
JUN 2001 WORKING DRAFT J3/01-007R2
Section 11: Program units
The terms and basic concepts of program units were introduced in 2.2. A program unit is a main

program, an external subprogram, a module, or a block data program unit.

This section describes all of these program units except external subprograms, which are described

in Section 12.

11.1 Main program
A main program is a program unit that does not contain a SUBROUTINE, FUNCTION, MODULE,

or BLOCK DATA statement as its first statement.

R1101 main-program is [program-stmt]

[specification-part]

[execution-part]

[internal-subprogram-part]

end-program-stmt

R1102 program-stmt is PROGRAM program-name

R1103 end-program-stmt is END [PROGRAM [program-name]]

C1101 (R1101) In a main-program, the execution-part shall not contain a RETURN statement or an
ENTRY statement.

C1102 (R1101) The program-name may be included in the end-program-stmt only if the optional
program-stmt is used and, if included, shall be identical to the program-name specified in the
program-stmt.

C1103 (R1101) An automatic object shall not appear in the specification-part (R204) of a main
program.

The program name is global to the program, and shall not be the same as the name of any other

program unit, external procedure, or common block in the program, nor the same as any local

name in the main program.

The main program may be defined by means other than Fortran; in that case, the program shall not

contain a main-program program-unit.

NOTE 11.1
For explanatory information about uses for the program name, see section C.8.1.

NOTE 11.2
An example of a main program is:

PROGRAM ANALYSE
REAL A, B, C (10,10) ! Specification part
CALL FIND ! Execution part

CONTAINS
SUBROUTINE FIND ! Internal subprogram

...
END SUBROUTINE FIND

END PROGRAM ANALYSE
JUN 2001 WORKING DRAFT 231

J3/01-007R2 WORKING DRAFT JUN 2001
11.1.1 Main program executable part

The sequence of execution-part statements specifies the actions of the main program during

program execution. Execution of a program (R201) begins with the first executable construct of the

main program.

A main program shall not be recursive; that is, a reference to it shall not appear in any program

unit in the program, including itself.

Normal execution of a program ends with execution of the end-program-stmt of the main program

or with execution of a STOP statement in any program unit of the program. Execution may also be

terminated if certain error conditions occur.

11.1.2 Main program internal subprograms

Any internal subprograms in the main program shall follow the CONTAINS statement. Internal

subprograms are described in 12.1.2.2. The main program is called the host of its internal

subprograms.

11.2 External subprograms
External subprograms are described in Section 12.

11.3 Modules
A module contains specifications and definitions that are to be accessible to other program units.

A module that is provided as an inherent part of the processor is an intrinsic module. A

nonintrinsic module is defined by a module program unit or a means other than Fortran.

Procedures and types defined in an intrinsic module are not themselves intrinsic.

R1104 module is module-stmt
[specification-part]

[module-subprogram-part]

end-module-stmt

R1105 module-stmt is MODULE module-name

R1106 end-module-stmt is END [MODULE [module-name]]

C1104 (R1104) If the module-name is specified in the end-module-stmt, it shall be identical to the
module-name specified in the module-stmt.

C1105 (R1104) A module specification-part shall not contain a stmt-function-stmt, an entry-stmt, or a
format-stmt.

C1106 (R1104) An automatic object shall not appear in the specification-part (R204) of a module.

C1107 (R1104) If an object of a type for which component-initialization is specified (R435) appears
in the specification-part of a module and does not have the ALLOCATABLE or POINTER
attribute, the object shall have the SAVE attribute.

The module name is global to the program, and shall not be the same as the name of any other

program unit, external procedure, or common block in the program, nor be the same as any local

name in the module.
232 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
11.3.1 Module reference

A USE statement specifying a module name is a module reference. At the time a module reference

is processed, the public portions of the specified module shall be available. A module shall not

reference itself, either directly or indirectly.

The accessibility, public or private, of specifications and definitions in a module to a scoping unit

making reference to the module may be controlled in both the module and the scoping unit

making the reference. In the module, the PRIVATE statement, the PUBLIC statement (5.2.1), their

equivalent attributes (5.1.2.1), and the PRIVATE statement in a derived-type definition (4.5.1) are

used to control the accessibility of module entities outside the module.

In a scoping unit making reference to a module, the ONLY option in the USE statement may be

used to further limit the accessibility, in that referencing scoping unit, of the public entities in the

module.

11.3.2 The USE statement and use association

The USE statement provides the means by which a scoping unit accesses named data objects,

derived types, type aliases, interface blocks, procedures, abstract interfaces, generic identifiers

(12.3.2.1), and namelist groups in a module. The entities in the scoping unit are said to be use
associated with the entities in the module. The accessed entities have the attributes specified in

the module. The entities made accessible are identified by the names or generic identifiers used to

identify them in the module. By default, they are identified by the same identifiers in the scoping

unit containing the USE statement, but it is possible to specify that different local identifiers be

used.

R1107 use-stmt is USE [[, module-nature] ::] module-name [, rename-list]

or USE [[, module-nature] ::] module-name , ■
■ ONLY : [only-list]

R1108 module-nature is INTRINSIC

or NON_INTRINSIC

R1109 rename is local-name => use-name
or OPERATOR (local-defined-operator) => ■

■ OPERATOR (use-defined-operator)

R1110 only is generic-spec
or only-use-name

NOTE 11.3
Although statement function definitions, ENTRY statements, and FORMAT statements shall not
appear in the specification part of a module, they may appear in the specification part of a
module subprogram in the module.

A module is host to any module subprograms (12.1.2.2) it contains, and the entities in the
module are therefore accessible in the module subprograms through host association.

NOTE 11.4
For a discussion of the impact of modules on dependent compilation, see section C.8.2.

NOTE 11.5
For examples of the use of modules, see section C.8.3.

NOTE 11.6
For a discussion of the impact of accessibility on dependent compilation, see section C.8.2.2.
JUN 2001 WORKING DRAFT 233

J3/01-007R2 WORKING DRAFT JUN 2001
or rename

R1111 only-use-name is use-name

C1108 (R1107) If module-nature is INTRINSIC, module-name shall be the name of an intrinsic
module.

C1109 (R1107) If module-nature is NON_INTRINSIC, module-name shall be the name of a
nonintrinsic module.

C1110 (R1105) Each generic-spec shall be a public entity in the module.

C1111 (R1107) Each use-name shall be the name of a public entity in the module.

R1112 local-defined-operator is defined-unary-op
or defined-binary-op

R1113 use-defined-operator is defined-unary-op
or defined-binary-op

C1112 (R1113) Each use-defined-operator shall be a public entity in the module.

A use-stmt without a module-nature provides access either to an intrinsic or to a nonintrinsic

module. If the module-name is the name of both an intrinsic and a nonintrinsic module, the

nonintrinsic module is accessed.

The USE statement without the ONLY option provides access to all public entities in the specified

module.

A USE statement with the ONLY option provides access only to those entities that appear as

generic-specs, use-names, or use-defined-operators in the only-list.

More than one USE statement for a given module may appear in a scoping unit. If one of the USE

statements is without an ONLY qualifier, all public entities in the module are accessible. If all the

USE statements have ONLY qualifiers, only those entities in one or more of the only-lists are

accessible.

An accessible entity in the referenced module has one or more local identifiers. These identifiers

are

(1) The identifier of the entity in the referenced module if that identifier appears as an
only-use-name or as the defined-operator of a generic-spec in any only for that module,

(2) Each of the local-names or local-defined-operators the entity is given in any rename for that
module, and

(3) The identifier of the entity in the referenced module if that identifier does not appear
as a use-name or use-defined-operator in any rename for that module.

Two or more accessible entities, other than generic interfaces or defined operators, may have the

same identifier only if the identifier is not used to refer to an entity in the scoping unit. Generic

interfaces and defined operators are handled as described in section 16.1.2.3. Except for these

cases, the local identifier of any entity given accessibility by a USE statement shall differ from the

local identifiers of all other entities accessible to the scoping unit through USE statements and

otherwise.

The local identifier of an entity made accessible by a USE statement shall not appear in any other

nonexecutable statement that would cause any attribute (5.1.2) of the entity to be specified in the

scoping unit that contains the USE statement, except that it may appear in a PUBLIC or PRIVATE

NOTE 11.7
There is no prohibition against a use-name or use-defined-operator appearing multiple times in
one USE statement or in multiple USE statements involving the same module. As a result, it
is possible for one use-associated entity to be accessible by more than one local identifier.
234 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
statement in the scoping unit of a module and it may be given the ASYNCHRONOUS or

VOLATILE attribute.

The appearance of such a local identifier in a PUBLIC statement in a module causes the entity

accessible by the USE statement to be a public entity of that module. If the identifier appears in a

PRIVATE statement in a module, the entity is not a public entity of that module. If the local

identifier does not appear in either a PUBLIC or PRIVATE statement, it assumes the default

accessibility attribute (5.2.1) of that scoping unit.

A procedure with an implicit interface and public accessibility shall explicitly be given the

EXTERNAL attribute in the scoping unit of the module; if it is a function, its type and type

parameters shall be explicitly declared in a type declaration statement in that scoping unit.

An intrinsic procedure with public accessibility shall explicitly be given the INTRINSIC attribute in

the scoping unit of the module or be used as an intrinsic procedure in that scoping unit.

11.4 Block data program units
A block data program unit is used to provide initial values for data objects in named common

blocks.

R1114 block-data is block-data-stmt
[specification-part]

end-block-data-stmt

R1115 block-data-stmt is BLOCK DATA [block-data-name]

R1116 end-block-data-stmt is END [BLOCK DATA [block-data-name]]

C1113 (R1114) The block-data-name may be included in the end-block-data-stmt only if it was
provided in the block-data-stmt and, if included, shall be identical to the block-data-name in
the block-data-stmt.

NOTE 11.8
The constraints in sections 5.5.1, 5.5.2, and 5.4 prohibit the local-name from appearing as a
common-block-object in a COMMON statement, an equivalence-object in an EQUIVALENCE
statement, or a namelist-group-name in a NAMELIST statement, respectively. There is no
prohibition against the local-name appearing as a common-block-name or a namelist-object.

NOTE 11.9
For a discussion of the impact of the ONLY clause and renaming on dependent compilation,

see section C.8.2.1.

NOTE 11.10
Examples:

USE STATS_LIB

provides access to all public entities in the module STATS_LIB.

USE MATH_LIB; USE STATS_LIB, SPROD => PROD

makes all public entities in both MATH_LIB and STATS_LIB accessible. If MATH_LIB
contains an entity called PROD, it is accessible by its own name while the entity PROD of
STATS_LIB is accessible by the name SPROD.

USE STATS_LIB, ONLY: YPROD; USE STATS_LIB, ONLY : PROD

makes public entities YPROD and PROD in STATS_LIB accessible.

USE STATS_LIB, ONLY : YPROD; USE STATS_LIB

makes all public entities in STATS_LIB accessible.
JUN 2001 WORKING DRAFT 235

J3/01-007R2 WORKING DRAFT JUN 2001
C1114 (R1114) A block-data specification-part may contain only USE statements, type declaration
statements, IMPLICIT statements, PARAMETER statements, derived-type definitions, and
the following specification statements: COMMON, DATA, DIMENSION, EQUIVALENCE,
INTRINSIC, POINTER, SAVE, and TARGET.

C1115 (R1114) A type declaration statement in a block-data specification-part shall not contain
ALLOCATABLE, EXTERNAL, or BIND attribute specifiers.

If an object in a named common block is initially defined, all storage units in the common block

storage sequence shall be specified even if they are not all initially defined. More than one named

common block may have objects initially defined in a single block data program unit.

Only an object in a named common block may be initially defined in a block data program unit.

The same named common block shall not be specified in more than one block data program unit in

a program.

There shall not be more than one unnamed block data program unit in a program.

NOTE 11.11
For explanatory information about the uses for the block-data-name, see section C.8.1.

NOTE 11.12
In the example

BLOCK DATA INIT
 REAL A, B, C, D, E, F
 COMMON /BLOCK1/ A, B, C, D
 DATA A /1.2/, C /2.3/
 COMMON /BLOCK2/ E, F
 DATA F /6.5/
END BLOCK DATA INIT

common blocks BLOCK1 and BLOCK2 both have objects that are being initialized in a single
block data program unit. B, D, and E are not initialized but they need to be specified as part
of the common blocks.

NOTE 11.13
Objects associated with an object in a common block are considered to be in that common
block.

NOTE 11.14
An example of a block data program unit is:

BLOCK DATA WORK
COMMON /WRKCOM/ A, B, C (10, 10)

 REAL :: A, B, C
DATA A /1.0/, B /2.0/, C /100 * 0.0/

END BLOCK DATA WORK
236 WORKING DRAFT JUN 2001

	Section 11: Program units
	11.1�� Main program
	R1102 program�stmt is PROGRAM program�name
	R1103 end�program�stmt is END [PROGRAM [program�name]]
	C1101 (R1101) In a main�program, the execution�part shall not contain a RETURN statement or an EN...
	C1102 (R1101) The program�name may be included in the end�program�stmt only if the optional progr...
	C1103 (R1101) An automatic object shall not appear in the specification�part (R204) of a main pro...
	NOTE 11.1
	NOTE 11.2

	11.1.1�� Main program executable part
	11.1.2�� Main program internal subprograms

	11.2�� External subprograms
	11.3�� Modules
	R1104 module is module�stmt
	R1105 module�stmt is MODULE module�name
	R1106 end�module�stmt is END [MODULE [module�name]]
	C1104 (R1104) If the module�name is specified in the end�module�stmt, it shall be identical to th...
	C1105 (R1104) A module specification�part shall not contain a stmt�function�stmt, an entry�stmt, ...
	C1106 (R1104) An automatic object shall not appear in the specification�part (R204) of a module.
	C1107 (R1104) If an object of a type for which component�initialization is specified (R435) appea...
	NOTE 11.3
	NOTE 11.4
	NOTE 11.5

	11.3.1�� Module reference
	NOTE 11.6

	11.3.2�� The USE statement and use association
	R1107 use�stmt is USE [[, module-nature] ::] module�name [, rename�list]
	R1108 module-nature is INTRINSIC
	R1109 rename is local�name => use�name
	R1110 only is generic�spec
	R1111 only-use-name is use-name
	C1108 (R1107) If module-nature is INTRINSIC, module-name shall be the name of an intrinsic module.
	C1109 (R1107) If module-nature is NON_INTRINSIC, module-name shall be the name of a nonintrinsic ...
	C1110 (R1105) Each generic�spec shall be a public entity in the module.
	C1111 (R1107) Each use�name shall be the name of a public entity in the module.

	R1112 local-defined-operator is defined-unary-op
	R1113 use-defined-operator is defined-unary-op
	C1112 (R1113) Each use-defined-operator shall be a public entity in the module.
	(1) The identifier of the entity in the referenced module if that identifier appears as an only-u...
	(2) Each of the local-names or local-defined-operators the entity is given in any rename for that...
	(3) The identifier of the entity in the referenced module if that identifier does not appear as a...

	NOTE 11.7
	NOTE 11.8
	NOTE 11.9
	NOTE 11.10 �

	11.4�� Block data program units
	R1114 block�data is block�data�stmt
	R1115 block�data�stmt is BLOCK DATA [block�data�name]
	R1116 end�block�data�stmt is END [BLOCK DATA [block�data�name]]
	C1113 (R1114) The block�data�name may be included in the end�block�data�stmt only if it was provi...
	C1114 (R1114) A block�data specification�part may contain only USE statements, type declaration s...
	C1115 (R1114) A type declaration statement in a block�data specification�part shall not contain A...
	NOTE 11.11
	NOTE 11.12
	NOTE 11.13
	NOTE 11.14

