, 20).

A.63 MAX (A1, A2, A3, ...)
Optional Arguments. A3, ...

Description. Maximum value.

Class. Elemental function.

Arguments. The arguments must all have the same type which must be integer
or real and they must all have the same kind type parameter.

Result Type and Type Parameter. Same as the arguments.

Result Value. The value of the result is that of the largest argument.

Examples. MAX (–9.0, 7.0, 2.0) has the value 7.0. MAX (–1.0_HIGH/3, –
0.1_HIGH) is –0.1 with kind HIGH.

A.64 MAXEXPONENT (X)
Description. Returns the maximum exponent in the model representing
numbers of the same type and kind type parameter as the argument.

Class. Inquiry function.

Argument. X must be of type real. It may be scalar or array valued.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has the value , as defined in 13.2.3 for the model
representing numbers of the same type and kind type parameter as X.

Example. MAXEXPONENT (X) has the value 127 for real X whose model is
described in 13.2.3.

emax

Intrinsic Procedures 689

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.65 MAXLOC (ARRAY, MASK)
Optional Argument. MASK

Description. Determine the location of the first element of ARRAY having the
maximum value of the elements identified by MASK.

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. The result is of type default integer;
it is an array of rank one and of size equal to the rank of ARRAY.

Result Value.

Case (i): If MASK is absent, the result is a rank-one array whose element
values are the values of the subscripts of an element of ARRAY
whose value equals the maximum value of all of the elements of
ARRAY. The th subscript returned lies in the range 1 to , where

 is the extent of the ith dimension of ARRAY. If more than one
element has the maximum value, the element whose subscripts are
returned is the first such element, taken in array element order. If
ARRAY has size zero, the value of the result is processor
dependent.

Case (ii): If MASK is present, the result is a rank-one array whose element
values are the values of the subscripts of an element of ARRAY,
corresponding to a true element of MASK, whose value equals the
maximum value of all such elements of ARRAY. The ith subscript
returned lies in the range 1 to , where is the extent of the th
dimension of ARRAY. If more than one such element has the
maximum value, the element whose subscripts are returned is the
first such element taken in array element order. If there are no such
elements (that is, if ARRAY has size zero or every element of
MASK has the value false), the value of the result is processor
dependent. An element of the result is undefined if the processor
cannot represent the value as a default integer.

i ei
ei

ei ei i

690 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples.

Case (i): The value of MAXLOC ((/ 2, 6, 4, 6 /)) is (2). If the array B is
declared

INTEGER, DIMENSION(4:7) :: B = (/ 8, 6, 3, 1 /)

the value of MAXLOC (B) is (1).

Case (ii): If A has the value , MAXLOC (A, MASK = A .LT. 6)

has the value (3, 2). Note that this is true even if A has a declared
lower bound other than 1.

A.66 MAXVAL (ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Maximum value of the elements of ARRAY along dimension DIM
corresponding to the true elements of MASK.

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range where is the rank of ARRAY. The
corresponding actual argument must not be an
optional dummy argument.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. The result is of the same type and
kind type parameter as ARRAY. It is scalar if DIM is absent or ARRAY has rank
one; otherwise, the result is an array of rank and of shape (, , ...,

, , ...,) where (, , ...,) is the shape of ARRAY.

0 5– 8 3–

3 4 1– 2

1 5 6 4–

1 DIM n≤ ≤ n

n 1– d1 d2

dDIM 1– dDIM 1+ dn d1 d2 dn

Intrinsic Procedures 691

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value.

Case (i): The result of MAXVAL (ARRAY) has a value equal to the
maximum value of all the elements of ARRAY or has the value of
the negative number of the largest magnitude supported by the
processor for numbers of the type and kind type parameter of
ARRAY if ARRAY has size zero.

Case (ii): The result of MAXVAL (ARRAY, MASK = MASK) has a value
equal to the maximum value of the elements of ARRAY
corresponding to true elements of MASK or has the value of the
negative number of the largest magnitude supported by the
processor for numbers of the type and kind type parameter of
ARRAY if there are no true elements.

Case (iii): If ARRAY has rank one, MAXVAL (ARRAY, DIM [,MASK]) has a
value equal to that of MAXVAL (ARRAY [,MASK = MASK]).
Otherwise, the value of element (, , ..., , , ...,)
of MAXVAL (ARRAY, DIM [,MASK]) is equal to MAXVAL (ARRAY
(, , ..., , :, , ...,) [, MASK = MASK (, , ...,

, :, , ...,)]).

Examples.

Case (i): The value of MAXVAL ((/ 1, 2, 3 /)) is 3.

Case (ii): MAXVAL (C, MASK = C .LT. 0.0) finds the maximum of the
negative elements of C.

Case (iii): If B is the array , MAXVAL (B, DIM = 1) is (2, 4, 6) and

MAXVAL (B, DIM = 2) is (5, 6).

A.67 MERGE (TSOURCE, FSOURCE, MASK)
Description. Choose alternative value according to the value of a mask.

Class. Elemental function.

s1 s2 sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn s1 s2
sDIM 1– sDIM 1+ sn

1 3 5

2 4 6

692 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Arguments.

TSOURCE may be of any type.

FSOURCE must be of the same type and type parameters as
TSOURCE.

MASK must be of type logical.

Result Type and Type Parameters. Same as TSOURCE.

Result Value. The result is TSOURCE if MASK is true and FSOURCE
otherwise.

Examples. If TSOURCE is the array , FSOURCE is the array and

MASK is the array , where “T” represents true and “.” represents false,

then MERGE (TSOURCE, FSOURCE, MASK) is . The value of MERGE

(1.0, 0.0, K > 0) is 1.0 for K = 5 and 0.0 for K = –2.

A.68 MIN (A1, A2, A3, ...)
Optional Arguments. A3, ...

Description. Minimum value.

Class. Elemental function.

Arguments. The arguments must all be of the same type which must be integer
or real and they must all have the same kind type parameter.

Result Type and Type Parameter. Same as the arguments.

Result Value. The value of the result is that of the smallest argument.

Examples. MIN (–9.0, 7.0, 2.0) has the value –9.0. MIN (–0.4_HIGH, –
1.0_HIGH/3) is –0.4 with kind HIGH.

1 6 5

2 4 6

0 3 2

7 4 8

'T . 'T

. . 'T

1 3 5

7 4 6

Intrinsic Procedures 693

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.69 MINEXPONENT (X)
Description. Returns the minimum (most negative) exponent in the model
representing numbers of the same type and kind type parameter as the
argument.

Class. Inquiry function.

Argument. X must be of type real. It may be scalar or array valued.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has the value , as defined in 13.2.3 for the model
representing numbers of the same type and kind type parameter as X.

Example. MINEXPONENT (X) has the value –126 for real X whose model is
described in 13.2.3.

A.70 MINLOC (ARRAY, MASK)
Optional Argument. MASK

Description. Determine the location of the first element of ARRAY having the
minimum value of the elements identified by MASK.

Class. Transformational function.

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. The result is of type default integer;
it is an array of rank one and of size equal to the rank of ARRAY.

Result Value.

Case (i): If MASK is absent, the result is a rank-one array whose element
values are the values of the subscripts of an element of ARRAY
whose value equals the minimum value of all the elements of
ARRAY. The ith subscript returned lies in the range 1 to , where

 is the extent of the th dimension of ARRAY. If more than one

emin

ei
ei i

694 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

element has the minimum value, the element whose subscripts are
returned is the first such element, taken in array element order. If
ARRAY has size zero, the value of the result is processor
dependent.

Case (ii): If MASK is present, the result is a rank-one array whose element
values are the values of the subscripts of an element of ARRAY,
corresponding to a true element of MASK, whose value equals the
minimum value of all such elements of ARRAY. The ith subscript
returned lies in the range 1 to , where is the extent of the th
dimension of ARRAY. If more than one such element has the
minimum value, the element whose subscripts are returned is the
first such element taken in array element order. If ARRAY has size
zero or every element of MASK has the value false, the value of the
result is processor dependent. An element of the result is
undefined if the processor cannot represent the value as a default
integer.

Examples.

Case (i): The value of MINLOC ((/ 4, 3, 6, 3 /)) is (2). If the array B is
declared

INTEGER, DIMENSION(4:7) :: B = (/ 8, 6, 3, 1 /)

Case (i): the value of MINLOC (B) is (4)

Case (ii): If A has the value , MINLOC (A, MASK = A .GT. –4)

has the value (1, 4). Note that this is true even if A has a declared
lower bound other than 1.

A.71 MINVAL (ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Minimum value of all the elements of ARRAY along dimension
DIM corresponding to true elements of MASK.

Class. Transformational function.

ei ei i

0 5– 8 3–

3 4 1– 2

1 5 6 4–

Intrinsic Procedures 695

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Arguments.

ARRAY must be of type integer or real. It must not be scalar.

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of ARRAY. The
corresponding actual argument must not be an
optional dummy argument.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. The result is of the same type and
kind type parameter as ARRAY. It is scalar if DIM is absent or ARRAY has rank
one; otherwise, the result is an array of rank and of shape (, , ...,

, , ...,) where (, , ...,) is the shape of ARRAY.

Result Value.

Case (i): The result of MINVAL (ARRAY) has a value equal to the minimum
value of all the elements of ARRAY or has the value of the positive
number of the largest magnitude supported by the processor for
numbers of the type and kind type parameter of ARRAY if ARRAY
has size zero.

Case (ii): The result of MINVAL (ARRAY, MASK = MASK) has a value equal
to the minimum value of the elements of ARRAY corresponding to
true elements of MASK or has the value of the positive number of
the largest magnitude supported by the processor for numbers of
the type and kind type parameter of ARRAY if there are no true
elements.

Case (iii): If ARRAY has rank one, MINVAL (ARRAY, DIM [,MASK]) has a
value equal to that of MINVAL (ARRAY [,MASK = MASK]).
Otherwise, the value of element (, , ..., , , ...,)
of MINVAL (ARRAY, DIM [,MASK]) is equal to MINVAL (ARRAY
(, , ..., , :, , ...,) [, MASK= MASK (, , ...,

, :, , ...,)]).

1 DIM n≤ ≤ n

n 1– d1 d2

dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2 sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn s1 s2
sDIM 1– sDIM 1+ sn

696 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples.

Case (i): The value of MINVAL ((/ 1, 2, 3 /)) is 1.

Case (ii): MINVAL (C, MASK = C .GT. 0.0) forms the minimum of the
positive elements of C.

Case (iii): If B is the array , MINVAL (B, DIM = 1) is (1, 3, 5) and

MINVAL (B, DIM = 2) is (1, 2).

A.72 MOD (A, P)
Description. Remainder function.

Class. Elemental function.

Arguments.

A must be of type integer or real.

P must be of the same type and kind type parameter as
A.

Result Type and Type Parameter. Same as A.

Result Value. If , the value of the result is A – INT (A / P) ∗ P. If ,
the result is processor dependent.

Examples. MOD (3.0, 2.0) has the value 1.0. MOD (8, 5) has the value 3.
MOD (–8, 5) has the value –3. MOD (8, –5) has the value 3. MOD (–8, –5) has
the value –3. MOD (2.0_HIGH, 3.0_HIGH) has the value 2.0 with kind HIGH.

A.73 MODULO (A, P)
Description. Modulo function.

Class. Elemental function.

1 3 5

2 4 6

'P 0≠ 'P 0=

Intrinsic Procedures 697

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Arguments.

A must be of type integer or real.

P must be of the same type and kind type parameter as
A.

Result Type and Type Parameter. Same as A.

Result Value.

Case (i): A is of type integer. If , MODULO (A, P) has the value R such
that A = Q × P + R, where Q is an integer, the inequalities
hold if , and hold if . If , the result is
processor dependent.

Case (ii): A is of type real. If , the value of the result is A –
FLOOR (A / P) ∗ P. If , the result is processor dependent.

Examples. MODULO (8, 5) has the value 3. MODULO (–8, 5) has the value 2.
MODULO (8, –5) has the value –2. MODULO (–8, –5) has the value –3.
MODULO (3.0, 2.0) has the value 1.0. MODULO (2.0_HIGH, 3.0_HIGH) has
the value 2.0 with kind HIGH.

A.74 MVBITS (FROM, FROMPOS, LEN, TO, TOPOS)
Description. Copies a sequence of bits from one data object to another.

Class. Elemental subroutine.

Arguments.

FROM must be of type integer. It is an INTENT (IN)
argument.

FROMPOS must be of type integer and nonnegative. It is an
INTENT (IN) argument. FROMPOS + LEN must be
less than or equal to BIT_SIZE (FROM). The model for
the interpretation of an integer value as a sequence of
bits is in 13.2.1.

LEN must be of type integer and nonnegative. It is an
INTENT (IN) argument.

'P 0≠
0 'R≤ 'P<

'P 0> 'P 'R< 0≤ 'P 0< 'P 0=

'P 0≠
'P 0=

698 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

TO must be a variable of type integer with the same kind
type parameter value as FROM and may be the same
variable as FROM. It is an INTENT (INOUT) argument.
TO is set by copying the sequence of bits of length
LEN, starting at position FROMPOS of FROM to
position TOPOS of TO. No other bits of TO are altered.
On return, the LEN bits of TO starting at TOPOS are
equal to the value that the LEN bits of FROM starting
at FROMPOS had on entry. The model for the
interpretation of an integer value as a sequence of bits
is in 13.2.1.

TOPOS must be of type integer and nonnegative. It is an
INTENT (IN) argument. TOPOS + LEN must be less
than or equal to BIT_SIZE (TO).

Examples. If TO has the initial value 6, the value of TO after the statement
CALL MVBITS (7, 2, 2, TO, 0) is 5. After the statement

CALL MVBITS (PATTERN, 0_SHORT, 1_SHORT, PATTERN, 7_SHORT)

is executed, the integer variable PATTERN of kind SHORT has a leading bit
that is identical to its terminal bit.

A.75 NEAREST (X, S)
Description. Returns the nearest different machine representable number in a
given direction.

Class. Elemental function.

Arguments.

X must be of type real.

S must be of type real and not equal to zero.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to the machine representable
number distinct from X and nearest to it in the direction of the infinity with the
same sign as S.

Intrinsic Procedures 699

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Example. NEAREST (3.0, 2.0) has the value on a machine whose
representation is that of the model described in 13.2.3.

A.76 NINT (A, KIND)
Optional Argument. KIND

Description. Nearest integer.

Class. Elemental function.

Arguments.

A must be of type real.

KIND (optional) must be a scalar integer initialization expression.

Result Type and Type Parameter. Integer. If KIND is present, the kind type
parameter is that specified by KIND; otherwise, the kind type parameter is that
of default integer type.

Result Value. If , NINT (A) has the value INT (A+0.5); if , NINT (A)
has the value INT (A–0.5). The result is undefined if the processor cannot
represent the result in the specified integer type.

Examples. NINT (2.783) has the value 3. NINT (−1.99999999999_HIGH) has the
value −2.

A.77 NOT (I)
Description. Performs a logical complement.

Class. Elemental function.

Argument. I must be of type integer.

Result Type and Type Parameter. Same as I.

3 2 22–+

'A 0> 'A 0≤

700 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. The result has the value obtained by complementing I bit-by-bit
according to the following truth table:

The model for the interpretation of an integer value as a sequence of bits is in
13.2.1.

Example. If I is an integer of kind SHORT and has a value that is equal to
01010101 (base 2), NOT (I) has the value which is equal to 10101010 (base 2).

A.78 PACK (ARRAY, MASK, VECTOR)
Optional Argument. VECTOR

Description. Pack an array into an array of rank one under the control of a
mask.

Class. Transformational function.

Arguments.

ARRAY may be of any type. It must not be scalar.

MASK must be of type logical and must be conformable with
ARRAY.

VECTOR (optional) must be of the same type and type parameters as
ARRAY and must have rank one. VECTOR must have
at least as many elements as there are true elements in
MASK. If MASK is scalar with the value true, VECTOR
must have at least as many elements as there are in
ARRAY.

Result Type, Type Parameter, and Shape. The result is an array of rank one
with the same type and type parameters as ARRAY. If VECTOR is present, the
result size is that of VECTOR; otherwise, the result size is the number of true
elements in MASK unless MASK is scalar with the value true, in which case
the result size is the size of ARRAY.

I NOT (I)

1 0

0 1

t

Intrinsic Procedures 701

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. Element of the result is the element of ARRAY that
corresponds to the ith true element of MASK, taking elements in array element
order, for = 1, 2, ..., . If VECTOR is present and has size , element of
the result has the value VECTOR (), for = , ..., .

Examples. The nonzero elements of an array M with the value may be

“gathered” by the function PACK. The result of PACK (M, MASK = M .NE. 0)
is (9, 7) and the result of PACK (M, M .NE. 0, VECTOR = (/ 2, 4, 6, 8, 10, 12 /))
is (9, 7, 6, 8, 10, 12).

A.79 PRECISION (X)
Description. Returns the decimal precision in the model representing real
numbers with the same kind type parameter as the argument.

Class. Inquiry function.

Argument. X must be of type real or complex. It may be scalar or array valued.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has the value INT (() ∗ LOG10 ()) + , where
and are as defined in 13.2.3 for the model representing real numbers with the
same value for the kind type parameter as X, and where is 1 if is an
integral power of 10 and 0 otherwise.

Example. PRECISION (X) has the value INT (23 ∗ LOG10 (2.)) = INT (6.92...) =
6 for real X whose model is described in 13.2.3.

A.80 PRESENT (A)
Description. Determine whether an optional argument is present.

Class. Inquiry function.

Argument. A must be an optional argument of the procedure in which the
PRESENT function reference appears.

Result Type and Type Parameters. Default logical scalar.

i

i t n t> i
i i t 1+ n

0 0 0

9 0 0

0 0 7

p 1– b k b
p

k b

702 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. The result has the value true if A is present (12.5.5) and
otherwise has the value false.

Example.

SUBROUTINE SUB (A, B, EXTRA)
REAL A, B, C
REAL, OPTIONAL :: EXTRA
. . .
IF (PRESENT (EXTRA)) THEN

C = EXTRA
ELSE

C = (A+B)/2
END IF
. . .

END

If SUB is called with the statement

CALL SUB (10.0, 20.0, 30.0)

C is set to 30.0. If SUB is called with the statement

CALL SUB (10.0, 20.0)

C is set to 15.0. An optional argument that is not present must not be
referenced or defined or supplied as a nonoptional actual argument, except as
the argument of the PRESENT intrinsic function.

A.81 PRODUCT (ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Product of all the elements of ARRAY along dimension DIM
corresponding to the true elements of MASK.

Class. Transformational function.

Arguments.

ARRAY must be of type integer, real, or complex. It must not be
scalar.

Intrinsic Procedures 703

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of ARRAY. The
corresponding actual argument must not be an
optional dummy argument.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. The result is of the same type and
kind type parameter as ARRAY. It is scalar if DIM is absent or ARRAY has rank
one; otherwise, the result is an array of rank and of shape (, , ...,

, , ...,) where (, , ...,) is the shape of ARRAY.

Result Value.

Case (i): The result of PRODUCT (ARRAY) has a value equal to a processor-
dependent approximation to the product of all the elements of
ARRAY or has the value one if ARRAY has size zero.

Case (ii): The result of PRODUCT (ARRAY, MASK = MASK) has a value
equal to a processor-dependent approximation to the product of
the elements of ARRAY corresponding to the true elements of
MASK or has the value one if there are no true elements.

Case (iii): If ARRAY has rank one, PRODUCT (ARRAY, DIM [,MASK]) has a
value equal to that of PRODUCT (ARRAY [,MASK = MASK]).
Otherwise, the value of element (, , ..., , , ...,)
of PRODUCT (ARRAY, DIM [,MASK]) is equal to PRODUCT
(ARRAY (, , ..., , :, , ...,) [, MASK = MASK
(, , ..., , :, , ...,)]).

Examples.

Case (i): The value of PRODUCT ((/ 1, 2, 3 /)) and PRODUCT ((/ 1, 2, 3 /),
DIM=1) is 6.

Case (ii): PRODUCT (C, MASK = C .GT. 0.0) forms the product of the
positive elements of C.

Case (iii): If B is the array , PRODUCT (B, DIM = 1) is (2, 12, 30) and

PRODUCT (B, DIM = 2) is (15, 48).

1 DIM n≤ ≤ n

n 1– d1 d2

dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2 sDIM 1– sDIM 1+ sn

s1 s2 sDIM 1– sDIM 1+ sn
s1 s2 sDIM 1– sDIM 1+ sn

1 3 5

2 4 6

704 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.82 RADIX (X)
Description. Returns the base of the model representing numbers of the same
type and kind type parameter as the argument.

Class. Inquiry function.

Argument. X must be of type integer or real. It may be scalar or array valued.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has the value if X is of type integer and the value
if X is of type real, where and are as defined in 13.2.3 for the model
representing numbers of the same type and kind type parameter as X.

Example. RADIX (X) has the value 2 for real X whose model is described in
13.2.3.

A.83 RANDOM_NUMBER (HARVEST)
Description. Returns one pseudorandom number or an array of
pseudorandom numbers from the uniform distribution over the range

.

Class. Subroutine.

Argument. HARVEST must be of type real. It is an INTENT (OUT) argument.
It may be a scalar or an array variable. It is set to contain pseudorandom
numbers from the uniform distribution in the interval .

Examples.

REAL X, Y (10, 10)
! Initialize X with a pseudorandom number
CALL RANDOM_NUMBER (HARVEST = X)
CALL RANDOM_NUMBER (Y)
! X and Y contain uniformly distributed random numbers

A.84 RANDOM_SEED (SIZE, PUT, GET)
Optional Arguments. SIZE, PUT, GET

Description. Restarts or queries the pseudorandom number generator used by
RANDOM_NUMBER.

r b
r b

0 x≤ 1<

0 x≤ 1<

Intrinsic Procedures 705

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Class. Subroutine.

Arguments. There must either be exactly one or no arguments present.

SIZE (optional) must be scalar and of type default integer. It is an
INTENT (OUT) argument. It is set to the number of
integers that the processor uses to hold the value of the
seed.

PUT (optional) must be a default integer array of rank one and size ≥
. It is an INTENT (IN) argument. It is used by the

processor to set the seed value.

GET (optional) must be a default integer array of rank one and size ≥
. It is an INTENT (OUT) argument. It is set by the

processor to the current value of the seed. If no
argument is present, the processor sets the seed to a
processor-dependent value.

Examples.

CALL RANDOM_SEED ! Processor initialization
CALL RANDOM_SEED (SIZE = K) ! Sets K = N
CALL RANDOM_SEED (PUT = SEED (1 : K)) ! Set user seed
CALL RANDOM_SEED (GET = OLD (1 : K)) ! Read current seed

A.85 RANGE (X)
Description. Returns the decimal exponent range in the model representing
integer or real numbers with the same kind type parameter as the argument.

Class. Inquiry function.

Argument. X must be of type integer, real, or complex. It may be scalar or
array valued.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value.

Case (i): For an integer argument, the result has the value INT (LOG10
()), where is the largest positive integer in the model
representing integer numbers with same kind type parameter as X
(13.2.2).

N

N

N

huge huge

706 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Case (ii): For a real or complex argument, the result has the value INT (MIN
(LOG10 (), –LOG10 ())), where and are the
largest and smallest positive numbers in the model representing
real numbers with the same value for the kind type parameter as X
(13.2.3).

Example. RANGE (X) has the value 38 for real X whose model is described in
13.2.3, because in this case = and = .

A.86 REAL (A, KIND)
Optional Argument. KIND

Description. Convert to real type.

Class. Elemental function.

Arguments.

A must be of type integer, real, or complex.

KIND (optional) must be a scalar integer initialization expression.

Result Type and Type Parameter. Real.

Case (i): If A is of type integer or real and KIND is present, the kind type
parameter is that specified by KIND. If A is of type integer or real
and KIND is not present, the kind type parameter is the processor-
dependent kind type parameter for the default real type.

Case (ii): If A is of type complex and KIND is present, the kind type
parameter is that specified by KIND. If A is of type complex and
KIND is not present, the kind type parameter is the kind type
parameter of A.

Result Value.

Case (i): If A is of type integer or real, the result is equal to a processor-
dependent approximation to A.

Case (ii): If A is of type complex, the result is equal to a processor-dependent
approximation to the real part of A.

huge tiny huge tiny

huge 1 2 24––() 2127× tiny 2 127–

Intrinsic Procedures 707

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples. REAL (–3) has the value –3.0. REAL (Z) has the same kind type
parameter and the same value as the real part of the complex variable Z. REAL
(2.0_HIGH/3.0) is 0.66666666666666 with kind HIGH.

A.87 REPEAT (STRING, NCOPIES)
Description. Concatenate several copies of a string.

Class. Transformational function.

Arguments.

STRING must be scalar and of type character.

NCOPIES must be scalar and of type integer. Its value must not
be negative.

Result Type, Type Parameter, and Shape. Character scalar of length NCOPIES
times that of STRING, with the same kind type parameter as STRING.

Result Value. The value of the result is the concatenation of NCOPIES copies
of STRING.

Examples. REPEAT (’H’, 2) has the value HH. REPEAT (’XYZ’, 0) has the value
of a zero-length string.

A.88 RESHAPE (SOURCE, SHAPE, PAD, ORDER)
Optional Arguments. PAD, ORDER

Description. Constructs an array of a specified shape from the elements of a
given array.

Class. Transformational function.

Arguments.

SOURCE may be of any type. It must be array valued. If PAD is
absent or of size zero, the size of SOURCE must be
greater than or equal to PRODUCT (SHAPE). The size
of the result is the product of the values of the elements
of SHAPE.

708 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SHAPE must be of type integer, rank one, and constant size. Its
size must be positive and less than 8. It must not have
an element whose value is negative.

PAD (optional) must be of the same type and type parameters as
SOURCE. PAD must be array valued.

ORDER (optional) must be of type integer, must have the same shape as
SHAPE, and its value must be a permutation of (1, 2,
...,), where is the size of SHAPE. If absent, it is as if
it were present with value (1, 2, ...,).

Result Type, Type Parameter, and Shape. The result is an array of shape
SHAPE (that is, SHAPE (RESHAPE (SOURCE, SHAPE, PAD, ORDER)) is equal
to SHAPE) with the same type and type parameters as SOURCE.

Result Value. The elements of the result, taken in permuted subscript order
ORDER (1), ..., ORDER (), are those of SOURCE in normal array element
order followed if necessary by those of PAD in array element order, followed if
necessary by additional copies of PAD in array element order.

Examples. RESHAPE ((/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /)) has the value .

RESHAPE ((/ 1, 2, 3, 4, 5, 6 /), (/ 2, 4 /), (/ 0, 0 /), (/ 2, 1 /)) has the value

.

A.89 RRSPACING (X)
Description. Returns the reciprocal of the relative spacing of model numbers
near the argument value.

Class. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameter. Same as X.

Result Value. The result has the value , where , , and are as
defined in 13.2.3 for the model representation of X.

n n
n

n

1 3 5

2 4 6

1 2 3 4

5 6 0 0

'X b e–× bp× b e p

Intrinsic Procedures 709

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Example. RRSPACING (–3.0) has the value for reals whose model is
described in 13.2.3.

A.90 SCALE (X, I)
Description. Returns where is the base in the model representation of
X.

Class. Elemental function.

Arguments.

X must be of type real.

I must be of type integer.

Result Type and Type Parameter. Same as X.

Result Value. The result has the value , where is defined in 13.2.3 for
model numbers representing values of X, provided this result is within range;
if not, the result is processor dependent.

Example. SCALE (3.0, 2) has the value 12.0 for reals whose model is described
in 13.2.3.

A.91 SCAN (STRING, SET, BACK)
Optional Argument. BACK

Description. Scan a string for any one of the characters in a set of characters.

Class. Elemental function.

Arguments.

STRING must be of type character.

SET must be of type character with the same kind type
parameter as STRING.

BACK (optional) must be of type logical.

Result Type and Type Parameter. Default integer.

0.75 224×

'X b 'I× b

'X b 'I× b

710 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value.

Case (i): If BACK is absent or is present with the value false and if STRING
contains at least one character that is in SET, the value of the result
is the position of the leftmost character of STRING that is in SET.

Case (ii): If BACK is present with the value true and if STRING contains at
least one character that is in SET, the value of the result is the
position of the rightmost character of STRING that is in SET.

Case (iii): The value of the result is zero if no character of STRING is in SET
or if the length of STRING or SET is zero.

Examples.

Case (i): SCAN (’FORTRAN’, ’TR’) has the value 3.

Case (ii): SCAN (’FORTRAN’, ’TR’, BACK = .TRUE.) has the value 5.

Case (iii): SCAN (’FORTRAN’, ’BCD’) has the value 0.

A.92 SELECTED_INT_KIND (R)
Description. Returns a value of the kind type parameter of an integer data
type that represents all integer values with .

Class. Transformational function.

Argument. R must be scalar and of type integer.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has a value equal to the value of the kind type
parameter of an integer data type that represents all values in the range of
values with , or if no such kind type parameter is available on
the processor, the result is –1. If more than one kind type parameter meets the
criteria, the value returned is the one with the smallest decimal exponent
range, unless there are several such values, in which case the smallest of these
kind values is returned.

n 10'R– n 10'R< <

n
n 10'R– n 10'R< <

Intrinsic Procedures 711

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples. SELECTED_INT_KIND (6) has the value KIND (0) on a machine
that supports a default integer representation method with = 2 and = 31 as
defined in the model for the integer number systems in 13.2.2.
SELECTED_INT_KIND (2) has the value of SHORT on a machine that supports
this integer kind.

A.93 SELECTED_REAL_KIND (P, R)
Optional Arguments. P, R

Description. Returns a value of the kind type parameter of a real data type
with decimal precision of at least P digits and a decimal exponent range of at
least R.

Class. Transformational function.

Arguments. At least one argument must be present.

P (optional) must be scalar and of type integer.

R (optional) must be scalar and of type integer.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has a value equal to a value of the kind type
parameter of a real data type with decimal precision, as returned by the
function PRECISION, of at least P digits and a decimal exponent range, as
returned by the function RANGE, of at least R, or if no such kind type
parameter is available on the processor, the result is –1 if the precision is not
available, –2 if the exponent range is not available, and –3 if neither is
available. If more than one kind type parameter value meets the criteria, the
value returned is the one with the smallest decimal precision, unless there are
several such values, in which case the smallest of these kind values is returned.

Examples. SELECTED_REAL_KIND (6, 70) has the value KIND (0.0) on a
machine that supports a default real approximation method with = 16, = 6,

 = –64, and = 63 as defined in the model for the real number system
in 13.2.3. SELECTED_REAL_KIND (P=14) returns the value of HIGH on a
machine that supports this real kind.

r q

p p
emin emax

712 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.94 SET_EXPONENT (X, I)
Description. Returns the model number whose fractional part is the fractional
part of the model representation of X and whose exponent part is I.

Class. Elemental function.

Arguments.

X must be of type real.

I must be of type integer.

Result Type and Type Parameter. Same as X.

Result Value. The result has the value , where and are as defined
in 13.2.3 for the model representation of X, provided this result is within range;
if not, the result is processor dependent. If X has value zero, the result has
value zero.

Example. SET_EXPONENT (3.0, 1) has the value 1.5 for reals whose model is
as described in 13.2.3.

A.95 SHAPE (SOURCE)
Description. Returns the shape of an array or a scalar.

Class. Inquiry function.

Argument. SOURCE may be of any type. It may be array valued or scalar. It
must not be a pointer that is disassociated or an allocatable array that is not
allocated. It must not be an assumed-size array.

Result Type, Type Parameter, and Shape. The result is a default integer array
of rank one whose size is equal to the rank of SOURCE.

Result Value. The value of the result is the shape of SOURCE.

Examples. The value of SHAPE (A (2:5, –1:1)) is (4, 3). The value of SHAPE (3)
is the rank-one array of size zero.

'X b 'I e–× b e

Intrinsic Procedures 713

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.96 SIGN (A, B)
Description. Absolute value of A times the sign of B.

Class. Elemental function.

Arguments.

A must be of type integer or real.

B must be of the same type and kind type parameter as
A.

Result Type and Type Parameter. Same as A.

Result Value. The value of the result is |A| if and –|A| if .

Example. SIGN (–3.0, 2.0) has the value 3.0.

A.97 SIN (X)
Description. Sine function.

Class. Elemental function.

Argument. X must be of type real or complex.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to sin(X). If X is of type real, it is regarded as a value in radians.
If X is of type complex, its real part is regarded as a value in radians.

Examples. SIN (1.0) has the value 0.84147098. SIN ((0.5_HIGH, 0.5)) has the
value 0.54061268571316 + 0.45730415318425ι with kind HIGH.

A.98 SINH (X)
Description. Hyperbolic sine function.

Class. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameter. Same as X.

'B 0≥ 'B 0<

714 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. The result has a value equal to a processor-dependent
approximation to sinh(X).

Examples. SINH (1.0) has the value 1.1752012. SINH (0.5_HIGH) has the value
0.52109530549375 with kind HIGH.

A.99 SIZE (ARRAY, DIM)
Optional Argument. DIM

Description. Returns the extent of an array along a specified dimension or the
total number of elements in the array.

Class. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It must not be
a pointer that is disassociated or an allocatable array
that is not allocated. If ARRAY is an assumed-size
array, DIM must be present with a value less than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of ARRAY.

Result Type, Type Parameter, and Shape. Default integer scalar.

Result Value. The result has a value equal to the extent of dimension DIM of
ARRAY or, if DIM is absent, the total number of elements of ARRAY.

Examples. The value of SIZE (A (2:5, –1:1), DIM=2) is 3. The value of SIZE (A
(2:5, –1:1)) is 12.

A.100 SPACING (X)
Description. Returns the absolute spacing of model numbers near the
argument value.

Class. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameter. Same as X.

1 DIM n≤ ≤ n

Intrinsic Procedures 715

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. The result has the value , where , , and are as defined
in 13.2.3 for the model representation of X, provided this result is within range;
otherwise, the result is the same as that of TINY (X).

Example. SPACING (3.0) has the value for reals whose model is described
in 13.2.3.

A.101 SPREAD (SOURCE, DIM, NCOPIES)
Description. Replicates an array by adding a dimension. Broadcasts several
copies of SOURCE along a specified dimension (as in forming a book from
copies of a single page) and thus forms an array of rank one greater.

Class. Transformational function.

Arguments.

SOURCE may be of any type. It may be scalar or array valued.
The rank of SOURCE must be less than 7.

DIM must be scalar and of type integer with value in the
range , where is the rank of SOURCE.

NCOPIES must be scalar and of type integer.

Result Type, Type Parameter, and Shape. The result is an array of the same
type and type parameters as SOURCE and of rank , where is the rank of
SOURCE.

Case (i): If SOURCE is scalar, the shape of the result is (MAX (NCOPIES, 0)).

Case (ii): If SOURCE is array valued with shape (, , ...,), the shape of
the result is (, , ..., , MAX (NCOPIES, 0), , ...,).

Result Value.

Case (i): If SOURCE is scalar, each element of the result has a value equal to
SOURCE.

Case (ii): If SOURCE is array valued, the element of the result with
subscripts (, , ...,) has the value SOURCE (, , ...,

, , ...,).

be p– b e p

2 22–

1 DIM n 1+≤ ≤ n

n 1+ n

d1 d2 dn
d1 d2 dDIM 1– dDIM dn

r1 r2 rn 1+ r1 r2
rDIM 1– rDIM 1+ rn 1+

716 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Examples.

Case (i): SPREAD ("A", 1, 3) is the character array (/ "A", "A", "A" /).

Case (ii): If A is the array (2, 3, 4), SPREAD (A, DIM=1, NCOPIES=NC) is the

array if NC has the value 3 and is a zero-sized array if NC

has the value 0.

A.102 SQRT (X)
Description. Square root.

Class. Elemental function.

Argument. X must be of type real or complex. Unless X is complex, its value
must be greater than or equal to zero.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to the square root of X. A result of type complex is the principal
value with the real part greater than or equal to zero. When the real part of the
result is zero, the imaginary part is greater than or equal to zero.

Examples. SQRT (4.0) has the value 2.0. SQRT (5.0_HIGH) has the value
2.23606774998 with kind HIGH.

A.103 SUM (ARRAY, DIM, MASK)
Optional Arguments. DIM, MASK

Description. Sum all the elements of ARRAY along dimension DIM
corresponding to the true elements of MASK.

Class. Transformational function.

Arguments.

ARRAY must be of type integer, real, or complex. It must not be
scalar.

2 3 4

2 3 4

2 3 4

Intrinsic Procedures 717

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of ARRAY. The
corresponding actual argument must not be an
optional dummy argument.

MASK (optional) must be of type logical and must be conformable with
ARRAY.

Result Type, Type Parameter, and Shape. The result is of the same type and
kind type parameter as ARRAY. It is scalar if DIM is absent or ARRAY has rank
one; otherwise, the result is an array of rank and of shape (, , ...,

, , ...,) where (, , ...,) is the shape of ARRAY.

Result Value.

Case (i): The result of SUM (ARRAY) has a value equal to a processor-
dependent approximation to the sum of all the elements of ARRAY
or has the value zero if ARRAY has size zero.

Case (ii): The result of SUM (ARRAY, MASK = MASK) has a value equal to a
processor-dependent approximation to the sum of the elements of
ARRAY corresponding to the true elements of MASK or has the
value zero if there are no true elements.

Case (iii): If ARRAY has rank one, SUM (ARRAY, DIM [,MASK]) has a value
equal to that of SUM (ARRAY [,MASK = MASK]). Otherwise, the
value of element (, , ..., , , ...,) of SUM
(ARRAY, DIM [,MASK]) is equal to SUM (ARRAY (, , ...,

, :, , ...,) [, MASK= MASK (, , ..., , :,
, ...,)]).

Examples.

Case (i): The value of SUM ((/ 1, 2, 3 /)) and SUM ((/ 1, 2, 3 /), DIM=1) is 6.

Case (ii): SUM (C, MASK= C .GT. 0.0) forms the arithmetic sum of the
positive elements of C.

Case (iii): If B is the array , SUM (B, DIM = 1) is (3, 7, 11) and SUM (B,

DIM = 2) is (9, 12).

1 DIM n≤ ≤ n

n 1– d1 d2

dDIM 1– dDIM 1+ dn d1 d2 dn

s1 s2 sDIM 1– sDIM 1+ sn
s1 s2

sDIM 1– sDIM 1+ sn s1 s2 sDIM 1–
sDIM 1+ sn

1 3 5

2 4 6

718 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.104 SYSTEM_CLOCK (COUNT, COUNT_RATE, COUNT_MAX)
Optional Arguments. COUNT, COUNT_RATE, COUNT_MAX

Description. Returns integer data from a real-time clock.

Class. Subroutine.

Arguments.

COUNT (optional) must be scalar and of type default integer. It is an
INTENT (OUT) argument. It is set to a processor-
dependent value based on the current value of the
processor clock or to –HUGE (0) if there is no clock.
The processor-dependent value is incremented by one
for each clock count until the value COUNT_MAX is
reached and is reset to zero at the next count. It lies in
the range 0 to COUNT_MAX if there is a clock.

COUNT_RATE (optional)
must be scalar and of type default integer. It is an
INTENT (OUT) argument. It is set to the number of
processor clock counts per second, or to zero if there is
no clock.

COUNT_MAX (optional)
must be scalar and of type default integer. It is an
INTENT (OUT) argument. It is set to the maximum
value that COUNT can have, or to zero if there is no
clock.

Example. If the processor clock is a 24-hour clock that registers time in 1-
second intervals, at 11:30 A.M. the reference

CALL SYSTEM_CLOCK (COUNT = C, COUNT_RATE = R, COUNT_MAX = M)

sets C = 11 × 3600 + 30 × 60 = 41400, R = 1, and M = 24 × 3600 – 1 = 86399.

Intrinsic Procedures 719

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.105 TAN (X)
Description. Tangent function.

Class. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to tan(X), with X regarded as a value in radians.

Examples. TAN (1.0) has the value 1.5574077. TAN (2.0_HIGH) has the value
–2.1850398632615 with kind HIGH.

A.106 TANH (X)
Description. Hyperbolic tangent function.

Class. Elemental function.

Argument. X must be of type real.

Result Type and Type Parameter. Same as X.

Result Value. The result has a value equal to a processor-dependent
approximation to tanh(X).

Examples. TANH (1.0) has the value 0.76159416. TANH (2.0_HIGH) has the
value 0.96402758007582 with kind HIGH.

A.107 TINY (X)
Description. Returns the smallest positive number in the model representing
numbers of the same type and kind type parameter as the argument.

Class. Inquiry function.

Argument. X must be of type real. It may be scalar or array valued.

Result Type, Type Parameter, and Shape. Scalar with the same type and kind
type parameter as X.

720 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. The result has the value where and are as defined
in 13.2.3 for the model representing numbers of the same type and kind type
parameter as X.

Example. TINY (X) has the value for real X whose model is described in
13.2.3.

A.108 TRANSFER (SOURCE, MOLD, SIZE)
Optional Argument. SIZE

Description. Returns a result with a physical representation identical to that of
SOURCE but interpreted with the type and type parameters of MOLD.

Class. Transformational function.

Arguments.

SOURCE may be of any type and may be scalar or array valued.

MOLD may be of any type and may be scalar or array valued.

SIZE (optional) must be scalar and of type integer. The corresponding
actual argument must not be an optional dummy
argument.

Result Type, Type Parameter, and Shape. The result is of the same type and
type parameters as MOLD.

Case (i): If MOLD is a scalar and SIZE is absent, the result is a scalar.

Case (ii): If MOLD is array valued and SIZE is absent, the result is array
valued and of rank one. Its size is as small as possible such that its
physical representation is not shorter than that of SOURCE.

Case (iii): If SIZE is present, the result is array valued of rank one and size
SIZE.

Result Value. If the physical representation of the result has the same length as
that of SOURCE, the physical representation of the result is that of SOURCE. If
the physical representation of the result is longer than that of SOURCE, the
physical representation of the leading part is that of SOURCE and the
remainder is undefined. If the physical representation of the result is shorter
than that of SOURCE, the physical representation of the result is the leading

bemin 1– b emin

2 127–

Intrinsic Procedures 721

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

part of SOURCE. If D and E are scalar variables such that the physical
representation of D is as long as or longer than that of E, the value of
TRANSFER (TRANSFER (E, D), E) must be the value of E. If D is an array and
E is an array of rank one, the value of TRANSFER (TRANSFER (E, D), E, SIZE
(E)) must be the value of E.

Examples.

Case (i): TRANSFER (1082130432, 0.0) has the value 4.0 on a processor that
represents the values 4.0 and 1082130432 as the string of binary
digits 0100 0000 1000 0000 0000 0000 0000 0000.

Case (ii): TRANSFER ((/ 1.1, 2.2, 3.3 /), (/ (0.0, 0.0) /)) is a complex rank-
one array of length two whose first element is (1.1, 2.2) and whose
second element has a real part with the value 3.3. The imaginary
part of the second element is undefined.

Case (iii): TRANSFER ((/ 1.1, 2.2, 3.3 /), (/ (0.0, 0.0) /), 1) has the value 1.1 +
2.2ι, which is a rank-one array with one complex element.

A.109 TRANSPOSE (MATRIX)
Description. Transpose an array of rank two.

Class. Transformational function.

Argument. MATRIX may be of any type and must have rank two.

Result Type,Type Parameters, and Shape. The result is an array of the same
type and type parameters as MATRIX and with rank two and shape
where is the shape of MATRIX.

Result Value. Element of the result has the value MATRIX , = 1,
2, ..., ; = 1, 2, ..., .

Example. If A is the array , then TRANSPOSE (A) has the value .

n m,()
m n,()

i j,() j i,() i
n j m

1 2 3

4 5 6

7 8 9

1 4 7

2 5 8

3 6 9

722 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

A.110 TRIM (STRING)
Description. Returns the argument with trailing blank characters removed.

Class. Transformational function.

Argument. STRING must be of type character and must be a scalar.

Result Type and Type Parameters. Character with the same kind type
parameter value as STRING and with a length that is the length of STRING
less the number of trailing blanks in STRING.

Result Value. The value of the result is the same as STRING except any trailing
blanks are removed. If STRING contains no nonblank characters, the result has
zero length.

Examples. TRIM (’ A B ’) is ’ A B’. TRIM (GREEK_’ Π ’) is GREEK_’ Π’.

A.111 UBOUND (ARRAY, DIM)
Optional Argument. DIM

Description. Returns all the upper bounds of an array or a specified upper
bound.

Class. Inquiry function.

Arguments.

ARRAY may be of any type. It must not be scalar. It must not be
a pointer that is disassociated or an allocatable array
that is not allocated. If ARRAY is an assumed-size
array, DIM must be present with a value less than the
rank of ARRAY.

DIM (optional) must be scalar and of type integer with a value in the
range , where is the rank of ARRAY. The
corresponding actual argument must not be an
optional dummy argument.

Result Type, Type Parameter, and Shape. The result is of type default integer.
It is scalar if DIM is present; otherwise, the result is an array of rank one and
size , where is the rank of ARRAY.

1 DIM n≤ ≤ n

n n

Intrinsic Procedures 723

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value.

Case (i): For an array section or for an array expression, other than a whole
array or array structure component, UBOUND (ARRAY, DIM) has
a value equal to the number of elements in the given dimension;
otherwise, it has a value equal to the upper bound for subscript
DIM of ARRAY if dimension DIM of ARRAY does not have size
zero and has the value zero if dimension DIM has size zero.

Case (ii): UBOUND (ARRAY) has a value whose ith component is equal to
UBOUND (ARRAY,), for = 1, 2, ..., , where is the rank of
ARRAY.

Examples. If the following statements are processed

REAL, TARGET :: A (2:3, 7:10)
REAL, POINTER, DIMENSION (:,:) :: B, C, D
B => A; C => A(:,:)
ALLOCATE (D(-3:3,-7:7))

UBOUND (A) is (3, 10), UBOUND (A, DIM = 2) is 10, UBOUND (B) is (3, 10),
UBOUND (C) is (2, 4), and UBOUND (D) is (3, 7); see Section 7.5.3, rules and
restrictions, item 9.

A.112 UNPACK (VECTOR, MASK, FIELD)
Description. Unpack an array of rank one into an array under the control of a
mask.

Class. Transformational function.

Arguments.

VECTOR may be of any type. It must have rank one. Its size
must be at least where is the number of true
elements in MASK.

MASK must be array valued and of type logical.

FIELD must be of the same type and type parameters as
VECTOR and must be conformable with MASK.

Result Type, Type Parameter, and Shape. The result is an array of the same
type and type parameters as VECTOR and the same shape as MASK.

i i n n

t t

724 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Value. The element of the result that corresponds to the ith true element
of MASK, in array element order, has the value VECTOR () for ,
where is the number of true values in MASK. Each other element has a value
equal to FIELD if FIELD is scalar or to the corresponding element of FIELD if it
is an array.

Examples. Specific values may be “scattered” to specific positions in an array

by using UNPACK. If M is the array , V is the array (1, 2, 3), and Q is

the logical mask , where “T” represents true and “.” represents false,

then the result of UNPACK (V, MASK = Q, FIELD = M) has the value

and the result of UNPACK (V, MASK = Q, FIELD = 0) has the value .

A.113 VERIFY (STRING, SET, BACK)
Optional Argument. BACK

Description. Verify that a set of characters contains all the characters in a string
by identifying the position of the first character in a string of characters that
does not appear in a given set of characters.

Class. Elemental function.

Arguments.

STRING must be of type character.

SET must be of type character with the same kind type
parameter as STRING.

BACK (optional) must be of type logical.

i i 1 2 … t, , ,=
t

1 0 0

0 1 0

0 0 1

. 'T .

'T . .

. . 'T

1 2 0

1 1 0

0 0 3

0 2 0

1 0 0

0 0 3

Intrinsic Procedures 725

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Result Type and Type Parameter. Default integer.

Result Value.

Case (i): If BACK is absent or present with the value false and if STRING
contains at least one character that is not in SET, the value of the
result is the position of the leftmost character of STRING that is not
in SET.

Case (ii): If BACK is present with the value true and if STRING contains at
least one character that is not in SET, the value of the result is the
position of the rightmost character of STRING that is not in SET.

Case (iii): The value of the result is zero if each character in STRING is in SET
or if STRING has zero length.

Examples.

Case (i): VERIFY (’ABBA’, ’A’) has the value 2.

Case (ii): VERIFY (’ABBA’, ’A’, BACK = .TRUE.) has the value 3.

Case (iii): VERIFY (’ABBA’, ’AB’) has the value 0.

726 Fortran 90 Handbook

A

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

727

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Fortran 90 Syntax B

This appendix contains a complete description of the Fortran 90 syntax. Section
B.1 describes the form of the syntax. Section B.2 contains the complete syntax
and constraints as they appear in the standard. Section B.3 is a cross reference
of each syntax term, the rule in which it is defined, and the rules in which it is
referenced. A high-level summary of the syntax appears in Chapter 2.

B.1 The Form of the Syntax
The syntax of Fortran programs is described using a variant of the Backus-
Naur Form (BNF).

B.1.1 Syntax Rules Expressed in BNF

The BNF syntax rules are expressed as a definition; the metalanguage class
being defined is first, followed by the symbol is, and finally the syntax
definition, as in the following example:

goto-stmt is GO TOlabel

The term goto-stmt represents the GO TO statement; such terms are called
nonterminal symbols or simply nonterminals. The syntax rule defines goto-
stmt to be GO TO label, which describes the form of the GO TO statement. The
description of the GO TO statement is not complete until the definition of label
is given; label is also a nonterminal symbol. A further search for label in the
BNF will result in a specification of label and thereby provide the complete

B-728 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

statement definition. A terminal part of a syntax rule does not need further
definition. For example, GO TO is a terminal and is a required part of the
statement form.

In many cases, information about the metalanguage class can be derived from
part of the descriptive term. The part may be a complete word, like -list, or a
common abbreviation. Some of the abbreviations used consistently in
metalanguage classes are given in Table B-1. For example, all class definitions
that end with -stmt might be used to generate a complete list of the statements
in Fortran 90.

B.1.2 Definition Syntax Symbol “is”

The term is separates the syntax class name from its definition. Examples:
goto-stmt is GO TOlabel
power-op is **

Table B-1 Syntax metalanguage abbreviations

Abbreviation Term

stmt statement

expr expression

op operator

int integer

char character

spec specifier or specification

arg argument

attr attribute

decl declaration

def definition

desc descriptor

Fortran 90 Syntax 729

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

B.1.3 Alternative Syntax Symbol “or”

The symbol or indicates an alternative definition for the syntactic class being
defined.

add-op is +
or –

This indicates that the add operator may be either plus or minus.

B.1.4 Optional Symbol “[]”

In some syntactic definitions, there may be items that are optional. These are
enclosed in square brackets. The term sign is optional in the following example.

signed-int-literal-constant is [sign] int-literal-constant

The fact that the sign is optional indicates that both 75 and +75 are signed
integer literal constants.

B.1.5 Symbol for Repeated Items “[] . . .”

Enclosing an item in square brackets followed by an ellipsis indicates that the
item may occur zero or more times. In the following example, the term digit is
repeated as many times as required to define the integer literal constant.

int-literal-constant is digit [digit] . . .

For example, there are five digits in the integer literal constant 94024.

B.1.6 Syntax Rule Continuation Symbol “■”

If a rule does not fit on one line, the convention is to use the symbol ■ at the
end of the line being continued as well as at the beginning of the line that
continues or completes the statement.

allocatable-stmt is ALLOCATABLE [::] array-name ■
■ [(deferred-shape-spec-list)] ■
■ [, array-name [(deferred-shape-spec-list)]] ...

The following statement, written all on one line, is an example of an
ALLOCATABLE statement satisfying this syntax rule.

ALLOCATABLE :: A1, A2

B-730 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

B.1.7 Assumed Syntax Rules

Certain assumptions have been made in the use of the nonterminal xyz in the
syntax rules. For example,

B.1.8 Example BNF Syntax
read-stmt is READ (io-control-spec-list) [input-item-list]

or READformat [, input-item-list]
format is default-char-expr

or label
or *

or scalar-default-int-variable

In this example, there are two alternatives to the READ statement. The first
uses an input/output control specification list; the second is a formatted READ
statement to a processor-dependent unit. Both alternatives have an optional
input item list, indicated by []. The syntax class format (a nonterminal) is
further defined as either a default character expression containing the format
specifications, or a statement label referring to a separate FORMAT statement
that contains the format specifications, or an asterisk (∗) indicating that the
READ statement is list-directed, or a scalar default integer variable whose
value specifies the label of a FORMAT statement. In the standard, the last
alternative is printed in a smaller font because it is a feature that may be
removed in the next revision; this convention is not used in the handbook.

There are other nonterminal symbols in the description of the READ statement
and further BNF rules need to be examined to determine the complete
description of the READ statement.

xyz-list means xyz [, xyz] ...

xyz-name is a name

scalar-xyz is an xyz that is a scalar

Fortran 90 Syntax 731

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

B.1.9 Constraints

The BNF forms do not, by themselves, provide a complete description of the
syntax; additional constraints are described with text. The BNF rules and the
constraints together describe the syntax of Fortran. Constraints are restrictions
to the syntax rules that limit the form of the statement described. Constraints,
if present, appear following a syntax rule.

B.1.10 Identifying Numbers

In the text of the standard, each BNF rule is given an identifying number, for
example, R201. These rules appear throughout the text of the standard, and
again in a BNF listing in an Annex to the standard. The numbering of the rules
in the following section matches the numbering of the rules in the standard.
These numbers also are used in the chapters of this book.

B.2 Syntax Rules and Constraints
Each of the following sections contains the syntax rules and constraints from
one section of the Fortran standard.

B.2.1 Introduction

B.2.2 Fortran Terms and Concepts
R201 executable-program is program-unit

[program-unit] ...
R202 program-unit is main-program

or external-subprogram
or module
or block-data

R1101 main-program is [program-stmt]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-program-stmt

R203 external-subprogram is function-subprogram
or subroutine-subprogram

B-732 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R1215 function-subprogram is function-stmt
[specification-part]
[execution-part]
[internal-subprogram-part]
end-function-stmt

R1219 subroutine-subprogram is subroutine-stmt
[specification-part]
[execution-part]
[internal-subprogram-part]
end-subroutine-stmt

R1104 module is module-stmt
[specification-part]
[module-subprogram-part]
end-module-stmt

R1110 block-data is block-data-stmt
[specification-part]
end-block-data-stmt

R204 specification-part is [use-stmt] ...
[implicit-part]
[declaration-construct] ...

R205 implicit-part is [implicit-part-stmt] ...
implicit-stmt

R206 implicit-part-stmt is implicit-stmt
or parameter-stmt
or format-stmt
or entry-stmt

R207 declaration-construct is derived-type-def
or interface-block
or type-declaration-stmt
or specification-stmt
or parameter-stmt
or format-stmt
or entry-stmt
or stmt-function-stmt

R208 execution-part is executable-construct
[execution-part-construct] ...

R209 execution-part-construct is executable-construct
or format-stmt
or data-stmt
or entry-stmt

R210 internal-subprogram-part is contains-stmt
internal-subprogram
[internal-subprogram] ...

R211 internal-subprogram is function-subprogram
or subroutine-subprogram

R212 module-subprogram-part is contains-stmt
module-subprogram
[module-subprogram] ...

R213 module-subprogram is function-subprogram

Fortran 90 Syntax 733

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

or subroutine-subprogram
R214 specification-stmt is access-stmt

or allocatable-stmt
or common-stmt
or data-stmt
or dimension-stmt
or equivalence-stmt
or external-stmt
or intent-stmt
or intrinsic-stmt
or namelist-stmt
or optional-stmt
or pointer-stmt
or save-stmt
or target-stmt

R215 executable-construct is action-stmt
or case-construct
or do-construct
or if-construct
or where-construct

R216 action-stmt is allocate-stmt
or assignment-stmt
or backspace-stmt
or call-stmt
or close-stmt
or computed-goto-stmt
or continue-stmt
or cycle-stmt
or deallocate-stmt
or endfile-stmt
or end-function-stmt
or end-program-stmt
or end-subroutine-stmt
or exit-stmt
or goto-stmt
or if-stmt
or inquire-stmt
or nullify-stmt
or open-stmt
or pointer-assignment-stmt
or print-stmt
or read-stmt
or return-stmt
or rewind-stmt
or stop-stmt
or where-stmt

B-734 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

or write-stmt
or arithmetic-if-stmt
or assign-stmt
or assigned-goto-stmt
or pause-stmt

Constraint: An execution-part must not contain an end-function-stmt, end-program-stmt, or end-
subroutine-stmt.

B.2.3 Characters, Lexical Tokens, and Source Form
R301 character is alphanumeric-character

or special-character
R302 alphanumeric-character is letter

or digit
or underscore

R303 underscore is _
R304 name is letter [alphanumeric-character] ...
Constraint: The maximum length of a name is 31 characters.
R305 constant is literal-constant

or named-constant
R306 literal-constant is int-literal-constant

or real-literal-constant
or complex-literal-constant
or logical-literal-constant
or char-literal-constant
or boz-literal-constant

R307 named-constant is name
R308 int-constant is constant
Constraint: int-constant must be of type integer.
R309 char-constant is constant
Constraint: char-constant must be of type character.
R310 intrinsic-operator is power-op

or mult-op
or add-op
or concat-op
or rel-op
or not-op
or and-op
or or-op
or equiv-op

R708 power-op is ∗∗
R709 mult-op is ∗

or /
R710 add-op is +

or –

Fortran 90 Syntax 735

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R712 concat-op is //
R714 rel-op is .EQ.

or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
or <=
or >
or >=

R719 not-op is .NOT.
R720 and-op is .AND.
R721 or-op is .OR.
R722 equiv-op is .EQV.

or .NEQV.
R311 defined-operator is defined-unary-op

or defined-binary-op
or extended-intrinsic-op

R704 defined-unary-op is . letter [letter]
R724 defined-binary-op is . letter [letter]
R312 extended-intrinsic-op is intrinsic-operator
Constraint: A defined-unary-op and a defined-binary-op must not contain more than 31 letters and

must not be the same as any intrinsic-operator or logical-literal-constant.
R313 label is digit [digit [digit [digit [digit]]]]
Constraint: At least one digit in a label must be nonzero.

B.2.4 Intrinsic and Derived Data Types
R401 signed-digit-string is [sign] digit-string
R402 digit-string is digit [digit] ...
R403 signed-int-literal-constant is [sign] int-literal-constant
R404 int-literal-constant is digit-string [_ kind-param]
R405 kind-param is digit-string

or scalar-int-constant-name
R406 sign is +

or –
Constraint: The value of kind-param must be nonnegative.
Constraint: The value of kind-param must specify a representation method that exists on the

processor.
R407 boz-literal-constant is binary-constant

or octal-constant
or hex-constant

Constraint: A boz-literal-constant may appear only in a DATA statement.

B-736 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R408 binary-constant is B ’ digit [digit] ... ’
or B " digit [digit] ... "

Constraint: digit must have one of the values 0 or 1.
R409 octal-constant is O ’ digit [digit] ... ’

or O " digit [digit] ... "
Constraint: digit must have one of the values 0 through 7.
R410 hex-constant is Z ’ hex-digit [hex-digit] ... ’

or Z " hex-digit [hex-digit] ... "
R411 hex-digit is digit

or A
or B
or C
or D
or E
or F

R412 signed-real-literal-constant is [sign] real-literal-constant
R413 real-literal-constant is significand [exponent-letter exponent] [_ kind-param]

or digit-string exponent-letter exponent [_ kind-param]
R414 significand is digit-string . [digit-string]

or . digit-string
R415 exponent-letter is E

or D
R416 exponent is signed-digit-string
Constraint: If both kind-param and exponent-letter are present, exponent-letter must be E.
Constraint: The value of kind-param must specify an approximation method that exists on the

processor.
R417 complex-literal-constant is (real-part , imag-part)
R418 real-part is signed-int-literal-constant

or signed-real-literal-constant
R419 imag-part is signed-int-literal-constant

or signed-real-literal-constant
R420 char-literal-constant is [kind-param _] ’ [rep-char] ... ’

or [kind-param _] " [rep-char] ... "
Constraint: The value of kind-param must specify a representation method that exists on the

processor.
R421 logical-literal-constant is .TRUE. [_ kind-param]

or .FALSE. [_ kind-param]
Constraint: The value of kind-param must specify a representation method that exists on the

processor.
R422 derived-type-def is derived-type-stmt

[private-sequence-stmt] ...
component-def-stmt
[component-def-stmt] ...
end-type-stmt

R423 private-sequence-stmt is PRIVATE
or SEQUENCE

R424 derived-type-stmt is TYPE [[, access-spec] ::] type-name

Fortran 90 Syntax 737

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: The same private-sequence-stmt must not appear more than once in a given derived-type-
def.

Constraint: If SEQUENCE is present, all derived types specified in component definitions must be
sequence types.

Constraint: An access-spec (5.1.2.2) or a PRIVATE statement within the definition is permitted only
if the type definition is within the specification part of a module.

Constraint: If a component of a derived type is of a type declared to be private, either the derived
type definition must contain the PRIVATE statement or the derived type must be
private.

Constraint: A derived type type-name must not be the same as the name of any intrinsic type nor the
same as any other accessible derived type type-name.

R425 end-type-stmt is END TYPE [type-name]
Constraint: If END TYPE is followed by a type-name, the type-name must be the same as that in the

corresponding derived-type-stmt.
R426 component-def-stmt is type-spec [[, component-attr-spec-list] ::] ■

■ component-decl-list
R427 component-attr-spec is POINTER

or DIMENSION (component-array-spec)
Constraint: No component-attr-spec may appear more than once in a given component-def-stmt.
Constraint: If the POINTER attribute is not specified for a component, a type-spec in the component-

def-stmt must specify an intrinsic type or a previously defined derived type.
Constraint: If the POINTER attribute is specified for a component, a type-spec in the component-def-

stmt must specify an intrinsic type or any accessible derived type including the type
being defined.

R428 component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list

R429 component-decl is component-name [(component-array-spec)] ■
■ [∗ char-length]

Constraint: If the POINTER attribute is not specified, each component-array-spec must be an explicit-
shape-spec-list.

Constraint: If the POINTER attribute is specified, each component-array-spec must be a deferred-shape-
spec-list.

Constraint: The ∗ char-length option is permitted only if the type specified is character.
Constraint: A char-length in a component-decl or the char-selector in a type-spec (5.1, 5.1.1.5) must be a

constant specification expression (7.1.6.2).
Constraint: Each bound in the explicit-shape-spec (R428) must be a constant specification expression

(7.1.6.2).
R430 structure-constructor is type-name (expr-list)
R431 array-constructor is (/ ac-value-list /)
R432 ac-value is expr

or ac-implied-do
R433 ac-implied-do is (ac-value-list , ac-implied-do-control)
R434 ac-implied-do-control is ac-do-variable = scalar-int-expr , ■

■ scalar-int-expr [, scalar-int-expr]
R435 ac-do-variable is scalar-int-variable
Constraint: ac-do-variable must be a named variable.
Constraint: Each ac-value expression in the array-constructor must have the same type and type

parameters.

B-738 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

B.2.5 Data Object Declarations and Specifications
R501 type-declaration-stmt is type-spec [[, attr-spec] ... ::] entity-decl-list
R502 type-spec is INTEGER [kind-selector]

or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector]
or LOGICAL [kind-selector]
or TYPE (type-name)

R503 attr-spec is PARAMETER
or access-spec
or ALLOCATABLE
or DIMENSION (array-spec)
or EXTERNAL
or INTENT (intent-spec)
or INTRINSIC
or OPTIONAL
or POINTER
or SAVE
or TARGET

R504 entity-decl is object-name [(array-spec)] ■
■ [∗ char-length] [= initialization-expr]

or function-name [(array-spec)] [∗ char-length]
R505 kind-selector is ([KIND =] scalar-int-initialization-expr)
Constraint: The same attr-spec must not appear more than once in a given type-declaration-stmt.
Constraint: The function-name must be the name of an external function, an intrinsic function, a

function dummy procedure, or a statement function.
Constraint: The = initialization-expr must appear if the statement contains a PARAMETER attribute

(5.1.2.1).
Constraint: If = initialization-expr appears, a double colon separator must appear before the entity-

decl-list.
Constraint: The = initialization-expr must not appear if object-name is a dummy argument, a function

result, an object in a named common block unless the type declaration is in a block data
program unit, an object in blank common, an allocatable array, a pointer, an external
name, an intrinsic name, or an automatic object.

Constraint: The ∗ char-length option is permitted only if the type specified is character.
Constraint: The ALLOCATABLE attribute may be used only when declaring an array that is not a

dummy argument or a function result.
Constraint: An array declared with a POINTER or an ALLOCATABLE attribute must be specified

with an array-spec that is a deferred-shape-spec-list (5.1.2.4.3).
Constraint: An array-spec for a function-name that does not have the POINTER attribute must be an

explicit-shape-spec-list.
Constraint: An array-spec for a function-name that does have the POINTER attribute must be a

deferred-shape-spec-list.
Constraint: If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or

INTRINSIC attribute must not be specified.

Fortran 90 Syntax 739

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

Constraint: The PARAMETER attribute must not be specified for dummy arguments, pointers,
allocatable arrays, functions, or objects in a common block.

Constraint: The INTENT and OPTIONAL attributes may be specified only for dummy arguments.
Constraint: An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.
Constraint: The SAVE attribute must not be specified for an object that is in a common block, a

dummy argument, a procedure, a function result, or an automatic data object.
Constraint: An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.
Constraint: An entity in a type-declaration-stmt must not have the EXTERNAL or INTRINSIC

attribute specified unless it is a function.
Constraint: An array must not have both the ALLOCATABLE attribute and the POINTER attribute.
Constraint: An entity must not be given explicitly any attribute more than once in a scoping unit.
Constraint: The value of scalar-int-initialization-expr must be nonnegative and must specify a

representation method that exists on the processor.
R506 char-selector is length-selector

or (LEN = type-param-value , ■
■ KIND = scalar-int-initialization-expr)

or (type-param-value , ■
■ [KIND =] scalar-int-initialization-expr)

or (KIND = scalar-int-initialization-expr ■
■ [, LEN = type-param-value])

R507 length-selector is ([LEN =] type-param-value)
or ∗ char-length [,]

R508 char-length is (type-param-value)
or scalar-int-literal-constant

Constraint: The optional comma in a length-selector is permitted only in a type-spec in a type-
declaration-stmt.

Constraint: The optional comma in a length-selector is permitted only if no double colon separator
appears in the type-declaration-stmt.

Constraint: The value of scalar-int-initialization-expr must be nonnegative and must specify a
representation method that exists on the processor.

Constraint: The scalar-int-literal-constant must not include a kind-param.
R509 type-param-value is specification-expr

or ∗
Constraint: A function name must not be declared with an asterisk type-param-value if the function

is an internal or module function, array-valued, pointer-valued, or recursive.
R510 access-spec is PUBLIC

or PRIVATE
Constraint: An access-spec attribute may appear only in the scoping unit of a module.
R511 intent-spec is IN

or OUT
or INOUT

Constraint: The INTENT attribute must not be specified for a dummy argument that is a dummy
procedure or a dummy pointer.

B-740 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R512 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec

Constraint: The maximum rank is seven.
R513 explicit-shape-spec is [lower-bound :] upper-bound
R514 lower-bound is specification-expr
R515 upper-bound is specification-expr
Constraint: An explicit-shape array whose bounds depend on the values of nonconstant

expressions must be a dummy argument, a function result, or an automatic array of a
procedure.

R516 assumed-shape-spec is [lower-bound] :
R517 deferred-shape-spec is :
R518 assumed-size-spec is [explicit-shape-spec-list ,] [lower-bound :] ∗
Constraint: The function name of an array-valued function must not be declared as an assumed-size

array.
R519 intent-stmt is INTENT (intent-spec) [::] dummy-arg-name-list
Constraint: An intent-stmt may appear only in the specification-part of a subprogram or an interface

body (12.3.2.1).
Constraint: dummy-arg-name must not be the name of a dummy procedure or a dummy pointer.
R520 optional-stmt is OPTIONAL [::] dummy-arg-name-list
Constraint: An optional-stmt may occur only in the scoping unit of a subprogram or an interface

body.
R521 access-stmt is access-spec [[::] access-id-list]
R522 access-id is use-name

or generic-spec
Constraint: An access-stmt may appear only in the scoping unit of a module. Only one accessibility

statement with an omitted access-id-list is permitted in the scoping unit of a module.
Constraint: Each use-name must be the name of a named variable, procedure, derived type, named

constant, or namelist group.
Constraint: A module procedure that has a dummy argument or function result of a type that has

PRIVATE accessibility must have PRIVATE accessibility and must not have a generic
identifier that has PUBLIC accessibility.

R523 save-stmt is SAVE [[::] saved-entity-list]
R524 saved-entity is object-name

or / common-block-name /
Constraint: An object-name must not be a dummy argument name, a procedure name, a function

result name, an automatic data object name, or the name of an entity in a common block.
Constraint: If a SAVE statement with an omitted saved entity list occurs in a scoping unit, no other

explicit occurrence of the SAVE attribute or SAVE statement is permitted in the same
scoping unit.

R525 dimension-stmt is DIMENSION [::] array-name (array-spec) ■
■ [, array-name (array-spec)] ...

R526 allocatable-stmt is ALLOCATABLE [::] array-name ■
■ [(deferred-shape-spec-list)] ■
■ [, array-name [(deferred-shape-spec-list)]] ...

Constraint: The array-name must not be a dummy argument or function result.
Constraint: If the DIMENSION attribute for an array-name is specified elsewhere in the scoping unit,

the array-spec must be a deferred-shape-spec-list.

Fortran 90 Syntax 741

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R527 pointer-stmt is POINTER [::] object-name ■
■ [(deferred-shape-spec-list)] ■
■ [, object-name [(deferred-shape-spec-list)]] ...

Constraint: The INTENT attribute must not be specified for an object-name.
Constraint: If the DIMENSION attribute for an object-name is specified elsewhere in the scoping

unit, the array-spec must be a deferred-shape-spec-list.
Constraint: The PARAMETER attribute must not be specified for an object-name.
R528 target-stmt is TARGET [::] object-name [(array-spec)] ■

■ [, object-name [(array-spec)]] ...
Constraint: The PARAMETER attribute must not be specified for an object-name.
R529 data-stmt is DATA data-stmt-set [[,] data-stmt-set] ...
R530 data-stmt-set is data-stmt-object-list / data-stmt-value-list /
R531 data-stmt-object is variable

or data-implied-do
R532 data-stmt-value is [data-stmt-repeat ∗] data-stmt-constant
R533 data-stmt-constant is scalar-constant

or signed-int-literal-constant
or signed-real-literal-constant
or structure-constructor
or boz-literal-constant

R534 data-stmt-repeat is scalar-int-constant
R535 data-implied-do is (data-i-do-object-list , data-i-do-variable = ■

■ scalar-int-expr , scalar-int-expr [, scalar-int-expr])
R536 data-i-do-object is array-element

or scalar-structure-component
or data-implied-do

Constraint: The array-element must not have a constant parent.
Constraint: The scalar-structure-component must not have a constant parent.
R537 data-i-do-variable is scalar-int-variable
Constraint: data-i-do-variable must be a named variable.
Constraint: The DATA statement repeat factor must be positive or zero. If the DATA statement

repeat factor is a named constant, it must have been declared previously in the scoping
unit or made accessible by use association or host association.

Constraint: If a data-stmt-constant is a structure-constructor, each component must be an initialization
expression.

Constraint: In a variable that is a data-stmt-object, any subscript, section subscript, substring starting
point, and substring ending point must be an initialization expression.

Constraint: A variable whose name or designator is included in a data-stmt-object-list or a data-i-do-
object-list must not be: a dummy argument, made accessible by use association or host
association, in a named common block unless the DATA statement is in a block data
program unit, in a blank common block, a function name, a function result name, an
automatic object, a pointer, or an allocatable array.

Constraint: In an array-element or a scalar-structure-component that is a data-i-do-object, any subscript
must be an expression whose primaries are either constants or DO variables of the
containing data-implied-dos, and each operation must be intrinsic.

Constraint: A scalar-int-expr of a data-implied-do must involve as primaries only constants or DO
variables of the containing data-implied-dos, and each operation must be intrinsic.

R538 parameter-stmt is PARAMETER (named-constant-def-list)
R539 named-constant-def is named-constant = initialization-expr

B-742 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R540 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE

R541 implicit-spec is type-spec (letter-spec-list)
R542 letter-spec is letter [– letter]
Constraint: If IMPLICIT NONE is specified in a scoping unit, it must precede any PARAMETER

statements that appear in the scoping unit and there must be no other IMPLICIT
statements in the scoping unit.

Constraint: If the minus and second letter appear, the second letter must follow the first letter
alphabetically.

R543 namelist-stmt is NAMELIST / namelist-group-name / ■
■ namelist-group-object-list ■
■ [[,] / namelist-group-name / ■
■ namelist-group-object-list] ...

R544 namelist-group-object is variable-name
Constraint: A namelist-group-object must not be an array dummy argument with a nonconstant

bound, a variable with nonconstant character length, an automatic object, a pointer, a
variable of a type that has an ultimate component that is a pointer, or an allocatable
array.

Constraint: If a namelist-group-name has the PUBLIC attribute, no item in the namelist-group-object-
list may have the PRIVATE attribute.

R545 equivalence-stmt is EQUIVALENCE equivalence-set-list
R546 equivalence-set is (equivalence-object , equivalence-object-list)
R547 equivalence-object is variable-name

or array-element
or substring

Constraint: An equivalence-object must not be a dummy argument, a pointer, an allocatable array, an
object of a nonsequence derived type or of a sequence derived type containing a pointer
at any level of component selection, an automatic object, a function name, an entry
name, a result name, a named constant, a structure component, or a subobject of any of
the preceding objects.

Constraint: Each subscript or substring range expression in an equivalence-object must be an integer
initialization expression (7.1.6.1).

Constraint: If an equivalence-object is of type default integer, default real, double precision real,
default complex, default logical, or numeric sequence type, all of the objects in the
equivalence set must be of these types.

Constraint: If an equivalence-object is of type default character or character sequence type, all of the
objects in the equivalence set must be of these types.

Constraint: If an equivalence-object is of a derived type that is not a numeric sequence or character
sequence type, all of the objects in the equivalence set must be of the same type.

Constraint: If an equivalence-object is of an intrinsic type other than default integer, default real,
double precision real, default complex, default logical, or default character, all of the
objects in the equivalence set must be of the same type with the same kind type
parameter value.

R548 common-stmt is COMMON [/ [common-block-name] /] ■
■ common-block-object-list ■
■ [[,] / [common-block-name] / ■
■ common-block-object-list] ...

R549 common-block-object is variable-name [(explicit-shape-spec-list)]
Constraint: Only one appearance of a given variable-name is permitted in all common-block-object-lists

within a scoping unit.

Fortran 90 Syntax 743

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: A common-block-object must not be a dummy argument, an allocatable array, an
automatic object, a function name, an entry name, or a result name.

Constraint: Each bound in the explicit-shape-spec must be a constant specification expression
(7.1.6.2).

Constraint: If a common-block-object is of a derived type, it must be a sequence type (4.4.1).
Constraint: If a variable-name appears with an explicit-shape-spec-list, it must not have the POINTER

attribute.

B.2.6 Use of Data Objects
R601 variable is scalar-variable-name

or array-variable-name
or subobject

Constraint: array-variable-name must be the name of a data object that is an array.
Constraint: array-variable-name must not have the PARAMETER attribute.
Constraint: scalar-variable-name must not have the PARAMETER attribute.
Constraint: subobject must not be a subobject designator (for example, a substring) whose parent is

a constant.
R602 subobject is array-element

or array-section
or structure-component
or substring

R603 logical-variable is variable
Constraint: logical-variable must be of type logical.
R604 default-logical-variable is variable
Constraint: default-logical-variable must be of type default logical.
R605 char-variable is variable
Constraint: char-variable must be of type character.
R606 default-char-variable is variable
Constraint: default-char-variable must be of type default character.
R607 int-variable is variable
Constraint: int-variable must be of type integer.
R608 default-int-variable is variable
Constraint: default-int-variable must be of type default integer.
R609 substring is parent-string (substring-range)
R610 parent-string is scalar-variable-name

or array-element
or scalar-structure-component
or scalar-constant

R611 substring-range is [scalar-int-expr] : [scalar-int-expr]
Constraint: parent-string must be of type character.
R612 data-ref is part-ref [% part-ref] ...
R613 part-ref is part-name [(section-subscript-list)]
Constraint: In a data-ref, each part-name except the rightmost must be of derived type.
Constraint: In a data-ref, each part-name except the leftmost must be the name of a component of the

derived-type definition of the type of the preceding part-name.

B-744 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: In a part-ref containing a section-subscript-list, the number of section-subscripts must equal
the rank of part-name.

Constraint: In a data-ref, there must not be more than one part-ref with nonzero rank. A part-name to
the right of a part-ref with nonzero rank must not have the POINTER attribute.

R614 structure-component is data-ref
Constraint: In a structure-component, there must be more than one part-ref and the rightmost part-ref

must be of the form part-name.
R615 array-element is data-ref
Constraint: In an array-element, every part-ref must have rank zero and the last part-ref must contain

a subscript-list.
R616 array-section is data-ref [(substring-range)]
Constraint: In an array-section, exactly one part-ref must have nonzero rank, and either the final part-

ref has a section-subscript-list with nonzero rank or another part-ref has nonzero rank.
Constraint: In an array-section with a substring-range, the rightmost part-name must be of type

character.
R617 subscript is scalar-int-expr
R618 section-subscript is subscript

or subscript-triplet
or vector-subscript

R619 subscript-triplet is [subscript] : [subscript] [: stride]
R620 stride is scalar-int-expr
R621 vector-subscript is int-expr
Constraint: A vector-subscript must be an integer array expression of rank one.
Constraint: The second subscript must not be omitted from a subscript-triplet in the last dimension of

an assumed-size array.
R622 allocate-stmt is ALLOCATE (allocation-list ■

■ [, STAT = stat-variable])
R623 stat-variable is scalar-int-variable
R624 allocation is allocate-object [(allocate-shape-spec-list)]
R625 allocate-object is variable-name

or structure-component
R626 allocate-shape-spec is [allocate-lower-bound :] allocate-upper-bound
R627 allocate-lower-bound is scalar-int-expr
R628 allocate-upper-bound is scalar-int-expr
Constraint: Each allocate-object must be a pointer or an allocatable array.
Constraint: The number of allocate-shape-specs in an allocate-shape-spec-list must be the same as the

rank of the pointer or allocatable array.
R629 nullify-stmt is NULLIFY (pointer-object-list)
R630 pointer-object is variable-name

or structure-component
Constraint: Each pointer-object must have the POINTER attribute.
R631 deallocate-stmt is DEALLOCATE (allocate-object-list ■

■ [, STAT = stat-variable])
Constraint: Each allocate-object must be a pointer or an allocatable array.

Fortran 90 Syntax 745

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

B.2.7 Expressions and Assignment
R701 primary is constant

or constant-subobject
or variable
or array-constructor
or structure-constructor
or function-reference
or (expr)

R702 constant-subobject is subobject
Constraint: subobject must be a subobject designator whose parent is a constant.
Constraint: A variable that is a primary must not be an assumed-size array.
R703 level-1-expr is [defined-unary-op] primary
R704 defined-unary-op is . letter [letter]
Constraint: A defined-unary-op must not contain more than 31 letters and must not be the same as

any intrinsic-operator or logical-literal-constant.
R705 mult-operand is level-1-expr [power-op mult-operand]
R706 add-operand is [add-operand mult-op] mult-operand
R707 level-2-expr is [[level-2-expr] add-op] add-operand
R708 power-op is ∗∗
R709 mult-op is ∗

or /
R710 add-op is +

or –
R711 level-3-expr is [level-3-expr concat-op] level-2-expr
R712 concat-op is //
R713 level-4-expr is [level-3-expr rel-op] level-3-expr
R714 rel-op is .EQ.

or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
or <=
or >
or >=

R715 and-operand is [not-op] level-4-expr
R716 or-operand is [or-operand and-op] and-operand
R717 equiv-operand is [equiv-operand or-op] or-operand
R718 level-5-expr is [level-5-expr equiv-op] equiv-operand
R719 not-op is .NOT.
R720 and-op is .AND.
R721 or-op is .OR.

B-746 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R722 equiv-op is .EQV.
or .NEQV.

R723 expr is [expr defined-binary-op] level-5-expr
R724 defined-binary-op is . letter [letter]
Constraint: A defined-binary-op must not contain more than 31 letters and must not be the same as

any intrinsic-operator or logical-literal-constant.
R725 logical-expr is expr
Constraint: logical-expr must be type logical.
R726 char-expr is expr
Constraint: char-expr must be type character.
R727 default-char-expr is expr
Constraint: default-char-expr must be of type default character.
R728 int-expr is expr
Constraint: int-expr must be type integer.
R729 numeric-expr is expr
Constraint: numeric-expr must be of type integer, real or complex.
R730 initialization-expr is expr
Constraint: An initialization-expr must be an initialization expression.
R731 char-initialization-expr is char-expr
Constraint: A char-initialization-expr must be an initialization expression.
R732 int-initialization-expr is int-expr
Constraint: An int-initialization-expr must be an initialization expression.
R733 logical-initialization-expr is logical-expr
Constraint: A logical-initialization-expr must be an initialization expression.
R734 specification-expr is scalar-int-expr
Constraint: The scalar-int-expr must be a restricted expression.
R735 assignment-stmt is variable = expr
Constraint: A variable in an assignment-stmt must not be an assumed-size array.
R736 pointer-assignment-stmt is pointer-object => target
R737 target is variable

or expr
Constraint: The pointer-object must have the POINTER attribute.
Constraint: The variable must have the TARGET attribute or be a subobject of an object with the

TARGET attribute, or it must have the POINTER attribute.
Constraint: The target must be of the same type, type parameters, and rank as the pointer.
Constraint: The target must not be an array section with a vector subscript.
Constraint: The expr must deliver a pointer result.
R738 where-stmt is WHERE (mask-expr) assignment-stmt
R739 where-construct is where-construct-stmt

[assignment-stmt] ...
[elsewhere-stmt

[assignment-stmt] ...]
end-where-stmt

R740 where-construct-stmt is WHERE (mask-expr)
R741 mask-expr is logical-expr
R742 elsewhere-stmt is ELSEWHERE
R743 end-where-stmt is END WHERE

Fortran 90 Syntax 747

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: In each assignment-stmt, the mask-expr and the variable being defined must be arrays of
the same shape.

Constraint: The assignment-stmt must not be a defined assignment.

B.2.8 Execution Control
R801 block is [execution-part-construct] ...
R802 if-construct is if-then-stmt

block
[else-if-stmt

block] ...
[else-stmt

block]
end-if-stmt

R803 if-then-stmt is [if-construct-name :] IF (scalar-logical-expr) THEN
R804 else-if-stmt is ELSE IF (scalar-logical-expr) THEN [if-construct-name]
R805 else-stmt is ELSE [if-construct-name]
R806 end-if-stmt is END IF [if-construct-name]
Constraint: If the if-then-stmt of an if-construct is identified by an if-construct-name, the

corresponding end-if-stmt must specify the same if-construct-name. If the if-then-stmt of
an if-construct is not identified by an if-construct-name, the corresponding end-if-stmt
must not specify an if-construct-name. If an else-if-stmt or else-stmt is identified by an if-
construct-name, the corresponding if-then-stmt must specify the same if-construct-name.

R807 if-stmt is IF (scalar-logical-expr) action-stmt
Constraint: The action-stmt in the if-stmt must not be an if-stmt, end-program-stmt, end-function-stmt,

or end-subroutine-stmt.
R808 case-construct is select-case-stmt

[case-stmt
block] ...

end-select-stmt
R809 select-case-stmt is [case-construct-name :] SELECT CASE (case-expr)
R810 case-stmt is CASE case-selector [case-construct-name]
R811 end-select-stmt is END SELECT [case-construct-name]
Constraint: If the select-case-stmt of a case-construct is identified by a case-construct-name, the

corresponding end-select-stmt must specify the same case-construct-name. If the select-
case-stmt of a case-construct is not identified by a case-construct-name, the corresponding
end-select-stmt must not specify a case-construct-name. If a case-stmt is identified by a case-
construct-name, the corresponding select-case-stmt must specify the same case-construct-
name.

R812 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr

R813 case-selector is (case-value-range-list)
or DEFAULT

Constraint: No more than one of the selectors of one of the CASE statements may be DEFAULT.
R814 case-value-range is case-value

or case-value :
or : case-value
or case-value : case-value

B-748 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R815 case-value is scalar-int-initialization-expr
or scalar-char-initialization-expr
or scalar-logical-initialization-expr

Constraint: For a given case-construct, each case-value must be of the same type as case-expr. For
character type, length differences are allowed, but the kind type parameters must be the
same.

Constraint: A case-value-range using a colon must not be used if case-expr is of type logical.
Constraint: For a given case-construct, the case-value-ranges must not overlap; that is, there must be

no possible value of the case-expr that matches more than one case-value-range.
R816 do-construct is block-do-construct

or nonblock-do-construct
R817 block-do-construct is do-stmt

do-block
end-do

R818 do-stmt is label-do-stmt
or nonlabel-do-stmt

R819 label-do-stmt is [do-construct-name :] DO label [loop-control]
R820 nonlabel-do-stmt is [do-construct-name :] DO [loop-control]
R821 loop-control is [,] do-variable = scalar-numeric-expr , ■

■ scalar-numeric-expr [, scalar-numeric-expr]
or [,] WHILE (scalar-logical-expr)

R822 do-variable is scalar-variable
Constraint: The do-variable must be a named scalar variable of type integer, default real, or double

precision real.
Constraint: Each scalar-numeric-expr in loop-control must be of type integer, default real, or double

precision real.
R823 do-block is block
R824 end-do is end-do-stmt

or continue-stmt
R825 end-do-stmt is END DO [do-construct-name]
Constraint: If the do-stmt of a block-do-construct is identified by a do-construct-name, the

corresponding end-do must be an end-do-stmt specifying the same do-construct-name. If
the do-stmt of a block-do-construct is not identified by a do-construct-name, the
corresponding end-do must not specify a do-construct-name.

Constraint: If the do-stmt is a nonlabel-do-stmt, the corresponding end-do must be an end-do-stmt.
Constraint: If the do-stmt is a label-do-stmt, the corresponding end-do must be identified with the

same label.
R826 nonblock-do-construct is action-term-do-construct

or outer-shared-do-construct
R827 action-term-do-construct is label-do-stmt

do-body
do-term-action-stmt

R828 do-body is [execution-part-construct] ...
R829 do-term-action-stmt is action-stmt
Constraint: A do-term-action-stmt must not be a continue-stmt, a goto-stmt, a return-stmt, a stop-stmt,

an exit-stmt, a cycle-stmt, an end-function-stmt, an end-subroutine-stmt, an end-program-
stmt, an arithmetic-if-stmt, or an assigned-goto-stmt.

Constraint: The do-term-action-stmt must be identified with a label and the corresponding label-do-
stmt must refer to the same label.

Fortran 90 Syntax 749

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R830 outer-shared-do-construct is label-do-stmt
do-body
shared-term-do-construct

R831 shared-term-do-construct is outer-shared-do-construct
or inner-shared-do-construct

R832 inner-shared-do-construct is label-do-stmt
do-body
do-term-shared-stmt

R833 do-term-shared-stmt is action-stmt
Constraint: A do-term-shared-stmt must not be a goto-stmt, a return-stmt, a stop-stmt, an exit-stmt, a

cycle-stmt, an end-function-stmt, an end-subroutine-stmt, an end-program-stmt, an
arithmetic-if-stmt, or an assigned-goto-stmt.

Constraint: The do-term-shared-stmt must be identified with a label and all of the label-do-stmts of the
shared-term-do-construct must refer to the same label.

R834 cycle-stmt is CYCLE [do-construct-name]
Constraint: If a cycle-stmt refers to a do-construct-name, it must be within the range of that do-

construct; otherwise, it must be within the range of at least one do-construct.
R835 exit-stmt is EXIT [do-construct-name]
Constraint: If an exit-stmt refers to a do-construct-name, it must be within the range of that do-

construct; otherwise, it must be within the range of at least one do-construct.
R836 goto-stmt is GO TO label
Constraint: The label must be the statement label of a branch target statement that appears in the

same scoping unit as the goto-stmt.
R837 computed-goto-stmt is GO TO (label-list) [,] scalar-int-expr
Constraint: Each label in label-list must be the statement label of a branch target statement that

appears in the same scoping unit as the computed-goto-stmt.
R838 assign-stmt is ASSIGN label TO scalar-int-variable
Constraint: The label must be the statement label of a branch target statement or format-stmt that

appears in the same scoping unit as the assign-stmt.
Constraint: scalar-int-variable must be named and of type default integer.
R839 assigned-goto-stmt is GO TO scalar-int-variable [[,] (label-list)]
Constraint: Each label in label-list must be the statement label of a branch target statement that

appears in the same scoping unit as the assigned-goto-stmt.
Constraint: scalar-int-variable must be named and of type default integer.
R840 arithmetic-if-stmt is IF (scalar-numeric-expr) label , label , label
Constraint: Each label must be the label of a branch target statement that appears in the same

scoping unit as the arithmetic-if-stmt.
Constraint: The scalar-numeric-expr must not be of type complex.
R841 continue-stmt is CONTINUE
R842 stop-stmt is STOP [stop-code]
R843 stop-code is scalar-char-constant

or digit [digit [digit [digit [digit]]]]
Constraint: scalar-char-constant must be of type default character.
R844 pause-stmt is PAUSE [stop-code]

B-750 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

B.2.9 Input/Output Statements
R901 io-unit is external-file-unit

or ∗
or internal-file-unit

R902 external-file-unit is scalar-int-expr
R903 internal-file-unit is default-char-variable
Constraint: The default-char-variable must not be an array section with a vector subscript.
R904 open-stmt is OPEN (connect-spec-list)
R905 connect-spec is [UNIT =] external-file-unit

or IOSTAT = scalar-default-int-variable
or ERR = label
or FILE = file-name-expr
or STATUS = scalar-default-char-expr
or ACCESS = scalar-default-char-expr
or FORM = scalar-default-char-expr
or RECL = scalar-int-expr
or BLANK = scalar-default-char-expr
or POSITION = scalar-default-char-expr
or ACTION = scalar-default-char-expr
or DELIM = scalar-default-char-expr
or PAD = scalar-default-char-expr

R906 file-name-expr is scalar-default-char-expr
Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit specifier

must be the first item in the connect-spec-list.
Constraint: Each specifier must not appear more than once in a given open-stmt; an external-file-unit

must be specified.
Constraint: The label used in the ERR= specifier must be the statement label of a branch target

statement that appears in the same scoping unit as the OPEN statement.
R907 close-stmt is CLOSE (close-spec-list)
R908 close-spec is [UNIT =] external-file-unit

or IOSTAT = scalar-default-int-variable
or ERR = label
or STATUS = scalar-default-char-expr

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit specifier
must be the first item in the close-spec-list.

Constraint: Each specifier must not appear more than once in a given close-stmt; an external-file-unit
must be specified.

Constraint: The label used in the ERR= specifier must be the statement label of a branch target
statement that appears in the same scoping unit as the CLOSE statement.

R909 read-stmt is READ (io-control-spec-list) [input-item-list]
or READ format [, input-item-list]

R910 write-stmt is WRITE (io-control-spec-list) [output-item-list]
R911 print-stmt is PRINT format [, output-item-list]
R912 io-control-spec is [UNIT =] io-unit

or [FMT =] format
or [NML =] namelist-group-name

Fortran 90 Syntax 751

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

or REC = scalar-int-expr
or IOSTAT = scalar-default-int-variable
or ERR = label
or END = label
or ADVANCE = scalar-default-char-expr
or SIZE = scalar-default-int-variable
or EOR = label

Constraint: An io-control-spec-list must contain exactly one io-unit and may contain at most one of
each of the other specifiers.

Constraint: An END=, EOR=, or SIZE= specifier must not appear in a write-stmt.
Constraint: The label in the ERR=, EOR=, or END= specifier must be the statement label of a branch

target statement that appears in the same scoping unit as the data transfer statement.
Constraint: A namelist-group-name must not be present if an input-item-list or an output-item-list is

present in the data transfer statement.
Constraint: An io-control-spec-list must not contain both a format and a namelist-group-name.
Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit specifier

must be the first item in the control information list.
Constraint: If the optional characters FMT= are omitted from the format specifier, the format

specifier must be the second item in the control information list and the first item must
be the unit specifier without the optional characters UNIT=.

Constraint: If the optional characters NML= are omitted from the namelist specifier, the namelist
specifier must be the second item in the control information list and the first item must
be the unit specifier without the optional characters UNIT=.

Constraint: If the unit specifier specifies an internal file, the io-control-spec-list must not contain a
REC= specifier or a namelist-group-name.

Constraint: If the REC= specifier is present, an END= specifier must not appear, a namelist-group-
name must not appear, and the format, if any, must not be an asterisk specifying list-
directed input/output.

Constraint: An ADVANCE= specifier may be present only in a formatted sequential input/output
statement with explicit format specification (10.1) whose control information list does
not contain an internal file unit specifier.

Constraint: If an EOR= specifier is present, an ADVANCE= specifier also must appear.
R913 format is default-char-expr

or label
or ∗
or scalar-default-int-variable

Constraint: The label must be the label of a FORMAT statement that appears in the same scoping
unit as the statement containing the format specifier.

R914 input-item is variable
or io-implied-do

R915 output-item is expr
or io-implied-do

R916 io-implied-do is (io-implied-do-object-list , io-implied-do-control)
R917 io-implied-do-object is input-item

or output-item
R918 io-implied-do-control is do-variable = scalar-numeric-expr , ■

■ scalar-numeric-expr [, scalar-numeric-expr]
Constraint: A variable that is an input-item must not be an assumed-size array.

B-752 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: The do-variable must be a scalar of type integer, default real, or double precision real.
Constraint: Each scalar-numeric-expr in an io-implied-do-control must be of type integer, default real,

or double precision real.
Constraint: In an input-item-list, an io-implied-do-object must be an input-item. In an output-item-list,

an io-implied-do-object must be an output-item.
R919 backspace-stmt is BACKSPACE external-file-unit

or BACKSPACE (position-spec-list)
R920 endfile-stmt is ENDFILE external-file-unit

or ENDFILE (position-spec-list)
R921 rewind-stmt is REWIND external-file-unit

or REWIND (position-spec-list)
R922 position-spec is [UNIT =] external-file-unit

or IOSTAT = scalar-default-int-variable
or ERR = label

Constraint: The label in the ERR= specifier must be the statement label of a branch target statement
that appears in the same scoping unit as the file positioning statement.

Constraint: If the optional characters UNIT= are omitted from the unit specifier, the unit specifier
must be the first item in the position-spec-list.

Constraint: A position-spec-list must contain exactly one external-file-unit and may contain at most
one of each of the other specifiers.

R923 inquire-stmt is INQUIRE (inquire-spec-list)
or INQUIRE (IOLENGTH = scalar-default-int-variable) ■

■ output-item-list
R924 inquire-spec is [UNIT =] external-file-unit

or FILE = file-name-expr
or IOSTAT = scalar-default-int-variable
or ERR = label
or EXIST = scalar-default-logical-variable
or OPENED = scalar-default-logical-variable
or NUMBER = scalar-default-int-variable
or NAMED = scalar-default-logical-variable
or NAME = scalar-default-char-variable
or ACCESS = scalar-default-char-variable
or SEQUENTIAL = scalar-default-char-variable
or DIRECT = scalar-default-char-variable
or FORM = scalar-default-char-variable
or FORMATTED = scalar-default-char-variable
or UNFORMATTED = scalar-default-char-variable
or RECL = scalar-default-int-variable
or NEXTREC = scalar-default-int-variable
or BLANK = scalar-default-char-variable
or POSITION = scalar-default-char-variable
or ACTION = scalar-default-char-variable
or READ = scalar-default-char-variable
or WRITE = scalar-default-char-variable

Fortran 90 Syntax 753

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

or READWRITE = scalar-default-char-variable
or DELIM = scalar-default-char-variable
or PAD = scalar-default-char-variable

Constraint: An inquire-spec-list must contain one FILE= specifier or one UNIT= specifier, but not
both, and at most one of each of the other specifiers.

Constraint: In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT=
are omitted from the unit specifier, the unit specifier must be the first item in the inquire-
spec-list.

B.2.10 Input/Output Editing
R1001 format-stmt is FORMAT format-specification
R1002 format-specification is ([format-item-list])
Constraint: The format-stmt must be labeled.
Constraint: The comma used to separate format-items in a format-item-list may be omitted as follows:

Between a P edit descriptor and an immediately following F, E, EN, ES, D, or G edit
descriptor (10.6.5)
Before a slash edit descriptor when the optional repeat specification is not present
(10.6.2)
After a slash edit descriptor Before or after a colon edit descriptor (10.6.3)

R1003 format-item is [r] data-edit-desc
or control-edit-desc
or char-string-edit-desc
or [r] (format-item-list)

R1004 r is int-literal-constant
Constraint: r must be positive.
Constraint: r must not have a kind parameter specified for it.
R1005 data-edit-desc is I w [. m]

or B w [. m]
or O w [. m]
or Z w [. m]
or F w . d
or E w . d [E e]
or EN w . d [E e]
or ES w . d [E e]
or G w . d [E e]
or L w
or A [w]
or D w . d

R1006 w is int-literal-constant
R1007 m is int-literal-constant
R1008 d is int-literal-constant
R1009 e is int-literal-constant
Constraint: w and e must be positive.
Constraint: w, m, d, and e must not have kind parameters specified for them.
R1010 control-edit-desc is position-edit-desc

B-754 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

or [r] /
or :
or sign-edit-desc
or k P
or blank-interp-edit-desc

R1011 k is signed-int-literal-constant
Constraint: k must not have a kind parameter specified for it.
R1012 position-edit-desc is T n

or TL n
or TR n
or n X

R1013 n is int-literal-constant
Constraint: n must be positive.
Constraint: n must not have a kind parameter specified for it.
R1014 sign-edit-desc is S

or SP
or SS

R1015 blank-interp-edit-desc is BN
or BZ

R1016 char-string-edit-desc is char-literal-constant
or c H rep-char [rep-char] ...

R1017 c is int-literal-constant
Constraint: c must be positive.
Constraint: c must not have a kind parameter specified for it.
Constraint: The rep-char in the cH form must be of default character type.
Constraint: The char-literal-constant must not have a kind parameter specified for it.

B.2.11 Program Units
R1101 main-program is [program-stmt]

[specification-part]
[execution-part]
[internal-subprogram-part]
end-program-stmt

R1102 program-stmt is PROGRAM program-name
R1103 end-program-stmt is END [PROGRAM [program-name]]
Constraint: In a main-program, the execution-part must not contain a RETURN statement or an

ENTRY statement.
Constraint: The program-name may be included in the end-program-stmt only if the optional program-

stmt is used and, if included, must be identical to the program-name specified in the
program-stmt.

Constraint: An automatic object must not appear in the specification-part (R204) of a main program.
R1104 module is module-stmt

[specification-part]
[module-subprogram-part]
end-module-stmt

R1105 module-stmt is MODULE module-name

Fortran 90 Syntax 755

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R1106 end-module-stmt is END [MODULE [module-name]]
Constraint: If the module-name is specified in the end-module-stmt, it must be identical to the module-

name specified in the module-stmt.
Constraint: A module specification-part must not contain a stmt-function-stmt, an entry-stmt, or a

format-stmt.
Constraint: An automatic object must not appear in the specification-part (R204) of a module.
R1107 use-stmt is USE module-name [, rename-list]

or USE module-name , ONLY : [only-list]
R1108 rename is local-name => use-name
R1109 only is access-id

or [local-name =>] use-name
Constraint: Each access-id must be a public entity in the module.
Constraint: Each use-name must be the name of a public entity in the module.
R1110 block-data is block-data-stmt

[specification-part]
end-block-data-stmt

R1111 block-data-stmt is BLOCK DATA [block-data-name]
R1112 end-block-data-stmt is END [BLOCK DATA [block-data-name]]
Constraint: The block-data-name may be included in the end-block-data-stmt only if it was provided in

the block-data-stmt and, if included, must be identical to the block-data-name in the block-
data-stmt.

Constraint: A block-data specification-part may contain only USE statements, type declaration
statements, IMPLICIT statements, PARAMETER statements, derived-type definitions,
and the following specification statements: COMMON, DATA, DIMENSION,
EQUIVALENCE, INTRINSIC, POINTER, SAVE, and TARGET.

Constraint: A type declaration statement in a block-data specification-part must not contain
ALLOCATABLE, EXTERNAL, INTENT, OPTIONAL, PRIVATE, or PUBLIC attribute
specifiers.

B.2.12 Procedures
R1201 interface-block is interface-stmt

[interface-body] ...
[module-procedure-stmt] ...
end-interface-stmt

R1202 interface-stmt is INTERFACE [generic-spec]
R1203 end-interface-stmt is END INTERFACE
R1204 interface-body is function-stmt

[specification-part]
end-function-stmt

or subroutine-stmt
[specification-part]
end-subroutine-stmt

R1205 module-procedure-stmt is MODULE PROCEDURE procedure-name-list
R1206 generic-spec is generic-name

or OPERATOR (defined-operator)
or ASSIGNMENT (=)

Constraint: An interface-body must not contain an entry-stmt, data-stmt, format-stmt, or stmt-function-
stmt.

B-756 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: The MODULE PROCEDURE specification is allowed only if the interface-block has a
generic-spec and has a host that is a module or accesses a module by use association; each
procedure-name must be the name of a module procedure that is accessible in the host.

Constraint: An interface-block must not appear in a BLOCK DATA program unit.
Constraint: An interface-block in a subprogram must not contain an interface-body for a procedure

defined by that subprogram.
Constraint: A procedure-name in a module-procedure-stmt must not be one that previously had been

established to be associated with the generic-spec of the interface-block in which it
appears, either by a previous appearance in an interface-block or by use or host
association.

R1207 external-stmt is EXTERNAL external-name-list
R1208 intrinsic-stmt is INTRINSIC intrinsic-procedure-name-list
Constraint: Each intrinsic-procedure-name must be the name of an intrinsic procedure.
R1209 function-reference is function-name ([actual-arg-spec-list])
Constraint: The actual-arg-spec-list for a function reference must not contain an alt-return-spec.
R1210 call-stmt is CALL subroutine-name [([actual-arg-spec-list])]
R1211 actual-arg-spec is [keyword =] actual-arg
R1212 keyword is dummy-arg-name
R1213 actual-arg is expr

or variable
or procedure-name
or alt-return-spec

R1214 alt-return-spec is ∗ label
Constraint: The keyword = must not appear if the interface of the procedure is implicit in the scoping

unit.
Constraint: The keyword = may be omitted from an actual-arg-spec only if the keyword = has been

omitted from each preceding actual-arg-spec in the argument list.
Constraint: Each keyword must be the name of a dummy argument in the explicit interface of the

procedure.
Constraint: A procedure-name actual-arg must not be the name of an internal procedure or of a

statement function and must not be the generic name of a procedure (12.3.2.1, 13.1).
Constraint: The label used in the alt-return-spec must be the statement label of a branch target

statement that appears in the same scoping unit as the call-stmt.
R1215 function-subprogram is function-stmt

[specification-part]
[execution-part]
[internal-subprogram-part]
end-function-stmt

R1216 function-stmt is [prefix] FUNCTION function-name ■
■ ([dummy-arg-name-list]) [RESULT (result-name)]

Constraint: If RESULT is specified, the function-name must not appear in any specification statement
in the scoping unit of the function subprogram.

R1217 prefix is type-spec [RECURSIVE]
or RECURSIVE [type-spec]

R1218 end-function-stmt is END [FUNCTION [function-name]]
Constraint: If RESULT is specified, result-name must not be the same as function-name.
Constraint: FUNCTION must be present on the end-function-stmt of an internal or module function.
Constraint: An internal function must not contain an ENTRY statement.
Constraint: An internal function must not contain an internal-subprogram-part.

Fortran 90 Syntax 757

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: If a function-name is present on the end-function-stmt, it must be identical to the function-
name specified in the function-stmt.

R1219 subroutine-subprogram is subroutine-stmt
[specification-part]
[execution-part]
[internal-subprogram-part]
end-subroutine-stmt

R1220 subroutine-stmt is [RECURSIVE] SUBROUTINE subroutine-name ■
■ [([dummy-arg-list])]

R1221 dummy-arg is dummy-arg-name
or ∗

R1222 end-subroutine-stmt is END [SUBROUTINE [subroutine-name]]
Constraint: SUBROUTINE must be present on the end-subroutine-stmt of an internal or module

subroutine.
Constraint: An internal subroutine must not contain an ENTRY statement.
Constraint: An internal subroutine must not contain an internal-subprogram-part.
Constraint: If a subroutine-name is present on the end-subroutine-stmt, it must be identical to the

subroutine-name specified in the subroutine-stmt.
R1223 entry-stmt is ENTRY entry-name [([dummy-arg-list]) ■

■ [RESULT (result-name)]]
Constraint: If RESULT is specified, the entry-name must not appear in any specification statement in

the scoping unit of the function program.
Constraint: An entry-stmt may appear only in an external-subprogram or module-subprogram. An

entry-stmt must not appear within an executable-construct.
Constraint: RESULT may be present only if the entry-stmt is contained in a function subprogram.
Constraint: Within the subprogram containing the entry-stmt, the entry-name must not appear as a

dummy argument in the FUNCTION or SUBROUTINE statement or in another ENTRY
statement and it must not appear in an EXTERNAL or INTRINSIC statement.

Constraint: A dummy-arg may be an alternate return indicator only if the ENTRY statement is
contained in a subroutine subprogram.

Constraint: If RESULT is specified, result-name must not be the same as entry-name.
R1224 return-stmt is RETURN [scalar-int-expr]
Constraint: The return-stmt must be contained in the scoping unit of a function or subroutine

subprogram.
Constraint: The scalar-int-expr is allowed only in the scoping unit of a subroutine subprogram.
R1225 contains-stmt is CONTAINS
R1226 stmt-function-stmt is function-name ([dummy-arg-name-list]) = scalar-expr
Constraint: The scalar-expr may be composed only of constants (literal and named), references to

scalar variables and array elements, references to functions and function dummy
procedures, and intrinsic operators. If a reference to a statement function appears in
scalar-expr, its definition must have been provided earlier in the scoping unit and must
not be the name of the statement function being defined.

Constraint: Named constants in scalar-expr must have been declared earlier in the scoping unit or
made accessible by use or host association. If array elements appear in scalar-expr, the
parent array must have been declared as an array earlier in the scoping unit or made
accessible by use or host association. If a scalar variable, array element, function
reference, or dummy function reference is typed by the implicit typing rules, its
appearance in any subsequent type declaration statement must confirm this implied
type and the values of any implied type parameters.

B-758 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Constraint: The function-name and each dummy-arg-name must be specified, explicitly or implicitly,
to be scalar data objects.

Constraint: A given dummy-arg-name may appear only once in any dummy-arg-name-list.
Constraint: Each scalar variable reference in scalar-expr may be either a reference to a dummy

argument of the statement function or a reference to a variable local to the same scoping
unit as the statement function statement.

B.2.13 Intrinsic Procedures

B.2.14 Scope, Association, and Definition

B.3 Cross References
The following is a cross reference of all syntactic symbols used in the BNF,
giving the rule in which they are defined and all rules in which they are
referenced.

The symbols are sorted alphabetically within three categories: nonterminal
symbols that are defined, nonterminal symbols that are not defined, and
terminal symbols. Note that except for those ending with -name, the only
undefined nonterminal symbols are letter, digit, special-character, and rep-char.
Symbols ending with -name are defined by the rule:

xyz-name is name

Before processing the cross references, all occurrences of -list and scalar- in the
symbol names were removed.

Symbol Defined in Referenced in

Nonterminals Defined by the BNF Rules

ac-do-variable R435 R434

ac-implied-do R433 R432

ac-implied-do-control R434 R433

ac-value R432 R431 R433

access-id R522 R521 R1109

access-spec R510 R424 R503 R521

access-stmt R521 R214

action-stmt R216 R215 R807 R829 R833

action-term-do-construct R827 R826

Fortran 90 Syntax 759

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

actual-arg R1213 R1211

actual-arg-spec R1211 R1209 R1210

add-op R710 R310 R707

add-operand R706 R706 R707

allocatable-stmt R526 R214

allocate-lower-bound R627 R626

allocate-object R625 R624 R631

allocate-shape-spec R626 R624

allocate-stmt R622 R216

allocate-upper-bound R628 R626

allocation R624 R622

alphanumeric-character R302 R301 R304

alt-return-spec R1214 R1213

and-op R720 R310 R716

and-operand R715 R716

arithmetic-if-stmt R840 R216

array-constructor R431 R701

array-element R615 R536 R547 R602 R610

array-section R616 R602

array-spec R512 R503 R504 R525 R528

assign-stmt R838 R216

assigned-goto-stmt R839 R216

assignment-stmt R735 R216 R738 R739

assumed-shape-spec R516 R512

assumed-size-spec R518 R512

attr-spec R503 R501

backspace-stmt R919 R216

binary-constant R408 R407

blank-interp-edit-desc R1015 R1010

block R801 R802 R808 R823

block-data R1110 R202

block-data-stmt R1111 R1110

Symbol Defined in Referenced in

B-760 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

block-do-construct R817 R816

boz-literal-constant R407 R306 R533

c R1017 R1016

call-stmt R1210 R216

case-construct R808 R215

case-expr R812 R809

case-selector R813 R810

case-stmt R810 R808

case-value R815 R814

case-value-range R814 R813

char-constant R309 R843

char-expr R726 R731 R812

char-initialization-expr R731 R815

char-length R508 R429 R504 R507

char-literal-constant R420 R306 R1016

char-selector R506 R502

char-string-edit-desc R1016 R1003

char-variable R605

character R301

close-spec R908 R907

close-stmt R907 R216

common-block-object R549 R548

common-stmt R548 R214

complex-literal-constant R417 R306

component-array-spec R428 R427 R429

component-attr-spec R427 R426

component-decl R429 R426

component-def-stmt R426 R422

computed-goto-stmt R837 R216

concat-op R712 R310 R711

connect-spec R905 R904

constant R305 R308 R309 R533 R610 R701

Symbol Defined in Referenced in

Fortran 90 Syntax 761

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

constant-subobject R702 R701

contains-stmt R1225 R210 R212

continue-stmt R841 R216 R824

control-edit-desc R1010 R1003

cycle-stmt R834 R216

d R1008 R1005

data-edit-desc R1005 R1003

data-i-do-object R536 R535

data-i-do-variable R537 R535

data-implied-do R535 R531 R536

data-ref R612 R614 R615 R616

data-stmt R529 R209 R214

data-stmt-constant R533 R532

data-stmt-object R531 R530

data-stmt-repeat R534 R532

data-stmt-set R530 R529

data-stmt-value R532 R530

deallocate-stmt R631 R216

declaration-construct R207 R204

default-char-expr R727 R905 R906 R908 R912 R913

default-char-variable R606 R903 R924

default-int-variable R608 R905 R908 R912 R913 R922

R923 R924

default-logical-variable R604 R924

deferred-shape-spec R517 R428 R512 R526 R527

defined-binary-op R724 R311 R723

defined-operator R311 R1206

defined-unary-op R704 R311 R703

derived-type-def R422 R207

derived-type-stmt R424 R422

digit-string R402 R401 R404 R405 R413 R414

dimension-stmt R525 R214

Symbol Defined in Referenced in

B-762 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

do-block R823 R817

do-body R828 R827 R830 R832

do-construct R816 R215

do-stmt R818 R817

do-term-action-stmt R829 R827

do-term-shared-stmt R833 R832

do-variable R822 R821 R918

dummy-arg R1221 R1220 R1223

e R1009 R1005

else-if-stmt R804 R802

else-stmt R805 R802

elsewhere-stmt R742 R739

end-block-data-stmt R1112 R1110

end-do R824 R817

end-do-stmt R825 R824

end-function-stmt R1218 R216 R1204 R1215

end-if-stmt R806 R802

end-interface-stmt R1203 R1201

end-module-stmt R1106 R1104

end-program-stmt R1103 R216 R1101

end-select-stmt R811 R808

end-subroutine-stmt R1222 R216 R1204 R1219

end-type-stmt R425 R422

end-where-stmt R743 R739

endfile-stmt R920 R216

entity-decl R504 R501

entry-stmt R1223 R206 R207 R209

equiv-op R722 R310 R718

equiv-operand R717 R717 R718

equivalence-object R547 R546

equivalence-set R546 R545

equivalence-stmt R545 R214

Symbol Defined in Referenced in

Fortran 90 Syntax 763

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

executable-construct R215 R208 R209

executable-program R201

execution-part R208 R1101 R1215 R1219

execution-part-construct R209 R208 R801 R828

exit-stmt R835 R216

explicit-shape-spec R513 R428 R512 R518 R549

exponent R416 R413

exponent-letter R415 R413

expr R723 R430 R432 R701 R723 R725

R726 R727 R728 R729 R730

R735 R737 R915 R1213 R1226

extended-intrinsic-op R312 R311

external-file-unit R902 R901 R905 R908 R919 R920

R921 R922 R924

external-stmt R1207 R214

external-subprogram R203 R202

file-name-expr R906 R905 R924

format R913 R909 R911 R912

format-item R1003 R1002 R1003

format-specification R1002 R1001

format-stmt R1001 R206 R207 R209

function-reference R1209 R701

function-stmt R1216 R1204 R1215

function-subprogram R1215 R203 R211 R213

generic-spec R1206 R522 R1202

goto-stmt R836 R216

hex-constant R410 R407

hex-digit R411 R410

if-construct R802 R215

if-stmt R807 R216

if-then-stmt R803 R802

imag-part R419 R417

Symbol Defined in Referenced in

B-764 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

implicit-part R205 R204

implicit-part-stmt R206 R205

implicit-spec R541 R540

implicit-stmt R540 R205 R206

initialization-expr R730 R504 R539

inner-shared-do-construct R832 R831

input-item R914 R909 R917

inquire-spec R924 R923

inquire-stmt R923 R216

int-constant R308 R534

int-expr R728 R434 R535 R611 R617 R620

R621 R627 R628 R732 R734

R812 R837 R902 R905 R912

R1224

int-initialization-expr R732 R505 R506 R815

int-literal-constant R404 R306 R403 R508 R1004 R1006

R1007 R1008 R1009 R1013 R1017

int-variable R607 R435 R537 R623 R838 R839

intent-spec R511 R503 R519

intent-stmt R519 R214

interface-block R1201 R207

interface-body R1204 R1201

interface-stmt R1202 R1201

internal-file-unit R903 R901

internal-subprogram R211 R210

internal-subprogram-part R210 R1101 R1215 R1219

intrinsic-operator R310 R312

intrinsic-stmt R1208 R214

io-control-spec R912 R909 R910

io-implied-do R916 R914 R915

io-implied-do-control R918 R916

io-implied-do-object R917 R916

Symbol Defined in Referenced in

Fortran 90 Syntax 765

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

io-unit R901 R912

k R1011 R1010

keyword R1212 R1211

kind-param R405 R404 R413 R420 R421

kind-selector R505 R502

label R313 R819 R836 R837 R838 R839

R840 R905 R908 R912 R913

R922 R924 R1214

label-do-stmt R819 R818 R827 R830 R832

length-selector R507 R506

letter-spec R542 R541

level-1-expr R703 R705

level-2-expr R707 R707 R711

level-3-expr R711 R711 R713

level-4-expr R713 R715

level-5-expr R718 R718 R723

literal-constant R306 R305

logical-expr R725 R733 R741 R803 R804 R807

R812 R821

logical-initialization-expr R733 R815

logical-literal-constant R421 R306

logical-variable R603

loop-control R821 R819 R820

lower-bound R514 R513 R516 R518

m R1007 R1005

main-program R1101 R202

mask-expr R741 R738 R740

module R1104 R202

module-procedure-stmt R1205 R1201

module-stmt R1105 R1104

module-subprogram R213 R212

module-subprogram-part R212 R1104

Symbol Defined in Referenced in

B-766 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

mult-op R709 R310 R706

mult-operand R705 R705 R706

n R1013 R1012

name R304 R307

named-constant R307 R305 R539

named-constant-def R539 R538

namelist-group-object R544 R543

namelist-stmt R543 R214

nonblock-do-construct R826 R816

nonlabel-do-stmt R820 R818

not-op R719 R310 R715

nullify-stmt R629 R216

numeric-expr R729 R821 R840 R918

octal-constant R409 R407

only R1109 R1107

open-stmt R904 R216

optional-stmt R520 R214

or-op R721 R310 R717

or-operand R716 R716 R717

outer-shared-do-construct R830 R826 R831

output-item R915 R910 R911 R917 R923

parameter-stmt R538 R206 R207

parent-string R610 R609

part-ref R613 R612

pause-stmt R844 R216

pointer-assignment-stmt R736 R216

pointer-object R630 R629 R736

pointer-stmt R527 R214

position-edit-desc R1012 R1010

position-spec R922 R919 R920 R921

power-op R708 R310 R705

prefix R1217 R1216

Symbol Defined in Referenced in

Fortran 90 Syntax 767

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

primary R701 R703

print-stmt R911 R216

private-sequence-stmt R423 R422

program-stmt R1102 R1101

program-unit R202 R201

r R1004 R1003 R1010

read-stmt R909 R216

real-literal-constant R413 R306 R412

real-part R418 R417

rel-op R714 R310 R713

rename R1108 R1107

return-stmt R1224 R216

rewind-stmt R921 R216

save-stmt R523 R214

saved-entity R524 R523

section-subscript R618 R613

select-case-stmt R809 R808

shared-term-do-construct R831 R830

sign R406 R401 R403 R412

sign-edit-desc R1014 R1010

signed-digit-string R401 R416

signed-int-literal-constant R403 R418 R419 R533 R1011

signed-real-literal-constant R412 R418 R419 R533

significand R414 R413

specification-expr R734 R509 R514 R515

specification-part R204 R1101 R1104 R1110 R1204 R1215

R1219

specification-stmt R214 R207

stat-variable R623 R622 R631

stmt-function-stmt R1226 R207

stop-code R843 R842 R844

stop-stmt R842 R216

Symbol Defined in Referenced in

B-768 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

stride R620 R619

structure-component R614 R536 R602 R610 R625 R630

structure-constructor R430 R533 R701

subobject R602 R601 R702

subroutine-stmt R1220 R1204 R1219

subroutine-subprogram R1219 R203 R211 R213

subscript R617 R618 R619

subscript-triplet R619 R618

substring R609 R547 R602

substring-range R611 R609 R616

target R737 R736

target-stmt R528 R214

type-declaration-stmt R501 R207

type-param-value R509 R506 R507 R508

type-spec R502 R426 R501 R541 R1217

underscore R303 R302

upper-bound R515 R513

use-stmt R1107 R204

variable R601 R531 R603 R604 R605 R606

R607 R608 R701 R735 R737

R822 R914 R1213

vector-subscript R621 R618

w R1006 R1005

where-construct R739 R215

where-construct-stmt R740 R739

where-stmt R738 R216

write-stmt R910 R216

Nonterminals with No BNF Definition

array-name R525 R526

array-variable-name R601

block-data-name R1111 R1112

Symbol Defined in Referenced in

Fortran 90 Syntax 769

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

case-construct-name R809 R810 R811

common-block-name R524 R548

component-name R429

digit R302 R313 R402 R408 R409

R411 R843

do-construct-name R819 R820 R825 R834 R835

dummy-arg-name R519 R520 R1212 R1216 R1221

R1226

entry-name R1223

external-name R1207

function-name R504 R1209 R1216 R1218 R1226

generic-name R1206

if-construct-name R803 R804 R805 R806

int-constant-name R405

intrinsic-procedure-name R1208

letter R302 R304 R542 R704 R724

local-name R1108 R1109

module-name R1105 R1106 R1107

namelist-group-name R543 R912

object-name R504 R524 R527 R528

part-name R613

procedure-name R1205 R1213

program-name R1102 R1103

rep-char R420 R1016

result-name R1216 R1223

special-character R301

subroutine-name R1210 R1220 R1222

type-name R424 R425 R430 R502

use-name R522 R1108 R1109

variable-name R544 R547 R549 R601 R610

R625 R630

Symbol Defined in Referenced in

B-770 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Terminal Symbols

% R612

’ R408 R409 R410 R420

(R417 R427 R429 R430 R433

R502 R503 R504 R505 R506

R507 R508 R519 R525 R526

R527 R528 R535 R538 R541

R546 R549 R609 R613 R616

R622 R624 R629 R631 R701

R738 R740 R803 R804 R807

R809 R813 R821 R837 R839

R840 R904 R907 R909 R910

R916 R919 R920 R921 R923

R1002 R1003 R1206 R1209 R1210

R1216 R1220 R1223 R1226

(/ R431

) R417 R427 R429 R430 R433

R502 R503 R504 R505 R506

R507 R508 R519 R525 R526

R527 R528 R535 R538 R541

R546 R549 R609 R613 R616

R622 R624 R629 R631 R701

R738 R740 R803 R804 R807

R809 R813 R821 R837 R839

R840 R904 R907 R909 R910

R916 R919 R920 R921 R923

R1002 R1003 R1206 R1209 R1210

R1216 R1220 R1223 R1226

* R429 R504 R507 R509 R518

R532 R709 R901 R913 R1214

R1221

** R708

Symbol Defined in Referenced in

Fortran 90 Syntax 771

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

+ R406 R710

, R417 R424 R426 R433 R434

R501 R506 R507 R518 R525

R526 R527 R528 R529 R535

R543 R546 R548 R622 R631

R821 R837 R839 R840 R909

R911 R916 R918 R1107

− R406 R542 R710

. R414 R704 R724 R1005

.AND. R720

.EQ. R714

.EQV. R722

.FALSE. R421

.GE. R714

.GT. R714

.LE. R714

.LT. R714

.NE. R714

.NEQV. R722

.NOT. R719

.OR. R721

.TRUE. R421

/ R524 R530 R543 R548 R709

R1010

/) R431

// R712

/= R714

: R513 R516 R517 R518 R611

R619 R626 R803 R809 R814

R819 R820 R1010 R1107

:: R424 R426 R501 R519 R520

R521 R523 R525 R526 R527

Symbol Defined in Referenced in

B-772 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

R528

< R714

<= R714

= R434 R504 R505 R506 R507

R535 R539 R622 R631 R735

R821 R905 R908 R912 R918

R922 R923 R924 R1206 R1211

R1226

== R714

=> R736 R1108 R1109

> R714

>= R714

A R411 R1005

ACCESS R905 R924

ACTION R905 R924

ADVANCE R912

ALLOCATABLE R503 R526

ALLOCATE R622

ASSIGN R838

ASSIGNMENT R1206

B R408 R411 R1005

BACKSPACE R919

BLANK R905 R924

BLOCK R1111 R1112

BN R1015

BZ R1015

C R411

CALL R1210

CASE R809 R810

CHARACTER R502

CLOSE R907

COMMON R548

Symbol Defined in Referenced in

Fortran 90 Syntax 773

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

COMPLEX R502

CONTAINS R1225

CONTINUE R841

CYCLE R834

D R411 R415 R1005

DATA R529 R1111 R1112

DEALLOCATE R631

DEFAULT R813

DELIM R905 R924

DIMENSION R427 R503 R525

DIRECT R924

DO R819 R820 R825

DOUBLE R502

E R411 R415 R1005

ELSE R804 R805

ELSEWHERE R742

EN R1005

END R425 R743 R806 R811 R825

R912 R1103 R1106 R1112 R1203

R1218 R1222

ENDFILE R920

ENTRY R1223

EOR R912

EQUIVALENCE R545

ERR R905 R908 R912 R922 R924

ES R1005

EXIST R924

EXIT R835

EXTERNAL R503 R1207

F R411 R1005

FILE R905 R924

FMT R912

Symbol Defined in Referenced in

B-774 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

FORM R905 R924

FORMAT R1001

FORMATTED R924

FUNCTION R1216 R1218

G R1005

GO R836 R837 R839

H R1016

I R1005

IF R803 R804 R806 R807 R840

IMPLICIT R540

IN R511

INOUT R511

INQUIRE R923

INTEGER R502

INTENT R503 R519

INTERFACE R1202 R1203

INTRINSIC R503 R1208

IOLENGTH R923

IOSTAT R905 R908 R912 R922 R924

KIND R505 R506

L R1005

LEN R506 R507

LOGICAL R502

MODULE R1105 R1106 R1205

NAME R924

NAMED R924

NAMELIST R543

NEXTREC R924

NML R912

NONE R540

NULLIFY R629

NUMBER R924

Symbol Defined in Referenced in

Fortran 90 Syntax 775

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

O R409 R1005

ONLY R1107

OPEN R904

OPENED R924

OPERATOR R1206

OPTIONAL R503 R520

OUT R511

P R1010

PAD R905 R924

PARAMETER R503 R538

PAUSE R844

POINTER R427 R503 R527

POSITION R905 R924

PRECISION R502

PRINT R911

PRIVATE R423 R510

PROCEDURE R1205

PROGRAM R1102 R1103

PUBLIC R510

READ R909 R924

READWRITE R924

REAL R502

REC R912

RECL R905 R924

RECURSIVE R1217 R1220

RESULT R1216 R1223

RETURN R1224

REWIND R921

S R1014

SAVE R503 R523

SELECT R809 R811

SEQUENCE R423

Symbol Defined in Referenced in

B-776 Fortran 90 Handbook

B

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

SEQUENTIAL R924

SIZE R912

SP R1014

SS R1014

STAT R622 R631

STATUS R905 R908

STOP R842

SUBROUTINE R1220 R1222

T R1012

TARGET R503 R528

THEN R803 R804

TL R1012

TO R836 R837 R838 R839

TR R1012

TYPE R424 R425 R502

UNFORMATTED R924

UNIT R905 R908 R912 R922 R924

USE R1107

WHERE R738 R740 R743

WHILE R821

WRITE R910 R924

X R1012

Z R410 R1005

_ R303 R404 R413 R420 R421

Symbol Defined in Referenced in

777

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Decremental Features C

C.1 Deleted Features
The deleted features are those features of Fortran 77 that are redundant and
considered largely unused. The list of deleted features for Fortran 90 is empty;
there are none.

C.2 Obsolescent Features
The obsolescent features are those features of Fortran 77 that are redundant
and for which better methods are available in Fortran 77. The obsolescent
features are:

1. Arithmetic IF—use the IF statement or IF construct

2. Real and double precision DO control variables and DO loop control
expressions — use integer

3. Shared DO termination and termination on a statement other than END
DO or CONTINUE — use an END DO or a CONTINUE statement for
each DO statement

4. Branching to an END IF statement from outside its IF block — branch to
the statement following the END IF

5. Alternate return—see Section C.2.1

6. PAUSE statement—see Section C.2.2

778 Fortran 90 Handbook

C

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

7. ASSIGN and assigned GO TO statements—see Section C.2.3

8. Assigned FORMAT specifiers—see Section C.2.4

9. H edit descriptor—see Section C.2.5

C.2.1 Alternate Return

An alternate return introduces labels into an argument list to allow the called
procedure to direct the execution of the caller upon return. The same effect can
be achieved with a return code that is used in a computed GO TO statement or
CASE construct on return. This avoids an irregularity in the syntax and
semantics of argument association. For example,

CALL SUBR_NAME (X, Y, Z, *100, *200, *300)

may be replaced by

CALL SUBR_NAME (X, Y, Z, RETURN_CODE)
SELECT CASE (RETURN_CODE)

CASE (1)
...

CASE (2)
...

CASE (3)
...

CASE DEFAULT
...

END SELECT

C.2.2 PAUSE Statement

Execution of a PAUSE statement requires operator or system-specific
intervention to resume execution. In most cases, the same functionality can be
achieved as effectively and in a more portable way with the use of an
appropriate READ statement that awaits some input data.

Decremental Features 779

C

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

C.2.3 ASSIGN and Assigned GO TO Statements

The ASSIGN statement allows a label to be dynamically assigned to an integer
variable, and the assigned GO TO statement allows “indirect branching”
through this variable. This hinders the readability of the program flow,
especially if the integer variable also is used in arithmetic operations. The two
totally different usages of the integer variable can be an obscure source of error.

These statements have commonly been used to simulate internal procedures,
which now can be coded directly.

C.2.4 Assigned FORMAT Specifiers

The ASSIGN statement also allows the label of a FORMAT statement to be
dynamically assigned to an integer variable, which can later be used as a
format specifier in READ, WRITE, or PRINT statements. This hinders
readability, permits inconsistent usage of the integer variable, and can be an
obscure source of error.

This functionality is available via character variables, arrays, and constants.

C.2.5 H Editing

This edit descriptor can be a source of error because the number of characters
following the descriptor can be miscounted easily. The same functionality is
available using the character constant edit descriptor, for which no count is
required.

780 Fortran 90 Handbook

C

Copyright © 1992 J. Adams, W. Brainerd, J. Martin, B. Smith, and J. Wagener

Index of Examples-781

Index of Examples

Symbols
/ edit descriptor 460
: edit descriptor 461
A
A edit descriptor 457
accessibility 164
allocatable array 5, 217
ALLOCATABLE attribute 152
ALLOCATED intrinsic function

225
allocation of a pointer 222, 225
allocation of an array 221, 225
alternate return 533, 571
apostrophe delimited format speci-

fication 431
argument association 30
arithmetic IF statement 344
array allocation 42
array as input item 368
array assignment 293, 294
array constructor 125
array constructor in structure con-

structor 126

array declaration 41, 206
array element 207, 209
array expression and assignment

304
array lower and upper bound 206
array section 5, 207, 209, 211, 212
array shape 206
array size 206
ASSIGN statement 339, 344
assigned GO TO statement 339, 344
assignment 230, 290, 291, 305
assignment interface 534, 586, 589
assignment with overlapping ele-

ments 293
ASSOCIATED function 225
assumed-shape array 146, 264
assumed-size array 149, 264
assumed-size array as a primary 240
attribute-oriented declaration 133
automatic array 43, 174
B
BACKSPACE statement 421, 423
binary constant 66

Index of Examples-782 Title of Book—Month 1992

binary operators 235
blank edit descriptor 446
blank editing 446, 463
blank usage 75
blanks in fixed source form 74
blanks required in free source form

78
blanks separating keywords 79
block construct 311
block data program unit 515
block DO construct 322, 324
BN edit descriptor 446
BZ edit descriptor 446, 463
C
CALL statement 533, 577
CASE construct 3, 318
CASE construct with character se-

lector 320
CASE construct with integer selec-

tor 319
case index of type character 318
character declaration 108
character declaration of nondefault

type 40
character expression as a format

specification 430
CHARACTER statement 140
character string 202
character string edit descriptor 464,

481
character value with list-directed

formatting 467
CLOSE statement 406, 424
colon edit descriptor 461
comment line 76
commentary 75

common block 184, 185, 510
comparison expression 244
complex declaration 105
complex editing 453
COMPLEX statement 138
complex value with list-directed

formatting 467
component of a pointer variable as

an operand 282
computed GO TO statement 336,

343
concatenation expression 243
conjunct expression 245
constant 200
constant expression 267, 304
continuation in free source form 77,

78
continuation line 73, 76
CONTINUE statement 337
control edit descriptor 481
CYCLE statement 333
D
data abstraction 511
data edit descriptor 481
data initialization 159
data item list expanded 440
DATA statement 159
data structure 6
data-implied-do expression 276
deallocation 226
deallocation of a pointer 222
deallocation of an array 221
deferred-shape array 147, 265
defined assignment 295, 534, 535,

586, 589
defined operator 254, 261, 283, 540

Index of Examples-783

defined-type declaration 114
defined-unary expression 241
delimiters 69
derived-type array 126
derived-type declaration 141
derived-type definition 112, 114,

115, 116
derived-type definition in module

117
derived-type operator 120
DIMENSION attribute 150
disjunct expression 246
DO construct 3, 323, 326, 342
DO construct iteration count 329
DO construct with no loop control

331, 342
DO statement with iteration count

328
DO WHILE construct 326, 343
DO WHILE statement 330
DOUBLE PRECISION statement

137
dynamic allocation 5, 225
E
E edit descriptor 449
edit descriptor 436, 439
edit descriptors in FORMAT state-

ment 433
elemental function in masked array

assignment 302
EN edit descriptor 450
END statement continuation 81
ENDFILE statement 422, 424
end-of-file condition 394
entity-oriented declaration 132
ENTRY statement 544

equivalence 181, 185
equivalence expression 247
error condition 394
ES edit descriptor 452
executable construct 311
executable statements 44
EXIT statement 332
explicit formatting 480
explicit-shape array 145
exponentiation expression 241
expression 237, 248
expression as data-implied-do pa-

rameters 276
expression in PRINT statement 232
EXTERNAL attribute 172
external procedure 497, 517
F
F edit descriptor 447
file positioning statement 419
fixed source form 74, 81
fixed source form blank signifi-

cance 80
fixed/free source form 82
format specification 480
format specification expanded 440
format specification that is empty

437
format specification with ignored

part 437
FORMAT statement 429, 480
formatted data transfer 436
formatted direct access READ

statement 380, 426
formatted direct access WRITE

statement 380, 426
formatted sequential READ state-

Index of Examples-784 Title of Book—Month 1992

ment 372, 425
formatted sequential WRITE state-

ment 372, 425
free source form 2, 73, 80
function reference 538, 539
function side effect that is not valid

286
function side effect that is valid 286
FUNCTION statement 536
functions with operator interfaces

283
G
G edit descriptor for reals 454, 455
generic function 8
generic procedure reference 568
global data 9, 509
global data module 501
GO TO statement 335, 343
H
hexadecimal constant 66
host association 33, 494
I
IF construct 3, 311, 314, 341
IF statement 314
implicit typing 143
INCLUDE line 83, 84
initialization expression 269
input/output list item 436
INQUIRE statement 410
integer declaration 100
integer editing 444
integer range 4
INTEGER statement 136
INTENT attribute 166
interface block 8, 261, 511
internal file 386, 424

internal procedure 490, 494, 518
internal procedure scope 32
intrinsic assignment 306
INTRINSIC attribute 173
IOSTAT= specifier 394
K
keyword 70
keyword argument 564, 595
L
L edit descriptor 455, 456
labels 77
linked list 218
list item 439
list-directed formatting 482
list-directed input 465, 469
list-directed output 471
list-directed PRINT statement 383
list-directed READ statement 383,

425
list-directed WRITE statement 383,

425
literal constants 71
logical declaration 107
logical editing 456
logical IF statement 341
LOGICAL statement 138
M
masked array assignment 299, 300,

301, 303, 306
module 9, 33, 501, 519
module name conflict 507
multiplication expression 242
N
name conflict 507
namelist formatting 471, 482
namelist group name declaration

Index of Examples-785

384
namelist input 471, 473, 476
namelist input that is not valid 474
namelist input that is valid 474
namelist input using array values

475
namelist output 472, 478, 479
namelist READ statement 386, 425
NAMELIST statement 175
namelist WRITE statement 386,

425
names 71
nonadvancing input/output 10, 377
nonadvancing READ statement 426
nonadvancing WRITE statement

376, 426
nondefault character string 75
null value in list-directed formatting

469
numeric precision and range 4
O
OPEN statement 397, 424
operands 235
operator interface 262, 511, 583,

589
optional argument 7, 565
OPTIONAL attribute 167
P
P edit descriptor 449
PARAMETER attribute 161
parentheses in expression 233
parentheses in format specifications

438
PAUSE statement 340
pointer 5, 6, 282
pointer array 42

pointer assignment 46, 298, 306
POINTER attribute 153
PRESENT function 566
primaries 239
PRIVATE statement 163
procedure library 512
program 35, 59
program in fixed source form 81
program in fixed/free source form

82
program in free source form 80
program that is simplest 486
program unit 492, 515
PUBLIC statement 163
Q
quote delimited format specifica-

tion 431
quote edit descriptor 464
R
READ statement 368
READ statement with internal file

386, 426
real declaration 103
REAL statement 136
recursion 9, 591
recursive function 538
reference 197
renaming via USE 507
RESHAPE function 126
REWIND statement 421, 423, 424
S
SAVE attribute 170
scalar and array component 209
scalar and array parent 209
scalar expression 303
scale factor with F editing 462

Index of Examples-786 Title of Book—Month 1992

scale factor with G editing 462
scope and association 28, 29, 31
SELECT CASE statement 341
sequence derived-type definition

118
shape of assumed-shape array 264
shape of assumed-size array 264
shape of deferred-shape array 265
shapes of explicit-shape arrays 263
shared terminated DO construct 326
side effects in input/output state-

ments 422
sign editing 461
slash edit descriptor 460
SP edit descriptor 461
specification expression 271, 272
specification expression that is not

valid 272
statement function 541
statement keyword 70
statement labels 72
statement separator 76
STOP statement 337, 343
storage sequence 637
structure 205
structure as input item 369
structure component 115, 200, 205
structure constructor 123
structure with array component 223
subprograms written in other lan-

guages 68
subroutine reference 533, 577
SUBROUTINE statement 531
substring 202, 223
summation expression 242
syntax 21

T
T edit descriptor 459
tab edit descriptor 459, 481
target 6
TARGET attribute 154
transformational function in

masked array assignment
302

type declaration statement 135
type definition 6, 95
TYPE statement 141
U
unary operators 235
unformatted direct access READ

statement 382, 426
unformatted direct access WRITE

statement 382, 426
unformatted READ statement 425
unformatted sequential READ

statement 374
unformatted sequential WRITE

statement 374
unformatted WRITE statement 425
uppercase/lowercase equivalence

66
USE statement 504, 519
user-defined operator 583
user-defined type 40, 95, 200, 510
user-defined type declaration 114,

141
user-defined type definition 112
V
variable 200
vector subscript 211
W
WHERE construct 303

Index of Examples-787

WHERE statement 301
WRITE statement 372
WRITE statement with internal file

386, 426
X
X edit descriptor 459
Z
zero-length string as output list item

441
zero-sized array as output list item

441

Index of Examples-788 Title of Book—Month 1992

Fortran 90 Handbook 789

Index

Symbols
–IX, 771
%IX, 770
'IX, 770
(IX, 770
(/IX, 770
)IX, 770
*IX, 770
**IX, 770
+IX, 771
,IX, 771
.IX, 771
.AND.IX, 771
.EQ.IX, 771
.EQV.IX, 771
.FALSE.IX, 771
.GE.IX, 771
.GT.IX, 771
.LE.IX, 771
.LT.IX, 771
.NE.IX, 771
.NEQV.IX, 771
.NOT.IX, 771
.OR.IX, 771

.TRUE.IX, 771
/IX, 771
/ edit descriptorIX, 459
/)IX, 771
//IX, 771
/=IX, 771
:IX, 771
: edit descriptorIX, 460
::IX, 771
<IX, 772
<=IX, 772
=IX, 772
==IX, 772
=>IX, 772
>IX, 772
>=IX, 772
_IX, 776

A
AIX, 772
A edit descriptorIX, 456
ABS functionIX, 646
abstract data typeIX, 20
ACCESSIX, 772

790 Fortran 90 Handbook

access
directIX, 355, 356–357, 360, 378,

380, 414
fileIX, 355–357
sequentialIX, 355, 355–356, 360,

370, 373, 374
ACCESS= specifierIX, 399, 410
accessibilityIX, 92, 161–170

data objectIX, 161
defaultIX, 162, 164
namelistIX, 175

access-idIX, 758
access-specIX, 758
access-stmtIX, 758
ac-do-variableIX, 758
ACHAR functionIX, 646
ac-implied-doIX, 758
ac-implied-do-controlIX, 758
ACOS functionIX, 647
ACTIONIX, 772
action statementIX, 309
action terminated DO constructIX,

325
ACTION= specifierIX, 399, 411
action-stmtIX, 758
action-term-do-constructIX, 758
actual argumentIX, 526

array shapeIX, 570
assumed-size arrayIX, 240

actual-argIX, 759
actual-arg-specIX, 759
ac-valueIX, 758
add-opIX, 759
add-operandIX, 759
ADJUSTL functionIX, 647
ADJUSTR functionIX, 647
ADVANCEIX, 772
ADVANCE= specifierIX, 363

advancing data transferIX, 354, 436
advancing input/outputIX, 370
AIMAG functionIX, 648
AINT functionIX, 648
alias

pointerIX, 6
ALL functionIX, 649
ALLOCATABLEIX, 772
allocatable arrayIX, 147, 215, 217
ALLOCATABLE attributeIX, 42, 151,

188, 215
ALLOCATABLE statementIX, 151
allocatable-stmtIX, 759
ALLOCATEIX, 772
ALLOCATE statementIX, 215, 299
allocated

currentlyIX, 217
ALLOCATED functionIX, 217, 650
allocate-lower-boundIX, 759
allocate-objectIX, 759
allocate-shape-specIX, 759
allocate-stmtIX, 759
allocate-upper-boundIX, 759
allocationIX, 42, 45

arrayIX, 217, 220
error conditionIX, 216–217, 220–

221
pointerIX, 218

allocationIX, 759
alphanumeric-characterIX, 759
alternate returnIX, 526, 539, 571, 777
alt-return-specIX, 759
ampersand

continuationIX, 76, 77
in character constantIX, 77

and-opIX, 759
and-operandIX, 759
ANINT functionIX, 651

Fortran 90 Handbook 791

ANSIIX, 14
ANY functionIX, 651
apostrophe edit descriptorIX, 464
architecture

parallelismIX, 17
vector processingIX, 17

argumentIX, 486
actualIX, 526
arrayIX, 570
associationIX, 31, 526, 548–553, 574
assumed-lengthIX, 553
assumed-shapeIX, 553, 557, 575
attributeIX, 550
conformableIX, 570
dummyIX, 526, 548
functionIX, 535, 539
genericIX, 568
keywordIX, 49, 564–565, 590
matchingIX, 551
optionalIX, 565–567, 590
pointerIX, 563
procedureIX, 526
rankIX, 556
sizeIX, 555
subroutineIX, 532

argument associationIX, 630
argument listIX, 549

orderIX, 564
positionalIX, 564

argument presence
inquiry functionIX, 601

arithmetic IF statementIX, 312, 340,
344, 777

arithmetic-if-stmtIX, 759
arrayIX, 48, 144–152, 200, 205–214

allocatableIX, 147, 215, 217
allocationIX, 217, 220
argumentIX, 570
assumed-shapeIX, 146, 189, 258
assumed-sizeIX, 148, 189, 239

automaticIX, 174
boundIX, 206
conformableIX, 41
construction functionIX, 605
constructorIX, 124–127, 199, 256,

289
contiguousIX, 575
DATA statementIX, 158
deallocationIX, 220
deferred-shapeIX, 147, 152, 189,

258
dimensionIX, 205
discontiguousIX, 576
dynamicIX, 198
elementIX, 207, 208, 210
element orderIX, 213, 554
equivalenceIX, 180
explicit-shapeIX, 144, 188
expressionIX, 229, 261–265, 304,

305
extentIX, 206
functionIX, 604–605
inquiry functionIX, 600
location functionIX, 605
lower boundIX, 206
many-one sectionIX, 212
maskIX, 302
masked assignmentIX, 231, 299–

303
nameIX, 207
operationIX, 92
parentIX, 207
pointerIX, 147, 198
portionIX, 41
rankIX, 41, 206
sectionIX, 202, 207–213, 557
shapeIX, 41, 206
sizeIX, 41, 92, 206
strideIX, 211
structureIX, 41, 203, 205
upper boundIX, 206
wholeIX, 207

792 Fortran 90 Handbook

zero-sizeIX, 211, 217
array associationIX, 553–560
array constructorIX, 159
array-constructorIX, 759
array-elementIX, 759
array-nameIX, 768
array-sectionIX, 759
array-specIX, 759
array-valued functionIX, 538
array-variable-nameIX, 768
ASAIX, 14
ASCII collating sequenceIX, 109, 646,

658, 672, 675, 682, 683, 684
ASIN functionIX, 652
ASSIGNIX, 772
ASSIGN statementIX, 338, 344, 777
assignedIX, 230
assigned format specifierIX, 778
assigned GO TO statementIX, 338,

339, 344, 777
assigned-goto-stmtIX, 759
ASSIGNMENTIX, 772
assignmentIX, 230–231, 290–303, 305–

307
coercionIX, 576
definedIX, 231, 290, 294, 306, 523,

534, 585–587
derived-typeIX, 294
generic propertyIX, 534
interface blockIX, 585
intrinsicIX, 160, 291–294, 306
masked arrayIX, 231, 299–303, 306,

311
pointerIX, 45, 221, 231, 296–299,

306
scopeIX, 626
structureIX, 97
subroutineIX, 589
type conversionIX, 292

user-definedIX, 231, 585–587
assignment statementIX, 290
assignment-stmtIX, 759
assign-stmtIX, 759
ASSOCIATED functionIX, 653
associationIX, 27–35, 51, 629–637

argumentIX, 31, 526, 548–553, 574,
630

arrayIX, 553–560
hostIX, 33, 483, 491–495, 507, 518,

524, 528, 632
nameIX, 499, 629, 630–633
partialIX, 177, 636
pointerIX, 45, 296, 560–563, 629,

633
sequenceIX, 553–560, 630, 637
storageIX, 31, 176–186, 499, 630,

636
targetIX, 218
totalIX, 177
useIX, 34, 483, 502, 507, 519, 528,

630
variableIX, 31

assumed-length argumentIX, 553
assumed-shape argumentIX, 553, 557,

575
assumed-shape arrayIX, 146, 189, 258
assumed-shape specifierIX, 263
assumed-shape-specIX, 759
assumed-size arrayIX, 148, 189, 239

actual argumentIX, 240
assumed-size specifierIX, 264
assumed-size-specIX, 759
asterisk formattingIX, 465
ATAN functionIX, 654
ATAN2 functionIX, 655
attributeIX, 92

ALLOCATABLEIX, 42, 151, 188,
215

argumentIX, 550

Fortran 90 Handbook 793

dataIX, 41
default statusIX, 133
DIMENSIONIX, 150, 188, 205
EXTERNALIX, 171, 190
INTENTIX, 165, 191, 204, 567
INTRINSICIX, 173, 190
OPTIONALIX, 167, 191, 565
PARAMETERIX, 160, 161, 192, 204
POINTERIX, 192, 204, 215, 296–299
PRIVATEIX, 162, 192, 502
PUBLICIX, 162, 192, 502
SAVEIX, 156, 168, 194, 500
TARGETIX, 154, 194, 204, 218, 297–

298
valueIX, 155–161

attribute-oriented declarationIX, 132
attr-specIX, 759
automatic arrayIX, 174
automatic character lengthIX, 174
automatic data objectIX, 42, 133, 139,

174–175

B
BIX, 772
B edit descriptorIX, 443
BACKSPACEIX, 772
BACKSPACE statementIX, 417, 421
backspace-stmtIX, 759
backspacingIX, 417
Backus-Naur FormIX, 727
binary constantIX, 102
binary operationIX, 235
binary-constantIX, 759
bit

copyIX, 606
inquiry functionIX, 598
modelIX, 596

BIT_SIZE functionIX, 655
BLANKIX, 772

blank
fixed source formIX, 80
format specificationIX, 433
free source formIX, 78
paddingIX, 20, 69, 159, 280, 293,

364, 365, 366, 371, 376, 379,
388, 393, 402, 457, 683, 684

blank editingIX, 463
blank interpretation

edit descriptorIX, 435
blank line

fixed source formIX, 81
free source formIX, 76

blank significance
character contextIX, 74
fixed source formIX, 80
free source formIX, 75

BLANK= specifierIX, 400, 411, 463
blank-interp-edit-descIX, 759
BLOCKIX, 772
blockIX, 310–312

ELSEIX, 312
ELSEWHEREIX, 301
interfaceIX, 255, 530, 540, 577–580
WHEREIX, 301

blockIX, 759
block constructIX, 309–312
block data

initializationIX, 484
program unitIX, 36, 484, 515–516,

519
block DO constructIX, 321
block-dataIX, 759
block-data-nameIX, 768
block-data-stmtIX, 759
block-do-constructIX, 760
BNIX, 772
BN edit descriptorIX, 463
bound

794 Fortran 90 Handbook

arrayIX, 206
default lowerIX, 206
expressionIX, 217
lowerIX, 262
upperIX, 262

boz-literal-constantIX, 760
branch statementIX, 44, 333
branch target statementIX, 333
branching statementIX, 310
broadcastingIX, 281
BTEST functionIX, 656
built-in procedureIX, 524
BZIX, 772
BZ edit descriptorIX, 463

C
CIX, 772
cIX, 760
CALLIX, 772
call

genericIX, 569
procedureIX, 525

CALL statementIX, 525, 532
call-stmtIX, 760
CASEIX, 772
case

defaultIX, 316, 318
indexIX, 316
selectorIX, 317
selector valueIX, 316, 318
valueIX, 319
value rangeIX, 317

CASE constructIX, 311, 316–321, 341
CASE statementIX, 317
case-constructIX, 760
case-construct-nameIX, 769
case-exprIX, 760
case-selectorIX, 760

case-stmtIX, 760
case-valueIX, 760
case-value-rangeIX, 760
CBEMAIX, 14
CEILING functionIX, 657
CHAR functionIX, 657
CHARACTERIX, 772
characterIX, 201

controlIX, 65, 66, 68
delimiterIX, 400
graphicIX, 66–68, 85
inquiry functionIX, 598
paddingIX, 69, 280
representableIX, 66
specialIX, 68

characterIX, 760
character argument

assumed lengthIX, 552
lengthIX, 552

character contextIX, 74
character edit descriptorIX, 435, 464
character editingIX, 456, 481
character expression

format specificationIX, 430
character length

automaticIX, 174
character sequence typeIX, 119
character setIX, 65–69, 109

defaultIX, 66, 69, 85
extendedIX, 66
FortranIX, 66, 84
nondefaultIX, 65, 69, 85
processorIX, 66, 68

CHARACTER statementIX, 138
character storage unitIX, 634
character string

continuationIX, 78
lengthIX, 201
zero-lengthIX, 201

Fortran 90 Handbook 795

character typeIX, 108–110, 138–141
constantIX, 110
kind parameterIX, 94, 109, 110
lengthIX, 109
operatorIX, 109
representationIX, 109
stringIX, 109
valueIX, 108

char-constantIX, 760
char-exprIX, 760
char-initialization-exprIX, 760
char-lengthIX, 760
char-literal-constantIX, 760
char-selectorIX, 760
char-string-edit-descIX, 760
char-variableIX, 760
CLOSEIX, 772
close specifierIX, 405
CLOSE statementIX, 405–407
close-specIX, 760
close-stmtIX, 760
CMPLX functionIX, 658
code

pauseIX, 340
stopIX, 337

coercion
assignmentIX, 576

collating sequence
ASCIIIX, 109, 646, 658, 672, 675,

682, 683, 684
colon edit descriptorIX, 460
comment line

fixed source formIX, 80
free source formIX, 75

commentary
fixed source formIX, 80
free source formIX, 75

COMMONIX, 772
common blockIX, 181, 186

character typeIX, 182
continuationIX, 182
data sharingIX, 181
extensionIX, 183
nameIX, 182
savingIX, 170, 183
sizeIX, 183
storage associationIX, 634–636
storage sequenceIX, 183
storage unitIX, 181
type matchingIX, 182

COMMON statementIX, 181
common-block-nameIX, 769
common-block-objectIX, 760
common-stmtIX, 760
comparison expressionIX, 243
compatibility

Fortran 77IX, 19
compilation

dependentIX, 513–514
independentIX, 513–514

COMPLEXIX, 773
complex editingIX, 445, 453
COMPLEX statementIX, 137
complex typeIX, 105–107, 137–138

constantIX, 106
kind parameterIX, 105, 106, 137
operatorIX, 106
representationIX, 105
valueIX, 105

complex-literal-constantIX, 760
component

declarationIX, 112
structureIX, 95, 203–205
ultimateIX, 110

component-array-specIX, 760
component-attr-specIX, 760
component-declIX, 760
component-def-stmtIX, 760

796 Fortran 90 Handbook

component-nameIX, 769
composite sequenceIX, 177
computation functionIX, 602–604
computed GO TO statementIX, 335,

343
computed-goto-stmtIX, 760
concatenationIX, 109

expressionIX, 243
operationIX, 279
operatorIX, 243

concat-opIX, 760
condition

allocation errorIX, 216–217, 220–
221

end-of-fileIX, 354, 393, 641
end-of-recordIX, 354, 364–365, 393
errorIX, 354
input/output errorIX, 346, 351,

354, 364, 365–366, 372, 376,
380, 381, 383, 385, 388, 392,
392–395, 396, 401, 402, 405,
406, 406–407, 410, 412, 413,
414, 420, 637, 640, 641, 642

conformable argumentIX, 570
conformable arrayIX, 41
conformance

processorIX, 22, 24
programIX, 22
shapeIX, 261

CONJG functionIX, 659
conjunct expressionIX, 245
conjunctionIX, 107
connection

fileIX, 358
specifierIX, 396–405
unitIX, 358

connect-specIX, 760
constantIX, 47, 71, 199–200, 239

binaryIX, 102
BOZIX, 66

characterIX, 110
complexIX, 106
expressionIX, 266, 304
extendedIX, 266
hexadecimalIX, 102
integerIX, 101
literalIX, 66, 71, 98, 199
logicalIX, 108
namedIX, 71, 160, 199
octalIX, 102
realIX, 104
subobjectIX, 200, 238

constantIX, 760
constant-subobjectIX, 761
constructIX, 50

blockIX, 309–312
CASEIX, 311, 316–321, 341
controlIX, 50, 310
DOIX, 311, 321–333, 342
DO WHILEIX, 330, 343
executableIX, 43, 50, 309, 310–312
IFIX, 311, 312–314, 341
nameIX, 310, 311
orderIX, 57–58
WHEREIX, 299–303, 311

constructor
arrayIX, 124–127, 159, 199, 256, 289
structureIX, 111, 121–124, 159, 199,

256
CONTAINSIX, 773
CONTAINS statementIX, 524, 543
contains-stmtIX, 761
contiguous arrayIX, 575
continuation

ampersandIX, 76, 77
character stringIX, 78
END statementIX, 81
fixed source formIX, 81
free source formIX, 76, 77

CONTINUEIX, 773

Fortran 90 Handbook 797

CONTINUE statementIX, 323, 336
labelIX, 337

continue-stmtIX, 761
control

characterIX, 65, 66, 68
constructIX, 50, 310
edit descriptorIX, 427, 434, 457–

464, 481
specifierIX, 360
statementIX, 309
structureIX, 3, 15
transfer ofIX, 333

control-edit-descIX, 761
conversion

input/outputIX, 427
conversion functionIX, 601–602
COS functionIX, 659
COSH functionIX, 659
COUNT functionIX, 660
creation

fileIX, 351
CSHIFT functionIX, 661
current recordIX, 352, 441
currently allocatedIX, 217
CYCLEIX, 773
CYCLE statementIX, 332
cycle-stmtIX, 761

D
DIX, 773
dIX, 761
D edit descriptorIX, 448
DATAIX, 773
data

dynamicIX, 42, 62
formattedIX, 423
globalIX, 9, 17, 181, 499
HollerithIX, 15
referenceIX, 198

unformattedIX, 423
data abstractionIX, 511
data attributeIX, 41
data edit descriptorIX, 427, 433, 481
data entityIX, 47
data environmentIX, 39, 91
data initializationIX, 155
data item list

effectiveIX, 438
data objectIX, 47, 197

accessibilityIX, 161
automaticIX, 42, 133, 139, 174–175
dynamicIX, 225
namelistIX, 175

data recordIX, 347
data sharingIX, 176
DATA statementIX, 155–160

arrayIX, 158
constant valueIX, 157
implied-doIX, 158
object correspondenceIX, 157
repeat factorIX, 158
structure constructorIX, 158

data structureIX, 6, 40, 141
data transferIX, 391

advancingIX, 354, 370, 436
directIX, 378, 380
execution stepsIX, 390
formattedIX, 370, 374, 378
list-directedIX, 382
namelistIX, 383
nonadvancingIX, 374, 436
sequentialIX, 370, 373, 374
unformattedIX, 373, 380

data transfer statementIX, 345, 359–
389

data typeIX, 39–41, 48, 61, 96–121, 550
abstractIX, 20
derivedIX, 90, 110–121
expressionIX, 255

798 Fortran 90 Handbook

intrinsicIX, 90, 99–110, 127
data-edit-descIX, 761
data-i-do-objectIX, 761
data-i-do-variableIX, 761
data-implied-doIX, 761
data-refIX, 761
data-stmtIX, 761
data-stmt-constantIX, 761
data-stmt-objectIX, 761
data-stmt-repeatIX, 761
data-stmt-setIX, 761
data-stmt-valueIX, 761
date and timeIX, 606
DATE_AND_TIME subroutineIX, 662
DBLE functionIX, 664
DEALLOCATEIX, 773
DEALLOCATE statementIX, 219, 299
deallocate-stmtIX, 761
deallocationIX, 45, 215

arrayIX, 220
pointerIX, 221

declarationIX, 49
attribute-orientedIX, 132
entity-orientedIX, 132

declaration-constructIX, 761
decremental featureIX, 11, 777–779
DEFAULTIX, 773
default accessibilityIX, 162, 164
default character setIX, 66, 69, 85
default kindIX, 93
default lower boundIX, 206
default-char-exprIX, 761
default-char-variableIX, 761
default-int-variableIX, 761
default-logical-variableIX, 761
deferred-shape arrayIX, 147, 152, 189,

258
deferred-shape specifierIX, 265

deferred-shape-specIX, 761
definedIX, 44, 197, 637–643
defined assignmentIX, 231, 290, 294,

306, 523, 534, 585–587
defined operationIX, 237, 254

interpretationIX, 283
defined operatorIX, 72, 97, 237, 240,

254, 284, 583–585
defined unary expressionIX, 240
defined unary operationIX, 240
defined-binary-opIX, 761
defined-operatorIX, 761
defined-unary-opIX, 761
definitionIX, 44, 49, 63

derived typeIX, 112
definition statusIX, 285
deleted featureIX, 19, 777
DELIMIX, 773
DELIM= specifierIX, 400, 411, 479
delimiterIX, 68, 69

characterIX, 400
dependent compilationIX, 513–514
derived typeIX, 48, 90, 110–121, 141

assignmentIX, 294
componentIX, 110
constant expressionIX, 122
definitionIX, 112
nameIX, 141
operatorIX, 120
privateIX, 111
publicIX, 111
valueIX, 120

derived-type statementIX, 114
derived-type-defIX, 761
derived-type-stmtIX, 761
descriptorIX, 152

editIX, 427, 432
designatorIX, 48, 198
digitIX, 66

Fortran 90 Handbook 799

digitIX, 769
DIGITS functionIX, 665
digit-stringIX, 761
DIM functionIX, 665
DIMENSIONIX, 773
dimensionIX, 41, 61
DIMENSION attributeIX, 150, 188, 205
DIMENSION statementIX, 150
dimension-stmtIX, 761
DIRECTIX, 773
direct accessIX, 355, 356–357, 360, 378,

380, 414
DIRECT= specifierIX, 412
disassociationIX, 562
disconnectionIX, 405
discontiguous arrayIX, 576
disjunct expressionIX, 246
disjunctionIX, 107
division

integerIX, 233
DOIX, 773
DO constructIX, 311, 321–333, 342

action terminatedIX, 325
activeIX, 327
blockIX, 321
explicit terminationIX, 330
inactiveIX, 327
inner sharedIX, 325
iteration countIX, 328, 342
labelIX, 325
nameIX, 325
nestedIX, 327
nonblockIX, 321, 325
outer sharedIX, 325
rangeIX, 327
shared terminatedIX, 325
simpleIX, 330
terminationIX, 326
transfer from outsideIX, 327

DO loopIX, 321–333
DO statementIX, 323, 328
DO termination

sharedIX, 777
DO variableIX, 321

double precisionIX, 777
realIX, 777

DO WHILE constructIX, 330, 343
do-blockIX, 762
do-bodyIX, 762
do-constructIX, 762
do-construct-nameIX, 769
do-stmtIX, 762
DOT_PRODUCT functionIX, 666
do-term-action-stmtIX, 762
do-term-shared-stmtIX, 762
DOUBLEIX, 773
DOUBLE PRECISION statementIX,

137
do-variableIX, 762
DPROD functionIX, 667
dummy argumentIX, 526, 548

ENTRY statementIX, 546
explicit lengthIX, 553
KINDIX, 570
nonoptionalIX, 564

dummy procedureIX, 526, 572
dummy-argIX, 762
dummy-arg-nameIX, 769
dynamic arrayIX, 198
dynamic dataIX, 42, 62, 92, 215
dynamic data objectIX, 225

E
EIX, 773
eIX, 762
E edit descriptorIX, 445, 448
edit descriptorIX, 427, 432

800 Fortran 90 Handbook

/IX, 459
:IX, 460
AIX, 456
apostropheIX, 464
BIX, 443
blank interpretationIX, 435
BNIX, 463
BZIX, 463
characterIX, 435, 464
colonIX, 460
controlIX, 427, 434, 457–464, 481
DIX, 448
dataIX, 427, 433, 481
EIX, 445, 448
ENIX, 445, 449
engineeringIX, 449
ESIX, 445, 451
FIX, 445, 446
GIX, 443, 445
HIX, 464, 778
HollerithIX, 464
IIX, 443
LIX, 455
nestedIX, 438
OIX, 443
PIX, 462
positionIX, 435, 457
quoteIX, 464
realIX, 445
SIX, 461
scientificIX, 451
signIX, 435
slashIX, 459
SPIX, 461
SSIX, 461
stringIX, 427
TIX, 457
TLIX, 457
TRIX, 457
XIX, 457
ZIX, 443

editing

blankIX, 463
characterIX, 456, 481
complexIX, 445, 453
integerIX, 443–445
logicalIX, 455
numericIX, 442–455
realIX, 445–447
signIX, 461
stringIX, 456

effective data item listIX, 438
effective itemIX, 391, 439
element

arrayIX, 207, 208, 210
elemental functionIX, 524
elemental intrinsic procedureIX, 570,

594
elemental referenceIX, 569
ELSEIX, 773
ELSE blockIX, 312
else-if-stmtIX, 762
else-stmtIX, 762
ELSEWHEREIX, 773
ELSEWHERE blockIX, 301
elsewhere-stmtIX, 762
ENIX, 773
EN edit descriptorIX, 445, 449
ENDIX, 773
END DO statementIX, 323
END SELECT statementIX, 317
END statementIX, 486

continuationIX, 81
END= specifierIX, 363
end-block-data-stmtIX, 762
end-doIX, 762
end-do-stmtIX, 762
ENDFILEIX, 773
ENDFILE statementIX, 419, 421
endfile-stmtIX, 762

Fortran 90 Handbook 801

end-function-stmtIX, 762
end-if-stmtIX, 762
end-interface-stmtIX, 762
end-module-stmtIX, 762
end-of-file conditionIX, 354, 393, 641
end-of-file recordIX, 347, 349, 397, 406,

417, 419
end-of-record conditionIX, 354, 364–

365, 393
end-program-stmtIX, 762
end-select-stmtIX, 762
end-subroutine-stmtIX, 762
end-type-stmtIX, 762
end-where-stmtIX, 762
engineering edit descriptorIX, 449
entityIX, 47

globalIX, 620
hostIX, 491
localIX, 491, 620
statementIX, 620

entity-declIX, 762
entity-oriented declarationIX, 132
ENTRYIX, 773
entry

procedureIX, 525, 544
resultIX, 547

ENTRY statementIX, 544, 567, 589
dummy argumentIX, 546

entry-nameIX, 769
entry-stmtIX, 762
environmental functionIX, 598
EORIX, 773
EOR= specifierIX, 364
EOSHIFT functionIX, 667
EPSILON functionIX, 669
equal signIX, 230
EQUIVALENCEIX, 773
equivalenceIX, 186

arrayIX, 180
character lengthIX, 180
expressionIX, 246

EQUIVALENCE statementIX, 179
equivalence-objectIX, 762
equivalence-setIX, 762
equivalence-stmtIX, 762
equivalent expressionIX, 233
equiv-opIX, 762
equiv-operandIX, 762
ERRIX, 773
ERR= specifierIX, 365, 401, 406, 412,

420
error conditionIX, 354
error exitIX, 526
ESIX, 773
ES edit descriptorIX, 445, 451
evaluation

expressionIX, 230
exclamation markIX, 75
executable constructIX, 43, 50, 309,

310–312
executable programIX, 35
executable statementIX, 309

firstIX, 310
executable-constructIX, 763
executable-programIX, 763
execution

first constructIX, 43
execution sequenceIX, 62, 309

alteration by branchingIX, 333
execution-partIX, 763
execution-part-constructIX, 763
EXISTIX, 773
EXIST= specifierIX, 412
existence

fileIX, 351
unitIX, 358

802 Fortran 90 Handbook

EXITIX, 773
exit

errorIX, 526
EXIT statementIX, 331
exit-stmtIX, 763
EXP functionIX, 670
explicit formattingIX, 427, 429–464,

480
explicit interfaceIX, 522, 529, 552, 565,

568, 573, 574–577
explicit-shape arrayIX, 144, 188
explicit-shape specifierIX, 263
explicit-shape-specIX, 763
exponentIX, 763
EXPONENT functionIX, 670
exponent letterIX, 104
exponent rangeIX, 599
exponentiation expressionIX, 241
exponent-letterIX, 763
exprIX, 763
expressionIX, 50, 227, 303

alternative evaluationIX, 233
arrayIX, 229, 261–265, 304, 305
boundIX, 217
comparisonIX, 243
concatenationIX, 243
conjunctIX, 245
constantIX, 266, 304
data typeIX, 255
defined unaryIX, 240
disjunctIX, 246
equivalenceIX, 246
equivalentIX, 233
evaluationIX, 230, 284–289
exponentiationIX, 241
extents ofIX, 262
file nameIX, 401
formationIX, 234–276
initializationIX, 266, 268, 272, 304
interpretationIX, 229, 232, 276–284

logical arrayIX, 300
multiplicationIX, 241
notIX, 244
pointerIX, 229
restrictedIX, 270
scalarIX, 303, 305
semanticsIX, 232
shapeIX, 255, 261–265
specificationIX, 266, 270, 271, 272,

304
subscriptIX, 231
summationIX, 242
syntaxIX, 232
type parameterIX, 255
uses ofIX, 272
valueIX, 231

extended character setIX, 66
extended constantIX, 266
extended intrinsic operatorIX, 255
extended-intrinsic-opIX, 763
extensibilityIX, 20
extension

languageIX, 22
extension operationIX, 255
extension operatorIX, 255
extent

arrayIX, 206
EXTERNALIX, 773
EXTERNAL attributeIX, 171, 190
external fileIX, 350
external function

interface blockIX, 172
external procedureIX, 171, 517, 524
EXTERNAL statementIX, 172, 547
external subprogramIX, 496–498
external-file-unitIX, 763
external-nameIX, 769
external-stmtIX, 763
external-subprogramIX, 763

Fortran 90 Handbook 803

F
FIX, 773
F edit descriptorIX, 445, 446
factor

repeatIX, 432
scaleIX, 435, 462

feature
decrementalIX, 11, 777–779
deletedIX, 19, 777
incrementalIX, 11
newIX, 2–10
nonstandardIX, 24
obsolescentIX, 11, 17, 777
processor-dependentIX, 19

FILEIX, 773
fileIX, 346–359

accessIX, 355–357
connectionIX, 346, 358, 395
creationIX, 351
existenceIX, 351
externalIX, 350
initial pointIX, 352
inquiryIX, 346, 408–418
internalIX, 350, 386
positionIX, 350, 351, 391–392, 423
positioningIX, 346
preconnectionIX, 358
referenceIX, 359
scratchIX, 405
terminal pointIX, 352

file name expressionIX, 401
file position

format controlIX, 441
file positioning statementIX, 417–422
FILE= specifierIX, 401, 412

uppercase/lowercaseIX, 66
file-name-exprIX, 763
fixed and free source formIX, 82
fixed source formIX, 74

blankIX, 80

blank lineIX, 81
blank significanceIX, 80
commentaryIX, 80
continuationIX, 81
labelIX, 81
statement separatorIX, 81

fixed source fromIX, 80–83
FLOOR functionIX, 671
FMTIX, 773
FMT= specifierIX, 362
FORMIX, 774
FORM= specifierIX, 402, 413
FORMATIX, 774
format

blank inIX, 433
repeat factorIX, 433

formatIX, 763
format control

file positionIX, 441
format itemIX, 432
format specificationIX, 427, 430, 432–

436, 480
character expressionIX, 430
emptyIX, 436
expansionIX, 439
list correspondenceIX, 437
nesting levelIX, 437
parentheses inIX, 437–438, 439
string delimiterIX, 431

format specifierIX, 360
assignedIX, 778

FORMAT statementIX, 430, 480
format-itemIX, 763
format-specificationIX, 763
format-stmtIX, 763
FORMATTEDIX, 774
formatted dataIX, 423
formatted input/outputIX, 370, 374,

378, 436–441

804 Fortran 90 Handbook

formatted input/output statementIX,
360

formatted recordIX, 348
printingIX, 389

FORMATTED= specifierIX, 413
formatting

asteriskIX, 465
explicitIX, 427, 429–464, 480
implicitIX, 428, 481
list-directedIX, 382, 465–470, 482
namelistIX, 383, 471–479, 482

Fortran
first compilerIX, 14
historyIX, 13–15
standardizationIX, 13

Fortran 66IX, 14
Fortran 77IX, 2, 14

compatibilityIX, 19
featuresIX, 15

Fortran 90
architectureIX, 11
basic conceptsIX, 27
developmentIX, 18–19
evolutionIX, 11
new featuresIX, 2–10, 487
standardIX, 21–24
syntaxIX, 727

Fortran character setIX, 66, 84
Fortran IIIX, 14
FRACTION functionIX, 671
free source formIX, 74, 75–80

blankIX, 78
blank lineIX, 76
blank significanceIX, 75
commentaryIX, 75
continuationIX, 76, 77
labelIX, 77
line lengthIX, 75
statement separatorIX, 76

FUNCTIONIX, 774

functionIX, 523, 535–542, 588
ALLOCATEDIX, 217
argumentIX, 535, 539
arrayIX, 604–605
array constructionIX, 605
array locationIX, 605
array-valuedIX, 538
computationIX, 602–604
conversionIX, 601–602
elementalIX, 524
environmentalIX, 598
genericIX, 257
inquiryIX, 598–601
interfaceIX, 256
invocationIX, 36, 540
LBOUNDIX, 262
nonelementalIX, 301, 302
numericIX, 598–600
operatorIX, 589
PRESENTIX, 167, 566
recursiveIX, 537
reductionIX, 604
referenceIX, 539
RESHAPEIX, 605
reshapeIX, 159
resultIX, 523, 537
result variableIX, 537
side effectIX, 286
SQRTIX, 570
statementIX, 37, 525, 541, 589, 593
subprogramIX, 484
transferIX, 601–602
UBOUNDIX, 262
valueIX, 538

function reference
generic operatorIX, 585
operatorIX, 583

FUNCTION statementIX, 523
RESULT optionIX, 523

function-nameIX, 769
function-referenceIX, 763

Fortran 90 Handbook 805

function-stmtIX, 763
function-subprogramIX, 763

G
GIX, 774
G edit descriptorIX, 443, 444, 445
generic argumentIX, 568
generic callIX, 569
generic functionIX, 257
generic intrinsic functionIX, 568
generic name

USE statementIX, 582
generic operatorIX, 229
generic procedureIX, 37, 568, 580–582,

590, 594
intrinsicIX, 580
keyword callIX, 582

generic-nameIX, 769
generic-specIX, 763
global dataIX, 9, 17, 181, 499
global entityIX, 620
global user-defined typeIX, 510
GOIX, 774
GO TO statementIX, 335, 343
goto-stmtIX, 763
graphicIX, 66–68
group

nameIX, 471
namelistIX, 175

H
HIX, 774
H edit descriptorIX, 464, 778
hexadecimal constantIX, 102
hex-constantIX, 763
hex-digitIX, 763
Hollerith dataIX, 15

Hollerith edit descriptorIX, 464
hostIX, 491

entityIX, 491
internal procedureIX, 524

host associationIX, 483, 491–495, 507,
518, 524, 528, 632

implicit typingIX, 493, 502
HUGE functionIX, 671

I
IIX, 774
I edit descriptorIX, 443
IACHAR functionIX, 672
IAND functionIX, 672
IBCLR functionIX, 673
IBITS functionIX, 674
IBSET functionIX, 674
ICHAR functionIX, 675
identity operatorIX, 236
ideographic languageIX, 40
IEOR functionIX, 675
IFIX, 774
IF block

branching intoIX, 777
IF constructIX, 311, 312–314, 341
IF statementIX, 312, 314, 341

arithmeticIX, 312
if-constructIX, 763
if-construct-nameIX, 769
if-stmtIX, 763
if-then-stmtIX, 763
imag-partIX, 763
implementationIX, 528
IMPLICITIX, 774
implicit formattingIX, 428, 481
implicit interfaceIX, 529, 573
IMPLICIT NONEIX, 142
IMPLICIT statementIX, 142

806 Fortran 90 Handbook

implicit typeIX, 492
implicit typingIX, 133, 142–143, 493

host associationIX, 493, 502
mappingIX, 142
user-defined typeIX, 143

implicit-partIX, 764
implicit-part-stmtIX, 764
implicit-specIX, 764
implicit-stmtIX, 764
implied-do

DATA statementIX, 158
input/outputIX, 367

implied-do object
input/outputIX, 367

INIX, 774
IN INTENT attributeIX, 165
INCLUDE lineIX, 65, 82, 83–84, 86, 498,

514
nestedIX, 84

incremental featureIX, 11
independent compilationIX, 513–514
INDEX functionIX, 676
infix operatorIX, 576
information hidingIX, 38
initialization

dataIX, 155
SAVE attributeIX, 156
variableIX, 155

initialization expressionIX, 266, 268,
272, 304

initialization-exprIX, 764
initialized local variableIX, 528
initiation

programIX, 35
inner shared DO constructIX, 325
inner-shared-do-constructIX, 764
INOUTIX, 774
INOUT INTENT attributeIX, 165
inputIX, 345–426

input statementIX, 345
input/outputIX, 10, 345–426

advancingIX, 354, 370
character conversionIX, 370
conversionIX, 427
direct accessIX, 378, 380
error conditionIX, 346, 351, 354,

364, 365–366, 372, 376, 380,
381, 383, 385, 388, 392, 392–
395, 396, 401, 402, 405, 406,
406–407, 410, 412, 413, 414,
420, 637, 640, 641, 642

formattedIX, 370, 374, 378, 436–441
implied-doIX, 367
implied-do objectIX, 367
item listIX, 367
list-directedIX, 382, 465–470
namelistIX, 383, 471–479
nonadvancingIX, 354, 374, 375, 436
partial recordIX, 375
restrictionsIX, 422
sequential accessIX, 370, 373
specifierIX, 360
streamIX, 375
unformattedIX, 373, 380

input-itemIX, 764
INQUIREIX, 774
INQUIRE statementIX, 408
inquire-specIX, 764
inquire-stmtIX, 764
inquiry

access methodIX, 410
by fileIX, 408
by output item listIX, 408
by unitIX, 408
character delimiterIX, 411
direct accessIX, 414
fileIX, 408–418
file nameIX, 413
input/output actionIX, 411
maximum record lengthIX, 416

Fortran 90 Handbook 807

unit numberIX, 414
inquiry functionIX, 598–601

argument presenceIX, 601
arrayIX, 600
bitIX, 598
characterIX, 598
kindIX, 598
numericIX, 599
pointer associationIX, 601

inquiry specifierIX, 408
INT functionIX, 677
int-constantIX, 764
int-constant-nameIX, 769
INTEGERIX, 774
integer

divisionIX, 233
editingIX, 443–445
modelIX, 597

INTEGER statementIX, 136
integer typeIX, 100–102, 136

binary constantIX, 102
constantIX, 101
hexadecimal constantIX, 102
kind parameterIX, 100, 136
octal constantIX, 102
operatorIX, 101
representationIX, 100
valueIX, 100

INTENTIX, 774
INTENT attributeIX, 165, 191, 204, 567

defaultIX, 165
INIX, 165
INOUTIX, 165
OUTIX, 165
vector subscriptIX, 568

INTENT statementIX, 165
intent-specIX, 764
intent-stmtIX, 764
INTERFACEIX, 774
interface

explicitIX, 522, 529, 552, 565, 568,
573, 574–577

external procedureIX, 580
functionIX, 256
implicitIX, 529, 573
intrinsic functionIX, 530
operatorIX, 120, 584
procedureIX, 37, 51, 573–587

interface blockIX, 8, 255, 530, 540, 577–
580

assignmentIX, 585
external functionIX, 172
genericIX, 581
locationIX, 577
procedureIX, 547
subroutineIX, 294

interface-blockIX, 764
interface-bodyIX, 764
interface-stmtIX, 764
internal fileIX, 350, 386
internal procedureIX, 37, 39, 489–491,

518, 524
hostIX, 524
names inIX, 491
nestedIX, 490, 497

internal subprogramIX, 37, 486, 501
internal-file-unitIX, 764
internal-subprogramIX, 764
internal-subprogram-partIX, 764
interpretation

character operationIX, 279
equivalentIX, 286
intrinsic operationIX, 277, 279
relational operationIX, 280

int-exprIX, 764
int-initialization-exprIX, 764
int-literal-constantIX, 764
INTRINSICIX, 774
intrinsicIX, 51

808 Fortran 90 Handbook

intrinsic assignmentIX, 160, 291–294,
306

INTRINSIC attributeIX, 173, 190
intrinsic binary operatorIX, 254
intrinsic data typeIX, 99–110
intrinsic function

genericIX, 568
interfaceIX, 530

intrinsic generic procedureIX, 580
intrinsic moduleIX, 20
intrinsic name as argumentIX, 173
intrinsic operationIX, 236
intrinsic operatorIX, 72, 228, 253, 540

extendedIX, 255
intrinsic procedureIX, 19, 524, 593–

616, 645–725
elementalIX, 570, 594
explicit interfaceIX, 594
invocationIX, 594
passingIX, 594
specific nameIX, 612–614
transformationalIX, 594

INTRINSIC statementIX, 173, 548
intrinsic subroutineIX, 606
intrinsic typeIX, 71, 90, 127
intrinsic unary operatorIX, 254
intrinsic-operatorIX, 764
intrinsic-procedure-nameIX, 769
intrinsic-stmtIX, 764
int-variableIX, 764
invocation

procedureIX, 525
io-control-specIX, 764
io-implied-doIX, 764
io-implied-do-controlIX, 764
io-implied-do-objectIX, 764
IOLENGTHIX, 774
IOR functionIX, 678

IOSTATIX, 774
IOSTAT= specifierIX, 365, 402, 407,

413, 420
io-unitIX, 765
ISHFT functionIX, 679
ISHFTC functionIX, 679
ISOIX, 15
item

formatIX, 432
iteration count

DO constructIX, 328

K
kIX, 765
keyword

argumentIX, 49, 564–565, 590
statementIX, 49, 70

keywordIX, 765
KINDIX, 774
kindIX, 40

defaultIX, 93
inquiry functionIX, 598

KIND functionIX, 680
kind parameterIX, 93, 96

character typeIX, 94, 109, 110
complex typeIX, 105, 106
integer typeIX, 100, 136
logical typeIX, 94, 108
real typeIX, 103, 104

kind type parameterIX, 96, 550
operation resultIX, 258
valueIX, 258

kind-paramIX, 765
kind-selectorIX, 765

L
LIX, 774
L edit descriptorIX, 455

Fortran 90 Handbook 809

label
fixed source formIX, 81
free source formIX, 77
scopeIX, 625
statementIX, 72, 334

labelIX, 765
label-do-stmtIX, 765
language extensionIX, 22
LBOUND functionIX, 262, 680
left tabbing limitIX, 458
LENIX, 774
LEN functionIX, 682
LEN_TRIM functionIX, 682
length

character stringIX, 201
character typeIX, 109
recordIX, 349

length parameterIX, 96
length-selectorIX, 765
letter

exponentIX, 104
lowercaseIX, 66
uppercaseIX, 66

letterIX, 769
letter-specIX, 765
level-1-exprIX, 765
level-2-exprIX, 765
level-3-exprIX, 765
level-4-exprIX, 765
level-5-exprIX, 765
lexical tokenIX, 65, 69, 85

separatorIX, 75
LGE functionIX, 682
LGT functionIX, 683
library procedureIX, 512
line

blankIX, 76, 81
commentIX, 75, 80
INCLUDEIX, 82, 83–84, 86

programIX, 73
line length

free source formIX, 75
linked listIX, 218
list

argumentIX, 549
list-directed formattingIX, 465–470,

482
embedded blanksIX, 465
value separatorIX, 466

list-directed input
end of recordIX, 467
null valueIX, 468
representable characterIX, 467

list-directed input/outputIX, 382,
465–470

list-directed output
carriage controlIX, 470
new recordIX, 469
value separatorIX, 470

literal constantIX, 71, 98, 199
BOZIX, 66

literal-constantIX, 765
LLE functionIX, 684
LLT functionIX, 684
local entityIX, 491, 620
local-nameIX, 769
LOG functionIX, 685
LOG10 functionIX, 685
LOGICALIX, 774
logical

editingIX, 455
equivalence operatorIX, 107
operandIX, 280

LOGICAL functionIX, 686
logical IF statementIX, 341
LOGICAL statementIX, 138
logical typeIX, 107–108, 138

constantIX, 108

810 Fortran 90 Handbook

kind parameterIX, 94, 108, 138
operatorIX, 107
representationIX, 107
valueIX, 107

logical-exprIX, 765
logical-initialization-exprIX, 765
logical-literal-constantIX, 765
logical-variableIX, 765
loop

controlIX, 323
DOIX, 321–333

loop-controlIX, 765
lower boundIX, 262

arrayIX, 206
lower-boundIX, 765
lowercase letterIX, 66

M
mIX, 765
main programIX, 35, 484, 485–489, 516
main program unitIX, 484
main-programIX, 765
many-one array sectionIX, 212
mask arrayIX, 302
masked array assignmentIX, 231, 299–

303, 306, 311
mask-exprIX, 765
MATMUL functionIX, 686
MAX functionIX, 688
MAXEXPONENT functionIX, 688
MAXLOC functionIX, 689
MAXVAL functionIX, 690
mayIX, 753
MERGE functionIX, 691
MIN functionIX, 692
MINEXPONENT functionIX, 693
MINLOC functionIX, 693
minusIX, 236

MINVAL functionIX, 694
MOD functionIX, 696
model

bitIX, 596
integerIX, 597
realIX, 597

MODULEIX, 774
moduleIX, 9, 20, 33, 186, 498–514, 518

intrinsicIX, 20
nameIX, 499
operator extensionIX, 511
packagingIX, 499
procedureIX, 518, 524, 586, 593
program unitIX, 484
specification partIX, 500
standardIX, 20
subprogramIX, 36, 501
subprogram partIX, 501
varying length stringIX, 20

moduleIX, 765
module-nameIX, 769
module-procedure-stmtIX, 765
module-stmtIX, 765
module-subprogramIX, 765
module-subprogram-partIX, 765
MODULO functionIX, 696
multiplication expressionIX, 241
mult-opIX, 766
mult-operandIX, 766
MVBITS functionIX, 697

N
nIX, 766
NAMEIX, 774
nameIX, 47, 70

arrayIX, 207
associationIX, 629
common blockIX, 182
constructIX, 310, 311

Fortran 90 Handbook 811

genericIX, 580
groupIX, 471
number of charactersIX, 71
scopeIX, 623–625
specificIX, 580, 594

nameIX, 766
name associationIX, 499, 630–633
NAME= specifierIX, 413

uppercase/lowercaseIX, 66
NAMEDIX, 774
named constantIX, 71, 160, 199
NAMED= specifierIX, 414
named-constantIX, 766
named-constant-defIX, 766
NAMELISTIX, 774
namelist

accessibilityIX, 175
data objectIX, 175
groupIX, 175
group nameIX, 384
input/outputIX, 383
outputIX, 477–478
specifierIX, 360

namelist formattingIX, 471–479, 482
end of recordIX, 478
group nameIX, 471
group object listIX, 478
use of blankIX, 472
value separatorIX, 472

namelist input
array element orderIX, 475
blankIX, 475, 476
slashIX, 475
subobject designatorIX, 473

namelist input/outputIX, 471–479
namelist output

ampersandIX, 478
carriage controlIX, 478
repeat factorIX, 478

NAMELIST statementIX, 175, 360

namelist-group-nameIX, 769
namelist-group-objectIX, 766
namelist-stmtIX, 766
name-value pairIX, 471
NEAREST functionIX, 698
nested edit descriptorIX, 438
nested INCLUDE lineIX, 84
next effective itemIX, 391
next recordIX, 352
NEXTRECIX, 774
NEXTREC= specifierIX, 414
NINT functionIX, 699
NMLIX, 774
NML= specifierIX, 363
nonadvancing input/outputIX, 354,

374, 375, 436
nonblock DO constructIX, 321, 325
nonblock-do-constructIX, 766
nondefault character setIX, 65, 69, 85
nondefault typeIX, 40
NONEIX, 774
nonelemental functionIX, 301, 302
nonexecutable statementIX, 309
nonlabel-do-stmtIX, 766
nonstandard featureIX, 24
nonterminal symbolIX, 727
not expressionIX, 244
NOT functionIX, 699
not-opIX, 766
null valueIX, 468, 474
NULLIFYIX, 774
NULLIFY statementIX, 219, 299
nullify-stmtIX, 766
NUMBERIX, 774
NUMBER= specifierIX, 414
numeric editingIX, 442–455
numeric functionIX, 598–600

812 Fortran 90 Handbook

numeric inquiry functionIX, 599
numeric intrinsic operationIX, 254
numeric precisionIX, 16
numeric sequence typeIX, 119
numeric storage unitIX, 634
numeric-exprIX, 766

O
OIX, 775
O edit descriptorIX, 443
object

dataIX, 197
referenceIX, 197

object-nameIX, 769
obsolescent control statementIX, 337–

340
obsolescent featureIX, 11, 17, 777
octal constantIX, 102
octal-constantIX, 766
ONLYIX, 775
onlyIX, 766
ONLY optionIX, 504, 508, 509
OPENIX, 775
OPEN statementIX, 395–405

connection specifierIX, 398–405
OPENEDIX, 775
OPENED= specifierIX, 414
open-stmtIX, 766
operandIX, 234

logicalIX, 280
pointerIX, 282

operation
binaryIX, 235
concatenationIX, 279
definedIX, 237, 254
defined unaryIX, 240
extensionIX, 255
intrinsicIX, 236

numeric intrinsicIX, 254
unaryIX, 235
user-definedIX, 90, 237

OPERATORIX, 775
operatorIX, 50, 72

character typeIX, 109
complex typeIX, 106
concatenationIX, 243
definedIX, 72, 97, 237, 240, 254, 284,

583–585
derived typeIX, 120
extended intrinsicIX, 237
extensionIX, 255
functionIX, 589
function referenceIX, 583
genericIX, 229
identityIX, 236
infixIX, 576
integer typeIX, 101
interfaceIX, 120, 584
intrinsicIX, 72, 228, 253, 540
intrinsic binaryIX, 254
intrinsic unaryIX, 254
logical typeIX, 107
newIX, 237
precedenceIX, 228, 237, 250
real typeIX, 104
relationalIX, 237, 243
scopeIX, 626
user-definedIX, 7, 228, 237, 540,

576, 583–585
OPTIONALIX, 775
optional argumentIX, 565–567, 590
OPTIONAL attributeIX, 167, 191, 565
OPTIONAL statementIX, 167
optional-stmtIX, 766
order

constructIX, 57–58
evaluationIX, 285
statementIX, 57–58, 74
statement executionIX, 44

Fortran 90 Handbook 813

or-opIX, 766
or-operandIX, 766
OUTIX, 775
OUT INTENT attributeIX, 165
outer shared DO constructIX, 325
outer-shared-do-constructIX, 766
outputIX, 345–426
output statementIX, 345
output-itemIX, 766

P
PIX, 775
P edit descriptorIX, 462
PACK functionIX, 700
packagingIX, 37, 61

data typesIX, 20
moduleIX, 499

PADIX, 775
PAD= specifierIX, 402, 415
padding

blankIX, 20, 69, 159, 280, 293, 364,
365, 366, 371, 376, 379, 388,
393, 402, 457, 683, 684

characterIX, 69, 109, 280
parallel processingIX, 16
PARAMETERIX, 775
parameter

kindIX, 48
lengthIX, 48

PARAMETER attributeIX, 160, 161,
192, 204

PARAMETER statementIX, 160
parameter-stmtIX, 766
parentIX, 198

arrayIX, 207
stringIX, 201
structureIX, 204

parenthesisIX, 289

parent-stringIX, 766
partial associationIX, 177, 636
partial record input/outputIX, 375
part-nameIX, 769
part-refIX, 766
PAUSEIX, 775
pause codeIX, 340
PAUSE statementIX, 340, 777
pause-stmtIX, 766
permissive standardIX, 24
plusIX, 236
POINTERIX, 775
pointerIX, 5, 42, 152–154, 215–222, 296

aliasIX, 6
allocationIX, 218
argumentIX, 563
arrayIX, 147, 198
assignmentIX, 45, 221, 231, 296–

299, 306
associationIX, 296, 560–563, 629
association statusIX, 45, 215
deallocationIX, 45, 221
expressionIX, 229
linked listIX, 218
nullificationIX, 45
operandIX, 282
targetIX, 46, 152, 218
target definitionIX, 45
undefinedIX, 221

pointer associationIX, 45, 633
inquiry functionIX, 601

POINTER attributeIX, 192, 204, 215,
296–299

pointer object storage unitIX, 176
POINTER statementIX, 153
pointer-assignment-stmtIX, 766
pointer-objectIX, 766
pointer-stmtIX, 766
portabilityIX, 16, 23

814 Fortran 90 Handbook

POSITIONIX, 775
position

edit descriptorIX, 435, 457
fileIX, 351
specifierIX, 419

POSITION= specifierIX, 403, 415
position-edit-descIX, 766
position-specIX, 766
power-opIX, 766
precedence

operatorIX, 228, 237, 250
preceding recordIX, 352
PRECISIONIX, 775
precisionIX, 93, 104, 599

complex constantIX, 106
numericIX, 16
real constantIX, 104

PRECISION functionIX, 701
preconnectionIX, 396

fileIX, 358
unitIX, 358

prefixIX, 766
PRESENT functionIX, 167, 566, 701
primaryIX, 238, 255
primaryIX, 767
PRINTIX, 775
PRINT statementIX, 359
printingIX, 389
printing formatted recordIX, 389
print-stmtIX, 767
PRIVATEIX, 775
PRIVATE attributeIX, 162, 192, 502
PRIVATE statementIX, 162
private-sequence-stmtIX, 767
PROCEDUREIX, 775
procedureIX, 7, 36, 50, 171–174, 517,

522–591
argumentIX, 526

as argumentIX, 171
built-inIX, 524
callIX, 525
dummyIX, 526, 572
elemental referenceIX, 571
entryIX, 525, 544
executionIX, 525
externalIX, 171, 517, 524
genericIX, 37, 568, 580–582, 590,

594
generic referenceIX, 571
interfaceIX, 37, 51, 573–587
interface blockIX, 547
internalIX, 37, 39, 489–491, 518, 524
intrinsicIX, 19, 524, 593–616, 645–

725
invocationIX, 525
libraryIX, 512
moduleIX, 518, 524, 586, 593
new featuresIX, 521
referenceIX, 525
scopeIX, 626
user-definedIX, 571

procedure, non-Fortran
IX, 527

procedure-nameIX, 769
procedure-related statementIX, 543
processorIX, 22

character setIX, 66
conformanceIX, 24

processor character setIX, 68
processor-dependent featureIX, 19
PRODUCT functionIX, 702
PROGRAMIX, 775
programIX, 516

executableIX, 35
executionIX, 43–46
initiationIX, 35
lineIX, 73
mainIX, 35, 484, 485–489, 516
organizationIX, 35–38

Fortran 90 Handbook 815

portableIX, 23
standard-conformingIX, 23
structureIX, 28
terminationIX, 35

program unitIX, 35, 516–520
as hostIX, 491
block dataIX, 36, 484, 515–516, 519
kindsIX, 60
last lineIX, 74
mainIX, 484
moduleIX, 484

program-nameIX, 769
program-stmtIX, 767
program-unitIX, 767
PUBLICIX, 775
PUBLIC attributeIX, 162, 192, 502
PUBLIC statementIX, 162

Q
quote edit descriptorIX, 464

R
rIX, 767
RADIX functionIX, 704
random numberIX, 606
RANDOM_NUMBER subroutineIX,

704
RANDOM_SEED subroutineIX, 704
RANGE functionIX, 705
rankIX, 204, 550

argumentIX, 556
arrayIX, 41, 206

READIX, 775
READ statementIX, 359
READ= specifierIX, 415
readingIX, 345
read-stmtIX, 767
READWRITEIX, 775

READWRITE= specifierIX, 416
REALIX, 775
real

edit descriptorIX, 445
editingIX, 445–447
modelIX, 597

REAL functionIX, 706
REAL statementIX, 136
real typeIX, 103–105, 136–137

constantIX, 104
kind parameterIX, 103, 104, 136
operatorIX, 104
precisionIX, 104
representationIX, 93, 103
valueIX, 103

real-literal-constantIX, 767
real-partIX, 767
RECIX, 775
REC= specifierIX, 366
RECLIX, 775
RECL= specifierIX, 404, 416
recordIX, 347–349

currentIX, 352, 441
dataIX, 347
end-of-fileIX, 347, 349, 397, 406,

417, 419
formattedIX, 348
lengthIX, 349, 404
nextIX, 352
precedingIX, 352
unformattedIX, 349

recursionIX, 45, 486, 489, 498, 527, 591
SAVE attributeIX, 169

RECURSIVEIX, 775
recursive functionIX, 537
recursive subroutineIX, 532
reduction functionIX, 604
referenceIX, 51

dataIX, 198

816 Fortran 90 Handbook

elementalIX, 569
objectIX, 197
procedureIX, 525

relational operatorIX, 237, 243
rel-opIX, 767
renameIX, 767
rep-charIX, 769
repeat factorIX, 432

DATA statementIX, 158
formatIX, 433

REPEAT functionIX, 707
representable characterIX, 66, 109
representation

character typeIX, 109
complex typeIX, 105
integer typeIX, 100
logical typeIX, 107
real typeIX, 93, 103

RESHAPE functionIX, 159, 605, 707
restricted expressionIX, 270
RESULTIX, 775
result

entryIX, 547
variableIX, 537

result of functionIX, 523, 537
RESULT option

FUNCTION statementIX, 523
result type

numeric intrinsic operationIX,
259

result-nameIX, 769
RETURNIX, 775
return

alternateIX, 526, 539, 571
RETURN statementIX, 543
return-stmtIX, 767
REWINDIX, 775
REWIND statementIX, 417, 421
rewindingIX, 417

rewind-stmtIX, 767
roundingIX, 289
RRSPACING functionIX, 708

S
SIX, 775
S edit descriptorIX, 461
SAVEIX, 775
SAVE attributeIX, 156, 168, 194, 500,

528
DATA attributeIX, 528
recursionIX, 169

saved-entityIX, 767
save-stmtIX, 767
saving common blockIX, 170, 183
scalarIX, 41, 48, 200

expressionIX, 303, 305
scale factorIX, 435, 462
SCALE functionIX, 709
SCAN functionIX, 709
scientific edit descriptorIX, 451
scopeIX, 27–35, 620–629

assignmentIX, 626
labelIX, 625
nameIX, 623–625
operatorIX, 626
procedureIX, 626
unitIX, 626
variableIX, 33

scoping unitIX, 34, 51, 60
scratch fileIX, 405
section

arrayIX, 202, 207–213, 557
section-subscriptIX, 767
SELECTIX, 775
SELECT CASE statementIX, 317
select-case-stmtIX, 767

Fortran 90 Handbook 817

SELECTED_INT_KIND functionIX,
710

SELECTED_REAL_KIND
functionIX, 711

SEQUENCEIX, 775
sequenceIX, 50

associationIX, 554, 637
compositeIX, 177
executionIX, 62, 309
storageIX, 177, 635
structureIX, 177
typeIX, 111, 176

sequence associationIX, 553–560, 630
SEQUENCE statementIX, 111, 112,

113, 177, 635
SEQUENTIALIX, 776
sequential accessIX, 355, 355–356, 360,

370, 373, 374
SEQUENTIAL= specifierIX, 416
SET_EXPONENT functionIX, 712
shape

arrayIX, 41, 206
conformanceIX, 261
expressionIX, 255, 261–265

SHAPE functionIX, 712
shared terminated DO constructIX,

325
shared-term-do-constructIX, 767
side effect

functionIX, 286
signIX, 767
sign edit descriptorIX, 435
sign editingIX, 461
SIGN functionIX, 713
signed-digit-stringIX, 767
signed-int-literal-constantIX, 767
sign-edit-descIX, 767
signed-real-literal-constantIX, 767
significandIX, 767

SIN functionIX, 713
SINH functionIX, 713
SIZEIX, 776
size

argumentIX, 555
arrayIX, 41, 92, 206

SIZE functionIX, 714
SIZE= specifierIX, 366
slash edit descriptorIX, 459
source formIX, 2, 65, 73–83, 85

fixedIX, 74, 80–83
fixed and freeIX, 82
freeIX, 74, 75–80

source textIX, 73
SPIX, 776
SP edit descriptorIX, 461
SPACING functionIX, 714
special characterIX, 68
special-characterIX, 769
specific nameIX, 594

intrinsic procedureIX, 612–614
specification

expressionIX, 266, 270, 271, 272,
304

formatIX, 427, 430, 432–436, 480
specification-exprIX, 767
specification-partIX, 767
specification-stmtIX, 767
specifier

ACCESS=IX, 399, 410
ACTION=IX, 399, 411
ADVANCE=IX, 363
assumed-shapeIX, 263
assumed-sizeIX, 264
BLANK=IX, 400, 411, 463
closeIX, 405
connectionIX, 396–405
controlIX, 360
deferred-shapeIX, 265

818 Fortran 90 Handbook

DELIM=IX, 400, 411, 470, 479
DIRECT=IX, 412
END=IX, 363
EOR=IX, 364
ERR=IX, 365, 401, 406, 412, 420
EXIST=IX, 412
explicit-shapeIX, 263
FILE=IX, 401, 412
FMT=IX, 362
FORM=IX, 402, 413
formatIX, 360
FORMATTED=IX, 413
input/outputIX, 360
inquiryIX, 408
IOSTAT=IX, 365, 402, 407, 413, 420
NAME=IX, 413
NAMED=IX, 414
namelistIX, 360
NEXTREC=IX, 414
NML=IX, 363
NUMBER=IX, 414
OPENED=IX, 414
PAD=IX, 402, 415
positionIX, 419
POSITION=IX, 403, 415
READ=IX, 415
READWRITE=IX, 416
REC=IX, 366
RECL=IX, 404, 416
SEQUENTIAL=IX, 416
SIZE=IX, 366
STAT=IX, 215, 220
STATUS=IX, 404, 407
UNFORMATTED=IX, 416
unitIX, 360
UNIT=IX, 361, 399, 406, 410, 419
WRITE=IX, 417

SPREAD functionIX, 715
SQRT functionIX, 570, 716
SSIX, 776
SS edit descriptorIX, 461

standard
permissiveIX, 24

standard moduleIX, 20
standard-conforming programIX, 23
STATIX, 776
STAT= specifierIX, 215, 220
statement

actionIX, 309
ALLOCATABLEIX, 151
ALLOCATEIX, 215, 299
arithmetic IFIX, 340, 344, 777
ASSIGNIX, 338, 344, 777
assigned GO TOIX, 338, 339, 344,

777
assignmentIX, 290
BACKSPACEIX, 417, 421
branchIX, 44, 333
branch targetIX, 333
branchingIX, 310
CALLIX, 525, 532
CASEIX, 317
CHARACTERIX, 138
CLOSEIX, 405–407
COMMONIX, 181
COMPLEXIX, 137
computed GO TOIX, 335, 343
CONTAINSIX, 524, 543
CONTINUEIX, 323, 336
controlIX, 309
CYCLEIX, 332
DATAIX, 155–160
data transferIX, 345, 359–389
DEALLOCATEIX, 219, 299
derived-typeIX, 114
DIMENSIONIX, 150
direct access input/outputIX, 360
DOIX, 323, 328
DOUBLE PRECISIONIX, 137
ENDIX, 486
END DOIX, 323
END SELECTIX, 317

Fortran 90 Handbook 819

ENDFILEIX, 419, 421
entityIX, 620
ENTRYIX, 544, 567, 589
EQUIVALENCEIX, 179
executableIX, 309
EXITIX, 331
EXTERNALIX, 172, 547
file connectionIX, 346
file inquiryIX, 346
file positioningIX, 346, 417–422
FORMATIX, 430, 480
formatted input/outputIX, 360
FUNCTIONIX, 523
GO TOIX, 335, 343
IFIX, 312, 314, 341
IMPLICITIX, 142
inputIX, 345
INQUIREIX, 408
INTEGERIX, 136
INTENTIX, 165
INTRINSICIX, 173, 548
keywordIX, 49, 70
labelIX, 72, 334
LOGICALIX, 138
logical IFIX, 341
NAMELISTIX, 175, 360
nonexecutableIX, 309
NULLIFYIX, 219, 299
obsolescent controlIX, 337–340
OPENIX, 395–405
OPTIONALIX, 167
orderIX, 57–58, 74
outputIX, 345
PARAMETERIX, 160
partialIX, 76
PAUSEIX, 340, 777
POINTERIX, 153
PRINTIX, 359
PRIVATEIX, 162
procedure-relatedIX, 543
PUBLICIX, 162
READIX, 359

REALIX, 136
RETURNIX, 543
REWINDIX, 417, 421
SELECT CASEIX, 317
separatorIX, 76
SEQUENCEIX, 111, 112, 113, 177,

635
sequential access input/outputIX,

360
statement functionIX, 541
STOPIX, 337, 343
TARGETIX, 154
terminalIX, 326
TYPEIX, 114, 141
type declarationIX, 134–141
unformatted input/outputIX, 360
USEIX, 502, 504
USE ONLYIX, 504
WHEREIX, 299–303
WRITEIX, 359

statement functionIX, 37, 525, 541, 589,
593

statement function statementIX, 541
statement separatorIX, 76

fixed source formIX, 81
free source formIX, 76

STATUSIX, 776
STATUS= specifierIX, 404, 407
stat-variableIX, 767
stmt-function-stmtIX, 767
STOPIX, 776
stop codeIX, 337
STOP statementIX, 337, 343
stop-codeIX, 767
stop-stmtIX, 767
storage

associationIX, 31, 176–186, 499,
630, 636

modelIX, 99
workingIX, 174

820 Fortran 90 Handbook

storage association
common blockIX, 634–636

storage order
structureIX, 176

storage sequenceIX, 177, 635
common blockIX, 183

storage unitIX, 176, 634
characterIX, 634
common blockIX, 181
numericIX, 634
pointer objectIX, 176
sharingIX, 176
unspecifiedIX, 176, 634

stream input/outputIX, 375
stride

arrayIX, 211
strideIX, 768
stringIX, 201

edit descriptorIX, 427
editingIX, 456
parentIX, 201

string delimiter
format specificationIX, 431

structureIX, 40, 48, 95
arrayIX, 41, 203, 205
assignmentIX, 97
componentIX, 95, 203–205
constructorIX, 111, 121–124, 199,

256
controlIX, 3, 15
dataIX, 6, 40, 141
nonsequenceIX, 177
parentIX, 204
sequenceIX, 177
storage orderIX, 176

structure constructorIX, 159
DATA statementIX, 158

structure-componentIX, 768
structure-constructorIX, 768
subobjectIX, 47, 198

constantIX, 200, 238
subobjectIX, 768
subprogram

externalIX, 496–498
functionIX, 484
internalIX, 37, 486, 501
moduleIX, 36, 501
referenceIX, 36
subroutineIX, 484

SUBROUTINEIX, 776
subroutineIX, 523, 530–535, 587

argumentIX, 532
assignmentIX, 589
interface blockIX, 294
intrinsicIX, 606
invocationIX, 530
recursiveIX, 532
subprogramIX, 484

subroutine-nameIX, 769
subroutine-stmtIX, 768
subroutine-subprogramIX, 768
subscriptIX, 210

expressionIX, 231
listIX, 207
order valueIX, 214
vectorIX, 211, 558

subscriptIX, 768
subscript tripletIX, 210

declared boundsIX, 211
subscript-tripletIX, 768
substringIX, 201–203
substringIX, 768
substring-rangeIX, 768
SUM functionIX, 716
summation expressionIX, 242
symbol

nonterminalIX, 727
terminalIX, 728

syntax

Fortran 90 Handbook 821

Fortran 90IX, 727
low-levelIX, 69, 84
nonstandardIX, 23

system clockIX, 606
SYSTEM_CLOCK subroutineIX, 718

T
TIX, 776
T edit descriptorIX, 457
tabbingIX, 481
tabbing limitIX, 458
TAN functionIX, 719
TANH functionIX, 719
TARGETIX, 776
targetIX, 45, 215, 296

associationIX, 218
pointerIX, 152, 218

targetIX, 768
TARGET attributeIX, 154, 194, 204,

218, 297–298
TARGET statementIX, 154
target-stmtIX, 768
TERIX, 160
terminal pointIX, 352
terminal statementIX, 326
terminal symbolIX, 728
termination

programIX, 35
THENIX, 776
TINY functionIX, 719
TKR patternIX, 550
TLIX, 776
TL edit descriptorIX, 457
TOIX, 776
token

lexicalIX, 65, 69, 85
total associationIX, 177
TRIX, 776

TR edit descriptorIX, 457
TRANSFER functionIX, 720
transfer functionIX, 601–602
transformational intrinsic

procedureIX, 594
TRANSPOSE functionIX, 721
TRIM functionIX, 722
triplet

subscriptIX, 210
TYPEIX, 776
typeIX, 39–41, 96–121

characterIX, 108–110, 138–141
character sequenceIX, 119
complexIX, 105–107, 137–138
derivedIX, 48, 90, 110–121, 141
implicitIX, 492
integerIX, 100–102, 136
intrinsicIX, 71, 90, 99–110, 127
kind parameterIX, 93
logicalIX, 107–108, 138
nameIX, 96
nondefaultIX, 40
numeric sequenceIX, 119
operationIX, 97
realIX, 103–105, 136–137
representationIX, 40
sequenceIX, 111, 176
user-definedIX, 7, 40, 71, 141
valueIX, 96

type conversion
assignmentIX, 292

type declaration statementIX, 134–141
type parameter

expressionIX, 255
kindIX, 48
lengthIX, 48

TYPE statementIX, 114, 141
type statement

ALLOCATABLE attributeIX, 151
EXTERNAL attributeIX, 171

822 Fortran 90 Handbook

initializationIX, 156
INTENT attributeIX, 165
INTRINSIC attributeIX, 173
OPTIONAL attributeIX, 167
PARAMETER attributeIX, 160
POINTER attributeIX, 153
SAVE attributeIX, 169
TARGET attributeIX, 154

type-declaration-stmtIX, 768
type-nameIX, 769
type-param-valueIX, 768
type-specIX, 768
typing

implicitIX, 133, 142–143, 493

U
UBOUND functionIX, 262, 722
ultimate componentIX, 110
unary operationIX, 235
undefinedIX, 44, 637–643

valueIX, 618
undefinitionIX, 44, 63
underscoreIX, 67, 71
underscoreIX, 768
UNFORMATTEDIX, 776
unformatted dataIX, 423
unformatted input/outputIX, 373, 380
unformatted input/output

statementIX, 360
unformatted recordIX, 349
UNFORMATTED= specifierIX, 416
UNITIX, 776
unit

connectionIX, 358
existenceIX, 358
preconnectionIX, 358
programIX, 35, 516–520
scopeIX, 626
scopingIX, 34, 51, 60

specifierIX, 360
storageIX, 176, 634

UNIT= specifierIX, 361, 399, 406, 410,
419

UNPACK functionIX, 723
unspecified storage unitIX, 176, 634
upper boundIX, 262

arrayIX, 206
upper-boundIX, 768
uppercase letterIX, 66
USEIX, 776
use associationIX, 34, 483, 502, 507,

519, 528, 630
USE ONLY statementIX, 504
USE statementIX, 502, 504

generic nameIX, 582
use-nameIX, 769
user-defined assignmentIX, 231, 585–

587
user-defined generic procedureIX,

581
user-defined operationIX, 90, 237
user-defined operatorIX, 7, 228, 237,

540, 576, 583–585
user-defined procedureIX, 571

genericIX, 581
user-defined typeIX, 7, 40, 71, 141

globalIX, 510
implicit typingIX, 143
nameIX, 141

use-stmtIX, 768

V
value

attributeIX, 155–161
expressionIX, 231
functionIX, 538
nullIX, 468, 474
undefinedIX, 618

Fortran 90 Handbook 823

variableIX, 47, 199–200, 238
associationIX, 31
definition statusIX, 44
DOIX, 321
initializationIX, 44, 155
initialized localIX, 528
resultIX, 537
scopeIX, 33
statusIX, 169
valueIX, 169
value definitionIX, 43

variableIX, 768
variable-nameIX, 769
varying length string moduleIX, 20
vector processingIX, 16
vector subscriptIX, 211, 558

INTENT attributeIX, 568
vector-subscriptIX, 768
VERIFY functionIX, 724

W
wIX, 768
WG5IX, 15
WHEREIX, 776
WHERE blockIX, 301
WHERE constructIX, 299–303, 311
WHERE statementIX, 299–303
where-constructIX, 768
where-construct-stmtIX, 768
where-stmtIX, 768
WHILEIX, 776
whole arrayIX, 207
WRITEIX, 776
WRITE statementIX, 359
WRITE= specifierIX, 417
write-stmtIX, 768
writingIX, 346

X
XIX, 776
X edit descriptorIX, 457
X3J3IX, 15

Z
ZIX, 776
Z edit descriptorIX, 443
zero-length character stringIX, 201
zero-size arrayIX, 211, 217

