
JUN 2001 WORKING DRAFT J3/01-007R2
Section 7: Expressions and assignment
This section describes the formation, interpretation, and evaluation rules for expressions and the

assignment statements.

7.1 Expressions
An expression represents either a data reference or a computation, and its value is either a scalar

or an array. An expression is formed from operands, operators, and parentheses.

An operand is either a scalar or an array. An operation is either intrinsic (7.2) or defined (7.3).

More complicated expressions can be formed using operands which are themselves expressions.

7.1.1 Form of an expression

Evaluation of an expression produces a value, which has a type, type parameters (if appropriate),

and a shape (7.1.4).

An expression is defined in terms of several categories: primary, level-1 expression, level-2

expression, level-3 expression, level-4 expression, and level-5 expression.

These categories are related to the different operator precedence levels and, in general, are defined

in terms of other categories. The simplest form of each expression category is a primary. The rules

given below specify the syntax of an expression. The semantics are specified in 7.2 and 7.3.

NOTE 7.1
Simple forms of an operand are constants and variables, such as:

3.0

 .FALSE.

 A

 B (I)

 C (I:J)

NOTE 7.2
Examples of intrinsic operators are:

+

 *

 >

 .AND.

NOTE 7.3
Examples of expressions are:

 A + B

 (A - B) * C

 A ** B

 C .AND. D

 F // G
JUN 2001 WORKING DRAFT 107

J3/01-007R2 WORKING DRAFT JUN 2001
7.1.1.1 Primary

R701 primary is constant
or designator
or array-constructor
or structure-constructor
or function-reference
or type-param-inquiry
or type-param-name
or (expr)

C701 (R701) The type-param-name shall be the name of a type-parameter.

A designator that is a primary shall not be a whole assumed-size array.

7.1.1.2 Level-1 expressions

Defined unary operators have the highest operator precedence (Table 7.7). Level-1 expressions are

primaries optionally operated on by defined unary operators:

R702 level-1-expr is [defined-unary-op] primary

R703 defined-unary-op is . letter [letter]
C702 (R703) A defined-unary-op shall not contain more than 31 letters and shall not be the same as

any intrinsic-operator or logical-literal-constant.

7.1.1.3 Level-2 expressions

Level-2 expressions are level-1 expressions optionally involving the numeric operators power-op,

mult-op, and add-op.

R704 mult-operand is level-1-expr [power-op mult-operand]

R705 add-operand is [add-operand mult-op] mult-operand

R706 level-2-expr is [[level-2-expr] add-op] add-operand

R707 power-op is **

NOTE 7.4
Examples of a primary are:

Example Syntactic class

1.0 constant

'ABCDEFGHIJKLMNOPQRSTUVWXYZ' (I:I) constant-subobject

A variable

(/ 1.0, 2.0 /) array-constructor

PERSON (12, 'Jones') structure-constructor

F (X, Y) function-reference

(S + T) (expr)

NOTE 7.5
Simple examples of a level-1 expression are:

Example Syntactic class

A primary (R701)

.INVERSE. B level-1-expr (R702)

A more complicated example of a level-1 expression is:

.INVERSE. (A + B)
108 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
R708 mult-op is *
or /

R709 add-op is +

or –

7.1.1.4 Level-3 expressions

Level-3 expressions are level-2 expressions optionally involving the character operator concat-op.

R710 level-3-expr is [level-3-expr concat-op] level-2-expr

R711 concat-op is //

7.1.1.5 Level-4 expressions

Level-4 expressions are level-3 expressions optionally involving the relational operators rel-op.

R712 level-4-expr is [level-3-expr rel-op] level-3-expr

R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==

or /=

or <

or <=

or >

NOTE 7.6
Simple examples of a level-2 expression are:

Example Syntactic class Remarks

A level-1-expr A is a primary. (R702)

B ** C mult-operand B is a level-1-expr, ∗∗ is a power-op,

and C is a mult-operand. (R704)

D * E add-operand D is an add-operand, ∗ is a mult-op,

and E is a mult-operand. (R705)

+1 level-2-expr + is an add-op
and 1 is an add-operand. (R706)

F - I level-2-expr F is a level-2-expr, – is an add-op,

and I is an add-operand. (R706)

A more complicated example of a level-2 expression is:

 - A + D * E + B ** C

NOTE 7.7
Simple examples of a level-3 expression are:

Example Syntactic class

A level-2-expr (R706)

B // C level-3-expr (R710)

A more complicated example of a level-3 expression is:

 X // Y // 'ABCD'
JUN 2001 WORKING DRAFT 109

J3/01-007R2 WORKING DRAFT JUN 2001
or >=

7.1.1.6 Level-5 expressions

Level-5 expressions are level-4 expressions optionally involving the logical operators not-op, and-op,

or-op, and equiv-op.

R714 and-operand is [not-op] level-4-expr

R715 or-operand is [or-operand and-op] and-operand

R716 equiv-operand is [equiv-operand or-op] or-operand

R717 level-5-expr is [level-5-expr equiv-op] equiv-operand

R718 not-op is .NOT.
R719 and-op is .AND.
R720 or-op is .OR.
R721 equiv-op is .EQV.

or .NEQV.

7.1.1.7 General form of an expression

Expressions are level-5 expressions optionally involving defined binary operators. Defined binary

operators have the lowest operator precedence (Table 7.7).

R722 expr is [expr defined-binary-op] level-5-expr

R723 defined-binary-op is . letter [letter]
C703 (R723) A defined-binary-op shall not contain more than 31 letters and shall not be the same

as any intrinsic-operator or logical-literal-constant.

NOTE 7.8
Simple examples of a level-4 expression are:

Example Syntactic class

A level-3-expr (R710)

B .EQ. C level-4-expr (R712)

D < E level-4-expr (R712)

A more complicated example of a level-4 expression is:

 (A + B) .NE. C

NOTE 7.9
Simple examples of a level-5 expression are:

Example Syntactic class

A level-4-expr (R712)

.NOT. B and-operand (R714)

C .AND. D or-operand (R715)

E .OR. F equiv-operand (R716)

G .EQV. H level-5-expr (R717)

S .NEQV. T level-5-expr (R717)

A more complicated example of a level-5 expression is:

 A .AND. B .EQV. .NOT. C
110 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
7.1.2 Intrinsic operations

An intrinsic operation is either an intrinsic unary operation or an intrinsic binary operation. An

intrinsic unary operation is an operation of the form intrinsic-operator where is of an

intrinsic type (4.4) listed in Table 7.1 for the unary intrinsic operator.

An intrinsic binary operation is an operation of the form intrinsic-operator where and

are of the intrinsic types (4.4) listed in Table 7.1 for the binary intrinsic operator and are in shape

conformance (7.1.5).

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric

operator (+, –, ∗, /, or ∗∗). A numeric intrinsic operator is the operator in a numeric intrinsic

operation.

For numeric intrinsic binary operations, the two operands may be of different numeric types or

different kind type parameters. Except for a value raised to an integer power, if the operands have

NOTE 7.10
Simple examples of an expression are:

Example Syntactic class

A level-5-expr (R717)

B.UNION.C expr (R722)

More complicated examples of an expression are:

 (B .INTERSECT. C) .UNION. (X - Y)

 A + B .EQ. C * D

 .INVERSE. (A + B)

 A + B .AND . C * D

 E // G .EQ. H (1:10)

Table 7.1 Type of operands and results for intrinsic operators

Intrinsic operator
op

Type of Type of Type of
[] op

Unary +, – I, R, Z I, R, Z

Binary +, –, ∗, /, ∗∗
I
R
Z

I, R, Z
I, R, Z
I, R, Z

I, R, Z
R, R, Z
Z, Z, Z

// C C C

.EQ., .NE., ==, /=

I
R
Z
C

I, R, Z
I, R, Z
I, R, Z

C

L, L, L
L, L, L
L, L, L

L

.GT., .GE., .LT., .LE.
>, >=, <, <=

I
R
C

I, R
I, R
C

L, L
L, L

L

.NOT. L L

.AND., .OR., .EQV., .NEQV. L L L

Note: The symbols I, R, Z, C, and L stand for the types integer, real, complex,
character, and logical, respectively. Where more than one type for is
given, the type of the result of the operation is given in the same relative
position in the next column. For the intrinsic operators requiring operands of
type character, the kind type parameters of the operands shall be the same.

x2 x2

x1 x2 x1 x2

x1 x2 x1 x2

x2
JUN 2001 WORKING DRAFT 111

J3/01-007R2 WORKING DRAFT JUN 2001
different types or kind type parameters, the effect is as if each operand that differs in type or kind

type parameter from those of the result is converted to the type and kind type parameter of the

result before the operation is performed. When a value of type real or complex is raised to an

integer power, the integer operand need not be converted.

A character intrinsic operation, relational intrinsic operation, and logical intrinsic operation are

similarly defined in terms of a character intrinsic operator (//), relational intrinsic operator
(.EQ., .NE., .GT., .GE., .LT., .LE., ==, /=, >, >=, <, and <=), and logical intrinsic operator
(.AND., .OR., .NOT., .EQV., and .NEQV.), respectively. For the character intrinsic operator //,

the kind type parameters shall be the same.

A numeric relational intrinsic operation is a relational intrinsic operation where the operands are

of numeric type. A character relational intrinsic operation is a relational intrinsic operation

where the operands are of type character and have the same kind type parameter value.

7.1.3 Defined operations

A defined operation is either a defined unary operation or a defined binary operation. A defined
unary operation is an operation that has the form defined-unary-op and that is defined by a

function and a generic interface (4.5.1.5, 12.3.2.1) or that has the form intrinsic-operator where

the type of is not that required for the unary intrinsic operation (7.1.2), and that is defined by a

function and a generic interface.

A defined binary operation is an operation that has the form defined-binary-op and that is

defined by a function and a generic interface or that has the form intrinsic-operator where the

types or ranks of either or or both are not those required for the intrinsic binary operation

(7.1.2), and that is defined by a function and a generic interface.

An extension operation is a defined operation in which the operator is of the form defined-unary-op
or defined-binary-op. Such an operator is called an extension operator. The operator used in an

extension operation may be such that a generic interface for the operator may specify more than

one function.

A defined elemental operation is a defined operation for which the function is elemental (12.7).

7.1.4 Data type, type parameters, and shape of an expression

The data type, type parameters, and shape of an expression depend on the operators and on the

data types, type parameters, and shapes of the primaries used in the expression, and are

determined recursively from the syntactic form of the expression. The data type of an expression

is one of the intrinsic types (4.4) or a derived type (4.5).

If an expression is a polymorphic primary or defined operation, the type parameters and the

declared and dynamic types of the expression are the same as those of the primary or defined

operation. Otherwise the type parameters and dynamic type of the expression are the same as its

declared type and type parameters; they are referred to simply as the type and type parameters of

the expression.

R724 logical-expr is expr

C704 (R724) logical-expr shall be of type logical.

R725 char-expr is expr

C705 (R725) char-expr shall be of type character.

NOTE 7.11
An intrinsic operator may be used as the operator in a defined operation. In such a case, the
generic properties of the operator are extended.

x2
x2

x2

x1 x2
x1 x2

x1 x2
112 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
R726 default-char-expr is expr

C706 (R726) default-char-expr shall be of type default character.

R727 int-expr is expr

C707 (R727) int-expr shall be of type integer.

R728 numeric-expr is expr

C708 (R728) numeric-expr shall be of type integer, real or complex.

7.1.4.1 Data type, type parameters, and shape of a primary

The data type, type parameters, and shape of a primary are determined according to whether the

primary is a constant, variable, array constructor, structure constructor, function reference, or

parenthesized expression. If a primary is a constant, its type, type parameters, and shape are those

of the constant. If it is a structure constructor, it is scalar and its type and type parameters are as

described in (4.5.8). If it is an array constructor, its type, type parameters, and shape are as

described in 4.8. If it is a variable or function reference, its type, type parameters, and shape are

those of the variable (5.1.1, 5.1.2) or the function reference (12.4.2), respectively. In the case of a

function reference, the function may be generic (12.3.2.1, 13.8), in which case its type, type

parameters, and shape are those of the specific function referenced, which is determined by the

types, type parameters, and ranks of its actual arguments as specified in 16.1.2.3.

If a primary is a parenthesized expression, its type, type parameters, and shape are those of the

expression.

If a pointer appears as one of the following, the associated target object is referenced:

(1) A primary in an intrinsic or defined operation,

(2) As the expr of a parenthesized primary, or

(3) As the only primary on the right-hand side of an intrinsic assignment statement.

The type, type parameters, and shape of the primary are those of the current target. If the pointer

is not associated with a target, it may appear as a primary only as an actual argument in a

reference to a procedure whose corresponding dummy argument is declared to be a pointer, or as

the target in a pointer assignment statement.

A disassociated array pointer or an unallocated allocatable array has no shape but does have rank.

The type, type parameters, and rank of the result of the NULL intrinsic function depend on context

(13.11.84).

7.1.4.2 Data type, type parameters, and shape of the result of an operation

The type of the result of an intrinsic operation [] is specified by Table 7.1. The type of the

result of a defined operation [] is specified by the function defining the operation (7.3).

The shape of the result of an intrinsic operation is the shape of if is unary or if is scalar,

and is the shape of otherwise.

An expression of an intrinsic type has a kind type parameter. An expression of type character also

has a character length parameter. For an expression // where // is the character intrinsic

operator and and are of type character, the character length parameter is the sum of the

lengths of the operands and the kind type parameter is the kind type parameter of , which shall

be the same as the kind type parameter of . For an expression where is an intrinsic

unary operator and is of type integer, real, complex, or logical, the kind type parameter of the

expression is that of the operand. For an expression where is a numeric intrinsic

binary operator with one operand of type integer and the other of type real or complex, the kind

type parameter of the expression is that of the real or complex operand. For an expression op
where op is a numeric intrinsic binary operator with both operands of the same type and kind

x1 op x2
x1 op x2

x2 op x1
x1

x1 x2
x1 x2

x1
x2 op x2 op

x2
x1 op x2 op

x1
x2
JUN 2001 WORKING DRAFT 113

J3/01-007R2 WORKING DRAFT JUN 2001
type parameters, or with one real and one complex with the same kind type parameters, the kind

type parameter of the expression is identical to that of each operand. In the case where both

operands are integer with different kind type parameters, the kind type parameter of the

expression is that of the operand with the greater decimal exponent range or is processor

dependent if the operands have the same decimal exponent range. In the case where both

operands are any of type real or complex with different kind type parameters, the kind type

parameter of the expression is that of the operand with the greater decimal precision or is

processor dependent if the operands have the same decimal precision. For an expression op
where op is a logical intrinsic binary operator with both operands of the same kind type parameter,

the kind type parameter of the expression is identical to that of each operand. In the case where

both operands are of type logical with different kind type parameters, the kind type parameter of

the expression is processor dependent. For an expression op where op is a relational intrinsic

operator, the expression has the default logical kind type parameter.

7.1.5 Conformability rules for elemental operations

An elemental operation is an intrinsic operation or a defined elemental operation. Two entities are

in shape conformance if both are arrays of the same shape, or one or both are scalars.

For all elemental binary operations, the two operands shall be in shape conformance. In the case

where one is a scalar and the other an array, the scalar is treated as if it were an array of the same

shape as the array operand with every element, if any, of the array equal to the value of the scalar.

7.1.6 Specification expression

A specification expression is an expression with limitations that make it suitable for use in

specifications such as nonkind type parameters (R502) and array bounds (R517, R518).

R729 specification-expr is scalar-int-expr

C709 (R729) The scalar-int-expr shall be a restricted expression.

A restricted expression is an expression in which each operation is intrinsic and each primary is

(1) A constant or subobject of a constant,

(2) An object designator with a base object that is a dummy argument that has neither the
OPTIONAL nor the INTENT (OUT) attribute,

(3) An object designator with a base object that is in a common block,

(4) An object designator with a base object that is made accessible by use association or
host association,

(5) An array constructor where each element and the bounds and strides of each implied-
DO are restricted expressions,

(6) A structure constructor where each component is a restricted expression,

(7) A specification inquiry where each designator or function argument is

(a) a restricted expression or

(b) a variable whose properties inquired about are not

(i) dependent on the upper bound of the last dimension of an assumed-size

array,

(ii) deferred, or

(iii) defined by an expression that is not a restricted expression,

(8) A reference to any other standard intrinsic function where each argument is a
restricted expression,

(9) A reference to a specification function where each argument is a restricted expression,

x1 x2

x1 x2
114 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
(10) A type parameter of the derived type being defined,

(11) An implied-DO variable within an array constructor where the bounds and strides of
the corresponding implied-DO are restricted expressions, or

(12) A restricted expression enclosed in parentheses,

where each subscript, section subscript, substring starting point, substring ending point, and type

parameter value is a restricted expression, and where any final subroutine that is invoked is pure.

A specification inquiry is a reference to

(1) an array inquiry function (13.8.15),

(2) the bit inquiry function BIT_SIZE,

(3) the character inquiry function LEN,

(4) the kind inquiry function KIND,

(5) a numeric inquiry function (13.8.8), or

(6) a type parameter inquiry (6.1.3).

A function is a specification function if it is a pure function, is not a standard intrinsic function, is

not an internal function, is not a statement function, and does not have a dummy procedure argument.

Evaluation of a specification expresion shall not directly or indirectly cause a procedure defined by

the subprogram in which it appears to be invoked.

A variable in a specification expression shall have its type and type parameters, if any, specified by

a previous declaration in the same scoping unit, by the implicit typing rules in effect for the

scoping unit, or by host or use association. If a variable in a specification expression is typed by

the implicit typing rules, its appearance in any subsequent type declaration statement shall

confirm the implied type and type parameters.

If a specification expression includes a specification inquiry for a type parameter or an array bound

of an entity specified in the same specification-part, the type parameter or array bound shall be

specified in a prior specification of the specification-part. The prior specification may be to the left

of the specification inquiry in the same statement. If a specification expression includes a reference

to the value of an element of an array specified in the same specification-part, the array shall be

completely specified in prior declarations.

NOTE 7.12
Specification functions are nonintrinsic functions that may be used in specification
expressions to determine the attributes of data objects. The requirement that they be pure
ensures that they cannot have side effects that could affect other objects being declared in the
same specification-part. The requirement that they not be internal ensures that they cannot
inquire, via host association, about other objects being declared in the same specification-part.
The prohibition against recursion avoids the creation of a new activation record while
construction of one is in progress.

NOTE 7.13
The following are examples of specification expressions:

 LBOUND (B, 1) + 5 ! B is an assumed-shape dummy array

 M + LEN (C) ! M and C are dummy arguments

 2 * PRECISION (A) ! A is a real variable made accessible

! by a USE statement
JUN 2001 WORKING DRAFT 115

J3/01-007R2 WORKING DRAFT JUN 2001
7.1.7 Initialization expression

An initialization expression is an expression in which each operation is intrinsic, the

exponentiation operation is permitted only with an integer power, and each primary is

(1) A constant or subobject of a constant,

(2) An array constructor where each element and the bounds and strides of each implied-
DO are initialization expressions,

(3) A structure constructor where each component-spec corresponding to an allocatable
component is a reference to the transformational intrinsic function NULL, each other
component-spec is an initialization expression,

(4) A reference to the elemental intrinsic function ABS where the argument is an
initialization expression of type integer or real, or a reference to one of the elemental
intrinsic functions ACHAR, ADJUSTL, ADJUSTR, AIMAG, AINT, AMAX0, AMAX1,
AMIN0, AMIN1, AMOD, ANINT, BTEST, CEILING, CHAR, CMPLX, CONJG, DABS,
DBLE, DDIM, DIM, DINT, DMAX1, DMIN1, DMOD, DNINT, DPROD, DSIGN,
EXPONENT, FLOAT, FLOOR, FRACTION, IABS, IACHAR, IAND, IBCLR, IBITS,
IBSET, ICHAR, IDIM, IDINT, IDNINT, IEOR, IFIX, INDEX, INT, IOR, ISHFT, ISHFTC,
ISIGN, LEN_TRIM, LGE, LGT, LLE, LLT, LOGICAL, MAX, MAX0, MAX1, MERGE,
MIN, MIN0, MIN1, MOD, MODULO, NEAREST, NINT, NOT, REAL, RRSPACING,
SCALE, SCAN, SET_EXPONENT, SIGN, SNGL, SPACING, or VERIFY, where each
argument is an initialization expression,

(5) A reference to one of the transformational functions REPEAT, RESHAPE,
SELECTED_INT_KIND, SELECTED_CHAR_KIND, SELECTED_REAL_KIND, TRIM,
or TRANSFER, where each argument is an initialization expression,

(6) A reference to the transformational function IEEE_SELECTED_REAL_KIND from the
intrinsic module IEEE_ARITHMETIC (14), where each argument is an initialization
expression.

(7) A reference to the transformational intrinsic function NULL,

(8) A specification inquiry where each designator or function argument is

(a) an initialization expression or

(b) a variable whose properties inquired about are not

(i) assumed,

(ii) deferred, or

(iii) defined by an expression that is not an initialization expression,

(9) A kind type parameter of the derived type being defined,

(10) An implied-DO variable within an array constructor where the bounds and strides of
the corresponding implied-DO are initialization expressions, or

(11) An initialization expression enclosed in parentheses,

and where each subscript, section subscript, substring starting point, substring ending point, and

type parameter value is an initialization expression.

R730 initialization-expr is expr

NOTE 7.14
All elemental intrinsic functions are permitted in an initialization expression except the
mathematical generic intrinsic functions ABS (with an argument of complex type), ACOS,
ASIN, ATAN, ATAN2, COS, COSH, EXP, LOG, LOG10, SIN, SINH, SQRT, TAN, and TANH,
and the additional mathematical specific intrinsic functions ALOG, ALOG10, CABS, CCOS,
CEXP, CLOG, CSIN, CSQRT, DACOS, DASIN, DATAN, DATAN2, DCOS, DCOSH, DEXP,
DLOG, DLOG10, DSIN, DSINH, DSQRT, DTAN, and DTANH.
116 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C710 (R730) initialization-expr shall be an initialization expression.

R731 char-initialization-expr is char-expr

C711 (R731) char-initialization-expr shall be an initialization expression.

R732 int-initialization-expr is int-expr

C712 (R732) int-initialization-expr shall be an initialization expression.

R733 logical-initialization-expr is logical-expr

C713 (R733) logical-initialization-expr shall be an initialization expression.

If an initialization expression includes a specification inquiry for a type parameter or an array

bound of an entity specified in the same specification-part, the type parameter or array bound shall

be specified in a prior specification of the specification-part. The prior specification may be to the

left of the specification inquiry in the same statement.

7.1.8 Evaluation of operations

An intrinsic operation requires the values of its operands.

The execution of any numeric operation whose result is not defined by the arithmetic used by the

processor is prohibited. Raising a negative-valued primary of type real to a real power is

prohibited.

The evaluation of a function reference shall neither affect nor be affected by the evaluation of any

other entity within the statement. If a function reference causes definition or undefinition of an

actual argument of the function, that argument or any associated entities shall not appear

elsewhere in the same statement. However, execution of a function reference in the logical

expression in an IF statement (8.1.2.4), the mask expression in a WHERE statement (7.5.3.1), or the

subscripts and strides in a FORALL statement (7.5.4) is permitted to define variables in the

statement that is conditionally executed.

NOTE 7.15
The following are examples of initialization expressions:

 3

 -3 + 4

 'AB'

 'AB' // 'CD'

 ('AB' // 'CD') // 'EF'

 SIZE (A)

 DIGITS (X) + 4

where A is an explicit-shaped array with constant bounds and X is of type default real.

The following are examples of expressions that are not initialization expressions:

 ABS (9.0) ! Not an integer argument

 3.0 ** 2.0 ! Not an integer power

 DOT_PRODUCT ((/ 2, 3 /), (/ 1, 7 /)) ! Not an allowed function
JUN 2001 WORKING DRAFT 117

J3/01-007R2 WORKING DRAFT JUN 2001
The type of an expression in which a function reference appears does not affect, and is not affected

by, the evaluation of the actual arguments of the function.

Execution of an array element reference requires the evaluation of its subscripts. The type of an

expression in which the array element reference appears does not affect, and is not affected by, the

evaluation of its subscripts. Execution of an array section reference requires the evaluation of its

section subscripts. The type of an expression in which an array section appears does not affect,

and is not affected by, the evaluation of the array section subscripts. Execution of a substring

reference requires the evaluation of its substring expressions. The type of an expression in which

a substring appears does not affect, and is not affected by, the evaluation of the substring

expressions. It is not necessary for a processor to evaluate any subscript expressions or substring

expressions for an array of zero size or a character entity of zero length.

The appearance of an array constructor requires the evaluation of the bounds and stride of any

array constructor implied-DO it may contain. The type of an expression in which an array

constructor appears does not affect, and is not affected by, the evaluation of such bounds and

stride expressions.

When an elemental binary operation is applied to a scalar and an array or to two arrays of the

same shape, the operation is performed element-by-element on corresponding array elements of

the array operands. The processor may perform the element-by-element operations in any order.

When an elemental unary operator operates on an array operand, the operation is performed

element-by-element, in any order, and the result is the same shape as the operand.

7.1.8.1 Evaluation of operands

It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate

entirely each operand, if the value of the expression can be determined otherwise.

NOTE 7.16
For example, the statements

 A (I) = F (I)

 Y = G (X) + X

are prohibited if the reference to F defines or undefines I or the reference to G defines or
undefines X.

However, in the statements

 IF (F (X)) A = X

 WHERE (G (X)) B = X

F or G may define X.

NOTE 7.17
For example, the array expression

 A + B

produces an array the same shape as A and B. The individual array elements of the result
have the values of the first element of A added to the first element of B, the second element of
A added to the second element of B, etc.
118 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
If a statement contains a function reference in a part of an expression that need not be evaluated,

all entities that would have become defined in the execution of that reference become undefined at

the completion of evaluation of the expression containing the function reference.

7.1.8.2 Integrity of parentheses

The sections that follow state certain conditions under which a processor may evaluate an

expression that is different from the one specified by applying the rules given in 7.1.1, 7.2, and 7.3.

However, any expression in parentheses shall be treated as a data entity.

7.1.8.3 Evaluation of numeric intrinsic operations

The rules given in 7.2.1 specify the interpretation of a numeric intrinsic operation. Once the

interpretation has been established in accordance with those rules, the processor may evaluate any

mathematically equivalent expression, provided that the integrity of parentheses is not violated.

Two expressions of a numeric type are mathematically equivalent if, for all possible values of their

primaries, their mathematical values are equal. However, mathematically equivalent expressions

of numeric type may produce different computational results.

The mathematical definition of integer division is given in 7.2.1.1.

NOTE 7.18
This principle is most often applicable to logical expressions, zero-sized arrays, and zero-
length strings, but it applies to all expressions.

For example, in evaluating the expression

 X > Y .OR. L (Z)

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need
not be evaluated if X is greater than Y. Similarly, in the array expression

 W (Z) + X

where X is of size zero and W is a function, the function reference W (Z) need not be
evaluated.

NOTE 7.19
In the preceding examples, evaluation of these expressions causes Z to become undefined if L
or W defines its argument.

NOTE 7.20
For example, in evaluating the expression A + (B – C) where A, B, and C are of numeric types,
the difference of B and C shall be evaluated before the addition operation is performed; the
processor shall not evaluate the mathematically equivalent expression (A + B) – C.

NOTE 7.21
Any difference between the values of the expressions (1./3.)∗3. and 1. is a computational
difference, not a mathematical difference.

NOTE 7.22
The difference between the values of the expressions 5/2 and 5./2. is a mathematical
difference, not a computational difference.
JUN 2001 WORKING DRAFT 119

J3/01-007R2 WORKING DRAFT JUN 2001
In addition to the parentheses required to establish the desired interpretation, parentheses may be

included to restrict the alternative forms that may be used by the processor in the actual evaluation

of the expression. This is useful for controlling the magnitude and accuracy of intermediate values

developed during the evaluation of an expression.

Each operand in a numeric intrinsic operation has a data type that may depend on the order of

evaluation used by the processor.

NOTE 7.23
The following are examples of expressions with allowable alternative forms that may be used
by the processor in the evaluation of those expressions. A, B, and C represent arbitrary real or
complex operands; I and J represent arbitrary integer operands; and X, Y, and Z represent
arbitrary operands of numeric type.

Expression Allowable alternative form

X + Y Y + X

X * Y Y * X

-X + Y Y - X

X + Y + Z X + (Y + Z)

X - Y + Z X - (Y - Z)

X * A / Z X * (A / Z)

X * Y - X * Z X * (Y - Z)

A / B / C A / (B * C)

A / 5.0 0.2 * A

The following are examples of expressions with forbidden alternative forms that shall not be
used by a processor in the evaluation of those expressions.

Expression Nonallowable alternative form

I / 2 0.5 * I

X * I / J X * (I / J)

I / J / A I / (J * A)

(X + Y) + Z X + (Y + Z)

(X * Y) - (X * Z) X * (Y - Z)

X * (Y - Z) X * Y - X * Z

NOTE 7.24
For example, in the expression

 A + (B - C)

the parenthesized expression (B – C) shall be evaluated and then added to A.

The inclusion of parentheses may change the mathematical value of an expression. For
example, the two expressions

 A * I / J

 A * (I / J)

may have different mathematical values if I and J are of type integer.
120 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
7.1.8.4 Evaluation of the character intrinsic operation

The rules given in 7.2.2 specify the interpretation of the character intrinsic operation. A processor

is only required to evaluate as much of the character intrinsic operation as is required by the

context in which the expression appears.

7.1.8.5 Evaluation of relational intrinsic operations

The rules given in 7.2.3 specify the interpretation of relational intrinsic operations. Once the

interpretation of an expression has been established in accordance with those rules, the processor

may evaluate any other expression that is relationally equivalent, provided that the integrity of

parentheses in any expression is not violated.

Two relational intrinsic operations are relationally equivalent if their logical values are equal for all

possible values of their primaries.

7.1.8.6 Evaluation of logical intrinsic operations

The rules given in 7.2.4 specify the interpretation of logical intrinsic operations. Once the

interpretation of an expression has been established in accordance with those rules, the processor

may evaluate any other expression that is logically equivalent, provided that the integrity of

parentheses in any expression is not violated.

Two expressions of type logical are logically equivalent if their values are equal for all possible

values of their primaries.

NOTE 7.25
For example, in the evaluation of the expression

 Z + R + I

where Z, R, and I represent data objects of complex, real, and integer data type, respectively,
the data type of the operand that is added to I may be either complex or real, depending on
which pair of operands (Z and R, R and I, or Z and I) is added first.

NOTE 7.26
For example, the statements

 CHARACTER (LEN = 2) C1, C2, C3, CF

 C1 = C2 // CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to
determine the value of C1 because C1 and C2 both have a length of 2.

NOTE 7.27
For example, the processor may choose to evaluate the expression

 I .GT. J

where I and J are integer variables, as

 J - I .LT. 0

NOTE 7.28
For example, for the variables L1, L2, and L3 of type logical, the processor may choose to
evaluate the expression

 L1 .AND. L2 .AND. L3

as

 L1 .AND. (L2 .AND. L3)
JUN 2001 WORKING DRAFT 121

J3/01-007R2 WORKING DRAFT JUN 2001
7.1.8.7 Evaluation of a defined operation

The rules given in 7.3 specify the interpretation of a defined operation. Once the interpretation of

an expression has been established in accordance with those rules, the processor may evaluate any

other expression that is equivalent, provided that the integrity of parentheses is not violated.

Two expressions of derived type are equivalent if their values are equal for all possible values of

their primaries.

7.2 Interpretation of intrinsic operations
The intrinsic operations are those defined in 7.1.2. These operations are divided into the following

categories: numeric, character, relational, and logical. The interpretations defined in the following

sections apply to both scalars and arrays; the interpretation for arrays is obtained by applying the

interpretation for scalars element by element.

The type, type parameters, and interpretation of an expression that consists of an intrinsic unary or

binary operation are independent of the context in which the expression appears. In particular, the

type, type parameters, and interpretation of such an expression are independent of the type and

type parameters of any other larger expression in which it appears.

7.2.1 Numeric intrinsic operations

A numeric operation is used to express a numeric computation. Evaluation of a numeric operation

produces a numeric value. The permitted data types for operands of the numeric intrinsic

operations are specified in 7.1.2.

The numeric operators and their interpretation in an expression are given in Table 7.2, where

denotes the operand to the left of the operator and denotes the operand to the right of the

operator.

The interpretation of a division depends on the data types of the operands (7.2.1.1).

If and are of type integer and has a negative value, the interpretation of ∗∗ is the

same as the interpretation of 1/(∗∗ ABS ()), which is subject to the rules of integer division

(7.2.1.1).

NOTE 7.29
For example, if X is of type real, J is of type integer, and INT is the real-to-integer intrinsic
conversion function, the expression INT (X + J) is an integer expression and X + J is a real
expression.

Table 7.2 Interpretation of the numeric intrinsic operators

Operator Representing
Use of

operator
Interpretation

** Exponentiation x1**x2 Raise to the power

/ Division x1 / x2 Divide by

* Multiplication x1 * x2 Multiply by

- Subtraction x1 - x2 Subtract from

- Negation - x2 Negate

+ Addition x1 + x2 Add and

+ Identity + x2 Same as

NOTE 7.30
For example, 2 ∗∗ (–3) has the value of 1/(2 ∗∗ 3), which is zero.

x1
x2

x1 x2
x1 x2

x1 x2
x2 x1

x2
x1 x2

x2

x1 x2 x2 x1 x2
x1 x2
122 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
7.2.1.1 Integer division

One operand of type integer may be divided by another operand of type integer. Although the

mathematical quotient of two integers is not necessarily an integer, Table 7.1 specifies that an

expression involving the division operator with two operands of type integer is interpreted as an

expression of type integer. The result of such an operation is the integer closest to the

mathematical quotient and between zero and the mathematical quotient inclusively.

7.2.1.2 Complex exponentiation

In the case of a complex value raised to a complex power, the value of the operation ∗∗ is the

principal value of .

7.2.2 Character intrinsic operation

The character intrinsic operator // is used to concatenate two operands of type character with the

same kind type parameter. Evaluation of the character intrinsic operation produces a result of type

character.

The interpretation of the character intrinsic operator // when used to form an expression is given

in Table 7.3, where denotes the operand to the left of the operator and denotes the operand

to the right of the operator.

The result of the character intrinsic operation // is a character string whose value is the value of

concatenated on the right with the value of and whose length is the sum of the lengths of

and . Parentheses used to specify the order of evaluation have no effect on the value of a

character expression.

7.2.3 Relational intrinsic operations

A relational intrinsic operation is used to compare values of two operands using the relational

intrinsic operators .LT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >=, ==, and /=. The permitted

data types for operands of the relational intrinsic operators are specified in 7.1.2.

Evaluation of a relational intrinsic operation produces a result of type default logical.

The interpretation of the relational intrinsic operators is given in Table 7.4, where denotes the

operand to the left of the operator and denotes the operand to the right of the operator. The

NOTE 7.31
For example, the expression (–8) / 3 has the value (–2).

Table 7.3 Interpretation of the character intrinsic operator //

Operator Representing
Use of

operator
Interpretation

// Concatenation // Concatenate with

NOTE 7.32
For example, the value of ('AB' // 'CDE') // 'F' is the string 'ABCDEF'. Also, the value of
'AB' // (’CDE' // 'F') is the string 'ABCDEF'.

NOTE 7.33
As shown in Table 7.1, a relational intrinsic operator cannot be used to compare the value of
an expression of a numeric type with one of type character or logical. Also, two operands of
type logical cannot be compared, a complex operand may be compared with another numeric
operand only when the operator is .EQ., .NE., ==, or /=, and two character operands cannot
be compared unless they have the same kind type parameter value.

x1 x2

x1
x2

x1 x2

x1 x2 x1 x2

x1 x2 x1
x2

x1
x2
JUN 2001 WORKING DRAFT 123

J3/01-007R2 WORKING DRAFT JUN 2001
operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT.,

.LE., .GT., .GE., .EQ., and .NE., respectively.

A numeric relational intrinsic operation is interpreted as having the logical value true if the values

of the operands satisfy the relation specified by the operator. A numeric relational intrinsic

operation is interpreted as having the logical value false if the values of the operands do not satisfy

the relation specified by the operator.

In the numeric relational operation

rel-op

if the types or kind type parameters of and differ, their values are converted to the type and

kind type parameter of the expression + before evaluation.

A character relational intrinsic operation is interpreted as having the logical value true if the values

of the operands satisfy the relation specified by the operator. A character relational intrinsic

operation is interpreted as having the logical value false if the values of the operands do not satisfy

the relation specified by the operator.

For a character relational intrinsic operation, the operands are compared one character at a time in

order, beginning with the first character of each character operand. If the operands are of unequal

length, the shorter operand is treated as if it were extended on the right with blanks to the length

of the longer operand. If both and are of zero length, is equal to ; if every character of

is the same as the character in the corresponding position in , is equal to . Otherwise,

at the first position where the character operands differ, the character operand is considered to

be less than if the character value of at this position precedes the value of in the collating

sequence (4.4.4.1); is greater than if the character value of at this position follows the

value of in the collating sequence.

Table 7.4 Interpretation of the relational intrinsic operators

Operator Representing
Use of

operator
Interpretation

.LT. Less than .LT. less than

< Less than < less than

.LE. Less than or equal to .LE. less than or equal to

<= Less than or equal to <= less than or equal to

.GT. Greater than .GT. greater than

> Greater than > greater than

.GE. Greater than or equal to .GE. greater than or equal to

>= Greater than or equal to >= greater than or equal to

.EQ. Equal to .EQ. equal to

== Equal to == equal to

.NE. Not equal to .NE. not equal to

/= Not equal to /= not equal to

NOTE 7.34
The collating sequence depends partially on the processor; however, the result of the use of
the operators .EQ., .NE., ==, and /= does not depend on the collating sequence.

For nondefault character types, the blank padding character is processor dependent.

x1 x2 x1 x2
x1 x2 x1 x2

x1 x2 x1 x2
x1 x2 x1 x2

x1 x2 x1 x2
x1 x2 x1 x2

x1 x2 x1 x2
x1 x2 x1 x2

x1 x2 x1 x2
x1 x2 x1 x2

x1 x2 x1 x2
x1 x2 x1 x2

x1 x2

x1 x2
x1 x2

x1 x2 x1 x2
x1 x2 x1 x2

x1
x2 x1 x2

x1 x2 x1
x2
124 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
7.2.4 Logical intrinsic operations

A logical operation is used to express a logical computation. Evaluation of a logical operation

produces a result of type logical. The permitted data types for operands of the logical intrinsic

operations are specified in 7.1.2.

The logical operators and their interpretation when used to form an expression are given in Table

7.5, where denotes the operand to the left of the operator and denotes the operand to the

right of the operator.

The values of the logical intrinsic operations are shown in Table 7.6.

7.3 Interpretation of defined operations
The interpretation of a defined operation is provided by the function that defines the operation.

The type, type parameters, and interpretation of an expression that consists of a defined operation

are independent of the type and type parameters of any larger expression in which it appears. The

operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT.,

.LE., .GT., .GE., .EQ., and .NE., respectively.

7.3.1 Unary defined operation

A function defines the unary operation if

(1) The function is specified with a FUNCTION (12.5.2.1) or ENTRY (12.5.2.4) statement
that specifies one dummy argument ,

(2) A type-bound generic binding (4.5.1.5) in the dynamic type of with a generic spec
of OPERATOR (op) specifies the function, and there is a corresponding specific
interface in the declared type of ; or a generic interface (12.3.2.1) provides the
function with a generic-spec of OPERATOR (op),

(3) The type of is the same as the type of dummy argument ,

(4) The type parameters, if any, of match those of , and

(5) Either

(a) The rank of matches that of or

Table 7.5 Interpretation of the logical intrinsic operators

Operator Representing Use of operator Interpretation

.NOT. Logical negation .NOT. True if is false

.AND. Logical conjunction .AND. True if and are both true

.OR. Logical inclusive
disjunction

.OR. True if and/or is true

.NEQV. Logical nonequivalence .NEQV. True if either or is true,
but not both

.EQV. Logical equivalence .EQV. True if both and are true
or both are false

Table 7.6 The values of operations involving logical intrinsic operators

.NOT. .AND. .OR. .EQV. .NEQV.
true true false true true true false

true false true false true false true

false true false false true false true

false false true false false true false

x1 x2

x2 x2
x1 x2 x1 x2

x1 x2 x1 x2

x1 x2
x1 x2

x1 x2
x1 x2

x1 x2 x2 x1 x2 x1 x2 x1 x2 x1 x2

op x2

d2

x2

x2

x2 d2

x2 d2

x2 d2
JUN 2001 WORKING DRAFT 125

J3/01-007R2 WORKING DRAFT JUN 2001
(b) The function is elemental and there is no other function that defines the
operation.

If is an array, the shape of shall match the shape of .

7.3.2 Binary defined operation

A function defines the binary operation if

(1) The function is specified with a FUNCTION (12.5.2.1) or ENTRY (12.5.2.4) statement
that specifies two dummy arguments, and ,

(2) A type-bound generic binding (4.5.1.5) in the dynamic type of or with a generic
spec of OPERATOR (op) specifies the function, and there is a corresponding specific
interface in the corresponding declared type; or a generic interface (12.3.2.1) provides
the function with a generic-spec of OPERATOR (op),

(3) The types of and are the same as those of the dummy arguments and ,
respectively,

(4) The type parameters, if any, of and match those of and , respectively, and

(5) Either

(a) The ranks of and match those of and or

(b) The function is elemental and there is no other function that defines the
operation.

If or is an array, the shapes of and shall match the shapes of and , respectively.

7.4 Precedence of operators
There is a precedence among the intrinsic and extension operations implied by the general form in

7.1.1, which determines the order in which the operands are combined, unless the order is changed

by the use of parentheses. This precedence order is summarized in Table 7.7.

J3 internal note
Unresolved issue 335

Paper 01-251 deleted the conformability requirements for elemental defined binary ops and
for elemental defined assignment in 7.3.2 and 7.5.1.6. I hope this is claimed to be covered
elsewhere; if not, this will need fixing.

Table 7.7 Categories of operations and relative precedence

Category of
operation

Operators Precedence

Extension defined-unary-op Highest

Numeric ** .

Numeric * or / .

Numeric unary + or – .

Numeric binary + or – .

Character // .

Relational
.EQ., .NE., .LT., .LE., .GT., .GE.,

==, /=, <, <=, >, >=
.

Logical .NOT. .

Logical .AND. .

Logical .OR. .

Logical .EQV. or .NEQV. .

Extension defined-binary-op Lowest

d2 x2 d2

x1 op x2

d1 d2

x1 x2

x1 x2 d1 d2

x1 x2 d1 d2

x1 x2 d1 d2

d1 d2 x1 x2 d1 d2
126 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
The precedence of a defined operation is that of its operator.

The general form of an expression (7.1.1) also establishes a precedence among operators in the

same syntactic class. This precedence determines the order in which the operands are to be

combined in determining the interpretation of the expression unless the order is changed by the

use of parentheses.

NOTE 7.35
For example, in the expression

 -A ** 2

the exponentiation operator (∗∗) has precedence over the negation operator (–); therefore, the
operands of the exponentiation operator are combined to form an expression that is used as
the operand of the negation operator. The interpretation of the above expression is the same
as the interpretation of the expression

 - (A ** 2)
JUN 2001 WORKING DRAFT 127

J3/01-007R2 WORKING DRAFT JUN 2001
NOTE 7.36
In interpreting a level-2-expr containing two or more binary operators + or –, each operand
(add-operand) is combined from left to right. Similarly, the same left-to-right interpretation for
a mult-operand in add-operand, as well as for other kinds of expressions, is a consequence of the
general form. However, for interpreting a mult-operand expression when two or more
exponentiation operators ∗∗ combine level-1-expr operands, each level-1-expr is combined from
right to left.

For example, the expressions

 2.1 + 3.4 + 4.9

 2.1 * 3.4 * 4.9

 2.1 / 3.4 / 4.9

 2 ** 3 ** 4

 'AB' // 'CD' // 'EF'

have the same interpretations as the expressions

 (2.1 + 3.4) + 4.9

 (2.1 * 3.4) * 4.9

 (2.1 / 3.4) / 4.9

 2 ** (3 ** 4)

 ('AB' // 'CD') // 'EF'

As a consequence of the general form (7.1.1), only the first add-operand of a level-2-expr may be
preceded by the identity (+) or negation (–) operator. These formation rules do not permit
expressions containing two consecutive numeric operators, such as A ∗∗ –B or A + –B.
However, expressions such as A ∗∗ (–B) and A + (–B) are permitted. The rules do allow a
binary operator or an intrinsic unary operator to be followed by a defined unary operator,
such as:

 A * .INVERSE. B

 - .INVERSE. (B)

As another example, in the expression

 A .OR. B .AND. C

the general form implies a higher precedence for the .AND. operator than for the .OR.
operator; therefore, the interpretation of the above expression is the same as the interpretation
of the expression

 A .OR. (B .AND. C)

NOTE 7.37
An expression may contain more than one category of operator. The logical expression

 L .OR. A + B >= C

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a
relational operator, and a logical operator. This expression would be interpreted the same as
the expression

 L .OR. ((A + B) >= C)
128 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
7.5 Assignment
Execution of an assignment statement causes a variable to become defined or redefined. Execution

of a pointer assignment statement causes a pointer to become associated with a target or causes its

pointer association status to become disassociated or undefined. Execution of a WHERE statement

or WHERE construct masks the evaluation of expressions and assignment of values in array

assignment statements according to the value of a logical array expression. Execution of a

FORALL statement or FORALL construct controls the assignment to elements of arrays by using a

set of index variables and a mask expression.

7.5.1 Assignment statement

A variable may be defined or redefined by execution of an assignment statement.

7.5.1.1 General form

R734 assignment-stmt is variable = expr

C714 (R734) A variable in an assignment-stmt shall not be a whole assumed-size array.

An assignment statement is either intrinsic or defined.

7.5.1.2 Intrinsic assignment statement

An intrinsic assignment statement is an assignment statement where the shapes of variable and

expr conform and where

(1) The types of variable and expr are intrinsic, as specified in Table 7.8 for assignment, or

(2) The dynamic types of variable and expr are the same derived type with the same type
parameter values, variable is not polymorphic, and there is no accessible defined
assignment for objects of the declared types and kind type parameters of the variable
and expr.

A numeric intrinsic assignment statement is an intrinsic assignment statement for which variable
and expr are of numeric type. A character intrinsic assignment statement is an intrinsic

assignment statement for which variable and expr are of type character and have the same kind type

parameter. A logical intrinsic assignment statement is an intrinsic assignment statement for

which variable and expr are of type logical. A derived-type intrinsic assignment statement is an

For example, if

(1) The operator ∗∗ is extended to type logical,

(2) The operator .STARSTAR. is defined to duplicate the function of ∗∗ on type real,

(3) .MINUS. is defined to duplicate the unary operator –, and

(4) L1 and L2 are type logical and X and Y are type real,

then in precedence: L1 ∗∗ L2 is higher than X ∗ Y; X ∗ Y is higher than X .STARSTAR. Y; and
.MINUS. X is higher than –X.

NOTE 7.38
R601 defines variable and R722 defines expr.

NOTE 7.39
Examples of an assignment statement are:

 A = 3.5 + X * Y
 I = INT (A)

NOTE 7.37 (Continued)
JUN 2001 WORKING DRAFT 129

J3/01-007R2 WORKING DRAFT JUN 2001
intrinsic assignment statement for which variable is of derived type, variable is not polymorphic, the

dynamic type and type parameters of expr are the same as the declared type and type parameters

of variable, and there is no accessible generic interface with a generic specifier of ASSIGNMENT (=)

for objects of this derived type and type parameters.

An array intrinsic assignment statement is an intrinsic assignment statement for which variable is

an array. The variable shall not be a many-one array section (6.2.2.3.2).

7.5.1.3 Defined assignment statement

A defined assignment statement is an assignment statement that is not an intrinsic assignment

statement, and is defined by a subroutine and a generic interface (4.5.1.5, 12.3.2.1) that specifies

ASSIGNMENT (=). A defined elemental assignment statement is a defined assignment statement

for which the subroutine is elemental (12.7).

7.5.1.4 Intrinsic assignment conformance rules

For an intrinsic assignment statement, variable and expr shall conform in shape, and if expr is an

array, variable shall also be an array. The types of variable and expr shall conform with the rules of

Table 7.8.

If variable is a pointer, it shall be associated with a definable target such that the type, type

parameters, and shape of the target and expr conform.

For a numeric intrinsic assignment statement, variable and expr may have different numeric types

or different kind type parameters, in which case the value of expr is converted to the type and kind

type parameter of variable according to the rules of Table 7.9.

For a logical intrinsic assignment statement, variable and expr may have different kind type

parameters, in which case the value of expr is converted to the kind type parameter of variable.

For a character intrinsic assignment statement, variable and expr shall have the same kind type

parameter value, but may have different character length parameters in which case the conversion

of expr to the length of variable is as follows:

(1) If the length of variable is less than that of expr, the value of expr is truncated from the
right until it is the same length as variable.

(2) If the length of variable is greater than that of expr, the value of expr is extended on the
right with blanks until it is the same length as variable.

Table 7.8 Type conformance for the intrinsic assignment statement

Type of variable Type of expr
integer integer, real, complex

real integer, real, complex

complex integer, real, complex

character character of the same kind type parameter as variable
logical logical

derived type same derived type and type parameters as variable

Table 7.9 Numeric conversion and the assignment statement

Type of variable Value Assigned

integer INT (expr, KIND = KIND (variable))

real REAL (expr, KIND = KIND (variable))

complex CMPLX (expr, KIND = KIND (variable))

Note: The functions INT, REAL, CMPLX, and KIND are the generic
functions defined in 13.11.
130 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
7.5.1.5 Interpretation of intrinsic assignments

Execution of an intrinsic assignment causes, in effect, the evaluation of the expression expr and all

expressions within variable (7.1.8), the possible conversion of expr to the type and type parameters

of variable (Table 7.9), and the definition of variable with the resulting value. The execution of the

assignment shall have the same effect as if the evaluation of all operations in expr and variable
occurred before any portion of variable is defined by the assignment. The evaluation of expressions

within variable shall neither affect nor be affected by the evaluation of expr. No value is assigned to

variable if variable is of type character and zero length, or is an array of size zero.

If variable is a pointer, the value of expr is assigned to the target of variable.

Both variable and expr may contain references to any portion of variable.

If expr in an intrinsic assignment is a scalar and variable is an array, the expr is treated as if it were

an array of the same shape as variable with every element of the array equal to the scalar value of

expr.

If variable in an intrinsic assignment is an array, the assignment is performed element-by-element

on corresponding array elements of variable and expr.

The processor may perform the element-by-element assignment in any order.

A derived-type intrinsic assignment is performed as if each component of expr were assigned to

the corresponding component of variable using pointer assignment (7.5.2) for each pointer

component, defined assignment for each nonpointer nonallocatable component of a type that has a

type-bound defined assignment consistent with the component, and intrinsic assignment for each

other nonpointer nonallocatable component. For an allocatable component the following sequence

of operations is applied:

(1) If the component of variable is currently allocated, it is deallocated.

NOTE 7.40
For nondefault character types, the blank padding character is processor dependent.

NOTE 7.41
For example, in the character intrinsic assignment statement:

 STRING (2:5) = STRING (1:4)

the assignment of the first character of STRING to the second character does not affect the
evaluation of STRING (1:4). If the value of STRING prior to the assignment was 'ABCDEF',
the value following the assignment is 'AABCDF'.

NOTE 7.42
For example, if A and B are arrays of the same shape, the array intrinsic assignment

 A = B

assigns the corresponding elements of B to those of A; that is, the first element of B is assigned
to the first element of A, the second element of B is assigned to the second element of A, etc.

NOTE 7.43
For example, the following program segment results in the values of the elements of array X
being reversed:

 REAL X (10)
...

 X (1:10) = X (10:1:-1)
JUN 2001 WORKING DRAFT 131

J3/01-007R2 WORKING DRAFT JUN 2001
(2) If the component of expr is currently allocated, the corresponding component of
variable is allocated with the same dynamic type and type parameters as the
component of expr. If it is an array, it is allocated with the same bounds. The value of
the component of expr is then assigned to the corresponding component of variable
using defined assignment if the declared type of the component has a type-bound
defined assignment consistent with the component, and intrinsic assignment for the
dynamic type of that component otherwise.

The processor may perform the component-by-component assignment in any order or by any

means that has the same effect.

When variable is a subobject, the assignment does not affect the definition status or value of other

parts of the object. For example, if variable is an array section, the assignment does not affect the

definition status or value of the elements of the array not specified by the array section.

7.5.1.6 Interpretation of defined assignment statements

The interpretation of a defined assignment is provided by the subroutine that defines the

operation.

A subroutine defines the defined assignment = if

(1) The subroutine is specified with a SUBROUTINE (12.5.2.2) or ENTRY (12.5.2.4)
statement that specifies two dummy arguments, and ,

(2) A type-bound generic binding (4.5.1.5) in the dynamic type of or with a generic
spec of ASSIGNMENT (=) specifies the subroutine, and there is a corresponding
specific interface in the corresponding declared type; or a generic interface (12.3.2.1)
provides the subroutine with a generic-spec of ASSIGNMENT (=),

(3) The and are type compatible with dummy arguments and , respectively,

(4) The type parameters, if any, of and match those of and , respectively, and

(5) Either

(a) The ranks of and match those of and or

(b) The subroutine is elemental and there is no other subroutine that defines the
operation.

If or is an array, the shapes of and shall match the shapes of and , respectively.

The types of and shall not both be numeric, both be logical, or both be character with the

same kind type parameter value.

If the defined assignment is an elemental assignment and the variable in the assignment is an array,

the defined assignment is performed element-by-element, in any order, on corresponding elements

NOTE 7.44
For an example of a derived-type intrinsic assignment statement, if C and D are of the same
derived type with a pointer component P and nonpointer components S, T, U, and V of type
integer, logical, character, and another derived type, respectively, the intrinsic

 C = D

pointer assigns D % P to C % P. It assigns D % S to C % S, D % T to C % T, and D % U to

C % U using intrinsic assignment. It assigns D % V to C % V using defined assignment if

objects of that type have a compatible type-bound defined assignment, and intrinsic

assignment otherwise.

NOTE 7.45
If an allocatable component of expr is not currently allocated, the corresponding component of
variable has an allocation status of not currently allocated after execution of the assignment.

x1 x2

d1 d2

x1 x2

x1 x2 d1 d2

x1 x2 d1 d2

x1 x2 d1 d2

d1 d2 x1 x2 d1 d2

x1 x2
132 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
of variable and expr. If expr is a scalar, it is treated as if it were an array of the same shape as variable
with every element of the array equal to the scalar value of expr.

7.5.2 Pointer assignment

Pointer assignment causes a pointer to become associated with a target or causes its pointer

association status to become disassociated or undefined. Any previous association between the

pointer and a target is broken.

Pointer assignment for a pointer component of a structure may also take place by execution of a

derived-type intrinsic assignment statement (7.5.1.5).

A pointer may also become associated with a target by allocation of the pointer.

R735 pointer-assignment-stmt is data-pointer-object [(bounds-spec-list)] => data-target
or data-pointer-object (bounds-remapping-list) => data-target
or proc-pointer-object => proc-target

R736 data-pointer-object is variable-name
or variable % data-pointer-component-name

C715 (R736) A variable-name shall have the POINTER attribute.

C716 (R736) A data-pointer-component-name shall be the name of a component of variable that is a
data pointer.

R737 bounds-spec is lower-bound :

R738 bounds-remapping is lower-bound : upper-bound

R739 data-target is variable
or expr

C717 (R735) A data-pointer-object shall be type-compatible (5.1.1.8) with data-target, and the
corresponding kind type parameters shall be equal.

C718 (R739) A variable shall have either the TARGET or POINTER attribute, and shall not be an
array section with a vector subscript.

C719 (R739) An expr shall be a reference to a function whose result is a data pointer.

C720 (R735) If bounds-spec-list is specified, the number of bounds-specs shall equal the rank of
data-pointer-object.

C721 (R735) If bounds-remapping-list is specified, the number of bounds-remappings shall equal the
rank of data-pointer-object.

C722 (R735) If bounds-remapping-list is specified, data-target shall have rank one; otherwise, the
ranks of data-pointer-object and data-target shall be the same.

R740 proc-pointer-object is proc-pointer-name
or variable % procedure-component-name

C723 (R740) A procedure-component-name shall be the name of a procedure pointer component of
variable.

R741 proc-target is expr
or procedure-name

C724 (R741) An expr shall be a reference to a function whose result is a procedure pointer.

NOTE 7.46
The rules of defined assignment (12.3.2.1.2), procedure references (12.4), subroutine references
(12.4.3), and elemental subroutine arguments (12.7.3) ensure that the defined assignment has
the same effect as if the evaluation of all operations in and occurs before any portion of

is defined.
x2 x1

x1
JUN 2001 WORKING DRAFT 133

J3/01-007R2 WORKING DRAFT JUN 2001
C725 (R741) A procedure-name shall be the name of an external, module, or dummy procedure, a
specific intrinsic function listed in 13.10 and not marked with a bullet (•), or a procedure
pointer.

C726 (R741) The proc-target shall not be a nonintrinsic elemental procedure.

7.5.2.1 Data pointer assignment

If data-target is not a pointer, data-pointer-object becomes pointer associated with data-target.
Otherwise, the pointer association status of data-pointer-object becomes that of data-target; if data-
target is associated with an object, data-pointer-object becomes associated with the same object.

If data-pointer-object is not polymorphic (5.1.1.8), data-target shall have the same dynamic type as

data-pointer-object. Otherwise, data-pointer-object assumes the dynamic type of data-target.

If data-target is a disassociated pointer, all nondeferred type parameters of the declared type of

data-pointer-object that correspond to nondeferred type parameters of data-target shall have the same

values as the corresponding type parameters of data-target. Otherwise, all nondeferred type

parameters of the declared type of data-pointer-object shall have the same values as the

corresponding type parameters of data-target.

If pointer-object has nondeferred type parameters that correspond to deferred type parameters of

data-target, data-target shall not be a pointer with undefined association status.

If bounds-remapping-list is specified, data-target shall not be a disassociated or undefined pointer,

and the size of data-target shall not be less than the size of data-pointer-object. The elements of the

target of data-pointer-object, in array element order (6.2.2.2), are the first SIZE(pointer-object)
elements of data-target.

If no bounds-remapping-list is specified, the extent of a dimension of data-pointer-object is the extent

of the corresponding dimension of data-target. If bounds-spec-list is present, it specifies the lower

bounds; otherwise, the lower bound of each dimension is the result of the intrinsic function

LBOUND (13.11.58) applied to the corresponding dimension of data-target. The upper bound of

each dimension is one less than the sum of the lower bound and the extent.

7.5.2.2 Procedure pointer assignment

If the proc-target is not a pointer, proc-pointer-object becomes pointer associated with proc-target.
Otherwise, the pointer association status of proc-pointer-object becomes that of proc-target; if proc-
target is associated with a procedure, proc-pointer-object becomes associated with the same

procedure.

If proc-pointer-object has an explicit interface, its characteristics shall be the same as proc-target
except that proc-target may be pure even if proc-pointer-object is not pure and proc-target may be an

elemental intrinsic procedure even if proc-target is not elemental.

If the characteristics of proc-pointer-object or proc-target are such that an explicit interface is required,

both proc-pointer-object and proc-target shall have an explicit interface.

J3 internal note
Unresolved issue 334

Should not much of the material in 7.5.2.2 (Procedure pointer assignment) be in constraints? I
see in 01-229 that the "deconstraintification" of the second para was intentional, but the 3rd
and 4th paras still seem suitable for constraints.

Unless I am missing something (quite possible), the 5th para fails to consider deferred type
parameters. The explanation in 01-229 says that this is for implicit interfaces (which rules out
deferred type parameters), but the edits don't restrict it to that case.
134 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
If proc-pointer-object has an implicit interface and is explicitly typed or referenced as a function,

proc-target shall be a function. If proc-pointer-object has an implicit interface and is referenced as a

subroutine, proc-target shall be a subroutine.

If proc-target and proc-pointer-object are functions, they shall have the same type and type

parameters.

If procedure-name is a specific procedure name that is also a generic name, only the specific

procedure is associated with pointer-object.

7.5.2.3 Examples

7.5.3 Masked array assignment - WHERE

The masked array assignment is used to mask the evaluation of expressions and assignment of

values in array assignment statements, according to the value of a logical array expression.

7.5.3.1 General form of the masked array assignment

A masked array assignment is either a WHERE statement or WHERE construct.

R742 where-stmt is WHERE (mask-expr) where-assignment-stmt

NOTE 7.47
The following are examples of pointer assignment statements.

 NEW_NODE % LEFT => CURRENT_NODE

 SIMPLE_NAME => TARGET_STRUCTURE % SUBSTRUCT % COMPONENT

 PTR => NULL ()

 ROW => MAT2D (N, :)

 WINDOW => MAT2D (I-1:I+1, J-1:J+1)

 POINTER_OBJECT => POINTER_FUNCTION (ARG_1, ARG_2)

 EVERY_OTHER => VECTOR (1:N:2)

 WINDOW2 (0:, 0:) => MAT2D (ML:MU, NL:NU)

 ! P is a procedure pointer and BESSEL is a procedure with a
 ! compatible interface (see Note 12.15).
 P => BESSEL

 ! Likewise for a structure component.
 STRUCT % COMPONENT => BESSEL

NOTE 7.48
It is possible to obtain high-rank views of (parts of) rank-one objects by specifying upper
bounds in pointer assignment statements. Consider the following example, in which a matrix
is under consideration. The matrix is stored as a rank-one object in MYDATA because its
diagonal is needed for some reason -- the diagonal cannot be gotten as a single object from a
rank-two representation. The matrix is represented as a rank-two view of MYDATA.

real, target :: MYDATA (NR*NC) ! An automatic array
real, pointer :: MATRIX (:, :) ! A rank-two view of MYDATA
real, pointer :: VIEW_DIAG (:)
MATRIX(1:NR, 1:NC) => MYDATA ! The MATRIX view of the data
VIEW_DIAG => MYDATA(1::NR+1) ! The diagonal of MATRIX

Rows, columns or blocks of the matrix can be accessed as sections of MATRIX.
JUN 2001 WORKING DRAFT 135

J3/01-007R2 WORKING DRAFT JUN 2001
R743 where-construct is where-construct-stmt
[where-body-construct] ...

[masked-elsewhere-stmt
[where-body-construct] ...] ...

[elsewhere-stmt
[where-body-construct] ...]

end-where-stmt

R744 where-construct-stmt is [where-construct-name:] WHERE (mask-expr)

R745 where-body-construct is where-assignment-stmt
or where-stmt
or where-construct

R746 where-assignment-stmt is assignment-stmt

R747 mask-expr is logical-expr

R748 masked-elsewhere-stmt is ELSEWHERE (mask-expr) [where-construct-name]

R749 elsewhere-stmt is ELSEWHERE [where-construct-name]

R750 end-where-stmt is END WHERE [where-construct-name]

C727 (R746) A where-assignment-stmt that is a defined assignment shall be elemental.

C728 (R743) If the where-construct-stmt is identified by a where-construct-name, the corresponding
end-where-stmt shall specify the same where-construct-name. If the where-construct-stmt is not
identified by a where-construct-name, the corresponding end-where-stmt shall not specify a
where-construct-name. If an elsewhere-stmt or a masked-elsewhere-stmt is identified by a
where-construct-name, the corresponding where-construct-stmt shall specify the same
where-construct-name.

C729 (R745) A statement that is part of a where-body-construct shall not be a branch target
statement.

If a where-construct contains a where-stmt, a masked-elsewhere-stmt, or another where-construct then

each mask-expr within the where-construct shall have the same shape. In each where-assignment-stmt,
the mask-expr and the variable being defined shall be arrays of the same shape.

7.5.3.2 Interpretation of masked array assignments

When a WHERE statement or a where-construct-stmt is executed, a control mask is established. In

addition, when a WHERE construct statement is executed, a pending control mask is established.

If the statement does not appear as part of a where-body-construct, the mask-expr of the statement is

evaluated, and the control mask is established to be the value of mask-expr. The pending control

mask is established to have the value .NOT. mask-expr upon execution of a WHERE construct

statement that does not appear as part of a where-body-construct. The mask-expr is evaluated only

once.

Each statement in a WHERE construct is executed in sequence.

NOTE 7.49
Examples of a masked array assignment are:

 WHERE (TEMP > 100.0) TEMP = TEMP - REDUCE_TEMP

 WHERE (PRESSURE <= 1.0)
PRESSURE = PRESSURE + INC_PRESSURE
TEMP = TEMP - 5.0

 ELSEWHERE
RAINING = .TRUE.

 END WHERE
136 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
Upon execution of a masked-elsewhere-stmt, the following actions take place in sequence:

(1) The control mask is established to have the value of the pending control mask.

(2) The pending control mask is established to have the value
.AND. (.NOT. mask-expr).

(3) The control mask is established to have the value .AND. mask-expr.

The mask-expr is evaluated only once.

Upon execution of an ELSEWHERE statement, the control mask is established to have the value of

the pending control mask. No new pending control mask value is established.

Upon execution of an ENDWHERE statement, the control mask and pending control mask are

established to have the values they had prior to the execution of the corresponding WHERE

construct statement. Following the execution of a WHERE statement that appears as a

where-body-construct, the control mask is established to have the value it had prior to the execution

of the WHERE statement.

Upon execution of a WHERE statement or a WHERE construct statement that is part of a

where-body-construct, the pending control mask is established to have the value

.AND. (.NOT. mask-expr). The control mask is then established to have the value

.AND. mask-expr. The mask-expr is evaluated only once.

If a nonelemental function reference occurs in the expr or variable of a where-assignment-stmt or in a

mask-expr, the function is evaluated without any masked control; that is, all of its argument

expressions are fully evaluated and the function is fully evaluated. If the result is an array and the

reference is not within the argument list of a nonelemental function, elements corresponding to

true values in the control mask are selected for use in evaluating the expr, variable or mask-expr.

If an elemental operation or function reference occurs in the expr or variable of a

where-assignment-stmt or in a mask-expr, and is not within the argument list of a nonelemental

function reference, the operation is performed or the function is evaluated only for the elements

corresponding to true values of the control mask.

If an array constructor appears in a where-assignment-stmt or in a mask-expr, the array constructor is

evaluated without any masked control and then the where-assignment-stmt is executed or the

mask-expr is evaluated.

When a where-assignment-stmt is executed, the values of expr that correspond to true values of the

control mask are assigned to the corresponding elements of variable.

NOTE 7.50
The establishment of control masks and the pending control mask is illustrated with the
following example:

 WHERE(cond1) ! Statement 1
 . . .
 ELSEWHERE(cond2) ! Statement 2
 . . .
 ELSEWHERE ! Statement 3
 . . .
 END WHERE

Following execution of statement 1, the control mask has the value cond1 and the pending
control mask has the value .NOT. cond1. Following execution of statement 2, the control
mask has the value (.NOT. cond1) .AND. cond2 and the pending control mask has the value
(.NOT. cond1) .AND. (.NOT. cond2). Following execution of statement 3, the control mask
has the value (.NOT. cond1) .AND. (.NOT. cond2). The false condition values are
propagated through the execution of the masked ELSEWHERE statement.

mc

mc

mc mc

mc
mc
JUN 2001 WORKING DRAFT 137

J3/01-007R2 WORKING DRAFT JUN 2001
The value of the control mask is established by the execution of a WHERE statement, a WHERE

construct statement, an ELSEWHERE statement, a masked ELSEWHERE statement, or an

ENDWHERE statement. Subsequent changes to the value of entities in a mask-expr have no effect

on the value of the control mask. The execution of a function reference in the mask expression of

a WHERE statement is permitted to affect entities in the assignment statement.

7.5.4 FORALL

FORALL constructs and statements are used to control the execution of assignment and pointer

assignment statements with selection by sets of index values and an optional mask expression.

7.5.4.1 The FORALL Construct

The FORALL construct allows multiple assignments, masked array (WHERE) assignments, and

nested FORALL constructs and statements to be controlled by a single forall-triplet-spec-list and

scalar-mask.

R751 forall-construct is forall-construct-stmt
[forall-body-construct] ...
end-forall-stmt

R752 forall-construct-stmt is [forall-construct-name :] FORALL forall-header

R753 forall-header is (forall-triplet-spec-list [, scalar-mask-expr])

R754 forall-triplet-spec is index-name = subscript : subscript [: stride]

R618 subscript is scalar-int-expr

R621 stride is scalar-int-expr

R755 forall-body-construct is forall-assignment-stmt
or where-stmt
or where-construct
or forall-construct
or forall-stmt

R756 forall-assignment-stmt is assignment-stmt
or pointer-assignment-stmt

R757 end-forall-stmt is END FORALL [forall-construct-name]

C730 (R757) If the forall-construct-stmt has a forall-construct-name, the end-forall-stmt shall have the
same forall-construct-name. If the end-forall-stmt has a forall-construct-name, the
forall-construct-stmt shall have the same forall-construct-name.

C731 (R753) The scalar-mask-expr shall be scalar and of type logical.

C732 (R753) Any procedure referenced in the scalar-mask-expr, including one referenced by a
defined operation, shall be a pure procedure (12.6).

C733 (R754) The index-name shall be a named scalar variable of type integer.

C734 (R754) A subscript or stride in a forall-triplet-spec shall not contain a reference to any
index-name in the forall-triplet-spec-list in which it appears.

NOTE 7.51
Examples of function references in masked array assignments are:

 WHERE (A > 0.0)
A = LOG (A) ! LOG is invoked only for positive elements.
A = A / SUM (LOG (A)) ! LOG is invoked for all elements

 ! because SUM is transformational.
 END WHERE
138 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C735 (R755) A statement in a forall-body-construct shall not define an index-name of the
forall-construct.

C736 (R755) Any procedure referenced in a forall-body-construct, including one referenced by a
defined operation, assignment, or finalization, shall be a pure procedure.

C737 (R755) A forall-body-construct shall not be a branch target.

An index-name in a forall-construct has a scope of the construct (16.1.3). It is a scalar variable that

has the type and type parameters that it would have if it were the name of a variable in the

scoping unit that includes the FORALL, and this type shall be integer type; it has no other

attributes.

NOTE 7.52
An example of a FORALL construct is:

 REAL :: A(10, 10), B(10, 10) = 1.0
 . . .
 FORALL (I = 1:10, J = 1:10, B(I, J) /= 0.0)
 A(I, J) = REAL (I + J - 2)
 B(I, J) = A(I, J) + B(I, J) * REAL (I * J)
 END FORALL

NOTE 7.53
An assignment statement that is a FORALL body construct may be a scalar or array
assignment statement, or a defined assignment statement. The variable being defined will
normally use each index name in the forall-triplet-spec-list. For example

 FORALL (I = 1:N, J = 1:N)
 A(:, I, :, J) = 1.0 / REAL(I + J - 1)
 END FORALL

broadcasts scalar values to rank-two subarrays of A.

NOTE 7.54
An example of a FORALL construct containing a pointer assignment statement is:

 TYPE ELEMENT
 REAL ELEMENT_WT
 CHARACTER (32), POINTER :: NAME
 END TYPE ELEMENT
 TYPE(ELEMENT) CHART(200)
 REAL WEIGHTS (1000)
 CHARACTER (32), TARGET :: NAMES (1000)
 . . .
 FORALL (I = 1:200, WEIGHTS (I + N - 1) > .5)
 CHART(I) % ELEMENT_WT = WEIGHTS (I + N - 1)
 CHART(I) % NAME => NAMES (I + N - 1)
 END FORALL

The results of this FORALL construct cannot be achieved with a WHERE construct because a
pointer assignment statement is not permitted in a WHERE construct.
JUN 2001 WORKING DRAFT 139

J3/01-007R2 WORKING DRAFT JUN 2001
7.5.4.2 Execution of the FORALL construct

There are three stages in the execution of a FORALL construct:

(1) Determination of the values for index-name variables,

(2) Evaluation of the scalar-mask-expr, and

(3) Execution of the FORALL body constructs.

7.5.4.2.1 Determination of the values for index-name variables

The subscript and stride expressions in the forall-triplet-spec-list are evaluated. These expressions

may be evaluated in any order. The set of values that a particular index-name variable assumes is

determined as follows:

(1) The lower bound , the upper bound , and the stride are of type integer with
the same kind type parameter as the index-name. Their values are established by
evaluating the first subscript, the second subscript, and the stride expressions,
respectively, including, if necessary, conversion to the kind type parameter of the index-
name according to the rules for numeric conversion (Table 7.9). If a stride does not
appear, has the value 1. The value shall not be zero.

(2) Let the value of be . If for some index-name, the
execution of the construct is complete. Otherwise, the set of values for the index-name
is

where = 1, 2, ..., .

The set of combinations of index-name values is the Cartesian product of the sets defined by each

triplet specification. An index-name becomes defined when this set is evaluated.

NOTE 7.55
The use of index-name variables in a FORALL construct does not affect variables of the same
name, for example:

 INTEGER :: X = -1
 REAL A(5, 4)
 J = 100
 . . .
 FORALL (X = 1:5, J = 1:4)
 A (X, J) = J
 END FORALL

After execution of the FORALL, the variables X and J have the values -1 and 100 and A has
the value

 1 2 3 4
 1 2 3 4
 1 2 3 4
 1 2 3 4
 1 2 3 4

NOTE 7.56
The stride may be positive or negative; the FORALL body constructs are executed as long as
max > 0. For the forall-triplet-spec

 I = 10:1:-1

max has the value 10

m1 m2 m3

m3 m3

max m2 m1– m3+() m3⁄ max 0≤

m1 k 1–() m3×+ k max
140 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
7.5.4.2.2 Evaluation of the scalar-mask-expr

The scalar-mask-expr, if any, is evaluated for each combination of index-name values. If the

scalar-mask-expr is not present, it is as if it were present with the value true. The index-name
variables may be primaries in the scalar-mask-expr.

The active combination of index-name values is defined to be the subset of all possible

combinations (7.5.4.2.1) for which the scalar-mask-expr has the value true.

7.5.4.2.3 Execution of the FORALL body constructs

The forall-body-constructs are executed in the order in which they appear. Each construct is

executed for all active combinations of the index-name values with the following interpretation:

Execution of a forall-assignment-stmt that is an assignment-stmt causes the evaluation of expr and all

expressions within variable for all active combinations of index-name values. These evaluations may

be done in any order. After all these evaluations have been performed, each expr value is assigned

to the corresponding variable. The assignments may occur in any order.

Execution of a forall-assignment-stmt that is a pointer-assignment-stmt causes the evaluation of all

expressions within target and pointer-object, the determination of any pointers within pointer-object,
and the determination of the target for all active combinations of index-name values. These

evaluations may be done in any order. After all these evaluations have been performed, each

pointer-object is associated with the corresponding target. These associations may occur in any

order.

In a forall-assignment-stmt, a defined assignment subroutine shall not reference any variable that

becomes defined or pointer-object that becomes associated by the statement.

Each statement in a where-construct (7.5.3) within a forall-construct is executed in sequence. When a

where-stmt, where-construct-stmt or masked-elsewhere-stmt is executed, the statement’s mask-expr is

evaluated for all active combinations of index-name values as determined by the outer forall-
constructs, masked by any control mask corresponding to outer where-constructs. Any where-
assignment-stmt is executed for all active combinations of index-name values, masked by the control

mask in effect for the where-assignment-stmt.

NOTE 7.57
The index-name variables may appear in the mask, for example

 FORALL (I=1:10, J=1:10, A(I) > 0.0 .AND. B(J) < 1.0)
 . . .

NOTE 7.58
The following FORALL construct contains two assignment statements. The assignment to
array B uses the values of array A computed in the previous statement, not the values A had
prior to execution of the FORALL.

 FORALL (I = 2:N-1, J = 2:N-1)
 A (I, J) = A(I, J-1) + A(I,J+1) + A(I-1,J) + A(I+1, J)
 B (I, J) = 1.0 / A(I, J)
 END FORALL

Computations that would otherwise cause error conditions can be avoided by using an
appropriate scalar-mask-expr that limits the active combinations of the index-name values. For
example:

 FORALL (I = 1:N, Y(I) .NE. 0.0)
 X(I) = 1.0 / Y(I)
 END FORALL
JUN 2001 WORKING DRAFT 141

J3/01-007R2 WORKING DRAFT JUN 2001
Execution of a forall-stmt or forall-construct causes the evaluation of the subscript and stride
expressions in the forall-triplet-spec-list for all active combinations of the index-name values of the

outer FORALL construct. The set of combinations of index-name values for the inner FORALL is

the union of the sets defined by these bounds and strides for each active combination of the outer

index-name values; it also includes the outer index-name values. The scalar-mask-expr is then

evaluated for all combinations of the index-name values of the inner construct to produce a set of

active combinations for the inner construct. If there is no scalar-mask-expr, it is as if it were present

with the value .TRUE.. Each statement in the inner FORALL is then executed for each active

combination of the index-name values.

NOTE 7.59
This FORALL construct contains a WHERE statement and an assignment statement.

 INTEGER A(5,4), B(5,4)
 FORALL (I = 1:5)
 WHERE (A(I,:) .EQ. 0) A(I,:) = I
 B (I,:) = I / A(I,:)
 END FORALL

When executed with the input array

 0 0 0 0
 1 1 1 0
 A = 2 2 0 2
 1 0 2 3
 0 0 0 0

the results will be

 1 1 1 1 1 1 1 1
 1 1 1 2 2 2 2 1
 A = 2 2 3 2 B = 1 1 1 1
 1 4 2 3 4 1 2 1
 5 5 5 5 1 1 1 1

For an example of a FORALL construct containing a WHERE construct with an ELSEWHERE
statement, see C.4.5.

NOTE 7.60
This FORALL construct contains a nested FORALL construct. It assigns the transpose of the
lower triangle of array A (the section below the main diagonal) to the upper triangle of A.

 INTEGER A (3, 3)
 FORALL (I = 1:N-1)
 FORALL (J=I+1:N)
 A(I,J) = A(J,I)
 END FORALL
 END FORALL

If prior to execution N = 3 and

 0 3 6
 A = 1 4 7
 2 5 8

then after execution

 0 1 2
 A = 1 4 5
 2 5 8
142 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
7.5.4.3 The FORALL statement

The FORALL statement allows a single assignment statement or pointer assignment to be

controlled by a set of index values and an optional mask expression.

R758 forall-stmt is FORALL forall-header forall-assignment-stmt

A FORALL statement is equivalent to a FORALL construct containing a single forall-body-construct
that is a forall-assignment-stmt.

The scope of an index-name in a forall-stmt is the statement itself (16.1.3).

7.5.4.4 Restrictions on FORALL constructs and statements

A many-to-one assignment is more than one assignment to the same object, or association of more

than one target with the same pointer, whether the object is referenced directly or indirectly

through a pointer. A many-to-one assignment shall not occur within a single statement in a

FORALL construct or statement. It is possible to assign or pointer assign to the same object in

different assignment statements in a FORALL construct.

Within the scope of a FORALL construct, a nested FORALL statement or FORALL construct shall

not have the same index-name. The forall-header expressions within a nested FORALL may depend

on the values of outer index-name variables.

NOTE 7.61
Examples of FORALL statements are:

 FORALL (I=1:N) A(I,I) = X(I)

This statement assigns the elements of vector X to the elements of the main diagonal of matrix
A.

 FORALL (I = 1:N, J = 1:N) X(I,J) = 1.0 / REAL (I+J-1)

Array element X(I,J) is assigned the value (1.0 / REAL (I+J-1)) for values of I and J between 1
and N, inclusive.

 FORALL (I=1:N, J=1:N, Y(I,J) /= 0 .AND. I /= J) X(I,J) = 1.0 / Y(I,J)

This statement takes the reciprocal of each nonzero off-diagonal element of array Y(1:N, 1:N)
and assigns it to the corresponding element of array X. Elements of Y that are zero or on the
diagonal do not participate, and no assignments are made to the corresponding elements of X.

The results from the execution of the example in Note 7.60 could be obtained with a single
FORALL statement:

 FORALL (I = 1:N-1, J=1:N, J > I) A(I,J) = A(J,I)

For more examples of FORALL statements, see C.4.6.

NOTE 7.62
The appearance of each index-name in the identification of the left-hand side of an assignment
statement is helpful in eliminating many-to-one assignments, but it is not sufficient to
guarantee there will be none. For example, the following is allowed

 FORALL (I = 1:10)
 A (INDEX (I)) = B(I)
 END FORALL

if and only if INDEX(1:10) contains no repeated values.
JUN 2001 WORKING DRAFT 143

J3/01-007R2 WORKING DRAFT JUN 2001
144 WORKING DRAFT JUN 2001

	Section 7: Expressions and assignment
	7.1�� Expressions
	NOTE 7.1
	NOTE 7.2
	7.1.1�� Form of an expression
	NOTE 7.3
	7.1.1.1�� Primary
	C701 (R701) The type-param-name shall be the name of a type-parameter.
	NOTE 7.4

	7.1.1.2�� Level-1 expressions
	R702 level�1�expr is [defined�unary�op] primary
	R703 defined�unary�op is . letter [letter]
	C702 (R703) A defined�unary�op shall not contain more than 31 letters and shall not be the same a...
	NOTE 7.5

	7.1.1.3�� Level-2 expressions
	R704 mult�operand is level�1�expr [power�op mult�operand]
	R705 add�operand is [add�operand mult�op] mult�operand
	R706 level�2�expr is [[level�2�expr] add�op] add�operand
	R707 power�op is **
	R708 mult�op is *
	R709 add�op is +
	NOTE 7.6

	7.1.1.4�� Level-3 expressions
	R710 level�3�expr is [level�3�expr concat�op] level�2�expr
	R711 concat�op is //
	NOTE 7.7

	7.1.1.5�� Level-4 expressions
	R712 level�4�expr is [level�3�expr rel�op] level�3�expr
	R713 rel�op is .EQ.
	NOTE 7.8

	7.1.1.6�� Level-5 expressions
	R714 and�operand is [not�op] level�4�expr
	R715 or�operand is [or�operand and�op] and�operand
	R716 equiv�operand is [equiv�operand or�op] or�operand
	R717 level�5�expr is [level�5�expr equiv�op] equiv�operand
	R718 not�op is .NOT.
	R719 and�op is .AND.
	R720 or�op is .OR.
	R721 equiv�op is .EQV.
	NOTE 7.9

	7.1.1.7�� General form of an expression
	R722 expr is [expr defined�binary�op] level�5�expr
	R723 defined�binary�op is . letter [letter]
	C703 (R723) A defined�binary�op shall not contain more than 31 letters and shall not be the same ...
	NOTE 7.10

	7.1.2�� Intrinsic operations
	Table 7.1 Type of operands and results for intrinsic operators

	7.1.3�� Defined operations
	NOTE 7.11

	7.1.4�� Data type, type parameters, and shape of an expression
	R724 logical�expr is expr
	C704 (R724) logical�expr shall be of type logical.

	R725 char�expr is expr
	C705 (R725) char�expr shall be of type character.

	R726 default�char�expr is expr
	C706 (R726) default�char�expr shall be of type default character.

	R727 int�expr is expr
	C707 (R727) int�expr shall be of type integer.

	R728 numeric�expr is expr
	C708 (R728) numeric�expr shall be of type integer, real or complex.

	7.1.4.1�� Data type, type parameters, and shape of a primary
	(1) A primary in an intrinsic or defined operation,
	(2) As the expr of a parenthesized primary, or
	(3) As the only primary on the right-hand side of an intrinsic assignment statement.

	7.1.4.2�� Data type, type parameters, and shape of the result of an operation

	7.1.5�� Conformability rules for elemental operations
	7.1.6�� Specification expression
	R729 specification�expr is scalar�int�expr
	C709 (R729) The scalar�int�expr shall be a restricted expression.
	(1) A constant or subobject of a constant,
	(2) An object designator with a base object that is a dummy argument that has neither the OPTIONA...
	(3) An object designator with a base object that is in a common block,
	(4) An object designator with a base object that is made accessible by use association or host as...
	(5) An array constructor where each element and the bounds and strides of each implied- DO are re...
	(6) A structure constructor where each component is a restricted expression,
	(7) A specification inquiry where each designator or function argument is
	(a) a restricted expression or
	(b) a variable whose properties inquired about are not
	(i) dependent on the upper bound of the last dimension of an assumed-size array,
	(ii) deferred, or
	(iii) defined by an expression that is not a restricted expression,

	(8) A reference to any other standard intrinsic function where each argument is a restricted expr...
	(9) A reference to a specification function where each argument is a restricted expression,
	(10) A type parameter of the derived type being defined,
	(11) An implied-DO variable within an array constructor where the bounds and strides of the corre...
	(12) A restricted expression enclosed in parentheses,
	(1) an array inquiry function (13.8.15),
	(2) the bit inquiry function BIT_SIZE,
	(3) the character inquiry function LEN,
	(4) the kind inquiry function KIND,
	(5) a numeric inquiry function (13.8.8), or
	(6) a type parameter inquiry (6.1.3).

	NOTE 7.12
	NOTE 7.13

	7.1.7�� Initialization expression
	(1) A constant or subobject of a constant,
	(2) An array constructor where each element and the bounds and strides of each implied- DO are in...
	(3) A structure constructor where each component-spec corresponding to an allocatable component i...
	(4) A reference to the elemental intrinsic function ABS where the argument is an initialization e...
	NOTE 7.14
	(5) A reference to one of the transformational functions REPEAT, RESHAPE, SELECTED_INT_KIND, SELE...
	(6) A reference to the transformational function IEEE_SELECTED_REAL_KIND from the intrinsic modul...
	(7) A reference to the transformational intrinsic function NULL,
	(8) A specification inquiry where each designator or function argument is
	(a) an initialization expression or
	(b) a variable whose properties inquired about are not
	(i) assumed,
	(ii) deferred, or
	(iii) defined by an expression that is not an initialization expression,

	(9) A kind type parameter of the derived type being defined,
	(10) An implied-DO variable within an array constructor where the bounds and strides of the corre...
	(11) An initialization expression enclosed in parentheses,

	R730 initialization�expr is expr
	C710 (R730) initialization�expr shall be an initialization expression.

	R731 char�initialization�expr is char�expr
	C711 (R731) char�initialization�expr shall be an initialization expression.

	R732 int�initialization�expr is int�expr
	C712 (R732) int�initialization�expr shall be an initialization expression.

	R733 logical�initialization�expr is logical�expr
	C713 (R733) logical�initialization�expr shall be an initialization expression.
	NOTE 7.15

	7.1.8�� Evaluation of operations
	NOTE 7.16
	NOTE 7.17
	7.1.8.1�� Evaluation of operands
	NOTE 7.18
	NOTE 7.19

	7.1.8.2�� Integrity of parentheses
	NOTE 7.20

	7.1.8.3�� Evaluation of numeric intrinsic operations
	NOTE 7.21
	NOTE 7.22
	NOTE 7.23
	NOTE 7.24
	NOTE 7.25

	7.1.8.4�� Evaluation of the character intrinsic operation
	NOTE 7.26

	7.1.8.5�� Evaluation of relational intrinsic operations
	NOTE 7.27

	7.1.8.6�� Evaluation of logical intrinsic operations
	NOTE 7.28

	7.1.8.7�� Evaluation of a defined operation

	7.2�� Interpretation of intrinsic operations
	NOTE 7.29
	7.2.1�� Numeric intrinsic operations
	Table 7.2 Interpretation of the numeric intrinsic operators
	NOTE 7.30

	7.2.1.1�� Integer division
	NOTE 7.31

	7.2.1.2�� Complex exponentiation

	7.2.2�� Character intrinsic operation
	Table 7.3 Interpretation of the character intrinsic operator //
	NOTE 7.32

	7.2.3�� Relational intrinsic operations
	NOTE 7.33
	Table 7.4 Interpretation of the relational intrinsic operators
	NOTE 7.34

	7.2.4�� Logical intrinsic operations
	Table 7.5 Interpretation of the logical intrinsic operators
	Table 7.6 The values of operations involving logical intrinsic operators

	7.3�� Interpretation of defined operations
	7.3.1�� Unary defined operation
	(1) The function is specified with a FUNCTION (12.5.2.1) or ENTRY (12.5.2.4) statement that speci...
	(2) A type-bound generic binding (4.5.1.5) in the dynamic type of with a generic spec of OPERATOR...
	(3) The type of is the same as the type of dummy argument ,
	(4) The type parameters, if any, of match those of , and
	(5) Either
	(a) The rank of matches that of or
	(b) The function is elemental and there is no other function that defines the operation.

	7.3.2�� Binary defined operation
	(1) The function is specified with a FUNCTION (12.5.2.1) or ENTRY (12.5.2.4) statement that speci...
	(2) A type-bound generic binding (4.5.1.5) in the dynamic type of or with a generic spec of OPERA...
	(3) The types of and are the same as those of the dummy arguments and , respectively,
	(4) The type parameters, if any, of and match those of and , respectively, and
	(5) Either
	(a) The ranks of and match those of and or
	(b) The function is elemental and there is no other function that defines the operation.

	7.4�� Precedence of operators
	Table 7.7 Categories of operations and relative precedence
	NOTE 7.35
	NOTE 7.36
	NOTE 7.37 (Continued)
	(1) The operator ** is extended to type logical,

	7.5�� Assignment
	7.5.1�� Assignment statement
	7.5.1.1�� General form
	R734 assignment�stmt is variable = expr
	NOTE 7.38
	C714 (R734) A variable in an assignment�stmt shall not be a whole assumed�size array.

	NOTE 7.39

	7.5.1.2�� Intrinsic assignment statement
	(1) The types of variable and expr are intrinsic, as specified in Table 7.8 for assignment, or
	(2) The dynamic types of variable and expr are the same derived type with the same type parameter...
	Table 7.8 Type conformance for the intrinsic assignment statement

	7.5.1.3�� Defined assignment statement
	7.5.1.4�� Intrinsic assignment conformance rules
	Table 7.9 Numeric conversion and the assignment statement
	(1) If the length of variable is less than that of expr, the value of expr is truncated from the ...
	(2) If the length of variable is greater than that of expr, the value of expr is extended on the ...
	NOTE 7.40

	7.5.1.5�� Interpretation of intrinsic assignments
	NOTE 7.41
	NOTE 7.42
	NOTE 7.43
	(1) If the component of variable is currently allocated, it is deallocated.
	(2) If the component of expr is currently allocated, the corresponding component of variable is a...

	NOTE 7.44 �
	NOTE 7.45

	7.5.1.6�� Interpretation of defined assignment statements
	(1) The subroutine is specified with a SUBROUTINE (12.5.2.2) or ENTRY (12.5.2.4) statement that s...
	(2) A type-bound generic binding (4.5.1.5) in the dynamic type of or with a generic spec of ASSIG...
	(3) The and are type compatible with dummy arguments and , respectively,
	(4) The type parameters, if any, of and match those of and , respectively, and
	(5) Either
	(a) The ranks of and match those of and or
	(b) The subroutine is elemental and there is no other subroutine that defines the operation.

	NOTE 7.46

	7.5.2�� Pointer assignment
	R735 pointer�assignment�stmt is data-pointer�object [(bounds-spec-list)] => data-target
	R736 data-pointer-object is variable-name
	C715 (R736) A variable-name shall have the POINTER attribute.
	C716 (R736) A data-pointer-component-name shall be the name of a component of variable that is a ...

	R737 bounds-spec is lower-bound :
	R738 bounds-remapping is lower-bound : upper-bound
	R739 data-target is variable
	C717 (R735) A data-pointer-object shall be type-compatible (5.1.1.8) with data-target, and the co...
	C718 (R739) A variable shall have either the TARGET or POINTER attribute, and shall not be an arr...
	C719 (R739) An expr shall be a reference to a function whose result is a data pointer.
	C720 (R735) If bounds-spec-list is specified, the number of bounds-specs shall equal the rank of ...
	C721 (R735) If bounds-remapping-list is specified, the number of bounds-remappings shall equal th...
	C722 (R735) If bounds-remapping-list is specified, data-target shall have rank one; otherwise, th...

	R740 proc-pointer-object is proc-pointer-name
	C723 (R740) A procedure-component-name shall be the name of a procedure pointer component of vari...

	R741 proc-target is expr
	C724 (R741) An expr shall be a reference to a function whose result is a procedure pointer.
	C725 (R741) A procedure-name shall be the name of an external, module, or dummy procedure, a spec...
	C726 (R741) The proc-target shall not be a nonintrinsic elemental procedure.

	7.5.2.1�� Data pointer assignment
	7.5.2.2�� Procedure pointer assignment
	7.5.2.3�� Examples
	NOTE 7.47
	NOTE 7.48

	7.5.3�� Masked array assignment - WHERE
	7.5.3.1�� General form of the masked array assignment
	R742 where�stmt is WHERE (mask�expr) where�assignment�stmt
	R743 where�construct is where�construct�stmt
	R744 where�construct�stmt is [where�construct�name:] WHERE (mask�expr)
	R745 where�body�construct is where�assignment�stmt
	R746 where�assignment�stmt is assignment�stmt
	R747 mask�expr is logical�expr
	R748 masked�elsewhere�stmt is ELSEWHERE (mask�expr) [where�construct�name]
	R749 elsewhere�stmt is ELSEWHERE [where�construct�name]
	R750 end�where�stmt is END WHERE [where�construct�name]
	C727 (R746) A where�assignment�stmt that is a defined assignment shall be elemental.
	C728 (R743) If the where�construct�stmt is identified by a where�construct�name, the correspondin...
	C729 (R745) A statement that is part of a where�body�construct shall not be a branch target state...
	NOTE 7.49

	7.5.3.2�� Interpretation of masked array assignments
	(1) The control mask is established to have the value of the pending control mask.
	(2) The pending control mask is established to have the value �.AND.�(.NOT.�mask�expr).
	(3) The control mask is established to have the value �.AND.�mask�expr.
	NOTE 7.50 �
	NOTE 7.51

	7.5.4�� FORALL
	7.5.4.1�� The FORALL Construct
	R751 forall�construct is forall�construct�stmt
	R752 forall�construct�stmt is [forall�construct�name :] FORALL forall�header
	R753 forall�header is (forall�triplet�spec�list [, scalar�mask�expr])
	R754 forall�triplet�spec is index�name = subscript : subscript [: stride]
	R755 forall�body�construct is forall�assignment�stmt
	R756 forall�assignment�stmt is assignment�stmt
	R757 end�forall�stmt is END FORALL [forall�construct�name]
	C730 (R757) If the forall�construct-stmt has a forall�construct�name, the end-forall-stmt shall h...
	C731 (R753) The scalar�mask�expr shall be scalar and of type logical.
	C732 (R753) Any procedure referenced in the scalar�mask�expr, including one referenced by a defin...
	C733 (R754) The index�name shall be a named scalar variable of type integer.
	C734 (R754) A subscript or stride in a forall�triplet�spec shall not contain a reference to any i...
	C735 (R755) A statement in a forall�body�construct shall not define an index�name of the forall�c...
	C736 (R755) Any procedure referenced in a forall�body�construct, including one referenced by a de...
	C737 (R755) A forall�body�construct shall not be a branch target.
	NOTE 7.52
	NOTE 7.53
	NOTE 7.54
	NOTE 7.55 �

	7.5.4.2�� Execution of the FORALL construct
	(1) Determination of the values for index-name variables,
	(2) Evaluation of the scalar-mask-expr, and
	(3) Execution of the FORALL body constructs.

	7.5.4.2.1�� Determination of the values for index-name variables
	(1) The lower bound , the upper bound , and the stride are of type integer with the same kind typ...
	(2) Let the value of be . If for some index-name, the execution of the construct is complete. Oth...
	NOTE 7.56

	7.5.4.2.2�� Evaluation of the scalar-mask-expr
	NOTE 7.57

	7.5.4.2.3�� Execution of the FORALL body constructs
	NOTE 7.58
	NOTE 7.59
	NOTE 7.60

	7.5.4.3�� The FORALL statement
	R758 forall�stmt is FORALL forall�header forall�assignment�stmt
	NOTE 7.61

	7.5.4.4�� Restrictions on FORALL constructs and statements
	NOTE 7.62

