
JUN 2001 WORKING DRAFT J3/01-007R2
Section 12: Procedures
The concept of a procedure was introduced in 2.2.3. This section contains a complete description

of procedures. The actions specified by a procedure are performed when the procedure is invoked

by execution of a reference to it. The reference may identify, as actual arguments, entities that are

associated during execution of the procedure reference with corresponding dummy arguments in

the procedure definition.

12.1 Procedure classifications
A procedure is classified according to the form of its reference and the way it is defined.

12.1.1 Procedure classification by reference

The definition of a procedure specifies it to be a function or a subroutine. A reference to a function

either appears explicitly as a primary within an expression, or is implied by a defined operation

(7.1.3) within an expression. A reference to a subroutine is a CALL statement or a defined

assignment statement (7.5.1.3).

A procedure is classified as elemental if it is a procedure that may be referenced elementally (12.7).

12.1.2 Procedure classification by means of definition

A procedure is either an intrinsic procedure, an external procedure, a module procedure, an

internal procedure, a dummy procedure, or a statement function.

12.1.2.1 Intrinsic procedures

A procedure that is provided as an inherent part of the processor is an intrinsic procedure.

12.1.2.2 External, internal, and module procedures

An external procedure is a procedure that is defined by an external subprogram or by a means

other than Fortran.

An internal procedure is a procedure that is defined by an internal subprogram. Internal

subprograms may appear in the main program, in an external subprogram, or in a module

subprogram. Internal subprograms shall not appear in other internal subprograms. Internal

subprograms are the same as external subprograms except that the name of the internal procedure

is not a global entity, an internal subprogram shall not contain an ENTRY statement, the internal

procedure name shall not be argument associated with a dummy procedure (12.4.1.3), and the

internal subprogram has access to host entities by host association.

A module procedure is a procedure that is defined by a module subprogram.

If a subprogram contains one or more ENTRY statements, it defines a procedure for each ENTRY

statement and a procedure for the SUBROUTINE or FUNCTION statement.

12.1.2.3 Dummy procedures

A dummy argument that is specified as a procedure or appears in a procedure reference is a

dummy procedure.
JUN 2001 WORKING DRAFT 237

J3/01-007R2 WORKING DRAFT JUN 2001
12.1.2.4 Statement functions
A function that is defined by a single statement is a statement function (12.5.4).

12.2 Characteristics of procedures
The characteristics of a procedure are the classification of the procedure as a function or

subroutine, whether it is pure, whether it is elemental, whether it has the BIND attribute, the value

of its binding label, the characteristics of its dummy arguments, and the characteristics of its result

value if it is a function.

12.2.1 Characteristics of dummy arguments

Each dummy argument has the characteristic that it is a dummy data object, a dummy procedure,

a dummy procedure pointer, or an asterisk (alternate return indicator). A dummy argument other than an

asterisk may be specified to have the OPTIONAL attribute. This attribute means that the dummy

argument need not be associated with an actual argument for any particular reference to the

procedure.

12.2.1.1 Characteristics of dummy data objects

The characteristics of a dummy data object are its type, its type parameters (if any), its shape, its

intent (5.1.2.7, 5.2.7), whether it is optional (5.1.2.9, 5.2.8), whether it is allocatable (5.1.2.5.3),

whether it has the VALUE (5.1.2.14), ASYNCHRONOUS (5.1.2.3), or VOLATILE (5.1.2.15)

attributes, whether it is polymorphic, and whether it is a pointer (5.1.2.11, 5.2.10) or a target

(5.1.2.13, 5.2.12). If a type parameter of an object or a bound of an array is not an initialization

expression, the exact dependence on the entities in the expression is a characteristic. If a shape,

size, or type parameter is assumed or deferred, it is a characteristic.

12.2.1.2 Characteristics of dummy procedures and dummy procedure pointers

The characteristics of a dummy procedure are the explicitness of its interface (12.3.1), its

characteristics as a procedure if the interface is explicit, whether it is a pointer, and whether it is

optional (5.1.2.9, 5.2.8).

12.2.1.3 Characteristics of asterisk dummy arguments
An asterisk as a dummy argument has no characteristics.

12.2.2 Characteristics of function results

The characteristics of a function result are its type, type parameters (if any), rank, whether it is

polymorphic, whether it is allocatable or a pointer, and whether it is a procedure pointer. If a

function result is an array that is not allocatable or a pointer, its shape is a characteristic. If a type

parameter of a function result or a bound of a function result array is not an initialization

expression, the exact dependence on the entities in the expression is a characteristic. If type

parameters of a function result are deferred, which parameters are deferred is a characteristic. If the

length of a character function result is assumed, this is a characteristic.

12.3 Procedure interface
The interface of a procedure determines the forms of reference through which it may be invoked.

The interface consists of the characteristics of the procedure, the name of the procedure, the name

and characteristics of each dummy argument, and the procedure’s generic identifiers, if any. The
238 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
characteristics of a procedure are fixed, but the remainder of the interface may differ in different

scoping units.

12.3.1 Implicit and explicit interfaces

If a procedure is accessible in a scoping unit, its interface is either explicit or implicit in that

scoping unit. The interface of an internal procedure, module procedure, or intrinsic procedure is

always explicit in such a scoping unit. The interface of a subroutine or a function with a separate

result name is explicit within the subprogram that defines it. The interface of a statement function is always

implicit. The interface of an external procedure or dummy procedure is explicit in a scoping unit

other than its own if an interface body (12.3.2.1) for the procedure is supplied or accessible, and

implicit otherwise.

12.3.1.1 Explicit interface

A procedure other than a statement function shall have an explicit interface if

(1) A reference to the procedure appears

(a) With an argument keyword (12.4.1),

(b) As a reference by its generic name (12.3.2.1),

(c) As a defined assignment (subroutines only),

(d) In an expression as a defined operator (functions only), or

(e) In a context that requires it to be pure,

(2) The procedure has a dummy argument that

(a) has the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER, TARGET,
VALUE, or VOLATILE attribute,

(b) is an assumed-shape array,

(c) is of a parameterized derived type, or

(d) is polymorphic,

(3) The procedure has a result that

(e) is array-valued,

(f) is a pointer or is allocatable, or

(g) has a nonassumed type parameter value that is not an initialization expression,

(4) The procedure is elemental, or

(5) The procedure has the BIND attribute.

12.3.2 Specification of the procedure interface

The interface for an internal, external, module, or dummy procedure is specified by a FUNCTION,

SUBROUTINE, or ENTRY statement and by specification statements for the dummy arguments

and the result of a function. These statements may appear in the procedure definition, in an

interface body, or in both except that the ENTRY statement shall not appear in an interface body.

NOTE 12.1
For more explanatory information on procedure interfaces, see section C.9.3.

NOTE 12.2
For example, the subroutine LLS of C.8.3.5 has an explicit interface.
JUN 2001 WORKING DRAFT 239

J3/01-007R2 WORKING DRAFT JUN 2001
12.3.2.1 Interface block

R1201 interface-block is interface-stmt
[interface-specification] ...

end-interface-stmt

R1202 interface-specification is interface-body
or procedure-stmt

R1203 interface-stmt is INTERFACE [generic-spec]

or INTERFACE PROCEDURE ()

R1204 end-interface-stmt is END INTERFACE [generic-spec]

R1205 interface-body is function-stmt
[specification-part]

end-function-stmt
or subroutine-stmt

[specification-part]

end-subroutine-stmt

C1201 (R1205) An interface body shall not contain an ENTRY statement.

C1202 (R1205) An interface-body of a pure procedure shall specify the intents of all dummy
arguments except pointer, alternate return, and procedure arguments.

R1206 procedure-stmt is [MODULE] PROCEDURE procedure-name-list

R1207 generic-spec is generic-name
or OPERATOR (defined-operator)

or ASSIGNMENT (=)

or dtio-generic-spec

R1208 dtio-generic-spec is READ (FORMATTED)

or READ (UNFORMATTED)

or WRITE (FORMATTED)

or WRITE (UNFORMATTED)

C1203 (R1205) An interface-body shall not contain an entry-stmt, data-stmt, format-stmt, or

stmt-function-stmt.

C1204 (R1201) An interface-block in a subprogram shall not contain an interface-body for a
procedure defined by that subprogram.

C1205 (R1201) The generic-spec may be included in the end-interface-stmt only if it was provided in
the interface-stmt and, if included, shall be identical to the generic-spec in the interface-stmt.

C1206 (R1206) A procedure-name shall have an explicit interface and shall refer to an accessible
procedure pointer, external procedure, dummy procedure, or module procedure.

C1207 (R1206) If MODULE appears in a procedure-stmt, each procedure-name in that statement shall
be accessible in the current scope as a module procedure.

C1208 (R1202) A procedure-stmt is allowed only if the interface block has a generic-spec.

C1209 (R1206) A procedure-name shall not be one that previously had been specified in any
procedure-stmt with the same generic identifier in the same specification part.

R1209 import-stmt is IMPORT [::] import-name-list

NOTE 12.3
An interface body cannot be used to describe the interface of an internal procedure, a module
procedure, or an intrinsic procedure because the interfaces of such procedures are already
explicit. However, the name of a procedure may appear in a PROCEDURE statement in an
interface block (12.3.2.1).
240 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C1210 (R1209) The IMPORT statement is allowed only in an interface-body.

C1211 (R1209) Each import-name shall be the name of an entity in the host scoping unit.

An external or module subprogram specifies a specific interface for the procedures defined in that

subprogram. Such a specific interface is explicit for module procedures and implicit for external

procedures.

An interface block introduced by INTERFACE PROCEDURE() is an abstract interface block. An

interface body in an abstract interface block specifies an abstract interface. An interface block with

a generic specification is a generic interface block. An interface block introduced by INTERFACE

(with no PROCEDURE() or generic specification) is a specific interface block. An interface body

in a generic or specific interface block specifies an explicit specific interface for an existing external

procedure or a dummy procedure. If the function-name in a function-stmt or subroutine-name in a

subroutine-stmt in such an interface body is the same as the name of a dummy argument in the

subprogram containing the interface body, the interface body declares that dummy argument to be

a dummy procedure with the indicated interface; otherwise, the interface body declares the name

to be the name of an external procedure with the indicated procedure interface.

An interface body specifies all of the characteristics of the explicit interface or abstract interface.

The specification part of an interface body may specify attributes or define values for data entities

that do not determine characteristics of the procedure. Such specifications have no effect.

If an explicit specific interface is created by an interface body or a procedure declaration statement

for an external procedure, the characteristics shall be consistent with those specified in the

procedure definition, except that the interface may specify a procedure that is not pure if the

procedure is defined to be pure. An interface for a procedure named by an ENTRY statement may

be specified by using the entry name as the procedure name in the interface body. A procedure

shall not have more than one explicit specific interface in a given scoping unit.

The IMPORT statement specifies that the named entities from the host scoping unit are accessible

in the interface body by host association. An entity that is imported in this manner and is defined

in the host scoping unit shall be explicitly declared prior to the interface body. The name of an

entity made accessible by an IMPORT statement shall appear in no other statement that would

cause any attribute of the entity to be specified in the interface body.

NOTE 12.4
The dummy argument names may be different because the name of a dummy argument is not
a characteristic.

NOTE 12.5
An example of an interface block without a generic specification is:

INTERFACE

SUBROUTINE EXT1 (X, Y, Z)
REAL, DIMENSION (100, 100) :: X, Y, Z

END SUBROUTINE EXT1
JUN 2001 WORKING DRAFT 241

J3/01-007R2 WORKING DRAFT JUN 2001
A generic interface block specifies a generic interface for each of the procedures in the interface

block. The PROCEDURE statement lists procedure pointers, external procedures, dummy

procedures, or module procedures that have this generic interface. The characteristics of module

procedures are not given in interface blocks, but are assumed from the module subprograms. The

characteristics of a procedure pointer are defined by a procedure declaration statement (12.3.2.3).

A generic interface is always explicit.

Any procedure may be referenced via its specific interface if the specific interface is accessible. It

also may be referenced via its generic interface, if it has one. The generic name, defined operator,

or equals symbol in a generic specification is a generic identifier for all the procedures in the

interface block. The rules on how any two procedures with the same generic identifier shall differ

are given in 16.1.2.3. They ensure that any generic invocation applies to at most one specific

procedure.

SUBROUTINE EXT2 (X, Z)
REAL X
COMPLEX (KIND = 4) Z (2000)

END SUBROUTINE EXT2

FUNCTION EXT3 (P, Q)
LOGICAL EXT3
INTEGER P (1000)
LOGICAL Q (1000)

END FUNCTION EXT3

END INTERFACE

This interface block specifies explicit interfaces for the three external procedures EXT1, EXT2,
and EXT3. Invocations of these procedures may use argument keywords (12.4.1); for example:

EXT3 (Q = P_MASK (N+1 : N+1000) , P = ACTUAL_P)

NOTE 12.6
The IMPORT statement can be used to allow module procedures to have dummy arguments
that are procedures with assumed-shape arguments of an opaque type. For example:

MODULE M
 TYPE T
 PRIVATE ! T is an opaque type
 ...
 END TYPE
CONTAINS
 SUBROUTINE PROCESS(X,Y,RESULT,MONITOR)
 TYPE(T),INTENT(IN) :: X(:,:),Y(:,:)
 TYPE(T),INTENT(OUT) :: RESULT(:,:)
 INTERFACE
 SUBROUTINE MONITOR(ITERATION_NUMBER,CURRENT_ESTIMATE)
 IMPORT T
 INTEGER,INTENT(IN) :: ITERATION_NUMBER
 TYPE(T),INTENT(IN) :: CURRENT_ESTIMATE(:,:)
 END SUBROUTINE
 END INTERFACE
 ...
 END SUBROUTINE
END MODULE

The MONITOR dummy procedure requires an explicit interface because it has an assumed-
shape array argument, but TYPE(T) would not be available inside the interface body without
the IMPORT statement.

NOTE 12.5 (Continued)
242 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
A generic name specifies a single name to reference all of the procedure names in the interface

block. A generic name may be the same as any one of the procedure names in the interface block,

or the same as any accessible generic name.

A generic name may be the same as a derived type name, in which case all of the procedures in the

interface block shall be functions.

An interface-stmt having the keyword READ or WRITE, followed by (FORMATTED) or

(UNFORMATTED), is an interface for a user-defined derived-type input/output procedure

(9.5.4.4.3)

12.3.2.1.1 Defined operations

If OPERATOR is specified in a generic specification, all of the procedures specified in the generic

interface shall be functions that may be referenced as defined operations (7.1.3,7.1.8.7, 7.3, 12.4). In

the case of functions of two arguments, infix binary operator notation is implied. In the case of

functions of one argument, prefix operator notation is implied. OPERATOR shall not be specified

for functions with no arguments or for functions with more than two arguments. The dummy

arguments shall be nonoptional dummy data objects and shall be specified with INTENT (IN) and

the function result shall not have assumed character length. If the operator is an intrinsic-operator (R310), the

number of function arguments shall be consistent with the intrinsic uses of that operator.

A defined operation is treated as a reference to the function. For a unary defined operation, the

operand corresponds to the function’s dummy argument; for a binary operation, the left-hand

operand corresponds to the first dummy argument of the function and the right-hand operand

corresponds to the second dummy argument.

NOTE 12.7
An example of a generic procedure interface is:

INTERFACE SWITCH

SUBROUTINE INT_SWITCH (X, Y)
INTEGER, INTENT (INOUT) :: X, Y

END SUBROUTINE INT_SWITCH

SUBROUTINE REAL_SWITCH (X, Y)
REAL, INTENT (INOUT) :: X, Y

END SUBROUTINE REAL_SWITCH

SUBROUTINE COMPLEX_SWITCH (X, Y)
COMPLEX, INTENT (INOUT) :: X, Y

END SUBROUTINE COMPLEX_SWITCH

END INTERFACE SWITCH

Any of these three subroutines (INT_SWITCH, REAL_SWITCH, COMPLEX_SWITCH) may be
referenced with the generic name SWITCH, as well as by its specific name. For example, a
reference to INT_SWITCH could take the form:

CALL SWITCH (MAX_VAL, LOC_VAL) ! MAX_VAL and LOC_VAL are of type INTEGER
JUN 2001 WORKING DRAFT 243

J3/01-007R2 WORKING DRAFT JUN 2001
A given defined operator may, as with generic names, apply to more than one function, in which

case it is generic in exact analogy to generic procedure names. For intrinsic operator symbols, the

generic properties include the intrinsic operations they represent. Because both forms of each

relational operator have the same interpretation (7.3), extending one form (such as <=) has the

effect of defining both forms (<= and .LE.).

12.3.2.1.2 Defined assignments

If ASSIGNMENT (=) is specified in a generic specification, all the procedures in the generic

interface shall be subroutines that may be referenced as defined assignments (7.5.1.3, 7.5.1.6, 12.4).

Defined assignment may, as with generic names, apply to more than one subroutine, in which case

it is generic in exact analogy to generic procedure names. Each of these subroutines shall have

exactly two dummy arguments. Each argument shall be nonoptional. The first argument shall

have INTENT (OUT) or INTENT (INOUT) and the second argument shall have INTENT (IN). A

defined assignment is treated as a reference to the subroutine, with the left-hand side as the first

argument and the right-hand side enclosed in parentheses as the second argument. The

ASSIGNMENT generic specification specifies that the assignment operation is extended, or

redefined if both sides of the equals sign are of the same derived type and kind type parameters.

NOTE 12.8
An example of the use of the OPERATOR generic specification is:

INTERFACE OPERATOR (*)

FUNCTION BOOLEAN_AND (B1, B2)
LOGICAL, INTENT (IN) :: B1 (:), B2 (SIZE (B1))
LOGICAL :: BOOLEAN_AND (SIZE (B1))

END FUNCTION BOOLEAN_AND

END INTERFACE OPERATOR (*)

This allows, for example

SENSOR (1:N) * ACTION (1:N)

as an alternative to the function call

BOOLEAN_AND (SENSOR (1:N), ACTION (1:N)) ! SENSOR and ACTION are
! of type LOGICAL

NOTE 12.9
In Fortran 90 and Fortran 95, it was not possible to define operators on pointers because
pointer dummy arguments were disallowed from having an INTENT attribute. The
restriction against INTENT for pointer dummy arguments is now lifted, so defined operators
on pointers are now possible.

However, the POINTER attribute cannot be used to resolve generic procedures (16.1.2.3), so it
is not possible to define a generic operator that has one procedure for pointers and another
procedure for nonpointers.

NOTE 12.10
An example of the use of the ASSIGNMENT generic specification is:

INTERFACE ASSIGNMENT (=)

SUBROUTINE LOGICAL_TO_NUMERIC (N, B)
INTEGER, INTENT (OUT) :: N
LOGICAL, INTENT (IN) :: B

END SUBROUTINE LOGICAL_TO_NUMERIC
244 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
12.3.2.1.3 User-defined derived-type input/output procedure interfaces

All of the procedures specified in an interface block for a user-defined derived-type input/output

procedure shall be subroutines that have an interface as described in 9.5.4.4.3.

12.3.2.1.4 Abstract interfaces

The subroutine-name in a subroutine-stmt or function-name in a function-stmt in an abstract interface

block is the name of an abstract interface.

12.3.2.2 EXTERNAL statement

An EXTERNAL statement specifies the EXTERNAL attribute (5.1.2.6) for a list of names.

R1210 external-stmt is EXTERNAL [::] external-name-list

Each external-name shall be the name of an external procedure, a dummy argument, or a block data

program unit.

The appearance of the name of a block data program unit in an EXTERNAL statement confirms

that the block data program unit is a part of the program.

SUBROUTINE CHAR_TO_STRING (S, C)
USE STRING_MODULE ! Contains definition of type STRING
TYPE (STRING), INTENT (OUT) :: S ! A variable-length string
CHARACTER (*), INTENT (IN) :: C

END SUBROUTINE CHAR_TO_STRING

END INTERFACE ASSIGNMENT (=)

Example assignments are:

KOUNT = SENSOR (J) ! CALL LOGICAL_TO_NUMERIC (KOUNT, (SENSOR (J)))
NOTE = '89AB' ! CALL CHAR_TO_STRING (NOTE, ('89AB'))

NOTE 12.11
! Example abstract interfaces.
INTERFACE PROCEDURE ()

 ! REAL_FUNC is an abstract interface name.
 FUNCTION REAL_FUNC (X)
 REAL, INTENT (IN) :: X
 REAL :: REAL_FUNC
 END FUNCTION REAL_FUNC

 ! SUB is an abstract interface name.
 SUBROUTINE SUB (X)
 REAL, INTENT (IN) :: X
 END SUBROUTINE SUB
END INTERFACE

REAL_FUNC and SUB may be used as abstract-interface-names in procedure declaration
statements and type-bound procedure bindings.

NOTE 12.12
For explanatory information on potential portability problems with external procedures, see
section C.9.1.

NOTE 12.10 (Continued)
JUN 2001 WORKING DRAFT 245

J3/01-007R2 WORKING DRAFT JUN 2001
12.3.2.3 Procedure declaration statement

A procedure declaration statement declares procedure pointers, dummy procedures, and external

procedures.

R1211 procedure-declaration-stmt is PROCEDURE ([proc-interface]) [[, proc-attr-spec] ... ::] ■
■ proc-decl-list

R1212 proc-interface is abstract-interface-name
or declaration-type-spec

R1213 proc-attr-spec is access-spec
or language-binding-spec
or INTENT (intent-spec)

or OPTIONAL

or POINTER

or SAVE

R1214 proc-decl is procedure-entity-name [=> NULL()]

R1215 abstract-interface-name is name

C1212 (R1215) The name shall be the name of an abstract interface (12.1.2.1)

C1213 If a procedure entity has the INTENT attribute or SAVE attribute, it shall also have the
POINTER attribute.

C1214 (R1211) If a proc-interface describes an elemental procedure, each procedure-entity-name shall
specify an external procedure.

C1215 (R1214) If => appears in proc-decl, the procedure entity shall have the POINTER attribute.

C1216 (R1213) If language-binding-spec is specified, it shall contain at most one BINDNAME= bind-
spec.

C1217 (R1211) If language-binding-spec is specified and any procedure entity has either the
POINTER attribute or is a dummy procedure, language-binding-spec shall not have a bind-
spec.

C1218 (R1211) If a bind-spec is present, proc-decl-list shall contain exactly one proc-decl.

C1219 (R1211) If language-binding-spec is specified, the proc-interface shall be present, it shall be an
abstract-interface-name, and abstract-interface-name shall be declared with a language-binding-
spec.

If proc-interface is present and consists of abstract-interface-name, it specifies an explicit specific

interface (12.3.2.1) for the declared procedures or procedure pointers. All of the characteristics of

the explicit specific interface are those specified by proc-interface.

If proc-interface is present and consists of declaration-type-spec, it specifies that the declared

procedures or procedure pointers are functions having implicit interfaces and the specified result

type. If a type is specified for an external function, its function definition (12.5.2.1) shall specify

the same result type and type parameters.

If proc-interface is absent, the procedure declaration statement does not specify whether the

declared procedures or procedure pointers are subroutines or functions.

The PROCEDURE statement specifies the EXTERNAL attribute (5.1.2.6) for all procedure entities

in the proc-decl-list.

NOTE 12.13
An example of an EXTERNAL statement is:

EXTERNAL FOCUS
246 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
12.3.2.4 INTRINSIC statement

An INTRINSIC statement specifies a list of names that have the INTRINSIC attribute (5.1.2.8).

R1216 intrinsic-stmt is INTRINSIC [::] intrinsic-procedure-name-list

C1220 (R1216) Each intrinsic-procedure-name shall be the name of an intrinsic procedure.

12.3.2.5 Implicit interface specification

In a scoping unit where the interface of a function is implicit, the type and type parameters of the

function result are specified by an implicit or explicit type specification of the function name. The

type, type parameters, and shape of dummy arguments of a procedure referenced from a scoping

unit where the interface of the procedure is implicit shall be such that the actual arguments are

consistent with the characteristics of the dummy arguments.

12.4 Procedure reference
The form of a procedure reference is dependent on the interface of the procedure or procedure

pointer, but is independent of the means by which the procedure is defined. The forms of

procedure references are:

R1217 function-reference is procedure-designator ([actual-arg-spec-list])

C1221 (R1217) The procedure-designator shall designate a function.

C1222 (R1217) The actual-arg-spec-list shall not contain an alt-return-spec.

NOTE 12.14
In contrast to the EXTERNAL statement, it is not possible to use the PROCEDURE statement
to identify a BLOCK DATA subprogram.

NOTE 12.15
! Using abstract procedure definitions in Note 12.11:
!-- Some external or dummy procedures with explicit interface.
PROCEDURE (REAL_FUNC) :: BESSEL, GAMMA
PROCEDURE (SUB) :: PRINT_REAL
!-- Some procedure pointers with explicit interface,
!-- one initialized to NULL().
PROCEDURE (REAL_FUNC), POINTER :: P, R => NULL()
PROCEDURE (REAL_FUNC), POINTER :: PTR_TO_GAMMA
!-- A derived type with a procedure pointer component ...
TYPE STRUCT_TYPE
 PROCEDURE (REAL_FUNC), POINTER :: COMPONENT
END TYPE STRUCT_TYPE
!-- ... and a variable of that type.
TYPE(STRUCT_TYPE) :: STRUCT
!-- An external or dummy function with implicit interface
PROCEDURE (REAL) :: PSI

NOTE 12.16
A procedure pointer is not interoperable with a C pointer. However, it is possible to pass a C
pointer to a procedure from Fortran to C through the use of the C_LOC function accessible
from the ISO_C binding module. The argument of the C_LOC function is then a procedure
with a BIND attribute.

NOTE 12.17
A name shall not be explicitly specified to have both the EXTERNAL and INTRINSIC
attributes in the same scoping unit.
JUN 2001 WORKING DRAFT 247

J3/01-007R2 WORKING DRAFT JUN 2001
R1218 call-stmt is CALL procedure-designator [([actual-arg-spec-list])]

C1223 (R1218) The procedure-designator shall designate a subroutine.

R1219 procedure-designator is procedure-name
or data-ref % procedure-component-name
or data-ref % binding-name

C1224 (R1219) A procedure-name shall be the name of a procedure or procedure pointer.

C1225 (R1219) A procedure-component-name shall be the name of a procedure pointer component of
the declared type of data-ref.

C1226 (R1219) A binding-name shall be the name of a procedure binding (4.5.1.5) of the declared
type of data-ref.

For type-bound procedure references, the declared binding is the binding in the declared type of

the data-ref whose name is binding-name, and the dynamic binding is the binding in the dynamic

type of the data-ref with that name.

If the declared binding is nongeneric, the dynamic binding shall not be deferred; the procedure

identified by the dynamic binding is referenced.

If the declared binding is generic, then

(1) If the reference is consistent with one of the specific interfaces in the declared binding,
the corresponding specific interface in the dynamic binding is selected.

(2) Otherwise, the reference shall be consistent with an elemental reference to one of the
specific interfaces in the declared binding; the corresponding specific interface in the
dynamic binding is selected.

The selected specific interface shall not be deferred; the reference is to the procedure identified by

that interface.

A function may also be referenced as a defined operation (12.3.2.1.1). A subroutine may also be

referenced as a defined assignment (12.3.2.1.2).

R1220 actual-arg-spec is [keyword =] actual-arg

R1221 actual-arg is expr
or variable
or procedure-name
or alt-return-spec

R1222 alt-return-spec is ∗ label

C1227 (R1220) The keyword = shall not appear if the interface of the procedure is implicit in the
scoping unit.

C1228 (R1220) The keyword = may be omitted from an actual-arg-spec only if the keyword = has
been omitted from each preceding actual-arg-spec in the argument list.

C1229 (R1220) Each keyword shall be the name of a dummy argument in the explicit interface of
the procedure.

C1230 (R1221) A nonintrinsic elemental procedure shall not be used as an actual argument.

C1231 (R1221) A procedure-name shall be the name of an external procedure, a dummy procedure,
a module procedure, or a specific intrinsic function that is listed in 13.10 and not marked
with a bullet(•).
248 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C1232 (R1221) In a reference to a pure procedure, a procedure-name actual-arg shall be the name of
a pure procedure (12.6).

C1233 (R1222) The label used in the alt-return-spec shall be the statement label of a branch target statement that appears
in the same scoping unit as the call-stmt.

12.4.1 Actual arguments, dummy arguments, and argument association

In either a subroutine reference or a function reference, the actual argument list identifies the

correspondence between the actual arguments supplied and the dummy arguments of the

procedure. This correspondence may be established either by keyword or by position. If an

argument keyword is present, the actual argument is associated with the dummy argument whose

name is the same as the argument keyword (using the dummy argument names from the interface

accessible in the scoping unit containing the procedure reference). In the absence of an argument

keyword, an actual argument is associated with the dummy argument occupying the

corresponding position in the reduced dummy argument list; that is, the first actual argument is

associated with the first dummy argument in the reduced list, the second actual argument is

associated with the second dummy argument in the reduced list, etc. The reduced dummy

argument list is either the full dummy argument list or, if PASS_OBJ is applicable, the dummy

argument list with the passed object dummy argument (4.5.1) omitted. Exactly one actual

argument shall be associated with each nonoptional dummy argument. At most one actual

argument may be associated with each optional dummy argument. Each actual argument shall be

associated with a dummy argument.

NOTE 12.18
This standard does not allow internal procedures to be used as actual arguments, in part to
simplify the problem of ensuring that internal procedures with recursive hosts access entities
from the correct instance (12.5.2.3) of the host. If, as an extension, a processor allows internal
procedures to be used as actual arguments, the correct instance in this case is the instance in
which the procedure is supplied as an actual argument, even if the corresponding dummy
argument is eventually invoked from a different instance.

NOTE 12.19
This constraint ensures that the purity of a procedure cannot be undermined by allowing it to
call a nonpure procedure.

NOTE 12.20
Successive commas shall not be used to omit optional arguments.

NOTE 12.21
Examples of procedure reference using procedure pointers:

P => BESSEL
WRITE (*, *) P(2.5) !-- BESSEL(2.5)

S => PRINT_REAL
CALL S(3.14)
JUN 2001 WORKING DRAFT 249

J3/01-007R2 WORKING DRAFT JUN 2001
12.4.1.1 The effect of PASS_OBJ on argument association

In a reference to a type-bound procedure with the PASS_OBJ attribute, the data-ref of the function-
reference or call-stmt is associated, as an actual argument, with the passed object dummy argument

(4.5.1). In a procedure reference in which variable is a structure-component for which the final part-
name is a procedure pointer with the PASS_OBJ attribute, the object of which the part-name is a

component is the actual argument that is associated with the passed object dummy argument.

12.4.1.2 Actual arguments associated with dummy data objects

A dummy argument shall be type-compatible (5.1.1.8) with the associated actual argument unless

the dummy argument has INTENT(OUT) and is an allocatable or pointer. If the dummy argument

is an allocatable or pointer that does not have INTENT(IN), the associated actual argument shall be

type-compatible with the dummy argument. If the dummy argument is allocatable or a pointer,

the associated actual argument shall be polymorphic if and only if the dummy argument is

polymorphic.

The type parameter values of the actual argument shall agree with the corresponding ones of the

dummy argument that are not assumed or deferred, except for the case of the character length

parameter of an actual argument of type default character associated with a dummy argument that

is not assumed shape.

If a scalar dummy argument is of type default character, the length len of the dummy argument

shall be less than or equal to the length of the actual argument. The dummy argument becomes

associated with the leftmost len characters of the actual argument. If an array dummy argument is

of type default character and is not assumed shape, it becomes associated with the leftmost

characters of the actual argument element sequence (12.4.1.5) and it shall not extend beyond the

end of that sequence.

The values of assumed type parameters of a dummy argument are assumed from the

corresponding type parameters of the associated actual argument.

An actual argument associated with a dummy argument that is allocatable or a pointer shall have

deferred the same type parameters as the dummy argument.

If the dummy argument is a pointer, the actual argument shall be a pointer and the nondeferred

type parameters and ranks shall agree. If a dummy argument is allocatable, the actual argument

shall be allocatable and the nondeferred type parameters and ranks shall agree. It is permissible

for the actual argument to have an allocation status of not currently allocated.

NOTE 12.22
For example, the procedure defined by

SUBROUTINE SOLVE (FUNCT, SOLUTION, METHOD, STRATEGY, PRINT)
INTERFACE

FUNCTION FUNCT (X)
REAL FUNCT, X

END FUNCTION FUNCT
END INTERFACE
REAL SOLUTION
INTEGER, OPTIONAL :: METHOD, STRATEGY, PRINT
...

may be invoked with

CALL SOLVE (FUN, SOL, PRINT = 6)

provided its interface is explicit; if the interface is specified by an interface block, the name of
the last argument shall be PRINT.
250 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
At the invocation of the procedure, the pointer association status of an actual argument associated

with a pointer dummy argument becomes undefined if the dummy argument has INTENT(OUT).

Except in references to intrinsic inquiry functions, if the dummy argument is not a pointer and the

corresponding actual argument is a pointer, the actual argument shall be currently associated with

a target and the dummy argument becomes argument associated with that target.

Except in references to intrinsic inquiry functions, if the dummy argument is not allocatable and

the actual argument is allocatable, the actual argument shall be currently allocated.

If the dummy argument has the VALUE attribute it becomes associated with a definable

anonymous data object whose initial value is that of the actual argument. Subsequent changes to

the value or definition status of the dummy argument do not affect the actual argument.

If the dummy argument does not have the TARGET or POINTER attribute, any pointers associated

with the actual argument do not become associated with the corresponding dummy argument on

invocation of the procedure. If such a dummy argument is associated with a dummy argument

with the TARGET attribute, whether any pointers associated with the original actual argument

become associated with the dummy argument with the TARGET attribute is processor dependent.

If the dummy argument has the TARGET attribute, does not have the VALUE attribute, and is

either a scalar or an assumed-shape array, and the corresponding actual argument has the TARGET

attribute but is not an array section with a vector subscript

(1) Any pointers associated with the actual argument become associated with the
corresponding dummy argument on invocation of the procedure and

(2) When execution of the procedure completes, any pointers that do not become
undefined (16.7.2.1.3) and are associated with the dummy argument remain associated
with the actual argument.

If the dummy argument has the TARGET attribute and is an explicit-shape array or is an assumed-

size array, and the corresponding actual argument has the TARGET attribute but is not an array

section with a vector subscript

(1) On invocation of the procedure, whether any pointers associated with the actual
argument become associated with the corresponding dummy argument is processor
dependent and

(2) When execution of the procedure completes, the pointer association status of any
pointer that is pointer associated with the dummy argument is processor dependent.

If the dummy argument has the TARGET attribute and the corresponding actual argument does

not have the TARGET attribute or is an array section with a vector subscript, any pointers

associated with the dummy argument become undefined when execution of the procedure

completes.

If the dummy argument has the TARGET attribute and the VALUE attribute, any pointers

associated with the dummy argument become undefined when execution of the procedure

completes.

If the actual argument is scalar, the corresponding dummy argument shall be scalar unless the

actual argument is of type default character, of type character with the C character kind (15.1), or

is an element or substring of an element of an array that is not an assumed-shape or pointer array.

If the procedure is nonelemental and is referenced by a generic name or as a defined operator or

NOTE 12.23
Fortran argument association is usually similar to call by reference and call by value-result. If
the VALUE attribute is specified, the effect is as if the actual argument is assigned to a
temporary, and the temporary is then argument associated with the dummy argument. The
actual mechanism by which this happens is determined by the companion processor.
JUN 2001 WORKING DRAFT 251

J3/01-007R2 WORKING DRAFT JUN 2001
defined assignment, the ranks of the actual arguments and corresponding dummy arguments shall

agree.

If a dummy argument is an assumed-shape array, the rank of the actual argument shall be the

same as the rank of the dummy argument; the actual argument shall not be an assumed-size array

(including an array element designator or an array element substring designator).

Except when a procedure reference is elemental (12.7), each element of an array-valued actual

argument or of a sequence in a sequence association (12.4.1.5) is associated with the element of the

dummy array that has the same position in array element order (6.2.2.2).
.

A scalar dummy argument of a nonelemental procedure may be associated only with a scalar

actual argument.

If a nonpointer dummy argument has INTENT (OUT) or INTENT (INOUT), the actual argument

shall be definable. If a dummy argument has INTENT (OUT), the corresponding actual argument

becomes undefined at the time the association is established. If the dummy argument is not

polymorphic and the type of the actual argument is an extension type of the type of the dummy

argument, only the part of the actual argument that is of the same type as the dummy argument

becomes undefined.

If the actual argument is an array section having a vector subscript, the dummy argument is not

definable and shall not have the INTENT (OUT), INTENT (INOUT), VOLATILE, or

ASYNCHRONOUS attributes.

NOTE 12.24
For type default character sequence associations, the interpretation of element is provided in
12.4.1.5.

NOTE 12.25
Argument intent specifications serve several purposes in addition to documenting the
intended use of dummy arguments. A processor can check whether an INTENT (IN) dummy
argument is used in a way that could redefine it. A slightly more sophisticated processor
could check to see whether an INTENT (OUT) dummy argument could possibly be referenced
before it is defined. If the procedure’s interface is explicit, the processor can also verify that
actual arguments corresponding to INTENT (OUT) or INTENT (INOUT) dummy arguments
are definable. A more sophisticated processor could use this information to optimize the
translation of the referencing scoping unit by taking advantage of the fact that actual
arguments corresponding to INTENT (IN) dummy arguments will not be changed and that
any prior value of an actual argument corresponding to an INTENT (OUT) dummy argument
will not be referenced and could thus be discarded.

INTENT (OUT) means that the value of the argument after invoking the procedure is entirely
the result of executing that procedure. If there is any possibility that an argument should
retain its current value rather than being redefined, INTENT (INOUT) should be used rather
than INTENT (OUT), even if there is no explicit reference to the value of the dummy
argument. Because an INTENT(OUT) variable is considered undefined on entry to the
procedure, any default initialization specified for its type will be applied to it.

INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The argument
corresponding to an INTENT (INOUT) dummy argument always shall be definable, while an
argument corresponding to a dummy argument without an INTENT attribute need be
definable only if the dummy argument is actually redefined.

NOTE 12.26
For more explanatory information on argument association and evaluation, see section C.9.4.
For more explanatory information on pointers and targets as dummy arguments, see section
C.9.5.
252 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
The following additional constraints apply to the syntax rule defining actual arguments (R1221).

C1234 (R1221) If an actual argument is an array section or an assumed-shape array, and the
corresponding dummy argument has either the VOLATILE or ASYNCHRONOUS
attribute, that dummy argument shall be an assumed-shape array.

C1235 (R1221) If an actual argument is a pointer array, and the corresponding dummy argument
has either the VOLATILE or ASYNCHRONOUS attribute, that dummy argument shall be
an assumed-shape array or a pointer array.

12.4.1.3 Actual arguments associated with dummy procedure entities

If a dummy argument is a procedure pointer, the associated actual argument shall be a procedure

pointer, a reference to a function that returns a procedure pointer, or a reference to the NULL

intrinsic function.

If a dummy argument is a dummy procedure, the associated actual argument shall be the specific

name of an external, module, dummy, or intrinsic procedure, a procedure pointer, or a reference to

a function that returns a procedure pointer. The only intrinsic procedures permitted are those

listed in 13.10 and not marked with a bullet (•). If the specific name is also a generic name, only

the specific procedure is associated with the dummy argument.

If an external procedure name or a dummy procedure name is used as an actual argument, its

interface shall be explicit or it shall be explicitly declared to have the EXTERNAL attribute.

If the interface of the dummy argument is explicit, the characteristics listed in 12.2 shall be the

same for the associated actual argument and the corresponding dummy argument, except that a

pure actual argument may be associated with a dummy argument that is not pure and an

elemental intrinsic actual procedure may be associated with a dummy procedure (which is

prohibited from being elemental).

If the interface of the dummy argument is implicit and either the name of the dummy argument is

explicitly typed or it is referenced as a function, the dummy argument shall not be referenced as a

subroutine and the actual argument shall be a function, function procedure pointer, or dummy

procedure.

If the interface of the dummy argument is implicit and a reference to it appears as a subroutine

reference, the actual argument shall be a subroutine, subroutine procedure pointer, or dummy

procedure.

12.4.1.4 Actual arguments associated with alternate return indicators
If a dummy argument is an asterisk (12.5.2.2), the associated actual argument shall be an alternate return specifier (12.4).

12.4.1.5 Sequence association

An actual argument represents an element sequence if it is an array expression, an array element

designator, a scalar of type default character, or a scalar of type character with the C character kind

(15.1). If the actual argument is an array expression, the element sequence consists of the elements

in array element order. If the actual argument is an array element designator, the element

sequence consists of that array element and each element that follows it in array element order.

NOTE 12.27
The constraints on actual arguments that correspond to a dummy argument with either the
ASYNCHRONOUS or VOLATILE attribute are designed to avoid forcing a processor to use
the so-called copy-in/copy-out argument passing mechanism. Making a copy of actual
arguments whose values are likely to change due to an asynchronous I/O operation
completing or in some nonpredictable manner will cause those new values to be lost when a
called procedure returns and the copy-out overwrites the actual argument.
JUN 2001 WORKING DRAFT 253

J3/01-007R2 WORKING DRAFT JUN 2001
If the actual argument is of type default character or of type character with the C character kind,

and is an array expression, array element, or array element substring designator, the element

sequence consists of the storage units beginning with the first storage unit of the actual argument

and continuing to the end of the array. The storage units of an array element substring designator

are viewed as array elements consisting of consecutive groups of storage units having the character

length of the dummy array.

If the actual argument is of type default character or of type character with the C character kind,

and is a scalar that is not an array element or array element substring designator, the element

sequence consists of the storage units of the actual argument.

An actual argument that represents an element sequence and corresponds to a dummy argument

that is an array-valued data object is sequence associated with the dummy argument if the dummy

argument is an explicit-shape or assumed-size array. The rank and shape of the actual argument

need not agree with the rank and shape of the dummy argument, but the number of elements in

the dummy argument shall not exceed the number of elements in the element sequence of the

actual argument. If the dummy argument is assumed-size, the number of elements in the dummy

argument is exactly the number of elements in the element sequence.

12.4.1.6 Restrictions on dummy arguments not present

A dummy argument is present in an instance of a subprogram if it is associated with an actual

argument and the actual argument either is a dummy argument that is present in the invoking

scoping unit or is not a dummy argument of the invoking scoping unit. A dummy argument that

is not optional shall be present. An optional dummy argument that is not present is subject to the

following restrictions:

(1) If it is a data object, it shall not be referenced or be defined. If it is of a type for which
default initialization is specified for some component, the initialization has no effect.

(2) It shall not be used as the target of a pointer assignment.

(3) If it is a procedure or procedure pointer, it shall not be invoked.

(4) It shall not be supplied as an actual argument corresponding to a nonoptional dummy
argument other than as the argument of the PRESENT intrinsic function.

(5) A designator with it as the base object and with at least one subobject selector shall not
be supplied as an actual argument.

(6) If it is an array, it shall not be supplied as an actual argument to an elemental
procedure unless an array of the same rank is supplied as an actual argument
corresponding to a nonoptional dummy argument of that elemental procedure.

(7) If it is a pointer, it shall not be allocated, deallocated, nullified, pointer-assigned, or
supplied as an actual argument corresponding to a nonpointer dummy argument other
than as the argument of the PRESENT intrinsic function.

(8) If it is allocatable, it shall not be allocated, deallocated, or supplied as an actual
argument corresponding to a nonallocatable dummy argument other than as the
argument of the PRESENT intrinsic function.

(9) If it has type parameters, they shall not be inquired about.

Except as noted in the list above, it may be supplied as an actual argument corresponding to an

optional dummy argument, which is then also considered not to be associated with an actual

argument.

NOTE 12.28
Some of the elements in the element sequence may consist of storage units from different
elements of the original array.
254 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
12.4.1.7 Restrictions on entities associated with dummy arguments

While an entity is associated with a dummy argument, the following restrictions hold:

(1) Action that affects the allocation status of the entity or a subobject thereof shall be
taken through the dummy argument. Action that affects the value of the entity or any
subobject of it shall be taken through the dummy argument unless

(a) the dummy argument has the POINTER attribute or

(b) the dummy argument has the TARGET attribute, the dummy argument does not
have INTENT (IN), the dummy argument is a scalar object or an assumed-shape
array, and the actual argument is a target other than an array section with a
vector subscript.

NOTE 12.29
In

SUBROUTINE OUTER
REAL, POINTER :: A (:)
...
ALLOCATE (A (1:N))
...
CALL INNER (A)
...

CONTAINS
SUBROUTINE INNER (B)

REAL :: B (:)
...

END SUBROUTINE INNER
 SUBROUTINE SET (C, D)

REAL, INTENT (OUT) :: C
REAL, INTENT (IN) :: D
C = D

END SUBROUTINE SET
END SUBROUTINE OUTER

an assignment statement such as

A (1) = 1.0

would not be permitted during the execution of INNER because this would be changing A
without using B, but statements such as

B (1) = 1.0

or

CALL SET (B (1), 1.0)

would be allowed. Similarly,

DEALLOCATE (A)

would not be allowed because this affects the allocation of B without using B. In this case,

DEALLOCATE (B)

also would not be permitted. If B were declared with the POINTER attribute, either of the
statements

DEALLOCATE (A)

and

DEALLOCATE (B)

would be permitted, but not both.
JUN 2001 WORKING DRAFT 255

J3/01-007R2 WORKING DRAFT JUN 2001
(2) If the allocation status of the entity or a subobject thereof is affected through the
dummy argument, then at any time during the execution of the procedure, either
before or after the allocation or deallocation, it may be referenced only through the
dummy argument. If the value of any part of the entity is affected through the dummy
argument, then at any time during the execution of the procedure, either before or after
the definition, it may be referenced only through that dummy argument unless

(a) the dummy argument has the POINTER attribute or

(b) the dummy argument has the TARGET attribute, the dummy argument does not
have INTENT (IN), the dummy argument is a scalar object or an assumed-shape
array, and the actual argument is a target other than an array section with a
vector subscript.

NOTE 12.30
If there is a partial or complete overlap between the actual arguments associated with two
different dummy arguments of the same procedure and the dummy arguments have neither
the POINTER nor TARGET attribute, the overlapped portions shall not be defined, redefined,
or become undefined during the execution of the procedure. For example, in

CALL SUB (A (1:5), A (3:9))

A (3:5) shall not be defined, redefined, or become undefined through the first dummy
argument because it is part of the argument associated with the second dummy argument and
shall not be defined, redefined, or become undefined through the second dummy argument
because it is part of the argument associated with the first dummy argument. A (1:2) remains
definable through the first dummy argument and A (6:9) remains definable through the
second dummy argument.

NOTE 12.31
This restriction applies equally to pointer targets. In

REAL, DIMENSION (10), TARGET :: A
REAL, DIMENSION (:), POINTER :: B, C
B => A (1:5)
C => A (3:9)
CALL SUB (B, C) ! The dummy arguments of SUB are neither pointers nor targets.

B (3:5) cannot be defined because it is part of the argument associated with the second
dummy argument. C (1:3) cannot be defined because it is part of the argument associated
with the first dummy argument. A (1:2) [which is B (1:2)] remains definable through the first
dummy argument and A (6:9) [which is C (4:7)] remains definable through the second dummy
argument.

NOTE 12.32
Since a nonpointer dummy argument declared with an intent of IN shall not be used to
change the associated actual argument, the associated actual argument remains constant
throughout the execution of the procedure.

NOTE 12.33
In

MODULE DATA
REAL :: W, X, Y, Z

END MODULE DATA
256 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
12.4.2 Function reference

A function is invoked during expression evaluation by a function-reference or by a defined

operation (7.1.3). When it is invoked, all actual argument expressions are evaluated, then the

arguments are associated, and then the function is executed. When execution of the function is

complete, the value of the function result is available for use in the expression that caused the

function to be invoked. The characteristics of the function result (12.2.2) are determined by the

interface of the function. A reference to an elemental function (12.7) is an elemental reference if

one or more actual arguments are arrays and all array arguments have the same shape.

12.4.3 Subroutine reference

A subroutine is invoked by execution of a CALL statement or defined assignment statement

(7.5.1.3). When a subroutine is invoked, all actual argument expressions are evaluated, then the

arguments are associated, and then the subroutine is executed. When the actions specified by the

subroutine are completed, execution of the CALL statement or defined assignment statement is

also completed. If a CALL statement includes one or more alternate return specifiers among its arguments, control may

be transferred to one of the statements indicated, depending on the action specified by the subroutine. A reference to

an elemental subroutine (12.7) is an elemental reference if all actual arguments corresponding to

INTENT (OUT) and INTENT (INOUT) dummy arguments are arrays that have the same shape and

the remaining actual arguments are conformable with them.

12.5 Procedure definition

12.5.1 Intrinsic procedure definition

Intrinsic procedures are defined as an inherent part of the processor. A standard-conforming

processor shall include the intrinsic procedures described in Section 13, but may include others.

PROGRAM MAIN
USE DATA

...
CALL INIT (X)

...
END PROGRAM MAIN

SUBROUTINE INIT (V)
USE DATA

...
READ (*, *) V

...
END SUBROUTINE INIT

variable X shall not be directly referenced at any time during the execution of INIT because it
is being defined through the dummy argument V. X may be (indirectly) referenced through V.
W, Y, and Z may be directly referenced. X may, of course, be directly referenced once
execution of INIT is complete.

NOTE 12.34
The restrictions on entities associated with dummy arguments are intended to facilitate a
variety of optimizations in the translation of the subprogram, including implementations of
argument association in which the value of an actual argument that is neither a pointer nor a
target is maintained in a register or in local storage.

NOTE 12.33
JUN 2001 WORKING DRAFT 257

J3/01-007R2 WORKING DRAFT JUN 2001
However, a standard-conforming program shall not make use of intrinsic procedures other than

those described in Section 13.

12.5.2 Procedures defined by subprograms

When a procedure defined by a subprogram is invoked, an instance (12.5.2.3) of the subprogram is

created and executed. Execution begins with the first executable construct following the

FUNCTION, SUBROUTINE, or ENTRY statement specifying the name of the procedure invoked or

with the END statement if there is no other executable construct.

12.5.2.1 Function subprogram

A function subprogram is a subprogram that has a FUNCTION statement as its first statement.

R1223 function-subprogram is function-stmt
[specification-part]

[execution-part]

[internal-subprogram-part]

end-function-stmt

R1224 function-stmt is [prefix] FUNCTION function-name ■
■ ([dummy-arg-name-list]) ■
■ [, proc-language-binding-spec] [RESULT (result-name)]

C1236 (R1224) If RESULT is specified, result-name shall not be the same as function-name.

C1237 (R1224) If RESULT is specified, the function-name shall not appear in any specification
statement in the scoping unit of the function subprogram.

R1225 proc-language-binding-spec is language-binding-spec

C1238 (R1225) A proc-language-binding-spec with a bind-spec shall not be specified in the function-
stmt or subroutine-stmt of an abstract interface body (12.3.2.1) or an interface body for a
dummy procedure.

C1239 (R1225) A proc-language-binding-spec shall not be specified for an internal procedure.

C1240 (R1225) If proc-language-binding-spec is specified for an interface body it shall contain no
more than one BINDNAME= bind-spec.

A proc-language-binding-spec shall not be specified for a procedure that is not interoperable with

some C function (15.2.6).

R1226 dummy-arg-name is name

C1241 (R1226) A dummy-arg-name shall be the name of a dummy argument.

R1227 prefix is prefix-spec [prefix-spec] ...

NOTE 12.35
A subprogram definition with the BIND attribute is allowed to have more than one bind-spec
in its language-binding-spec. This allows the subprogram to be referenced by more than one
binding name if the processor has more than one companion processor (2.5.10), each with a
different bind name mapping algorithm.

A proc-language-binding-spec for an interface body shall not have more than one BINDNAME=
bind-spec. The processor can resolve a reference of the procedure to at most one external bind
name.

NOTE 12.36
If a procedure has a dummy argument or function result that has the POINTER attribute, has
the ALLOCATABLE attribute, is an asterisk, or is not interoperable with any C entity, then the
procedure is not interoperable with any C function.
258 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
R1228 prefix-spec is declaration-type-spec
or RECURSIVE

or PURE

or ELEMENTAL

C1242 (R1227) A prefix shall contain at most one of each prefix-spec.

C1243 (R1227) A prefix shall not specify both ELEMENTAL and RECURSIVE.

C1244 (R1227) A prefix shall not specify ELEMENTAL if proc-language-binding-spec is present in the
function-stmt or subroutine-stmt.

R1229 end-function-stmt is END [FUNCTION [function-name]]

C1245 (R1229) FUNCTION shall be present in the end-function-stmt of an internal or module
function.

C1246 (R1223) An internal function subprogram shall not contain an ENTRY statement.

C1247 (R1223) An internal function subprogram shall not contain an internal-subprogram-part.

C1248 (R1229) If a function-name is present in the end-function-stmt, it shall be identical to the
function-name specified in the function-stmt.

The type and type parameters (if any) of the result of the function defined by a function

subprogram may be specified by a type specification in the FUNCTION statement or by the name

of the result variable appearing in a type declaration statement in the declaration part of the

function subprogram. They shall not be specified both ways. If they are not specified either way,

they are determined by the implicit typing rules in force within the function subprogram. If the

function result is array-valued, allocatable, or a pointer, this shall be specified by specifications of

the name of the result variable within the function body. The specifications of the function result

attributes, the specification of dummy argument attributes, and the information in the procedure

heading collectively define the characteristics of the function (12.2).

The prefix-spec RECURSIVE shall be present if the function directly or indirectly invokes itself or a

function defined by an ENTRY statement in the same subprogram. Similarly, RECURSIVE shall be

present if a function defined by an ENTRY statement in the subprogram directly or indirectly

invokes itself, another function defined by an ENTRY statement in that subprogram, or the

function defined by the FUNCTION statement.

The name of the function is function-name.

If RESULT is specified, the name of the result variable of the function is result-name, its

characteristics (12.2.2) are those of the function result, and all occurrences of the function name in

execution-part statements in the scoping unit refer to the function itself. If RESULT is not specified,

the result variable is function-name and all occurrences of the function name in execution-part
statements in the scoping unit are references to the result variable. The value of the result variable

at the completion of execution of the function is the value returned by the function. If the function

result has been declared to be a pointer, the shape of the value returned by the function is

determined by the shape of the result variable when the execution of the function is completed. If

the result variable is not a pointer, its value shall be defined by the function. If the function result

has been declared a pointer, the function shall either associate a target with the result variable

pointer or cause the association status of this pointer to become defined as disassociated.

NOTE 12.37
The result variable is similar to any other variable local to a function subprogram. Its
existence begins when execution of the function is initiated and ends when execution of the
function is terminated. However, because the final value of this variable is used subsequently
in the evaluation of the expression that invoked the function, an implementation may wish to
defer releasing the storage occupied by that variable until after its value has been used in
expression evaluation.
JUN 2001 WORKING DRAFT 259

J3/01-007R2 WORKING DRAFT JUN 2001
If the prefix-spec PURE or ELEMENTAL is present, the subprogram is a pure subprogram and shall

meet the additional constraints of 12.6.

If the prefix-spec ELEMENTAL is present, the subprogram is an elemental subprogram and shall

meet the additional constraints of 12.7.1.

If both RECURSIVE and RESULT are specified, the interface of the function being defined is

explicit within the function subprogram.

12.5.2.2 Subroutine subprogram

A subroutine subprogram is a subprogram that has a SUBROUTINE statement as its first

statement.

R1230 subroutine-subprogram is subroutine-stmt
[specification-part]

[execution-part]

[internal-subprogram-part]

end-subroutine-stmt

R1231 subroutine-stmt is [prefix] SUBROUTINE subroutine-name ■

NOTE 12.38
An example of a recursive function is:

RECURSIVE FUNCTION CUMM_SUM (ARRAY) RESULT (C_SUM)
REAL, INTENT (IN), DIMENSION (:) :: ARRAY

 REAL, DIMENSION (SIZE (ARRAY)) ::C_SUM
INTEGER N
N = SIZE (ARRAY)
IF (N .LE. 1) THEN

C_SUM = ARRAY
ELSE

N = N / 2
C_SUM (:N) = CUMM_SUM (ARRAY (:N))
C_SUM (N+1:) = C_SUM (N) + CUMM_SUM (ARRAY (N+1:))

END IF
END FUNCTION CUMM_SUM

NOTE 12.39
The following is an example of the declaration of an interface body with the BIND attribute,
and a reference to the procedure declared.

USE ISO_C_BINDING

INTERFACE
FUNCTION JOE (I, J, R), BIND(C,NAME="FrEd")

 USE ISO_C_BINDING
 INTEGER(C_INT) :: JOE
 INTEGER(C_INT), VALUE :: I, J
 REAL(C_FLOAT), VALUE :: R
 END FUNCTION JOE
END INTERFACE

INT = JOE(1_C_INT, 3_C_INT, 4.0_C_FLOAT)
END PROGRAM

The invocation of the function JOE results in a reference to a function with a binding label
"FrEd". "FrEd" may be a C function described by the C prototype

 int FrEd(int l, int m, float x);
260 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
■ [([dummy-arg-list])] [, proc-language-binding-spec]

C1249 (R1231) The prefix of a subroutine-stmt shall not contain a declaration-type-spec.

R1232 dummy-arg is dummy-arg-name
or ∗

R1233 end-subroutine-stmt is END [SUBROUTINE [subroutine-name]]

C1250 (R1233) SUBROUTINE shall be present in the end-subroutine-stmt of an internal or module
subroutine.

C1251 (R1230) An internal subroutine subprogram shall not contain an ENTRY statement.

C1252 (R1230) An internal subroutine subprogram shall not contain an internal-subprogram-part.

C1253 (R1233) If a subroutine-name is present in the end-subroutine-stmt, it shall be identical to the
subroutine-name specified in the subroutine-stmt.

The prefix-spec RECURSIVE shall be present if the subroutine directly or indirectly invokes itself or

a subroutine defined by an ENTRY statement in the same subprogram. Similarly, RECURSIVE

shall be present if a subroutine defined by an ENTRY statement in the subprogram directly or

indirectly invokes itself, another subroutine defined by an ENTRY statement in that subprogram,

or the subroutine defined by the SUBROUTINE statement.

The interface of the subroutine being defined is explicit within the subroutine subprogram.

The name of the subroutine is subroutine-name.

If the prefix-spec PURE or ELEMENTAL is present, the subprogram is a pure subprogram and shall

meet the additional constraints of 12.6.

If the prefix-spec ELEMENTAL is present, the subprogram is an elemental subprogram and shall

meet the additional constraints of 12.7.1.

12.5.2.3 Instances of a subprogram

When a function or subroutine defined by a subprogram is invoked, an instance of that

subprogram is created. When a statement function is invoked, an instance of that statement function is created.

Each instance has an independent sequence of execution and an independent set of dummy

arguments and local unsaved data objects. If an internal procedure or statement function in the

subprogram is invoked directly from an instance of the subprogram or from an internal

subprogram or statement function that has access to the entities of that instance, the created instance of

the internal subprogram or statement function also has access to the entities of that instance of the host

subprogram.

All other entities are shared by all instances of the subprogram.

12.5.2.4 ENTRY statement

An ENTRY statement permits a procedure reference to begin with a particular executable

statement within the function or subroutine subprogram in which the ENTRY statement appears.

R1234 entry-stmt is ENTRY entry-name [([dummy-arg-list]) ■
■[, proc-language-binding-spec] [RESULT (result-name)]]

or ENTRY entry-name ■
■[, proc-language-binding-spec] [RESULT (result-name)]]]

C1254 (R1234) If RESULT is specified, the entry-name shall not appear in any specification or type-
declaration statement in the scoping unit of the function program.

NOTE 12.40
The value of a saved data object appearing in one instance may have been defined in a
previous instance or by initialization in a DATA statement or type declaration statement.
JUN 2001 WORKING DRAFT 261

J3/01-007R2 WORKING DRAFT JUN 2001
C1255 (R1234) An entry-stmt may appear only in an external-subprogram or module-subprogram. An
entry-stmt shall not appear within an executable-construct.

C1256 (R1234) RESULT may be present only if the entry-stmt is in a function subprogram.

C1257 (R1234) Within the subprogram containing the entry-stmt, the entry-name shall not appear
as a dummy argument in the FUNCTION or SUBROUTINE statement or in another
ENTRY statement and it shall not appear in an EXTERNAL or INTRINSIC statement.

C1258 (R1234) A dummy-arg may be an alternate return indicator only if the ENTRY statement is in a subroutine
subprogram.

C1259 (R1234) If RESULT is specified, result-name shall not be the same as entry-name.

Optionally, a subprogram may have one or more ENTRY statements.

If the ENTRY statement is in a function subprogram, an additional function is defined by that

subprogram. The name of the function is entry-name and its result variable is result-name or is

entry-name if no result-name is provided. The characteristics of the function result are specified by

specifications of the result variable. The dummy arguments of the function are those specified in

the ENTRY statement. If the characteristics of the result of the function named in the ENTRY

statement are the same as the characteristics of the result of the function named in the FUNCTION

statement, their result variables identify the same variable, although their names need not be the

same. Otherwise, they are storage associated and shall all be scalars without the POINTER

attribute and one of the types: default integer, default real, double precision real, default complex,

or default logical.

If RESULT is specified in the ENTRY statement, the interface of the function defined by the ENTRY

statement is explicit within the function subprogram.

If the ENTRY statement is in a subroutine subprogram, an additional subroutine is defined by that

subprogram. The name of the subroutine is entry-name. The dummy arguments of the subroutine

are those specified in the ENTRY statement.

The interface of a subroutine defined by the ENTRY statement is explicit within the subroutine

subprogram.

The order, number, types, kind type parameters, and names of the dummy arguments in an

ENTRY statement may differ from the order, number, types, kind type parameters, and names of

the dummy arguments in the FUNCTION or SUBROUTINE statement in the containing program.

Because an ENTRY statement defines an additional function or an additional subroutine, it is

referenced in the same manner as any other function or subroutine (12.4).

In a subprogram, a name that appears as a dummy argument in an ENTRY statement shall not

appear in an executable statement preceding that ENTRY statement, unless it also appears in a

FUNCTION, SUBROUTINE, or ENTRY statement that precedes the executable statement.

In a subprogram, a name that appears as a dummy argument in an ENTRY statement shall not appear in the expression of

a statement function unless the name is also a dummy argument of the statement function, appears in a FUNCTION or

SUBROUTINE statement, or appears in an ENTRY statement that precedes the statement function statement.

If a dummy argument appears in an executable statement, the execution of the executable

statement is permitted during the execution of a reference to the function or subroutine only if the

dummy argument appears in the dummy argument list of the procedure name referenced.

If a dummy argument is used in a specification expression to specify an array bound or character

length of an object, the appearance of the object in a statement that is executed during a procedure

reference is permitted only if the dummy argument appears in the dummy argument list of the

procedure name referenced and it is present (12.4.1.6).

A scoping unit containing a reference to a procedure defined by an ENTRY statement may have

access to an interface body for the procedure. The procedure header for the interface body shall be
262 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
a FUNCTION statement for an entry in a function subprogram and shall be a SUBROUTINE

statement for an entry in a subroutine subprogram.

The keyword RECURSIVE is not used in an ENTRY statement. Instead, the presence or absence of

RECURSIVE in the initial SUBROUTINE or FUNCTION statement controls whether the procedure

defined by an ENTRY statement is permitted to reference itself.

The keyword PURE is not used in an ENTRY statement. Instead, the procedure defined by an

ENTRY statement is pure if and only if PURE or ELEMENTAL is specified in the SUBROUTINE or

FUNCTION statement.

The keyword ELEMENTAL is not used in an ENTRY statement. Instead, the procedure defined by

an ENTRY statement is elemental if and only if ELEMENTAL is specified in the SUBROUTINE or

FUNCTION statement.

12.5.2.5 RETURN statement

R1235 return-stmt is RETURN [scalar-int-expr]

C1260 (R1235) The return-stmt shall be in the scoping unit of a function or subroutine
subprogram.

C1261 (R1235) The scalar-int-expr is allowed only in the scoping unit of a subroutine subprogram.

Execution of the RETURN statement completes execution of the instance of the subprogram in

which it appears. If the expression is present and has a value n between 1 and the number of asterisks in the dummy

argument list, the CALL statement that invoked the subroutine transfers control to the statement identified by the nth

alternate return specifier in the actual argument list. If the expression is omitted or has a value outside the required range,

there is no transfer of control to an alternate return.

Execution of an end-function-stmt or end-subroutine-stmt is equivalent to executing a RETURN

statement with no expression.

12.5.2.6 CONTAINS statement

R1236 contains-stmt is CONTAINS

The CONTAINS statement separates the body of a main program, module, or subprogram from

any internal or module subprograms it may contain, or it introduces the type-bound procedure

part of a derived type definition (4.5.1). The CONTAINS statement is not executable.

12.5.2.7 Binding labels for procedures

A binding label is a value of type default character that specifies the name by which a procedure

with the BIND attribute is known to the companion processor.

If a procedure has the BIND attribute with the NAME= specifier, the procedure has a binding label

whose value is that of the expression in the NAME= specifier. The case of letters in the binding

label is significant, but leading and trailing blanks are ignored. If a procedure has the BIND

attribute with no NAME= specifier, and the procedure is not a dummy procedure, then the binding

label of the procedure is the same as the name of the procedure using lower case letters. If a

dummy procedure has the BIND attribute, the binding label is the same as that of the associated

actual procedure argument. If an ENTRY statement appears in a subprogram that has the BIND

prefix-spec on its function-stmt or subroutine-stmt, the binding label of the procedure defined by the

ENTRY statement is the same as the entry-name using lower case letters.

The binding label for a C function with external linkage is the same as the C function name.
JUN 2001 WORKING DRAFT 263

J3/01-007R2 WORKING DRAFT JUN 2001
A BINDNAME= specifier for a procedure is a processor-dependent specification of a name and

mechanism by which the procedure may be invoked by a companion processor. The valid values

for and interpretation of the character expression in a BINDNAME= specifier are processor

dependent.

12.5.3 Definition and invocation of procedures by means other than Fortran

A procedure may be defined by means other than Fortran. The interface of a procedure defined by

means other than Fortran may be specified in an interface block. If the interface of such a

procedure does not have a language-binding-spec, the means by which the procedure is defined are

processor dependent. A reference to such a procedure is made as though it were defined by an

external subprogram.

If a procedure has the BIND attribute, it shall either

(1) be interoperable (15.2.6) with a procedure that

(a) is defined by a means other than Fortran,

(b) has external linkage as defined by 6.2.2 of the C standard,

(c) has the same binding label, and

(d) can be described by a C prototype, or

(2) be defined by means of a Fortran subprogram that has a language-binding-spec specified
on its function-stmt or subroutine-stmt,

NOTE 12.41
In the following sample, the binding label of C_SUB is "c_sub", and the binding label of
C_FUNC is "C_funC".

SUBROUTINE C_SUB, BIND(C)
END SUBROUTINE C_SUB

INTEGER(C_INT) FUNCTION C_FUNC(), BIND(C, NAME="C_funC")
 USE ISO_C_BINDING
END FUNCTION C_FUNC

The C standard permits functions to have names that are not permitted as Fortran names; it
also distinguishes between names that would be considered as the same name in Fortran. For
example, a C name may begin with an underscore, and C names that differ in case are distinct
names.

The specification of a binding label allows a program to use a Fortran name to refer to a
procedure defined by a companion processor.

NOTE 12.42
A processor might give a unique label, often referred to as a binder name, to each external
procedure in a program. The label is derived in some way from the name of the external
procedure and need not be the same as the binding label.

A processor might permit a procedure defined by means of Fortran to be known by more than
one binder name if it needs to be referenced from more than one companion processor, each
with a different way of transforming an external name to a binder name. Use of the
BINDNAME= specifier might be appropriate in such a circumstance.

This is not the only possible meaning of the BINDNAME= specifier; nor is the processor
required to ascribe such a meaning to the specifier.

Another possible processor choice is that the BINDNAME= specifier has no meaning. In this
case, it is recommended that the processor generate a warning diagnostic if the specifier is
used.
264 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
but not both. The procedure is said to be linked with the procedure defined by that C function or

Fortran subprogram.

If the procedure is linked with a C function, the procedure is defined by means of that C function.

A reference to such a procedure causes the C function to be called as specified by the C standard.

A Fortran procedure with the BIND attribute can be invoked by means other than Fortran. In

particular, it can be invoked by a reference to a C function that has the same binding label. Any

other means by which such a procedure can be invoked are processor dependent.

A procedure defined by means of Fortran shall not invoke setjmp or longjmp (C standard, 7.13). If

a procedure defined my means other than Fortran invokes setjmp or longjmp, then that procedure

shall not cause any procedure defined by means of Fortran to be invoked. A procedure defined by

means of Fortran shall not be invoked as a singal handler (C standard, 7.4.1.1).

12.5.4 Statement function
A statement function is a function defined by a single statement.

R1237 stmt-function-stmt is function-name ([dummy-arg-name-list]) = scalar-expr

C1262 (R1237) The primaries of the scalar-expr shall be constants (literal and named), references to variables, references to
functions and function dummy procedures, and intrinsic operations. If scalar-expr contains a reference to a
function or a function dummy procedure, the reference shall not require an explicit interface, the function shall
not require an explicit interface unless it is an intrinsic, the function shall not be a transformational intrinsic, and
the result shall be scalar. If an argument to a function or a function dummy procedure is array valued, it shall be
an array name. If a reference to a statement function appears in scalar-expr, its definition shall have been provided
earlier in the scoping unit and shall not be the name of the statement function being defined.

C1263 (R1237) Named constants in scalar-expr shall have been declared earlier in the scoping unit or made accessible by
use or host association. If array elements appear in scalar-expr, the array shall have been declared as an array
earlier in the scoping unit or made accessible by use or host association.

C1264 (R1237) If a dummy-arg-name, variable, function reference, or dummy function reference is typed by the implicit
typing rules, its appearance in any subsequent type declaration statement shall confirm this implied type and the
values of any implied type parameters.

C1265 (R1237) The function-name and each dummy-arg-name shall be specified, explicitly or implicitly, to be scalar.

C1266 (R1237) A given dummy-arg-name may appear only once in any dummy-arg-name-list.

C1267 (R1237) Each variable reference in scalar-expr may be either a reference to a dummy argument of the statement
function or a reference to a variable accessible in the same scoping unit as the statement function statement.

The definition of a statement function with the same name as an accessible entity from the host shall be preceded by the

declaration of its type in a type declaration statement.

The dummy arguments have a scope of the statement function statement. Each dummy argument has the same type and

type parameters as the entity of the same name in the scoping unit containing the statement function.

A statement function shall not be supplied as a procedure argument.

The value of a statement function reference is obtained by evaluating the expression using the values of the actual

arguments for the values of the corresponding dummy arguments and, if necessary, converting the result to the declared

type and type attributes of the function.

A function reference in the scalar expression shall not cause a dummy argument of the statement function to become

redefined or undefined.

12.6 Pure procedures
A pure procedure is

(1) A pure intrinsic function (13.1),

(2) A pure intrinsic subroutine (13.7),

(3) Defined by a pure subprogram, or

NOTE 12.43
For explanatory information on definition of procedures by means other than Fortran, see
section C.9.2.
JUN 2001 WORKING DRAFT 265

J3/01-007R2 WORKING DRAFT JUN 2001
(4) A statement function that references only pure functions.

A pure subprogram is a subprogram that has the prefix-spec PURE or ELEMENTAL. The following

additional constraints apply to the syntax rules defining nonintrinsic pure function subprograms

(R1223-R1229) or nonintrinsic pure subroutine subprograms (R1230-R1233).

C1268 The specification-part of a pure function subprogram shall specify that all dummy
arguments have INTENT (IN) except procedure arguments and arguments with the
POINTER attribute.

C1269 The specification-part of a pure subroutine subprogram shall specify the intents of all
dummy arguments except procedure arguments, alternate return indicators, and arguments with
the POINTER attribute.

C1270 A local variable declared in the specification-part or internal-subprogram-part of a pure
subprogram shall not have the SAVE attribute.

C1271 The specification-part of a pure subprogram shall specify that all dummy arguments that are
procedure arguments are pure.

C1272 If a procedure that is neither an intrinsic procedure nor a statement function is used in a context
that requires it to be pure, then its interface shall be explicit in the scope of that use. The
interface shall specify that the procedure is pure.

C1273 All internal subprograms in a pure subprogram shall be pure.

C1274 In a pure subprogram any designator with a base object that is in common or accessed by
host or use association, is a dummy argument of a pure function, is a dummy argument
with INTENT (IN) of a pure subroutine, or an object that is storage associated with any
such variable, shall not be used in the following contexts:

(1) In a variable definition context(16.8.7);

(2) As the target of a pointer-assignment-stmt;
(3) As the expr of an assignment-stmt in which the variable is of a derived type if the derived

type has a pointer component at any level of component selection; or

(4) As an actual argument associated with a dummy argument with INTENT (OUT) or
INTENT (INOUT) or with the POINTER attribute.

C1275 Any procedure referenced in a pure subprogram, including one referenced via a defined
operation, assignment, or finalization, shall be pure.

C1276 A pure subprogram shall not contain a print-stmt, open-stmt, close-stmt, backspace-stmt,
endfile-stmt, rewind-stmt, or inquire-stmt.

C1277 A pure subprogram shall not contain a read-stmt or write-stmt whose io-unit is an
external-file-unit or *.

C1278 A pure subprogram shall not contain a stop-stmt.

NOTE 12.44
Variable initialization in a type-declaration-stmt or a data-stmt implies the SAVE attribute;
therefore, such initialization is also disallowed.

NOTE 12.45
It is expected that most mathematical library procedures will be pure. This form of restriction
allows these procedures to be used in contexts where they are not required to be pure without
the need for an interface-block.

NOTE 12.46
This requires that processors be able to determine if entities with the PRIVATE attribute or
with private components have a pointer component.
266 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
12.7 Elemental procedures

12.7.1 Elemental procedure declaration and interface

An elemental procedure is an elemental intrinsic procedure or a procedure that is defined by an

elemental subprogram.

An elemental subprogram has the prefix-spec ELEMENTAL. An elemental subprogram is a pure

subprogram. The PURE prefix-spec need not be present; it is implied by the ELEMENTAL

prefix-spec. The following additional constraints apply to the syntax rules defining elemental

function subprograms (R1223-R1229) or elemental subroutine subprograms (R1230-R1233).

C1279 All dummy arguments shall be scalar and shall not have the POINTER or ALLOCATABLE
attribute.

NOTE 12.47
The above constraints are designed to guarantee that a pure procedure is free from side effects
(modifications of data visible outside the procedure), which means that it is safe to reference
it in constructs such as a FORALL assignment-stmt where there is no explicit order of
evaluation.

The constraints on pure subprograms may appear complicated, but it is not necessary for a
programmer to be intimately familiar with them. From the programmer’s point of view, these
constraints can be summarized as follows: a pure subprogram shall not contain any operation
that could conceivably result in an assignment or pointer assignment to a common variable, a
variable accessed by use or host association, or an INTENT (IN) dummy argument; nor shall
a pure subprogram contain any operation that could conceivably perform any external file
input/output or STOP operation. Note the use of the word conceivably; it is not sufficient for
a pure subprogram merely to be side-effect free in practice. For example, a function that
contains an assignment to a global variable but in a block that is not executed in any
invocation of the function is nevertheless not a pure function. The exclusion of functions of
this nature is required if strict compile-time checking is to be used.

It is expected that most library procedures will conform to the constraints required of pure
procedures, and so can be declared pure and referenced in FORALL statements and constructs
and within user-defined pure procedures. It is also anticipated that most library procedures
will not reference global data. Referencing global data may inhibit concurrent execution.

NOTE 12.48
Pure subroutines are included to allow subroutine calls from pure procedures in a safe way,
and to allow forall-assignments to be defined assignments. The constraints for pure
subroutines are based on the same principles as for pure functions, except that side effects to
INTENT (OUT), INTENT (INOUT), and pointer dummy arguments are permitted.

J3 internal note
Unresolved issue 338

The wording on the constraints in 12.7.1 could use improvement. See the wording style used
in 12.6 for examples to emulate. Each constraint in 12.6 is careful to explicitly say that it
applies to pure subprograms. In constrast, 12.7.1 relies on the sentence before the constraints
to give the message that these apply only to elemental subprograms - and that sentence
doesn't do a very good job of it. It refers to "the syntax rules defining elemental..." and then
cites syntax rules that do not in fact say anything about elemental. It is a pretty subtle
inference that this is trying to imply that after you add these constraints, the syntax rules then
would define elemental subprograms. The words don't actually say this. Again, see the
wording of all the constraints in 12.6 for examples of a far better job. That can easily be
emulated here.
JUN 2001 WORKING DRAFT 267

J3/01-007R2 WORKING DRAFT JUN 2001
C1280 For a function, the result shall be scalar and shall not have the POINTER or
ALLOCATABLE attribute.

C1281 An object designator with a dummy argument as the base object shall not appear in a
specification-expr except as the argument to one of the intrinsic functions BIT_SIZE, KIND,
LEN, or the numeric inquiry functions (13.8.8).

C1282 A dummy-arg shall not be *.

C1283 A dummy-arg shall not be a dummy procedure.

12.7.2 Elemental function actual arguments and results

If a generic name or a specific name is used to reference an elemental function, the shape of the

result is the same as the shape of the actual argument with the greatest rank. If the actual

arguments are all scalar, the result is scalar. For those elemental functions that have more than one

argument, all actual arguments shall be conformable. In the array-valued case, the values of the

elements, if any, of the result are the same as would have been obtained if the scalar-valued

function had been applied separately, in any order, to corresponding elements of each array actual

argument.

12.7.3 Elemental subroutine actual arguments

An elemental subroutine is one that has only scalar dummy arguments, but may have array actual

arguments. In a reference to an elemental subroutine, either all actual arguments shall be scalar, or

all actual arguments associated with INTENT (OUT) and INTENT (INOUT) dummy arguments

shall be arrays of the same shape and the remaining actual arguments shall be conformable with

them. In the case that the actual arguments associated with INTENT (OUT) and INTENT (INOUT)

dummy arguments are arrays, the values of the elements, if any, of the results are the same as

NOTE 12.49
An elemental subprogram is a pure subprogram and all of the constraints for pure
subprograms also apply.

Note 12.50

The restriction on dummy arguments in specification expressions is imposed primarily to
facilitate optimization. An example of usage that is not permitted is

ELEMENTAL REAL FUNCTION F (A, N)
 REAL, INTENT (IN) :: A
 INTEGER, INTENT (IN) :: N
 REAL :: WORK_ARRAY(N) ! Invalid
 ...
END FUNCTION F

An example of usage that is permitted is

ELEMENTAL REAL FUNCTION F (A)
 REAL, INTENT (IN) :: A
 REAL (SELECTED_REAL_KIND (PRECISION (A)*2)) :: WORK
 ...
END FUNCTION F

NOTE 12.51
An example of an elemental reference to the intrinsic function MAX:

if X and Y are arrays of shape (M, N),

MAX (X, 0.0, Y)

is an array expression of shape (M, N) whose elements have values

MAX (X(I, J), 0.0, Y(I, J)), I = 1, 2, ..., M, J = 1,2, ..., N
268 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
would be obtained if the subroutine had been applied separately, in any order, to corresponding

elements of each array actual argument.

In a reference to the intrinsic subroutine MVBITS, the actual arguments corresponding to the TO

and FROM dummy arguments may be the same variable. Apart from this, the actual arguments in

a reference to an elemental subroutine must satisfy the restrictions of 12.4.1.7.
JUN 2001 WORKING DRAFT 269

J3/01-007R2 WORKING DRAFT JUN 2001
270 WORKING DRAFT JUN 2001

	Section 12: Procedures
	12.1�� Procedure classifications
	12.1.1�� Procedure classification by reference
	12.1.2�� Procedure classification by means of definition
	12.1.2.1�� Intrinsic procedures
	12.1.2.2�� External, internal, and module procedures
	12.1.2.3�� Dummy procedures
	12.1.2.4�� Statement functions

	12.2�� Characteristics of procedures
	12.2.1�� Characteristics of dummy arguments
	12.2.1.1�� Characteristics of dummy data objects
	12.2.1.2�� Characteristics of dummy procedures and dummy procedure pointers
	12.2.1.3�� Characteristics of asterisk dummy arguments

	12.2.2�� Characteristics of function results

	12.3�� Procedure interface
	NOTE 12.1
	12.3.1�� Implicit and explicit interfaces
	NOTE 12.2
	12.3.1.1�� Explicit interface
	(1) A reference to the procedure appears
	(a) With an argument keyword (12.4.1),
	(b) As a reference by its generic name (12.3.2.1),
	(c) As a defined assignment (subroutines only),
	(d) In an expression as a defined operator (functions only), or
	(e) In a context that requires it to be pure,

	(2) The procedure has a dummy argument that
	(a) has the ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER, TARGET, VALUE, or VOLATILE attribute,
	(b) is an assumed-shape array,
	(c) is of a parameterized derived type, or
	(d) is polymorphic,

	(3) The procedure has a result that
	(e) is array-valued,
	(f) is a pointer or is allocatable, or
	(g) has a nonassumed type parameter value that is not an initialization expression,

	(4) The procedure is elemental, or
	(5) The procedure has the BIND attribute.

	12.3.2�� Specification of the procedure interface
	NOTE 12.3
	12.3.2.1�� Interface block
	R1202 interface�specification is interface�body
	R1203 interface�stmt is INTERFACE [generic�spec]
	R1204 end�interface�stmt is END INTERFACE [generic�spec]
	R1205 interface�body is function�stmt
	C1201 (R1205) An interface body shall not contain an ENTRY statement.
	C1202 (R1205) An interface�body of a pure procedure shall specify the intents of all dummy argume...

	R1206 procedure�stmt is [MODULE] PROCEDURE procedure�name�list
	R1207 generic�spec is generic�name
	R1208 dtio-generic-spec is READ (FORMATTED)
	C1203 (R1205) An interface�body shall not contain an entry�stmt, data�stmt, format�stmt, or stmt�...
	C1204 (R1201) An interface�block in a subprogram shall not contain an interface�body for a proced...
	C1205 (R1201) The generic�spec may be included in the end�interface�stmt only if it was provided ...
	C1206 (R1206) A procedure-name shall have an explicit interface and shall refer to an accessible ...
	C1207 (R1206) If MODULE appears in a procedure-stmt, each procedure-name in that statement shall ...
	C1208 (R1202) A procedure-stmt is allowed only if the interface block has a generic-spec.
	C1209 (R1206) A procedure�name shall not be one that previously had been specified in any procedu...

	R1209 import-stmt is IMPORT [::] import-name-list
	C1210 (R1209) The IMPORT statement is allowed only in an interface-body.
	C1211 (R1209) Each import-name shall be the name of an entity in the host scoping unit.
	NOTE 12.4
	NOTE 12.5 (Continued)
	NOTE 12.6
	NOTE 12.7

	12.3.2.1.1�� Defined operations
	NOTE 12.8
	NOTE 12.9

	12.3.2.1.2�� Defined assignments
	NOTE 12.10 (Continued)

	12.3.2.1.3�� User-defined derived-type input/output procedure interfaces
	12.3.2.1.4�� Abstract interfaces
	NOTE 12.11

	12.3.2.2�� EXTERNAL statement
	R1210 external�stmt is EXTERNAL [::] external�name�list
	NOTE 12.12
	NOTE 12.13

	12.3.2.3�� Procedure declaration statement
	R1211 procedure-declaration-stmt is PROCEDURE ([proc-interface]) [[, proc-attr-spec] ... :...
	R1212 proc-interface is abstract-interface-name
	R1213 proc-attr-spec is access-spec
	R1214 proc-decl is procedure-entity-name [=> NULL()]
	R1215 abstract-interface-name is name
	C1212 (R1215) The name shall be the name of an abstract interface (12.1.2.1)
	C1213 If a procedure entity has the INTENT attribute or SAVE attribute, it shall also have the PO...
	C1214 (R1211) If a proc-interface describes an elemental procedure, each procedure-entity-name sh...
	C1215 (R1214) If => appears in proc-decl, the procedure entity shall have the POINTER attribute.
	C1216 (R1213) If language-binding-spec is specified, it shall contain at most one BINDNAME= bind-...
	C1217 (R1211) If language-binding-spec is specified and any procedure entity has either the POINT...
	C1218 (R1211) If a bind-spec is present, proc-decl-list shall contain exactly one proc-decl.
	C1219 (R1211) If language-binding-spec is specified, the proc-interface shall be present, it shal...
	NOTE 12.14
	NOTE 12.15
	NOTE 12.16

	12.3.2.4�� INTRINSIC statement
	R1216 intrinsic�stmt is INTRINSIC [::] intrinsic�procedure�name�list
	C1220 (R1216) Each intrinsic�procedure�name shall be the name of an intrinsic procedure.
	NOTE 12.17

	12.3.2.5�� Implicit interface specification

	12.4�� Procedure reference
	R1217 function�reference is procedure-designator ([actual�arg�spec�list])
	C1221 (R1217) The procedure-designator shall designate a function.
	C1222 (R1217) The actual�arg�spec�list shall not contain an alt�return�spec.

	R1218 call�stmt is CALL procedure-designator [([actual�arg�spec�list])]
	C1223 (R1218) The procedure-designator shall designate a subroutine.

	R1219 procedure-designator is procedure-name
	C1224 (R1219) A procedure-name shall be the name of a procedure or procedure pointer.
	C1225 (R1219) A procedure-component-name shall be the name of a procedure pointer component of th...
	C1226 (R1219) A binding-name shall be the name of a procedure binding (4.5.1.5) of the declared t...
	(1) If the reference is consistent with one of the specific interfaces in the declared binding, t...
	(2) Otherwise, the reference shall be consistent with an elemental reference to one of the specif...

	R1220 actual�arg�spec is [keyword =] actual�arg
	R1221 actual�arg is expr
	R1222 alt�return�spec is * label
	C1227 (R1220) The keyword = shall not appear if the interface of the procedure is implicit in the...
	C1228 (R1220) The keyword = may be omitted from an actual�arg�spec only if the keyword = has been...
	C1229 (R1220) Each keyword shall be the name of a dummy argument in the explicit interface of the...
	C1230 (R1221) A nonintrinsic elemental procedure shall not be used as an actual argument.
	C1231 (R1221) A procedure�name shall be the name of an external procedure, a dummy procedure, a m...
	NOTE 12.18
	C1232 (R1221) In a reference to a pure procedure, a procedure�name actual�arg shall be the name o...

	NOTE 12.19
	C1233 (R1222) The label used in the alt�return�spec shall be the statement label of a branch targ...

	NOTE 12.20
	NOTE 12.21

	12.4.1�� Actual arguments, dummy arguments, and argument association
	NOTE 12.22 �
	12.4.1.1�� The effect of PASS_OBJ on argument association
	12.4.1.2�� Actual arguments associated with dummy data objects
	NOTE 12.23
	(1) Any pointers associated with the actual argument become associated with the corresponding dum...
	(2) When execution of the procedure completes, any pointers that do not become undefined (16.7.2....
	(1) On invocation of the procedure, whether any pointers associated with the actual argument beco...
	(2) When execution of the procedure completes, the pointer association status of any pointer that...

	NOTE 12.24
	NOTE 12.25 �
	NOTE 12.26
	C1234 (R1221) If an actual argument is an array section or an assumed-shape array, and the corres...
	C1235 (R1221) If an actual argument is a pointer array, and the corresponding dummy argument has ...

	NOTE 12.27

	12.4.1.3�� Actual arguments associated with dummy procedure entities
	12.4.1.4�� Actual arguments associated with alternate return indicators
	12.4.1.5�� Sequence association
	NOTE 12.28

	12.4.1.6�� Restrictions on dummy arguments not present
	(1) If it is a data object, it shall not be referenced or be defined. If it is of a type for whic...
	(2) It shall not be used as the target of a pointer assignment.
	(3) If it is a procedure or procedure pointer, it shall not be invoked.
	(4) It shall not be supplied as an actual argument corresponding to a nonoptional dummy argument ...
	(5) A designator with it as the base object and with at least one subobject selector shall not be...
	(6) If it is an array, it shall not be supplied as an actual argument to an elemental procedure u...
	(7) If it is a pointer, it shall not be allocated, deallocated, nullified, pointer-assigned, or s...
	(8) If it is allocatable, it shall not be allocated, deallocated, or supplied as an actual argume...
	(9) If it has type parameters, they shall not be inquired about.

	12.4.1.7�� Restrictions on entities associated with dummy arguments
	(1) Action that affects the allocation status of the entity or a subobject thereof shall be taken...
	(a) the dummy argument has the POINTER attribute or
	(b) the dummy argument has the TARGET attribute, the dummy argument does not have INTENT�(IN), th...

	NOTE 12.29 �
	NOTE 12.30 �
	NOTE 12.31
	NOTE 12.32
	(2) If the allocation status of the entity or a subobject thereof is affected through the dummy a...
	(a) the dummy argument has the POINTER attribute or
	(b) the dummy argument has the TARGET attribute, the dummy argument does not have INTENT�(IN), th...

	NOTE 12.33
	NOTE 12.34

	12.4.2�� Function reference
	12.4.3�� Subroutine reference

	12.5�� Procedure definition
	12.5.1�� Intrinsic procedure definition
	12.5.2�� Procedures defined by subprograms
	12.5.2.1�� Function subprogram
	R1223 function�subprogram is function�stmt
	R1224 function�stmt is [prefix] FUNCTION function�name n
	C1236 (R1224) If RESULT is specified, result�name shall not be the same as function�name.
	C1237 (R1224) If RESULT is specified, the function�name shall not appear in any specification sta...

	R1225 proc-language-binding-spec is language-binding-spec
	C1238 (R1225) A proc-language-binding-spec with a bind-spec shall not be specified in the functio...
	C1239 (R1225) A proc-language-binding-spec shall not be specified for an internal procedure.
	C1240 (R1225) If proc-language-binding-spec is specified for an interface body it shall contain n...
	NOTE 12.35
	NOTE 12.36

	R1226 dummy-arg-name is name
	C1241 (R1226) A dummy-arg-name shall be the name of a dummy argument.

	R1227 prefix is prefix�spec [prefix�spec] ...
	R1228 prefix�spec is declaration-type-spec
	C1242 (R1227) A prefix shall contain at most one of each prefix�spec.
	C1243 (R1227) A prefix shall not specify both ELEMENTAL and RECURSIVE.
	C1244 (R1227) A prefix shall not specify ELEMENTAL if proc-language-binding-spec is present in th...

	R1229 end�function�stmt is END [FUNCTION [function�name]]
	C1245 (R1229) FUNCTION shall be present in the end�function�stmt of an internal or module function.
	C1246 (R1223) An internal function subprogram shall not contain an ENTRY statement.
	C1247 (R1223) An internal function subprogram shall not contain an internal�subprogram�part.
	C1248 (R1229) If a function�name is present in the end�function�stmt, it shall be identical to th...
	NOTE 12.37
	NOTE 12.38
	NOTE 12.39

	12.5.2.2�� Subroutine subprogram
	R1230 subroutine�subprogram is subroutine�stmt
	R1231 subroutine�stmt is [prefix] SUBROUTINE subroutine�name n
	C1249 (R1231) The prefix of a subroutine�stmt shall not contain a declaration-type-spec.

	R1232 dummy�arg is dummy�arg�name
	R1233 end�subroutine�stmt is END [SUBROUTINE [subroutine�name]]
	C1250 (R1233) SUBROUTINE shall be present in the end�subroutine�stmt of an internal or module sub...
	C1251 (R1230) An internal subroutine subprogram shall not contain an ENTRY statement.
	C1252 (R1230) An internal subroutine subprogram shall not contain an internal�subprogram�part.
	C1253 (R1233) If a subroutine�name is present in the end�subroutine�stmt, it shall be identical t...

	12.5.2.3�� Instances of a subprogram
	NOTE 12.40

	12.5.2.4�� ENTRY statement
	R1234 entry�stmt is ENTRY entry�name [([dummy�arg�list]) n
	C1254 (R1234) If RESULT is specified, the entry�name shall not appear in any specification or typ...
	C1255 (R1234) An entry�stmt may appear only in an external�subprogram or module�subprogram. An en...
	C1256 (R1234) RESULT may be present only if the entry�stmt is in a function subprogram.
	C1257 (R1234) Within the subprogram containing the entry�stmt, the entry�name shall not appear as...
	C1258 (R1234) A dummy�arg may be an alternate return indicator only if the ENTRY statement is in ...
	C1259 (R1234) If RESULT is specified, result�name shall not be the same as entry�name.

	12.5.2.5�� RETURN statement
	R1235 return�stmt is RETURN [scalar�int�expr]
	C1260 (R1235) The return�stmt shall be in the scoping unit of a function or subroutine subprogram.
	C1261 (R1235) The scalar�int�expr is allowed only in the scoping unit of a subroutine subprogram.

	12.5.2.6�� CONTAINS statement
	R1236 contains�stmt is CONTAINS

	12.5.2.7�� Binding labels for procedures
	NOTE 12.41
	NOTE 12.42

	12.5.3�� Definition and invocation of procedures by means other than Fortran
	(1) be interoperable (15.2.6) with a procedure that
	(a) is defined by a means other than Fortran,
	(b) has external linkage as defined by 6.2.2 of the C standard,
	(c) has the same binding label, and
	(d) can be described by a C prototype, or

	(2) be defined by means of a Fortran subprogram that has a language-binding-spec specified on its...
	NOTE 12.43

	12.5.4�� Statement function
	R1237 stmt�function�stmt is function�name ([dummy�arg�name�list]) = scalar�expr
	C1262 (R1237) The primaries of the scalar�expr shall be constants (literal and named), references...
	C1263 (R1237) Named constants in scalar�expr shall have been declared earlier in the scoping unit...
	C1264 (R1237) If a dummy�arg�name, variable, function reference, or dummy function reference is t...
	C1265 (R1237) The function�name and each dummy�arg�name shall be specified, explicitly or implici...
	C1266 (R1237) A given dummy�arg�name may appear only once in any dummy�arg�name�list.
	C1267 (R1237) Each variable reference in scalar�expr may be either a reference to a dummy argumen...

	12.6�� Pure procedures
	(1) A pure intrinsic function (13.1),
	(2) A pure intrinsic subroutine (13.7),
	(3) Defined by a pure subprogram, or
	(4) A statement function that references only pure functions.
	C1268 The specification�part of a pure function subprogram shall specify that all dummy arguments...
	C1269 The specification�part of a pure subroutine subprogram shall specify the intents of all dum...
	C1270 A local variable declared in the specification�part or internal�subprogram�part of a pure s...
	NOTE 12.44
	C1271 The specification-part of a pure subprogram shall specify that all dummy arguments that are...
	C1272 If a procedure that is neither an intrinsic procedure nor a statement function is used in a...

	NOTE 12.45
	C1273 All internal subprograms in a pure subprogram shall be pure.
	C1274 In a pure subprogram any designator with a base object that is in common or accessed by hos...
	(1) In a variable definition context(16.8.7);

	NOTE 12.46
	C1275 Any procedure referenced in a pure subprogram, including one referenced via a defined opera...
	C1276 A pure subprogram shall not contain a print�stmt, open�stmt, close�stmt, backspace�stmt, en...
	C1277 A pure subprogram shall not contain a read�stmt or write�stmt whose io�unit is an external�...
	C1278 A pure subprogram shall not contain a stop�stmt.

	NOTE 12.47 �
	NOTE 12.48

	12.7�� Elemental procedures
	12.7.1�� Elemental procedure declaration and interface
	C1279 All dummy arguments shall be scalar and shall not have the POINTER or ALLOCATABLE attribute.
	C1280 For a function, the result shall be scalar and shall not have the POINTER or ALLOCATABLE at...
	C1281 An object designator with a dummy argument as the base object shall not appear in a specifi...
	C1282 A dummy�arg shall not be *.
	C1283 A dummy�arg shall not be a dummy procedure.
	NOTE 12.49
	Note 12.50

	12.7.2�� Elemental function actual arguments and results
	NOTE 12.51

	12.7.3�� Elemental subroutine actual arguments

