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Annex C
(informative)

Extendednotes

C.1 Section 4 notes

C.1.1 Intrinsic and derived data types (4.4, 4.5)

FORTRAN 77 provided only data types explicitly defined in the standard (logical, integer, real,

double precision, complex, and character). This standard provides those intrinsic types and

provides derived types to allow the creation of new data types. A derived-type definition specifies

a data structure consisting of components of intrinsic types and of derived types. Such a type

definition does not represent a data object, but rather, a template for declaring named objects of

that derived type. For example, the definition

TYPE POINT
INTEGER X_COORD
INTEGER Y_COORD

END TYPE POINT

specifies a new derived type named POINT which is composed of two components of intrinsic

type integer (X_COORD and Y_COORD). The statement TYPE (POINT) FIRST, LAST declares two

data objects, FIRST and LAST, that can hold values of type POINT.

FORTRAN 77 provided REAL and DOUBLE PRECISION intrinsic types as approximations to

mathematical real numbers. This standard generalizes REAL as an intrinsic type with a type

parameter that selects the approximation method. The type parameter is named kind and has

values that are processor dependent. DOUBLE PRECISION is treated as a synonym for REAL ( ),

where is the implementation-defined kind type parameter value KIND (0.0D0).

Real literal constants may be specified with a kind type parameter to ensure that they have a

particular kind type parameter value (4.4.2).

For example, with the specifications

INTEGER Q
PARAMETER (Q = 8)
REAL (Q) B

the literal constant 10.93_Q has the same precision as the variable B.

FORTRAN 77 did not allow zero-length character strings. They are permitted by this standard (4.4.4).

Objects are of different derived type if they are declared using different derived-type definitions.

For example,

TYPE APPLES
INTEGER NUMBER

END TYPE APPLES
TYPE ORANGES

INTEGER NUMBER
END TYPE ORANGES
TYPE (APPLES) COUNT1
TYPE (ORANGES) COUNT2
COUNT1 = COUNT2 ! Erroneous statement mixing apples and oranges

k
k
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Even though all components of objects of type APPLES and objects of type ORANGES have

identical intrinsic types, the objects are of different types.

C.1.2 Selection of the approximation methods (4.4.2)

One can select the real approximation method for an entire program through the use of a module

and the parameterized real data type. This is accomplished by defining a named integer constant

to have a specific kind type parameter value and using that named constant in all real, complex,

and derived-type declarations. For example, the specification statements

INTEGER, PARAMETER :: LONG_FLOAT = 8
REAL (LONG_FLOAT) X, Y
COMPLEX (LONG_FLOAT) Z

specify that the approximation method corresponding to a kind type parameter value of 8 is

supplied for the data objects X, Y, and Z in the program unit. The kind type parameter value

LONG_FLOAT can be made available to an entire program by placing the INTEGER specification

statement in a module and accessing the named constant LONG_FLOAT with a USE statement.

Note that by changing 8 to 4 once in the module, a different approximation method is selected.

To avoid the use of the processor-dependent values 4 or 8, replace 8 by KIND (0.0) or

KIND (0.0D0). Another way to avoid these processor-dependent values is to select the kind value

using the intrinsic inquiry function SELECTED_REAL_KIND. This function, given integer

arguments P and R specifying minimum requirements for decimal precision and decimal exponent

range, respectively, returns the kind type parameter value of the approximation method that has at

least P decimal digits of precision and at least a range for positive numbers of to . In the

above specification statement, the 8 may be replaced by, for instance,

SELECTED_REAL_KIND (10, 50), which requires an approximation method to be selected with at

least 10 decimal digits of precision and an exponent range from to . There are no

magnitude or ordering constraints placed on kind values, in order that implementors may have

flexibility in assigning such values and may add new kinds without changing previously assigned

kind values.

As kind values have no portable meaning, a good practice is to use them in programs only through

named constants as described above (for example, SINGLE, IEEE_SINGLE, DOUBLE, and QUAD),

rather than using the kind values directly.

C.1.3 Extensible types (4.5.3)

The default accessibility of an extended type may be specified in the type definition. The

accessibility of its components may be specified individually.

  module types
    type, extensible :: base_type
      private                !-- Sets default accessibility
      integer :: i           !-- a private component
      integer, private :: j  !-- another private component
      integer, public :: k   !-- a public component
    end type base_type

    type, extends(public :: base_type) :: my_type
      private               !-- Sets default for components of my_type
      integer :: l          !-- A private component.
      integer, public :: m  !-- A public component.
    end type my_type

    type, extends(private :: my_type) :: another_type
      !-- No new components.
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    end type another_type

  end module types

  subroutine sub
    use types
    type (my_type) :: x
    type (another_type) :: y

    ....

    call another_sub( &
      x%base_type, &  !-- ok because base_type is a public subobject of x
      x%base_type%k, &  !-- ok because x%base_type is ok and has k as a

   !-- public component.
      x%k, &  !-- ok because it is shorthand for x%base_type%k
      x%base_type%i, &  !-- Invalid because i is private.
      x%i, &  !-- Invalid because it is shorthand for x%base_type%i
      y%my_type, &  !-- Invalid because my_type is a private subobject.
      y%my_type%m, &  !-- Invalid because my_type is a private subobject.
      y%m )   !-- Invalid because it is shorthand for x%my_type%m.

  end subroutine sub

C.1.4 Pointers (4.5.1)

Pointers are names that can change dynamically their association with a target object. In a sense, a

normal variable is a name with a fixed association with a specific object. A normal variable name

refers to the same storage space throughout the lifetime of a variable. A pointer name may refer to

different storage space, or even no storage space, at different times. A variable may be considered

to be a descriptor for space to hold values of the appropriate type, type parameters, and array rank

such that the values stored in the descriptor are fixed when the variable is created by its

declaration. A pointer also may be considered to be a descriptor, but one whose values may be

changed dynamically so as to describe different pieces of storage. When a pointer is declared,

space to hold the descriptor is created, but the space for the target object is not created.

A derived type may have one or more components that are defined to be pointers. It may have a

component that is a pointer to an object of the same derived type. This "recursive" data definition

allows dynamic data structures such as linked lists, trees, and graphs to be constructed. For

example:

TYPE NODE ! Define a "recursive" type
INTEGER :: VALUE = 0
TYPE (NODE), POINTER :: NEXT_NODE => NULL ( )

END TYPE NODE

TYPE (NODE), TARGET :: HEAD       ! Automatically initialized
TYPE (NODE), POINTER :: CURRENT, TEMP ! Declare pointers
INTEGER :: IOEM, K

CURRENT => HEAD ! CURRENT points to head of list
DO

READ (*, *, IOSTAT = IOEM) K ! Read next value, if any
IF (IOEM /= 0) EXIT
ALLOCATE (TEMP) ! Create new cell each iteration
TEMP % VALUE = K ! Assign value to cell

CURRENT % NEXT_NODE => TEMP ! Attach new cell to list
CURRENT => TEMP ! CURRENT points to new end of list
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END DO

A list is now constructed and the last linked cell contains a disassociated pointer. A loop can be

used to "walk through" the list.

CURRENT => HEAD
DO

IF (.NOT. ASSOCIATED (CURRENT % NEXT_NODE)) EXIT
CURRENT => CURRENT % NEXT_NODE
WRITE (*, *) CURRENT % VALUE

END DO

C.1.5 Structure constructors and generic names

A generic name may be the same as a type name. This can be used to emulate user-defined

structure constructors for that type, even if the type has private components. For example:

MODULE mytype_module
  TYPE mytype
    PRIVATE
    COMPLEX value
    LOGICAL exact
  END TYPE
  INTERFACE mytype
    MODULE PROCEDURE int_to_mytype
  END INTERFACE
  ! Operator definitions etc.
  ...
CONTAINS
  TYPE(mytype) FUNCTION int_to_mytype(i)
    INTEGER,INTENT(IN) :: i
    int_to_mytype%value = i
    int_to_mytype%exact = .TRUE.
  END FUNCTION
  ! Procedures to support operators etc.
  ...
END
PROGRAM example
  USE mytype_module
  TYPE(mytype) x
  x = mytype(17)
END

The type name may still be used as a generic name if the type has type parameters. For example:

MODULE m
  TYPE t(kind)
    COMPLEX(kind) value
  END TYPE
  INTEGER,PARAMETER :: single = KIND(0.0), double = KIND(0d0)
  INTERFACE t
    MODULE PROCEDURE real_to_t1, dble_to_t2, int_to_t1, int_to_t2
  END INTERFACE
  ...
CONTAINS
  TYPE(t(single)) FUNCTION real_to_t1(x)
    REAL(single) x
    real_to_t1%value = x
  END FUNCTION
  TYPE(t(double)) FUNCTION dble_to_t2(x)
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    REAL(double) x
    dble_to_t2%value = x
  END FUNCTION
  TYPE(t(single)) FUNCTION int_to_t1(x,mold)
    INTEGER x
    TYPE(t(single)) mold
    int_to_t1%value = x
  END FUNCTION
  TYPE(t(double)) FUNCTION int_to_t2(x,mold)
    INTEGER x
    TYPE(t(double)) mold
    int_to_t2%value = x
  END FUNCTION
  ...
END
PROGRAM example
  USE m
  TYPE(t(single)) x
  TYPE(t(double)) y
  x = t(1.5)                ! References real_to_t1
  x = t(17,mold=x)          ! References int_to_t1
  y = t(1.5d0)              ! References dble_to_t2
  y = t(42,mold=y)          ! References int_to_t2
  y = t(kind(0d0)) ((0,1))  ! Uses the structure constructor for type t
END

C.1.6 Final subroutines (4.5.1.9, 4.5.10, 4.5.11, 4.5.12)

Example of a parameterized derived type with final subroutines:

MODULE m
  TYPE t(k)
    REAL(k),POINTER :: vector(:) => NULL()
  CONTAINS
    FINAL :: finalize_t1s, finalize_t1v, finalize_t2e
  END TYPE
CONTAINS
  SUBROUTINE finalize_t1s(x)
    TYPE(t(KIND(0.0))) x
    IF (ASSOCIATED(x%vector)) DEALLOCATE(x%vector)
  END SUBROUTINE
  SUBROUTINE finalize_t1v(x)
    TYPE(t(KIND(0.0))) x(:)
    DO i=LBOUND(x,1),UBOUND(x,1)
      IF (ASSOCIATED(x(i)%vector)) DEALLOCATE(x(i)%vector)
    END DO
  END SUBROUTINE
  ELEMENTAL SUBROUTINE finalize_t2e(x)
    TYPE(t(KIND(0.0d0))),INTENT(INOUT) :: x
    IF (ASSOCIATED(x%vector)) DEALLOCATE(x%vector)
  END SUBROUTINE
END MODULE

SUBROUTINE example(n)
  USE m
  TYPE(t(KIND(0.0))) a,b(10),c(n,2)
  TYPE(t(KIND(0.0d0))) d(n,n)
  ...
  ! Returning from this subroutine will effectively do
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  !    CALL finalize_t1s(a)
  !    CALL finalize_t1v(b)
  !    CALL finalize_t2e(d)
  ! No final subroutine will be called for variable C because the user
  ! omitted to define a suitable specific procedure for it.
END SUBROUTINE

Example of extended types with final subroutines:

MODULE m
  TYPE,EXTENSIBLE :: t1
    REAL a,b
  END TYPE
  TYPE,EXTENDS(t1) :: t2
    REAL,POINTER :: c(:),d(:)
  CONTAINS
    FINAL :: t2f
  END TYPE
  TYPE,EXTENDS(t2) :: t3
    REAL,POINTER :: e
  CONTAINS
    FINAL :: t3f
  END TYPE
  ...
CONTAINS
  SUBROUTINE t2f(x) ! Finalizer for TYPE(t2)'s extra components
    TYPE(t2) :: x
    IF (ASSOCIATED(x%c)) DEALLOCATE(x%c)
    IF (ASSOCIATED(x%d)) DEALLOCATE(x%d)
  END SUBROUTINE
  SUBROUTINE t3f(y) ! Finalizer for TYPE(t3)'s extra components
    TYPE(t3) :: y
    IF (ASSOCIATED(y%e)) DEALLOCATE(y%e)
  END SUBROTUINE
END MODULE

SUBROUTINE example
  USE m
  TYPE(t1) x1
  TYPE(t2) x2
  TYPE(t3) x3
  ...
  ! Returning from this subroutine will effectively do
  !    ! Nothing to x1; it is not finalizable
  !    CALL t2f(x2)
  !    CALL t3f(x3)
  !    CALL t2f(x3%t2)
END SUBROUTINE

C.2 Section 5 notes

C.2.1 The POINTER attribute (5.1.2.11)

The POINTER attribute shall be specified to declare a pointer. The type, type parameters, and

rank, which may be specified in the same statement or with one or more attribute specification

statements, determine the characteristics of the target objects that may be associated with the

pointers declared in the statement. An obvious model for interpreting declarations of pointers is
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that such declarations create for each name a descriptor. Such a descriptor includes all the data

necessary to describe fully and locate in memory an object and all subobjects of the type, type

parameters, and rank specified. The descriptor is created empty; it does not contain values

describing how to access an actual memory space. These descriptor values will be filled in when

the pointer is associated with actual target space.

The following example illustrates the use of pointers in an iterative algorithm:

PROGRAM DYNAM_ITER
REAL, DIMENSION (:, :), POINTER :: A, B, SWAP ! Declare pointers
...
READ (*, *) N, M
ALLOCATE (A (N, M), B (N, M)) ! Allocate target arrays
! Read values into A
...
ITER: DO

...
! Apply transformation of values in A to produce values in B
...
IF (CONVERGED) EXIT ITER
! Swap A and B
SWAP => A; A => B; B => SWAP

END DO ITER
...

END PROGRAM DYNAM_ITER

C.2.2 The TARGET attribute (5.1.2.13)

The TARGET attribute shall be specified for any nonpointer object that may, during the execution

of the program, become associated with a pointer. This attribute is defined primarily for

optimization purposes. It allows the processor to assume that any nonpointer object not explicitly

declared as a target may be referred to only by way of its original declared name. It also means

that implicitly-declared objects shall not be used as pointer targets. This will allow a processor to

perform optimizations that otherwise would not be possible in the presence of certain pointers.

The following example illustrates the use of the TARGET attribute in an iterative algorithm:

PROGRAM ITER
REAL, DIMENSION (1000, 1000), TARGET :: A, B
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP
...
! Read values into A
...
IN => A ! Associate IN with target A
OUT => B ! Associate OUT with target B
...
ITER:DO

...
! Apply transformation of IN values to produce OUT
...
IF (CONVERGED) EXIT ITER
! Swap IN and OUT
SWAP => IN; IN => OUT; OUT => SWAP

END DO ITER
...

END PROGRAM ITER
JUN 2001 WORKING DRAFT 409



J3/01-007R2 WORKING DRAFT JUN 2001
C.2.3 The VOLATILE attribute (5.1.2.15)

The following example shows the use of a variable with the VOLATILE attribute to communicate

with an asynchronous process, in this case the operating system. The program detects a user

keystroke on the terminal and reacts at a convenient point in its processing.

The VOLATILE attribute is necessary to prevent an optimizing compiler from storing the

communication variable in a register or from doing flow analysis and deciding that the EXIT

statement can never be executed.

Subroutine Terminate_Iterations

  Logical, VOLATILE  ::   user_hit_any_key
     ...

!  Have the OS start to look for a user keystroke and set the variable
!  "user_hit_any_key" to TRUE as soon as it detects a keystroke.
!  This pseudo call is operating system dependent.

    Call   OS_BEGIN_DETECT_USER_KEYSTROKE( user_hit_any_key)

user_hit_any_key = .false. !this will ignore any recent keystrokes
    print *, " hit any key to terminate iterations!"

      Do I = 1,100
        .....   !  compute a value for R
        print *, I, R
        if (user_hit_any_key)  EXIT
      Enddo

! Have the OS stop looking for user keystrokes

  Call   OS_STOP_DETECT_USER_KEYSTROKE

End Subroutine Terminate_Iterations

C.3 Section 6 notes

C.3.1 Structure components (6.1.2)

Components of a structure are referenced by writing the components of successive levels of the

structure hierarchy until the desired component is described. For example,

TYPE ID_NUMBERS
INTEGER SSN
INTEGER EMPLOYEE_NUMBER

END TYPE ID_NUMBERS

TYPE PERSON_ID
CHARACTER (LEN=30) LAST_NAME
CHARACTER (LEN=1) MIDDLE_INITIAL
CHARACTER (LEN=30) FIRST_NAME
TYPE (ID_NUMBERS) NUMBER

END TYPE PERSON_ID

TYPE PERSON
INTEGER AGE
TYPE (PERSON_ID) ID

END TYPE PERSON
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TYPE (PERSON) GEORGE, MARY

PRINT *, GEORGE % AGE ! Print the AGE component
PRINT *, MARY % ID % LAST_NAME ! Print LAST_NAME of MARY
PRINT *, MARY % ID % NUMBER % SSN ! Print SSN of MARY
PRINT *, GEORGE % ID % NUMBER ! Print SSN and EMPLOYEE_NUMBER of GEORGE

A structure component may be a data object of intrinsic type as in the case of GEORGE % AGE or

it may be of derived type as in the case of GEORGE % ID % NUMBER. The resultant component

may be a scalar or an array of intrinsic or derived type.

TYPE LARGE
INTEGER ELT (10)
INTEGER VAL

END TYPE LARGE

TYPE (LARGE) A (5) ! 5 element array, each of whose elements
! includes a 10 element array ELT and
! a scalar VAL.

PRINT *, A (1) ! Prints 10 element array ELT and scalar VAL.
PRINT *, A (1) % ELT (3) ! Prints scalar element 3

! of array element 1 of A.
PRINT *, A (2:4) % VAL ! Prints scalar VAL for array elements

! 2 to 4 of A.

Components of an object of extensible type that are inherited from the parent type may be accessed

as a whole by using the parent component name, or individually, either with or without qualifying

them by the parent component name.

For example:

  TYPE, EXTENSIBLE :: POINT            ! A base type
    REAL :: X, Y
  END TYPE POINT
  TYPE, EXTENDS(POINT) :: COLOR_POINT  ! An extension of TYPE(POINT)
    ! Components X and Y, and component name POINT, inherited from parent
    INTEGER :: COLOR
  END TYPE COLOR_POINT

  TYPE(POINT) :: PV = POINT(1.0, 2.0)
  TYPE(COLOR_POINT) :: CPV = COLOR_POINT(PV, 3) ! Nested form constructor

  PRINT *, CPV%POINT                   ! Prints 1.0 and 2.0
  PRINT *, CPV%POINT%X, CPV%POINT%Y    ! And this does, too
  PRINT *, CPV%X, CPV%Y                ! And this does, too

C.3.2 Allocation with dynamic type (6.3.1)

The following example illustrates the use of allocation with the value and dynamic type of the

allocated object given by another object. The example copies a list of objects of any extensible type.

It copies the list starting at IN_LIST. After copying, each element of the list starting at LIST_COPY

has a polymorphic component, ITEM, for which both the value and type are taken from the ITEM

component of the corresponding element of the list starting at IN_LIST.

TYPE :: LIST ! A list of anything of extensible type
  TYPE(LIST), POINTER :: NEXT => NULL()
  CLASS(*), ALLOCATABLE :: ITEM
END TYPE LIST
...
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TYPE(LIST), POINTER :: IN_LIST, LIST_COPY => NULL()
TYPE(LIST), POINTER :: IN_WALK, NEW_TAIL
! Copy IN_LIST to LIST_COPY
IF (ASSOCIATED(IN_LIST)) THEN
  IN_WALK => IN_LIST
  ALLOCATE(LIST_COPY)
  NEW_TAIL => LIST_COPY
  DO
    ALLOCATE(NEW_TAIL%ITEM, SOURCE=IN_WALK%ITEM)
    IN_WALK => IN_WALK%NEXT
    IF (.NOT. ASSOCIATED(IN_WALK)) EXIT
    ALLOCATE(NEW_TAIL%NEXT)
    NEW_TAIL => NEW_TAIL%NEXT
  END DO
END IF

C.3.3 Pointer allocation and association

The effect of ALLOCATE, DEALLOCATE, NULLIFY, and pointer assignment is that they are

interpreted as changing the values in the descriptor that is the pointer. An ALLOCATE is assumed

to create space for a suitable object and to "assign" to the pointer the values necessary to describe

that space. A NULLIFY breaks the association of the pointer with the space. A DEALLOCATE

breaks the association and releases the space. Depending on the implementation, it could be seen

as setting a flag in the pointer that indicates whether the values in the descriptor are valid, or it

could clear the descriptor values to some (say zero) value indicative of the pointer not currently

pointing to anything. A pointer assignment copies the values necessary to describe the space

occupied by the target into the descriptor that is the pointer. Descriptors are copied, values of

objects are not.

If PA and PB are both pointers and PB currently is associated with a target, then

PA => PB

results in PA being associated with the same target as PB. If PB was disassociated, then PA

becomes disassociated.

The standard is specified so that such associations are direct and independent. A subsequent

statement

PB => D

or

ALLOCATE (PB)

has no effect on the association of PA with its target. A statement

DEALLOCATE (PB)

leaves PA as a "dangling pointer" to space that has been released. The program shall not use PA

again until it becomes associated via pointer assignment or an ALLOCATE statement.

DEALLOCATE should only be used to release space that was created by a previous ALLOCATE.

Thus the following is invalid:

REAL, TARGET :: T
REAL, POINTER :: P

...
P => T
DEALLOCATE (P) ! Not allowed: P's target was not allocated
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The basic principle is that ALLOCATE, NULLIFY, and pointer assignment primarily affect the

pointer rather than the target. ALLOCATE creates a new target but, other than breaking its

connection with the specified pointer, it has no effect on the old target. Neither NULLIFY nor

pointer assignment has any effect on targets. A given piece of memory that was allocated and

associated with a pointer will become inaccessible to a program if the pointer is nullified and no

other pointer was associated with this piece of memory. Such pieces of memory may be reused by

the processor if this is expedient. However, whether such inaccessible memory is in fact reused is

entirely processor dependent.

C.4 Section 7 notes

C.4.1 Character assignment

The FORTRAN 77 restriction that none of the character positions being defined in the character

assignment statement may be referenced in the expression has been removed (7.5.1.5).

C.4.2 Evaluation of function references

If more than one function reference appears in a statement, they may be executed in any order

(subject to a function result being evaluated after the evaluation of its arguments) and their values

shall not depend on the order of execution. This lack of dependence on order of evaluation

permits parallel execution of the function references (7.1.8.1).

C.4.3 Pointers in expressions

A pointer is basically considered to be like any other variable when it is used as a primary in an

expression. If a pointer is used as an operand to an operator that expects a value, the pointer will

automatically deliver the value stored in the space currently described by the pointer, that is, the

value of the target object currently associated with the pointer. In value-demanding expression

contexts, pointers are dereferenced.

C.4.4 Pointers on the left side of an assignment

A pointer that appears on the left of an intrinsic assignment statement also is dereferenced and is

taken to be referring to the space that is its current target. Therefore, the assignment statement

specifies the normal copying of the value of the right-hand expression into this target space. All

the normal rules of intrinsic assignment hold; the type and type parameters of the expression and

the pointer target shall agree and the shapes shall be conformable.

For intrinsic assignment of derived types, nonpointer components are assigned and pointer

components are pointer assigned. Dereferencing is applied only to entire scalar objects, not

selectively to pointer subobjects.

For example, suppose a type such as

TYPE CELL
INTEGER :: VAL
TYPE (CELL), POINTER :: NEXT_CELL

END TYPE CELL

is defined and objects such as HEAD and CURRENT are declared using

TYPE (CELL), TARGET :: HEAD
TYPE (CELL), POINTER :: CURRENT

If a linked list has been created and attached to HEAD and the pointer CURRENT has been

allocated space, statements such as
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CURRENT = HEAD
CURRENT = CURRENT % NEXT_CELL

cause the contents of the cells referenced on the right to be copied to the cell referred to by

CURRENT. In particular, the right-hand side of the second statement causes the pointer

component in the cell, CURRENT, to be selected. This pointer is dereferenced because it is in an

expression context to produce the target’s integer value and a pointer to a cell that is in the target’s

NEXT_CELL component. The left-hand side causes the pointer CURRENT to be dereferenced to

produce its present target, namely space to hold a cell (an integer and a cell pointer). The integer

value on the right is copied to the integer space on the left and the pointer components are pointer

assigned (the descriptor on the right is copied into the space for a descriptor on the left). When a

statement such as

CURRENT => CURRENT % NEXT_CELL

is executed, the descriptor value in CURRENT % NEXT_CELL is copied to the descriptor named

CURRENT. In this case, CURRENT is made to point at a different target.

In the intrinsic assignment statement, the space associated with the current pointer does not

change but the values stored in that space do. In the pointer assignment, the current pointer is

made to associate with different space. Using the intrinsic assignment causes a linked list of cells

to be moved up through the current "window"; the pointer assignment causes the current pointer

to be moved down through the list of cells.

C.4.5 An example of a FORALL construct containing a WHERE construct

INTEGER :: A(5,5)
...
FORALL (I = 1:5)
   WHERE (A(I,:) .EQ. 0)
      A(:,I) = I
   ELSEWHERE (A(I,:) > 2)
      A(I,:) = 6
   END WHERE
END FORALL

If prior to execution of the FORALL, A has the value

A =      1  0  0  0  0
         2  1  1  1  0
         1  2  2  0  2
         2  1  0  2  3
         1  0  0  0  0

After execution of the assignment statements following the WHERE statement A has the value A’.

The mask created from row one is used to mask the assignments to column one; the mask from

row two is used to mask assignments to column two; etc.

A’ =     1  0  0  0  0
         1  1  1  1  5
         1  2  2  4  5
         1  1  3  2  5
         1  2  0  0  5

The masks created for assignments following the ELSEWHERE statement are

.NOT. (A(I,:) .EQ. 0) .AND. (A’(I,:) > 2)

Thus the only elements affected by the assignments following the ELSEWHERE statement are

A(3, 5) and A(4, 5). After execution of the FORALL construct, A has the value

A =      1  0  0  0  0
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         1  1  1  1  5
         1  2  2  4  6
         1  1  3  2  6
         1  2  0  0  5

C.4.6 Examples of FORALL statements

Example 1:

FORALL (J=1:M,  K=1:N)  X(K, J) = Y(J, K)
FORALL (K=1:N) X(K, 1:M) = Y(1:M, K)

These statements both copy columns 1 through N of array Y into rows 1 through N of array X.

They are equivalent to

X(1:N, 1:M) = TRANSPOSE (Y(1:M, 1:N) )

Example 2:

The following FORALL statement computes five partial sums of subarrays of J.

J = (/ 1, 2, 3, 4, 5 /)
FORALL (K = 1:5) J(K) = SUM (J(1:K) )

SUM is allowed in a FORALL because intrinsic functions are pure (12.6). After execution of the

FORALL statement, J = (/ 1, 3, 6, 10, 15 /).

Example 3:

FORALL (I = 2:N-1) X(I) = (X(I-1) + 2*X(I) + X(I+1) ) / 4

has the same effect as

X(2:N-1) = (X(1:N-2) + 2*X(2:N-1) + X(3:N) ) / 4

C.5 Section 8 notes

C.5.1 Loop control

Fortran provides several forms of loop control:

(1) With an iteration count and a DO variable. This is the classic Fortran DO loop.

(2) Test a logical condition before each execution of the loop (DO WHILE).

(3) DO "forever".

C.5.2 The CASE construct

At most one case block is selected for execution within a CASE construct, and there is no fall-

through from one block into another block within a CASE construct. Thus there is no requirement

for the user to exit explicitly from a block.

C.5.3 Additional examples of DO constructs

The following are all valid examples of block DO constructs.

Example 1:

SUM = 0.0
READ (IUN) N
OUTER: DO L = 1, N ! A DO with a construct name

READ (IUN) IQUAL, M, ARRAY (1:M)
IF (IQUAL < IQUAL_MIN) CYCLE OUTER ! Skip inner loop
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INNER: DO 40 I = 1, M ! A DO with a label and a name
CALL CALCULATE (ARRAY (I), RESULT)
IF (RESULT < 0.0) CYCLE
SUM = SUM + RESULT
IF (SUM > SUM_MAX) EXIT OUTER

40 END DO INNER
END DO OUTER

The outer loop has an iteration count of MAX (N, 0), and will execute that number of times or until

SUM exceeds SUM_MAX, in which case the EXIT OUTER statement terminates both loops. The

inner loop is skipped by the first CYCLE statement if the quality flag, IQUAL, is too low. If

CALCULATE returns a negative RESULT, the second CYCLE statement prevents it from being

summed. Both loops have construct names and the inner loop also has a label. A construct name

is required in the EXIT statement in order to terminate both loops, but is optional in the CYCLE

statements because each belongs to its innermost loop.

Example 2:

N = 0
DO 50, I = 1, 10

J = I
DO K = 1, 5

L = K
N = N + 1 ! This statement executes 50 times

END DO ! Nonlabeled DO inside a labeled DO
50 CONTINUE

After execution of the above program fragment, I = 11, J = 10, K = 6, L = 5, and N = 50.

Example 3:

N = 0
DO I = 1, 10

J = I
DO 60, K = 5, 1 ! This inner loop is never executed

L = K
N = N + 1

60 CONTINUE ! Labeled DO inside a nonlabeled DO
END DO

After execution of the above program fragment, I = 11, J = 10, K = 5, N = 0, and L is not defined by

these statements.

The following are all valid examples of nonblock DO constructs:

Example 4:

DO 70
READ (IUN, '(1X, G14.7)', IOSTAT = IOS) X
IF (IOS .NE. 0) EXIT
IF (X < 0.) GOTO 70
CALL SUBA (X)
CALL SUBB (X)

...
CALL SUBY (X)
CYCLE

70 CALL SUBNEG (X) ! SUBNEG called only whe n X < 0.

This is not a block DO construct because it ends with a statement other than END DO or CONTINUE. The loop will

continue to execute until an end-of-file condition or input/output error occurs.

Example 5:

SUM = 0.0
READ (IUN) N
DO 80, L = 1, N

READ (IUN) IQUAL, M, ARRAY (1:M)
IF (IQUAL < IQUAL_MIN ) M = 0 ! Skip inner loop
DO 80 I = 1, M
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CALL CALCULATE (ARRAY (I), RESULT)
IF (RESULT < 0.) CYCLE
SUM = SUM + RESULT
IF (SUM > SUM_MAX) GOTO 81

80 CONTINUE ! This CONTINUE is shared by both loops
81 CONTINUE

This example is similar to Example 1 above, except that the two loops are not block DO constructs because they share the

CONTINUE statement with the label 80. The terminal construct of the outer DO is the entire inner DO construct. The inner

loop is skipped by forcing M to zero. If SUM grows too large, both loops are terminated by branching to the CONTINUE

statement labeled 81. The CYCLE statement in the inner loop is used to skip negative values of RESULT.

Example 6:

N = 0
DO 100 I = 1, 10

J = I
DO 100 K = 1, 5

L = K
100 N = N + 1 ! This statement executes 50 times

In this example, the two loops share an assignment statement. After execution of this program fragment, I = 11, J = 10,

K = 6, L = 5, and N = 50.

Example 7:

N = 0
DO 200 I = 1, 10

J = I
DO 200 K = 5, 1 ! This inner loop is never executed

L = K
200 N = N + 1

This example is very similar to the previous one, except that the inner loop is never executed. After execution of this

program fragment, I = 11, J = 10, K = 5, N = 0, and L is not defined by these statements.

C.5.4 Examples of invalid DO constructs

The following are all examples of invalid skeleton DO constructs:

Example 1:

DO I = 1, 10
...

END DO LOOP ! No matching construct name

Example 2:

LOOP: DO 1000 I = 1, 10 ! No matching construct name
...

1000 CONTINUE

Example 3:

LOOP1: DO
...

END DO LOOP2 ! Construct names don't match

Example 4:

DO I = 1, 10 ! Label required or ...
...

1010 CONTINUE ! ... END DO required

Example 5:

DO 1020 I = 1, 10
...

1021 END DO ! Labels don't match

Example 6:

FIRST: D O I = 1, 10
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SECOND: DO J = 1, 5
...

END DO FIRST ! Improperly nested DOs
END DO SECOND

C.6 Section 9 notes

C.6.1 External files (9.2)

This standard accommodates, but does not require, file cataloging. To do this, several concepts are

introduced.

C.6.1.1 File connection (9.4)

Before any input/output may be performed on a file, it shall be connected to a unit. The unit then

serves as a designator for that file as long as it is connected. To be connected does not imply that

"buffers" have or have not been allocated, that "file-control tables" have or have not been filled out,

or that any other method of implementation has been used. Connection means that (barring some

other fault) a READ or WRITE statement may be executed on the unit, hence on the file. Without

a connection, a READ or WRITE statement shall not be executed.

C.6.1.2 File existence (9.2.1)

Totally independent of the connection state is the property of existence, this being a file property.

The processor "knows" of a set of files that exist at a given time for a given program. This set

would include tapes ready to read, files in a catalog, a keyboard, a printer, etc. The set may

exclude files inaccessible to the program because of security, because they are already in use by

another program, etc. This standard does not specify which files exist, hence wide latitude is

available to a processor to implement security, locks, privilege techniques, etc. Existence is a

convenient concept to designate all of the files that a program can potentially process.

All four combinations of connection and existence may occur:

Means are provided to create, delete, connect, and disconnect files.

C.6.1.3 File names (9.4.5.7)

A file may have a name. The form of a file name is not specified. If a system does not have some

form of cataloging or tape labeling for at least some of its files, all file names will disappear at the

termination of execution. This is a valid implementation. Nowhere does this standard require

names to survive for any period of time longer than the execution time span of a program.

Therefore, this standard does not impose cataloging as a prerequisite. The naming feature is

intended to allow use of a cataloging system where one exists.

C.6.1.4 File access (9.2.2)

This standard does not address problems of security, protection, locking, and many other concepts

that may be part of the concept of "right of access". Such concepts are considered to be in the

province of an operating system.

Connect Exist Examples

Yes Yes A card reader loaded and ready to be read

Yes No A printer before the first line is written

No Yes A file named 'JOAN' in the catalog

No No A file on a reel of tape, not known to the processor
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The OPEN and INQUIRE statements can be extended naturally to consider these things.

Possible access methods for a file are: sequential and direct. The processor may implement two

different types of files, each with its own access method. It might also implement one type of file

with two different access methods.

Direct access to files is of a simple and commonly available type, that is, fixed-length records. The

key is a positive integer.

C.6.2 Nonadvancing input/output (9.2.3.1)

Data transfer statements affect the positioning of an external file. In FORTRAN 77, if no error or end-

of-file condition exists, the file is positioned after the record just read or written and that record

becomes the preceding record. This standard contains the record positioning ADVANCE=

specifier in a data transfer statement that provides the capability of maintaining a position within

the current record from one formatted data transfer statement to the next data transfer statement.

The value NO provides this capability. The value YES positions the file after the record just read

or written. The default is YES.

The tab edit descriptor and the slash are still appropriate for use with this type of record access but

the tab will not reposition before the left tab limit.

A BACKSPACE of a file that is currently positioned within a record causes the specified unit to be

positioned before the current record.

If the last data transfer statement was WRITE and the file is currently positioned within a record,

the file will be positioned implicitly after the current record before an ENDFILE record is written to

the file, that is, a REWIND, BACKSPACE, or ENDFILE statement following a nonadvancing

WRITE statement causes the file to be positioned at the end of the current output record before the

endfile record is written to the file.

This standard provides a SIZE= specifier to be used with nonadvancing data transfer statements.

The variable in the SIZE= specifier will contain the count of the number of characters that make up

the sequence of values read by the data edit descriptors in this input statement.

The count is especially helpful if there is only one list item in the input list since it will contain the

number of characters that were present for the item.

The EOR= specifier is provided to indicate when an end-of-record condition has been encountered

during a nonadvancing data transfer statement. The end-of-record condition is not an error

condition. If this specifier is present, the current input list item that required more characters than

the record contained will be padded with blanks if PAD= 'YES' is in effect. This means that the

input list item was successfully completed. The file will then be positioned after the current

record. The IOSTAT= specifier, if present, will be defined with the value of the named constant

IOSTAT_EOR from the ISO_FORTRAN_ENV module and the data transfer statement will be

terminated. Program execution will continue with the statement specified in the EOR= specifier.

The EOR= specifier gives the capability of taking control of execution when the end-of-record has

been found. Implied-DO variables retain their last defined value and any remaining items in the

input-item-list retain their definition status when an end-of-record condition occurs. The SIZE=

specifier, if present, will contain the number of characters read with the data edit descriptors

during this READ statement.

For nonadvancing input, the processor is not required to read partial records. The processor may

read the entire record into an internal buffer and make successive portions of the record available

to successive input statements.

In an implementation of nonadvancing input/output in which a nonadvancing write to a terminal

device causes immediate display of the output, such a write can be used as a mechanism to output

a prompt. In this case, the statement
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WRITE (*, FMT=’(A)’, ADVANCE=’NO’) ’CONTINUE?(Y/N): ’

would result in the prompt

CONTINUE?(Y/N):

being displayed with no subsequent line feed.

The response, which might be read by a statement of the form

READ (*, FMT=’(A)’) ANSWER

can then be entered on the same line as the prompt as in

CONTINUE?(Y/N): Y

The standard does not require that an implementation of nonadvancing input/output operate in

this manner. For example, an implementation of nonadvancing output in which the display of the

output is deferred until the current record is complete is also standard conforming. Such an

implementation will not, however, allow a prompting mechanism of this kind to operate.

C.6.3 Asynchronous input/output

Rather than limit support for asynchronous input/output to what has been traditionally provided

by facilities such as BUFFERIN/BUFFEROUT, this standard builds upon existing Fortran syntax.

This permits alternative approaches for implementing asynchronous input/output, and simplifies

the task of adapting existing standard conforming programs to use asynchronous input/output.

Not all processors will actually perform input/output asynchronously, nor will every processor

that does be able to handle data transfer statements with complicated input/output item lists in an

asynchronous manner. Such processors can still be standard conforming. Hopefully, the

documentation for each Fortran processor will describe when, if ever, input/output will be

performed asynchronously.

This standard allows for at least two different conceptual models for asynchronous input/output.

Model 1: the processor will perform asynchronous input/output when the item list is simple

(perhaps one contiguous named array) and the input/output is unformatted. The implementation

cost is reduced, and this is the scenario most likely to be beneficial on traditional "big-iron"

machines.

Model 2: The processor is free to do any of the following:

(1) on output, create a buffer inside the input/output library, completely formatted, and
then start an asynchronous write of the buffer, and immediately return to the next
statement in the program. The processor is free to wait for previously issued WRITEs,
or not, or

(2) pass the input/output list addresses to another processor/process, which will process
the list items independently of the processor that executes the user's code. The
addresses of the list items must be computed before the asynchronous READ/WRITE
statement completes. There is still an ordering requirement on list item processing to
handle things like READ (...) N,(a(i),i=1,N).

The standard allows a user to issue a large number of asynchronous input/output requests,

without waiting for any of them to complete, and then wait for any or all of them. It may be

impossible, and undesirable to keep track of each of these input/output requests individually.

The proposed support does not require all requests to be tracked by the runtime library. When the

user does not specify an ID= specifier on a READ or WRITE, the runtime is free to forget about this

particular request once it has successfully completed. If it gets an ERR or END condition, the

processor is free to report this during any input/output operation to that unit. When an ID=

specifier is present, the processor’s runtime input/output library is required to keep track of any
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END or ERR conditions for that specific input/output request. However, if the input/output

request succeeds without any exceptional conditions occuring, then the runtime can forget that

ID= value if it wishes. Typically, a runtime might only keep track of the last request made, or

perhaps a very few. Then, when a user WAITs for a particular request, either the library knows

about it (and does the right thing with respect to error handling, etc.), or will assume it is one of

those requests that successfully completed and was forgotten about (and will just return without

signaling any end or error conditions). It is incumbent on the user to pass valid ID= values. There

is no requirement on the processor to detect invalid ID= values. There is of course, a processor

dependent limit on how many outstanding input/output requests which generate an end or error

condition can be handled before the processor runs out of memory to keep track of such

conditions. The restrictions on the SIZE= variables are designed to allow the processor to update

such variables at any time (after the request has been processed, but before the WAIT operation),

and then forget about them. That's why there is no SIZE= specifier allowed in the various WAIT

operations. Only exceptional conditions (errors or ends of files) are expected to be tracked by

individual request by the runtime, and then only if an ID= specifier was present. The END= and

EOR= specifiers have not been added to all statements that can be WAIT operations. Instead, the

IOSTAT variable will have to be queried after a WAIT operation to handle this situation. This

choice was made because we expect the WAIT statement to be the usual method of waiting for

input/output to complete (and WAIT does support the END= and EOR= specifiers). This

particular choice is philosophical, and was not based on significant technical difficulties.

Note that the requirement to set the IOSTAT variable correctly requires an implementation to

remember which input/output requests got an EOR condition, so that a subsequent wait operation

will return the correct IOSTAT value. This means there is a processor defined limit on the number

of outstanding nonadvancing input/output requests which got an EOR condition (constrained by

available memory to keep track of this info, similar to END/ERR conditions).

C.6.4 OPEN statement (9.4.5)

A file may become connected to a unit either by preconnection or by execution of an OPEN

statement. Preconnection is performed prior to the beginning of execution of a program by means

external to Fortran. For example, it may be done by job control action or by processor-established

defaults. Execution of an OPEN statement is not required to access preconnected files (9.4.4).

The OPEN statement provides a means to access existing files that are not preconnected. An

OPEN statement may be used in either of two ways: with a file name (open-by-name) and without

a file name (open-by-unit). A unit is given in either case. Open-by-name connects the specified file

to the specified unit. Open-by-unit connects a processor-dependent default file to the specified

unit. (The default file may or may not have a name.)

Therefore, there are three ways a file may become connected and hence processed: preconnection,

open-by-name, and open-by-unit. Once a file is connected, there is no means in standard Fortran

to determine how it became connected.

An OPEN statement may also be used to create a new file. In fact, any of the foregoing three

connection methods may be performed on a file that does not exist. When a unit is preconnected,

writing the first record creates the file. With the other two methods, execution of the OPEN

statement creates the file.

When an OPEN statement is executed, the unit specified in the OPEN may or may not already be

connected to a file. If it is already connected to a file (either through preconnection or by a prior

OPEN), then omitting the FILE= specifier in the OPEN statement implies that the file is to remain

connected to the unit. Such an OPEN statement may be used to change the values of the BLANK=,

DELIM=, or PAD= specifiers.

If the value of the ACTION= specifier is WRITE, then READ statements shall not refer to this

connection. ACTION = 'WRITE' does not restrict positioning by a BACKSPACE statement or
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positioning specified by the POSITION= specifier with the value APPEND. However, a

BACKSPACE statement or an OPEN statement containing POSITION = 'APPEND' may fail if the

processor requires reading of the file to achieve the positioning.

The following examples illustrate these rules. In the first example, unit 10 is preconnected to a

SCRATCH file; the OPEN statement changes the value of PAD= to YES.

CHARACTER (LEN = 20) CH1
WRITE (10, '(A)') 'THIS IS RECORD 1'
OPEN (UNIT = 10, STATUS = 'SCRATCH', PAD = 'YES')
REWIND 10
READ (10, '(A20)') CH1 ! CH1 now has the value

! 'THIS IS RECORD 1 '

In the next example, unit 12 is first connected to a file named FRED, with a status of OLD. The

second OPEN statement then opens unit 12 again, retaining the connection to the file FRED, but

changing the value of the DELIM= specifier to QUOTE.

CHARACTER (LEN = 25) CH2, CH3
OPEN (12, FILE = 'FRED', STATUS = 'OLD', DELIM = 'NONE')
CH2 = '"THIS STRING HAS QUOTES."'

! Quotes in string CH2
WRITE (12, *) CH2 ! Written with no delimiters
OPEN (12, DELIM = 'QUOTE') ! Now quote is the delimiter
REWIND 12
READ (12, *) CH3 ! CH3 now has the value

! 'THIS STRING HAS QUOTES. '

The next example is invalid because it attempts to change the value of the STATUS= specifier.

OPEN (10, FILE = 'FRED', STATUS = 'OLD')
WRITE (10, *) A, B, C
OPEN (10, STATUS = 'SCRATCH') ! Attempts to make FRED

! a SCRATCH file

The previous example could be made valid by closing the unit first, as in the next example.

OPEN (10, FILE = 'FRED', STATUS = 'OLD')
WRITE (10, *) A, B, C
CLOSE (10)
OPEN (10, STATUS = 'SCRATCH') ! Opens a different

! SCRATCH file

C.6.5 Connection properties (9.4.3)

When a unit becomes connected to a file, either by execution of an OPEN statement or by

preconnection, the following connection properties, among others, may be established:

(1) An access method, which is sequential, direct, or stream, is established for the
connection (9.4.5.1).

(2) A form, which is formatted or unformatted, is established for a connection to a file that
exists or is created by the connection. For a connection that results from execution of
an OPEN statement, a default form (which depends on the access method, as described
in 9.2.2) is established if no form is specified. For a preconnected file that exists, a form
is established by preconnection. For a preconnected file that does not exist, a form may
be established, or the establishment of a form may be delayed until the file is created
(for example, by execution of a formatted or unformatted WRITE statement) (9.4.5.8).

(3) A record length may be established. If the access method is direct, the connection
establishes a record length that specifies the length of each record of the file. An
existing file with records that are not all of equal length shall not be connected for
direct access.
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If the access method is sequential, records of varying lengths are permitted. In this

case, the record length established specifies the maximum length of a record in the file

(9.4.5.11).

A processor has wide latitude in adapting these concepts and actions to its own cataloging and job

control conventions. Some processors may require job control action to specify the set of files that

exist or that will be created by a program. Some processors may require no job control action prior

to execution. This standard enables processors to perform dynamic open, close, or file creation

operations, but it does not require such capabilities of the processor.

The meaning of "open" in contexts other than Fortran may include such things as mounting a tape,

console messages, spooling, label checking, security checking, etc. These actions may occur upon

job control action external to Fortran, upon execution of an OPEN statement, or upon execution of

the first read or write of the file. The OPEN statement describes properties of the connection to the

file and may or may not cause physical activities to take place. It is a place for an implementation

to define properties of a file beyond those required in standard Fortran.

C.6.6 CLOSE statement (9.4.6)

Similarly, the actions of dismounting a tape, protection, etc. of a "close" may be implicit at the end

of a run. The CLOSE statement may or may not cause such actions to occur. This is another place

to extend file properties beyond those of standard Fortran. Note, however, that the execution of a

CLOSE statement on a unit followed by an OPEN statement on the same unit to the same file or to

a different file is a permissible sequence of events. The processor shall not deny this sequence

solely because the implementation chooses to do the physical act of closing the file at the

termination of execution of the program.

C.7 Section 10 notes

C.7.1 Number of records (10.3, 10.4, 10.7.2)

The number of records read by an explicitly formatted advancing input statement can be

determined from the following rule: a record is read at the beginning of the format scan (even if

the input list is empty), at each slash edit descriptor encountered in the format, and when a format

rescan occurs at the end of the format.

The number of records written by an explicitly formatted advancing output statement can be

determined from the following rule: a record is written when a slash edit descriptor is encountered

in the format, when a format rescan occurs at the end of the format, and at completion of execution

of the output statement (even if the output list is empty). Thus, the occurrence of n successive

slashes between two other edit descriptors causes n – 1 blank lines if the records are printed. The

occurrence of n slashes at the beginning or end of a complete format specification causes n blank

lines if the records are printed. However, a complete format specification containing n slashes

(n > 0) and no other edit descriptors causes n + 1 blank lines if the records are printed. For

example, the statements

PRINT 3
3 FORMAT (/)

will write two records that cause two blank lines if the records are printed.

C.7.2 List-directed input (10.9.1)

The following examples illustrate list-directed input. A blank character is represented by b.

Example 1:
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Program:

J = 3
READ *, I
READ *, J

Sequential input file:

record 1: b1b,4bbbbb
record 2: ,2bbbbbbbb

Result: I = 1, J = 3.

Explanation: The second READ statement reads the second record. The initial comma in the record

designates a null value; therefore, J is not redefined.

Example 2:

Program:

CHARACTER A *8, B *1
READ *, A, B

Sequential input file:

record 1: 'bbbbbbbb'
record 2: 'QXY'b'Z'

Result: A = 'bbbbbbbb', B = 'Q'

Explanation: In the first record, the rightmost apostrophe is interpreted as delimiting the constant

(it cannot be the first of a pair of embedded apostrophes representing a single apostrophe because

this would involve the prohibited "splitting" of the pair by the end of a record); therefore, A is

assigned the character constant 'bbbbbbbb'. The end of a record acts as a blank, which in this case

is a value separator because it occurs between two constants.

C.8 Section 11 notes

C.8.1 Main program and block data program unit (11.1, 11.4)

The name of the main program or of a block data program unit has no explicit use within the

Fortran language. It is available for documentation and for possible use by a processor.

A processor may implement an unnamed main program or unnamed block data program unit by

assigning it a default name. However, this name shall not conflict with any other global name in a

standard-conforming program. This might be done by making the default name one which is not

permitted in a standard-conforming program (for example, by including a character not normally

allowed in names) or by providing some external mechanism such that for any given program the

default name can be changed to one that is otherwise unused.

C.8.2 Dependent compilation (11.3)

This standard, like its predecessors, is intended to permit the implementation of conforming

processors in which a program can be broken into multiple units, each of which can be separately

translated in preparation for execution. Such processors are commonly described as supporting

separate compilation. There is an important difference between the way separate compilation can

be implemented under this standard and the way it could be implemented under the FORTRAN 77

standard. Under the FORTRAN 77 standard, any information required to translate a program unit

was specified in that program unit. Each translation was thus totally independent of all others.

Under this standard, a program unit can use information that was specified in a separate module

and thus may be dependent on that module. The implementation of this dependency in a
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processor may be that the translation of a program unit may depend on the results of translating

one or more modules. Processors implementing the dependency this way are commonly described

as supporting dependent compilation.

The dependencies involved here are new only in the sense that the Fortran processor is now aware

of them. The same information dependencies existed under the FORTRAN 77 standard, but it was

the programmer’s responsibility to transport the information necessary to resolve them by making

redundant specifications of the information in multiple program units. The availability of separate

but dependent compilation offers several potential advantages over the redundant textual

specification of information:

(1) Specifying information at a single place in the program ensures that different program
units using that information will be translated consistently. Redundant specification
leaves the possibility that different information will erroneously be specified. Even if
some kind of textual inclusion facility is used to ensure that the text of the
specifications is identical in all involved program units, the presence of other
specifications (for example, an IMPLICIT statement) may change the interpretation of
that text.

(2) During the revision of a program, it is possible for a processor to assist in determining
whether different program units have been translated using different (incompatible)
versions of a module, although there is no requirement that a processor provide such
assistance. Inconsistencies in redundant textual specification of information, on the
other hand, tend to be much more difficult to detect.

(3) Putting information in a module provides a way of packaging it. Without modules,
redundant specifications frequently shall be interleaved with other specifications in a
program unit, making convenient packaging of such information difficult.

(4) Because a processor may be implemented such that the specifications in a module are
translated once and then repeatedly referenced, there is the potential for greater
efficiency than when the processor shall translate redundant specifications of
information in multiple program units.

The exact meaning of the requirement that the public portions of a module be available at the time

of reference is processor dependent. For example, a processor could consider a module to be

available only after it has been compiled and require that if the module has been compiled

separately, the result of that compilation shall be identified to the compiler when compiling

program units that use it.

C.8.2.1 USE statement and dependent compilation (11.3.2)

Another benefit of the USE statement is its enhanced facilities for name management. If one needs

to use only selected entities in a module, one can do so without having to worry about the names

of all the other entities in that module. If one needs to use two different modules that happen to

contain entities with the same name, there are several ways to deal with the conflict. If none of the

entities with the same name are to be used, they can simply be ignored. If the name happens to

refer to the same entity in both modules (for example, if both modules obtained it from a third

module), then there is no confusion about what the name denotes and the name can be freely used.

If the entities are different and one or both is to be used, the local renaming facility in the USE

statement makes it possible to give those entities different names in the program unit containing

the USE statements.

A typical implementation of dependent but separate compilation may involve storing the result of

translating a module in a file (or file element) whose name is derived from the name of the

module. Note, however, that the name of a module is limited only by the Fortran rules and not by

the names allowed in the file system. Thus the processor may have to provide a mapping between

Fortran names and file system names.
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The result of translating a module could reasonably either contain only the information textually

specified in the module (with "pointers" to information originally textually specified in other

modules) or contain all information specified in the module (including copies of information

originally specified in other modules). Although the former approach would appear to save on

storage space, the latter approach can greatly simplify the logic necessary to process a USE

statement and can avoid the necessity of imposing a limit on the logical "nesting" of modules via

the USE statement.

Variables declared in a module retain their definition status on much the same basis as variables in

a common block. That is, saved variables retain their definition status throughout the execution of

a program, while variables that are not saved retain their definition status only during the

execution of scoping units that reference the module. In some cases, it may be appropriate to put

a USE statement such as

USE MY_MODULE, ONLY:

in a scoping unit in order to assure that other procedures that it references can communicate

through the module. In such a case, the scoping unit would not access any entities from the

module, but the variables not saved in the module would retain their definition status throughout

the execution of the scoping unit.

There is an increased potential for undetected errors in a scoping unit that uses both implicit

typing and the USE statement. For example, in the program fragment

SUBROUTINE SUB
USE MY_MODULE
IMPLICIT INTEGER (I-N), REAL (A-H, O-Z)
X = F (B)
A = G (X) + H (X + 1)

END SUBROUTINE SUB

X could be either an implicitly typed real variable or a variable obtained from the module

MY_MODULE and might change from one to the other because of changes in MY_MODULE

unrelated to the action performed by SUB. Logic errors resulting from this kind of situation can be

extremely difficult to locate. Thus, the use of these features together is discouraged.

C.8.2.2 Accessibility attributes (11.3.1)

The PUBLIC and PRIVATE attributes, which can be declared only in modules, divide the entities in

a module into those which are actually relevant to a scoping unit referencing the module and those

that are not. This information may be used to improve the performance of a Fortran processor.

For example, it may be possible to discard much of the information on the private entities once a

module has been translated, thus saving on both storage and the time to search it. Similarly, it may

be possible to recognize that two versions of a module differ only in the private entities they

contain and avoid retranslating program units that use that module when switching from one

version of the module to the other.

C.8.3 Examples of the use of modules

C.8.3.1 Identical common blocks

A common block and all its associated specification statements may be placed in a module named,

for example, MY_COMMON and accessed by a USE statement of the form

USE MY_COMMON

that accesses the whole module without any renaming. This ensures that all instances of the

common block are identical. Module MY_COMMON could contain more than one common block.
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C.8.3.2 Global data

A module may contain only data objects, for example:

MODULE DATA_MODULE
SAVE
REAL A (10), B, C (20,20)
INTEGER :: I=0
INTEGER, PARAMETER :: J=10
COMPLEX D (J,J)

END MODULE DATA_MODULE

Data objects made global in this manner may have any combination of data types.

Access to some of these may be made by a USE statement with the ONLY option, such as:

USE DATA_MODULE, ONLY: A, B, D

and access to all of them may be made by the following USE statement:

USE DATA_MODULE

Access to all of them with some renaming to avoid name conflicts may be made by:

USE DATA_MODULE, AMODULE => A, DMODULE => D

C.8.3.3 Derived types

A derived type may be defined in a module and accessed in a number of program units. For

example:

MODULE SPARSE
TYPE NONZERO

REAL A
INTEGER I, J

END TYPE NONZERO
END MODULE SPARSE

defines a type consisting of a real component and two integer components for holding the

numerical value of a nonzero matrix element and its row and column indices.

C.8.3.4 Global allocatable arrays

Many programs need large global allocatable arrays whose sizes are not known before program

execution. A simple form for such a program is:

PROGRAM GLOBAL_WORK
CALL CONFIGURE_ARRAYS ! Perform the appropriate allocations
CALL COMPUTE ! Use the arrays in computations

END PROGRAM GLOBAL_WORK
MODULE WORK_ARRAYS ! An example set of work arrays

INTEGER N
REAL, ALLOCATABLE, SAVE :: A (:), B (:, :), C (:, :, :)

END MODULE WORK_ARRAYS
SUBROUTINE CONFIGURE_ARRAYS ! Process to set up work arrays

USE WORK_ARRAYS
READ (*, *) N
ALLOCATE (A (N), B (N, N), C (N, N , 2 * N))

END SUBROUTINE CONFIGURE_ARRAYS
SUBROUTINE COMPUTE

USE WORK_ARRAYS
... ! Computations involving arrays A, B, and C

END SUBROUTINE COMPUTE
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Typically, many subprograms need access to the work arrays, and all such subprograms would

contain the statement

USE WORK_ARRAYS

C.8.3.5 Procedure libraries

Interface bodies for external procedures in a library may be gathered into a module. This permits

the use of argument keywords and optional arguments, and allows static checking of the

references. Different versions may be constructed for different applications, using argument

keywords in common use in each application.

An example is the following library module:

MODULE LIBRARY_LLS
INTERFACE

SUBROUTINE LLS (X, A, F, FLAG)
REAL X (:, :)
! The SIZE in the next statement is an intrinsic function
REAL, DIMENSION (SIZE (X, 2)) :: A, F
INTEGER FLAG

END SUBROUTINE LLS
...

END INTERFACE
...

END MODULE LIBRARY_LLS

This module allows the subroutine LLS to be invoked:

USE LIBRARY_LLS
...

CALL LLS (X = ABC, A = D, F = XX, FLAG = IFLAG)
...

C.8.3.6 Operator extensions

In order to extend an intrinsic operator symbol to have an additional meaning, an interface block

specifying that operator symbol in the OPERATOR option of the INTERFACE statement may be

placed in a module.

For example, // may be extended to perform concatenation of two derived-type objects serving as

varying length character strings and + may be extended to specify matrix addition for type

MATRIX or interval arithmetic addition for type INTERVAL.

A module might contain several such interface blocks. An operator may be defined by an external

function (either in Fortran or some other language) and its procedure interface placed in the

module.

C.8.3.7 Data abstraction

In addition to providing a portable means of avoiding the redundant specification of information

in multiple program units, a module provides a convenient means of "packaging" related entities,

such as the definitions of the representation and operations of an abstract data type. The following

example of a module defines a data abstraction for a SET data type where the elements of each set

are of type integer. The standard set operations of UNION, INTERSECTION, and DIFFERENCE

are provided. The CARDINALITY function returns the cardinality of (number of elements in) its

set argument. Two functions returning logical values are included, ELEMENT and SUBSET.

ELEMENT defines the operator .IN. and SUBSET extends the operator <=. ELEMENT determines

if a given scalar integer value is an element of a given set, and SUBSET determines if a given set is
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a subset of another given set. (Two sets may be checked for equality by comparing cardinality and

checking that one is a subset of the other, or checking to see if each is a subset of the other.)

The transfer function SETF converts a vector of integer values to the corresponding set, with

duplicate values removed. Thus, a vector of constant values can be used as set constants. An

inverse transfer function VECTOR returns the elements of a set as a vector of values in ascending

order. In this SET implementation, set data objects have a maximum cardinality of 200.

MODULE INTEGER_SETS
! This module is intended to illustrate use of the module facility
! to define a new data type, along with suitable operators.

INTEGER, PARAMETER :: MAX_SET_CARD = 200

TYPE SET ! Define SET data type
PRIVATE
INTEGER CARD
INTEGER ELEMENT (MAX_SET_CARD)

END TYPE SET

INTERFACE OPERATOR (.IN.)
MODULE PROCEDURE ELEMENT

END INTERFACE OPERATOR (.IN.)

INTERFACE OPERATOR (<=)
MODULE PROCEDURE SUBSET

END INTERFACE OPERATOR (<=)

INTERFACE OPERATOR (+)
MODULE PROCEDURE UNION

END INTERFACE OPERATOR (+)

INTERFACE OPERATOR (-)
MODULE PROCEDURE DIFFERENCE

END INTERFACE OPERATOR (-)

INTERFACE OPERATOR (*)
MODULE PROCEDURE INTERSECTION

END INTERFACE OPERATOR (*)

CONTAINS

INTEGER FUNCTION CARDINALITY (A) ! Returns cardinality of set A
TYPE (SET), INTENT (IN) :: A
CARDINALITY = A % CARD

END FUNCTION CARDINALITY

LOGICAL FUNCTION ELEMENT (X, A) ! Determines if
INTEGER, INTENT(IN) :: X ! element X is in set A
TYPE (SET), INTENT(IN) :: A
ELEMENT = ANY (A % ELEMENT (1 : A % CARD) .EQ. X)

END FUNCTION ELEMENT

FUNCTION UNION (A, B) ! Union of sets A and B
TYPE (SET) UNION

   TYPE (SET), INTENT(IN) :: A, B
INTEGER J
UNION = A
DO J = 1, B % CARD
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IF (.NOT. (B % ELEMENT (J) .IN. A)) THEN
IF (UNION % CARD < MAX_SET_CARD) THEN

UNION % CARD = UNION % CARD + 1
UNION % ELEMENT (UNION % CARD) = &

B % ELEMENT (J)
ELSE

! Maximum set size exceede d . . .
END IF

END IF
END DO

END FUNCTION UNION

FUNCTION DIFFERENCE (A, B) ! Difference of sets A and B
TYPE (SET) DIFFERENCE

   TYPE (SET), INTENT(IN) :: A, B
INTEGER J, X
DIFFERENCE % CARD = 0 ! The empty set
DO J = 1, A % CARD

X = A % ELEMENT (J)
IF (.NOT. (X .IN. B)) DIFFERENCE = DIFFERENCE + SET (1, X)

END DO
END FUNCTION DIFFERENCE

FUNCTION INTERSECTION (A, B) ! Intersection of sets A and B
TYPE (SET) INTERSECTION

   TYPE (SET), INTENT(IN) :: A, B
INTERSECTION = A - (A - B)

END FUNCTION INTERSECTION

LOGICAL FUNCTION SUBSET (A, B) ! Determines if set A is
TYPE (SET), INTENT(IN) :: A, B ! a subset of set B
INTEGER I
SUBSET = A % CARD <= B % CARD
IF (.NOT. SUBSET) RETURN ! For efficiency
DO I = 1, A % CARD

SUBSET = SUBSET .AND. (A % ELEMENT (I) .IN. B)
END DO

END FUNCTION SUBSET

TYPE (SET) FUNCTION SETF (V) ! Transfer function between a vector
INTEGER V (:) ! of elements and a set of elements
INTEGER J ! removing duplicate elements
SETF % CARD = 0
DO J = 1, SIZE (V)

IF (.NOT. (V (J) .IN. SETF)) THEN
IF (SETF % CARD < MAX_SET_CARD) THEN

SETF % CARD = SETF % CARD + 1
SETF % ELEMENT (SETF % CARD) = V (J)

ELSE
! Maximum set size exceede d . . .

END IF
END IF

END DO
END FUNCTION SETF

FUNCTION VECTOR (A) ! Transfer the values of set A
TYPE (SET), INTENT (IN) :: A ! into a vector in ascending order
INTEGER, POINTER :: VECTOR (:)
INTEGER I, J, K
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ALLOCATE (VECTOR (A % CARD))
VECTOR = A % ELEMENT (1 : A % CARD)
DO I = 1, A % CARD - 1 ! Use a better sort if

DO J = I + 1, A % CARD ! A % CARD is large
IF (VECTOR (I) > VECTOR (J)) THEN

K = VECTOR (J); VECTOR (J) = VECTOR (I); VECTOR (I) = K
END IF

END DO
END DO

END FUNCTION VECTOR

END MODULE INTEGER_SETS

Examples of using INTEGER_SETS (A, B, and C are variables of type SET; X is an integer variable):

! Check to see if A has more than 10 elements
IF (CARDINALITY (A) > 10) ...

! Check for X an element of A but not of B
IF (X .IN. (A - B)) ...

! C is the union of A and the result of B intersected
! with the integers 1 to 100
C = A + B * SETF ((/ (I , I = 1, 100) /))

! Does A have any even numbers in the range 1:100?
IF (CARDINALITY (A * SETF ((/ (I , I = 2, 100, 2) /))) > 0) ...

PRINT *, VECTOR (B) ! Print out the elements of set B, in ascending order

C.8.3.8 Public entities renamed

At times it may be necessary to rename entities that are accessed with USE statements. Care

should be taken if the referenced modules also contain USE statements.

The following example illustrates renaming features of the USE statement.

MODULE J; REAL JX, JY, JZ; END MODULE J
MODULE K

USE J, ONLY : KX => JX, KY => JY
! KX and KY are local names to module K
REAL KZ ! KZ is local name to module K
REAL JZ ! JZ is local name to module K

END MODULE K
PROGRAM RENAME

USE J; USE K
! Module J's entity JX is accessible under names JX and KX
! Module J's entity JY is accessible under names JY and KY
! Module K's entity KZ is accessible under name KZ
! Module J's entity JZ and K's entity JZ are different entities
! and shall not be referenced
...

END PROGRAM RENAME
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C.9 Section 12 notes

C.9.1 Portability problems with external procedures (12.3.2.2)

There is a potential portability problem in a scoping unit that references an external procedure

without declaring it in either an EXTERNAL statement or an interface body. On a different

processor, the name of that procedure may be the name of a nonstandard intrinsic procedure and

the processor would be permitted to interpret those procedure references as references to that

intrinsic procedure. (On that processor, the program would also be viewed as not conforming to

the standard because of the references to the nonstandard intrinsic procedure.) Declaration in an

EXTERNAL statement or an interface body causes the references to be to the external procedure

regardless of the availability of an intrinsic procedure with the same name. Note that declaration

of the type of a procedure is not enough to make it external, even if the type is inconsistent with

the type of the result of an intrinsic of the same name.

C.9.2 Procedures defined by means other than Fortran (12.5.3)

A processor is not required to provide any means other than Fortran for defining external

procedures. Among the means that might be supported are the machine assembly language, other

high level languages, the Fortran language extended with nonstandard features, and the Fortran

language as supported by another Fortran processor (for example, a previously existing FORTRAN 77

processor).

Procedures defined by means other than Fortran are considered external procedures because their

definitions are not in a Fortran program unit and because they are referenced using global names.

The use of the term external should not be construed as any kind of restriction on the way in

which these procedures may be defined. For example, if the means other than Fortran has its own

facilities for internal and external procedures, it is permissible to use them. If the means other than

Fortran can create an "internal" procedure with a global name, it is permissible for such an

"internal" procedure to be considered by Fortran to be an external procedure. The means other

than Fortran for defining external procedures, including any restrictions on the structure for

organization of those procedures, are entirely processor dependent.

A Fortran processor may limit its support of procedures defined by means other than Fortran such

that these procedures may affect entities in the Fortran environment only on the same basis as

procedures written in Fortran. For example, it might prohibit the value of a local variable from

being changed by a procedure reference unless that variable were one of the arguments to the

procedure.

C.9.3 Procedure interfaces (12.3)

In FORTRAN 77, the interface to an external procedure was always deduced from the form of

references to that procedure and any declarations of the procedure name in the referencing

program unit. In this standard, features such as argument keywords and optional arguments make

it impossible to deduce sufficient information about the dummy arguments from the nature of the

actual arguments to be associated with them, and features such as array-valued function results

and pointer function results make necessary extensions to the declaration of a procedure that

cannot be done in a way that would be analogous with the handling of such declarations in

FORTRAN 77. Hence, mechanisms are provided through which all the information about a

procedure’s interface may be made available in a scoping unit that references it. A procedure

whose interface shall be deduced as in FORTRAN 77 is described as having an implicit interface. A

procedure whose interface is fully known is described as having an explicit interface.

A scoping unit is allowed to contain an interface body for a procedure that does not exist in the

program, provided the procedure described is never referenced. The purpose of this rule is to

allow implementations in which the use of a module providing interface bodies describing the
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interface of every routine in a library would not automatically cause each of those library routines

to be a part of the program referencing the module. Instead, only those library procedures actually

referenced would be a part of the program. (In implementation terms, the mere presence of an

interface body would not generate an external reference in such an implementation.)

C.9.4 Argument association and evaluation (12.4.1.2)

There is a significant difference between the argument association allowed in this standard and

that supported by FORTRAN 77 and FORTRAN 66. In FORTRAN 77 and 66, actual arguments were

limited to consecutive storage units. With the exception of assumed length character dummy

arguments, the structure imposed on that sequence of storage units was always determined in the

invoked procedure and not taken from the actual argument. Thus it was possible to implement

FORTRAN 66 and FORTRAN 77 argument association by supplying only the location of the first storage

unit (except for character arguments, where the length would also have to be supplied). However,

this standard allows arguments that do not reside in consecutive storage locations (for example, an

array section), and dummy arguments that assume additional structural information from the

actual argument (for example, assumed-shape dummy arguments). Thus, the mechanism to

implement the argument association allowed in this standard needs to be more general.

Because there are practical advantages to a processor that can support references to and from

procedures defined by a FORTRAN 77 processor, requirements for explicit interfaces have been added

to make it possible to determine whether a simple (FORTRAN 66/FORTRAN 77) argument association

implementation mechanism is sufficient or whether the more general mechanism is necessary

(12.3.1.1). Thus a processor can be implemented whose procedures expect the simple mechanism

to be used whenever the procedure’s interface is one which uses only FORTRAN 77 features and

which expects the more general mechanism otherwise (for example, if there are assumed-shape or

optional arguments). At the point of reference, the appropriate mechanism can be determined

from the interface if it is explicit and can be assumed to be the simple mechanism if it is not. Note

that if the simple mechanism is determined to be what the procedure expects, it may be necessary

for the processor to allocate consecutive temporary storage for the actual argument, copy the actual

argument to the temporary storage, reference the procedure using the temporary storage in place

of the actual argument, copy the contents of temporary storage back to the actual argument, and

deallocate the temporary storage.

Note that while this is the specific implementation method these rules were designed to support, it

is not the only one possible. For example, on some processors, it may be possible to implement the

general argument association in such a way that the information involved in FORTRAN 77 argument

association may be found in the same places and the "extra" information is placed so it does not

disturb a procedure expecting only FORTRAN 77 argument association. With such an

implementation, argument association could be translated without regard to whether the interface

is explicit or implicit. Alternatively, it would be possible to disallow discontiguous arguments

when calling procedures defined by the FORTRAN 77 processor and let any copying to and from

contiguous storage be done explicitly in the program. Yet another possibility would be not to

allow references to procedures defined by a FORTRAN 77 processor.

The provisions for expression evaluation give the processor considerable flexibility for obtaining

expression values in the most efficient way possible. This includes not evaluating or only partially

evaluating an operand, for example, if the value of the expression can be determined otherwise

(7.1.8.1). This flexibility applies to function argument evaluation, including the order of argument

evaluation, delaying argument evaluation, and omitting argument evaluation. A processor may

delay the evaluation of an argument in a procedure reference until the execution of the procedure

refers to the value of that argument, provided delaying the evaluation of the argument does not

otherwise affect the results of the program. The processor may, with similar restrictions, entirely

omit the evaluation of an argument not referenced in the execution of the procedure. This gives

processors latitude for optimization (for example, for parallel processing).
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C.9.5 Pointers and targets as arguments (12.4.1.2)

If a dummy argument is declared to be a pointer, it may be matched only by an actual argument

that also is a pointer, and the characteristics of both arguments shall agree. A model for such an

association is that descriptor values of the actual pointer are copied to the dummy pointer. If the

actual pointer has an associated target, this target becomes accessible via the dummy pointer. If

the dummy pointer becomes associated with a different target during execution of the procedure,

this target will be accessible via the actual pointer after the procedure completes execution. If the

dummy pointer becomes associated with a local target that ceases to exist when the procedure

completes, the actual pointer will be left dangling in an undefined state. Such dangling pointers

shall not be used.

When execution of a procedure completes, any pointer that remains defined and that is associated

with a dummy argument that has the TARGET attribute and is either a scalar or an assumed-shape

array, remains associated with the corresponding actual argument if the actual argument has the

TARGET attribute and is not an array section with a vector subscript.

REAL, POINTER      :: PBEST
REAL, TARGET       :: B (10000)
CALL BEST (PBEST, B)            ! Upon return PBEST is associated
   ...                          ! with the "best" element of B
CONTAINS
  SUBROUTINE BEST (P, A)
    REAL, POINTER, INTENT (OUT)  :: P
    REAL, TARGET, INTENT (IN)    :: A (:)
       ...                      ! Find the "best" element A(I)
    P => A (I)
  RETURN
  END SUBROUTINE BEST
END

When procedure BEST completes, the pointer PBEST is associated with an element of B.

An actual argument without the TARGET attribute can become associated with a dummy

argument with the TARGET attribute. This permits pointers to become associated with the

dummy argument during execution of the procedure that contains the dummy argument. For

example:

INTEGER LARGE(100,100)
CALL SUB (LARGE)
   ...
CALL SUB ()
CONTAINS
  SUBROUTINE SUB(ARG)
    INTEGER, TARGET, OPTIONAL :: ARG(100,100)
    INTEGER, POINTER, DIMENSION(:,:) :: PARG
    IF (PRESENT(ARG)) THEN
      PARG => ARG
    ELSE
      ALLOCATE (PARG(100,100))
      PARG = 0
    ENDIF
       ...  ! Code with lots of references to PARG
    IF (.NOT. PRESENT(ARG)) DEALLOCATE(PARG)
  END SUBROUTINE SUB
END

Within subroutine SUB the pointer PARG is either associated with the dummy argument ARG or it

is associated with an allocated target. The bulk of the code can reference PARG without further

calls to the PRESENT intrinsic.
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C.9.6 Polymorphic Argument Association (12.4.1.3)

The following example illustrates polymorphic argument association rules using the derived types

defined in Note 4.52.

  TYPE(POINT) :: T2
  TYPE(COLOR_POINT) :: T3
  CLASS(POINT) :: P2
  CLASS(COLOR_POINT) :: P3
  ! Dummy argument is polymorphic and actual argument is of fixed type
  SUBROUTINE SUB2 ( X2 ); CLASS(POINT) :: X2; ...
  SUBROUTINE SUB3 ( X3 ); CLASS(COLOR_POINT) :: X3; ...

  CALL SUB2 ( T2 ) ! Valid -- The declared type of T2 is the same as the
                   !          declared type of X2.
  CALL SUB2 ( T3 ) ! Valid -- The declared type of T3 is extended from
                   !          the declared type of X2.
  CALL SUB3 ( T2 ) ! Invalid -- The declared type of T2 is neither the
                   !          same as nor extended from the declared type
                   !          type of X3.
  CALL SUB3 ( T3 ) ! Valid -- The declared type of T3 is the same as the
                   !          declared type of X3.
  ! Actual argument is polymorphic and dummy argument is of fixed type
  SUBROUTINE TUB2 ( D2 ); TYPE(POINT) :: D2
  SUBROUTINE TUB3 ( D3 ); TYPE(COLOR_POINT) :: D3

  CALL TUB2 ( P2 ) ! Valid -- The declared type of P2 is the same as the
                   !          declared type of D2.
  CALL TUB2 ( P3 ) ! Valid -- The declared type of P3 is extended from
                   !          the declared type of D2.
  CALL TUB3 ( P2 ) ! is valid only if the dynamic type of P2 is the same
                   !          as the declared type of D2, or a type
                   !          extended therefrom.
  CALL TUB3 ( P3 ) ! Valid -- The declared type of P3 is the same as the
                   !          declared type of D3.
  ! Both the actual and dummy arguments are of polymorphic type.
  CALL SUB2 ( P2 ) ! Valid -- The declared type of P2 is the same as the
                   !          declared type of X2.
  CALL SUB2 ( P3 ) ! Valid -- The declared type of P3 is extended from
                   !          the declared type of X2.
  CALL SUB3 ( P2 ) ! is valid only if the dynamic type of P2 is the same
                   !          as the declared type of X2, or a type
                   !          extended therefrom.
  CALL SUB3 ( P3 ) ! Valid -- The declared type of P3 is the same as the
                   !          declared type of X3.

C.10 Section 16 notes

C.10.1 Examples of host association (16.7.1.3)

The first two examples are examples of valid host association. The third example is an example of

invalid host association.

Example 1:

PROGRAM A
INTEGER I, J
...

CONTAINS
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SUBROUTINE B
INTEGER I ! Declaration of I hides

! program A's declaration of I
...

I = J ! Use of variable J from program A
! through host association

END SUBROUTINE B
END PROGRAM A

Example 2:

PROGRAM A
TYPE T

...
END TYPE T
...

CONTAINS
SUBROUTINE B

IMPLICIT TYPE (T) (C) ! Refers to type T declared below
! in subroutine B, not type T
! declared above in program A

...
TYPE T

...
END TYPE T

...
END SUBROUTINE B

END PROGRAM A

Example 3:

PROGRAM Q
REAL (KIND = 1) :: C

...
CONTAINS

SUBROUTINE R
REAL (KIND = KIND (C)) :: D ! Invalid declaration

! See below
REAL (KIND = 2) :: C

...
END SUBROUTINE R

END PROGRAM Q

In the declaration of D in subroutine R, the use of C would refer to the declaration of C in

subroutine R, not program Q. However, it is invalid because the declaration of C shall occur before

it is used in the declaration of D (7.1.7).

C.10.2 Generic resolution and dynamic dispatch (16.1.2.4.4)

A type-bound generic interface consists of a family of generic interfaces, one per type in the

inheritance heirarchy. A declaration of an extensible type may override specific procedures in the

generic interfaces inherited from its parent type, add new specific procedures, or add new type-

bound generic interfaces.

When a procedure is invoked by way of a type-bound generic interface, one of the specific

procedures of the generic interface bound to the declared type of the invoking object (or the dtv

argument in the case of user-defined derived-type input/output) is selected according to the usual

rules for generic resolution (16.1.2.4.1).
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Once a specific procedure is selected for the declared type, the corresponding (4.5.3.2) procedure

for the dynamic type is invoked. For polymorphic objects, it is expected that the former process is

performed when the program is translated, and the latter occurs during program execution. For

nonpolymorphic objects, the dynamic and declared types are the same, so the selection is

completed during translation.

One possible method to support the polymophic case is for the processor to construct a dispatch

table for each type. The elements in the dispatch table are effectively procedure pointers. Either

the specific name of a nongeneric binding or the generic identifier and the combination of

characteristics used for generic resolution chooses a slot in the dispatch table.

During execution, the dynamic type of the object through which the procedure is invoked is used

to select which dispatch table to use. One is assured that the slot selected in the first step exists in

the dispatch table selected during execution because type extension can only add slots, it cannot

delete them.

There is the possibility that a slot will be occupied by an indication that the procedure is deferred

(4.5.1.5), in which case the program is in error. This indication is effectively equivalent to a null

procedure pointer, and may in fact be represented in the same way.

C.11 Array feature notes

C.11.1 Summary of features

This section is a summary of the principal array features.

C.11.1.1 Whole array expressions and assignments (7.5.1.2, 7.5.1.5)

An important feature is that whole array expressions and assignments are permitted. For example,

the statement

A = B + C * SIN (D)

where A, B, C, and D are arrays of the same shape, is permitted. It is interpreted element-by-

element; that is, the sine function is taken on each element of D, each result is multiplied by the

corresponding element of C, added to the corresponding element of B, and assigned to the

corresponding element of A. Functions, including user-written functions, may be array valued and

may be generic with scalar versions. All arrays in an expression or across an assignment shall

conform; that is, have exactly the same shape (number of dimensions and extents in each

dimension), but scalars may be included freely and these are interpreted as being broadcast to a

conforming array. Expressions are evaluated before any assignment takes place.

C.11.1.2 Array sections (2.4.5, 6.2.2.3)

Whenever whole arrays may be used, it is also possible to use subarrays called "sections". For

example:

A (:, 1:N, 2, 3:1:-1)

consists of a subarray containing the whole of the first dimension, positions 1 to N of the second

dimension, position 2 of the third dimension and positions 1 to 3 in reverse order of the fourth

dimension. This is an artificial example chosen to illustrate the different forms. Of course, a

common use may be to select a row or column of an array, for example:

A (:, J)
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C.11.1.3 WHERE statement (7.5.3)

The WHERE statement applies a conforming logical array as a mask on the individual operations

in the expression and in the assignment. For example:

WHERE (A .GT. 0) B = LOG (A)

takes the logarithm only for positive components of A and makes assignments only in these

positions.

The WHERE statement also has a block form (WHERE construct).

C.11.1.4 Automatic arrays and allocatable variables (5.1, 5.1.2.5.3)

Two features useful for writing modular software are automatic arrays, created on entry to a

subprogram and destroyed on return, and allocatable variables, including arrays whose rank is

fixed but whose actual size and lifetime is fully under the programmer’s control through explicit

ALLOCATE and DEALLOCATE statements. The declarations

SUBROUTINE X (N, A, B)
REAL WORK (N, N); REAL, ALLOCATABLE :: HEAP (:, :)

specify an automatic array WORK and an allocatable array HEAP. Note that a stack is an adequate

storage mechanism for the implementation of automatic arrays, but a heap will be needed for

allocatable variables.

C.11.1.5 Array constructors (4.8)

Arrays, and in particular array constants, may be constructed with array constructors exemplified

by:

(/ 1.0, 3.0, 7.2 /)

which is a rank-one array of size 3,

(/ (1.3, 2.7 , L = 1, 10), 7.1 /)

which is a rank-one array of size 21 and contains the pair of real constants 1.3 and 2.7 repeated 10

times followed by 7.1, and

(/ (I, I = 1, N) /)

which contains the integers 1, 2, ..., N. Only rank-one arrays may be constructed in this way, but

higher dimensional arrays may be made from them by means of the intrinsic function RESHAPE.

C.11.2 Examples

The array features have the potential to simplify the way that almost any array-using program is

conceived and written. Many algorithms involving arrays can now be written conveniently as a

series of computations with whole arrays.

C.11.2.1 Unconditional array computations

At the simplest level, statements such as

A = B + C

or

S = SUM (A)

can take the place of entire DO loops. The loops were required to perform array addition or to

sum all the elements of an array.
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Further examples of unconditional operations on arrays that are simple to write are:

The Fourier sum may also be computed without writing a DO loop if one makes

use of the element-by-element definition of array expressions as described in Section 7. Thus, we
can write

F = SUM (A * COS (X))

The successive stages of calculation of F would then involve the arrays:

The final scalar result is obtained simply by summing the elements of the last of these arrays.

Thus, the processor is dealing with arrays at every step of the calculation.

C.11.2.2 Conditional array computations

Suppose we wish to compute the Fourier sum in the above example, but to include only those

terms a(i) cos x(i) that satisfy the condition that the coefficient a(i) is less than 0.01 in absolute value.

More precisely, we are now interested in evaluating the conditional Fourier sum

where the index runs from 1 to N as before.

This can be done by using the MASK parameter of the SUM function, which restricts the

summation of the elements of the array A ∗ COS (X) to those elements that correspond to true

elements of MASK. Clearly, the mask required is the logical array expression ABS (A) .LT. 0.01.

Note that the stages of evaluation of this expression are:

The conditional Fourier sum we arrive at is:

CF = SUM (A * COS (X), MASK = ABS (A) .LT. 0.01)

If the mask is all false, the value of CF is zero.

The use of a mask to define a subset of an array is crucial to the action of the WHERE statement.

Thus for example, to zero an entire array, we may write simply A = 0; but to set only the negative

elements to zero, we need to write the conditional assignment

WHERE (A .LT. 0) A = 0

The WHERE statement complements ordinary array assignment by providing array assignment to

any subset of an array that can be restricted by a logical expression.

matrix multiply P = MATMUL (Q, R)

largest array element L = MAXVAL (P)

factorial N F = PRODUCT ((/ (K, K = 2, N) /))

A = (/ A (1), ..., A (N) /)

X = (/ X (1), ..., X (N) /)

COS (X) = (/ COS (X (1)), ..., COS (X (N)) /)

A * COS (X) = (/ A (1) * COS (X (1)), ..., A (N) * COS (X (N)) /)

A = (/ A (1), ..., A (N) /)

ABS (A) = (/ ABS (A (1)), ..., ABS (A (N)) /)

ABS (A) .LT. 0.01 = (/ ABS (A (1)) .LT. 0.01, ..., ABS (A (N)) .LT. 0.01 /)

F ai xicos×
i 1=

N

∑=

CF ai xicos×
ai 0.01<

∑=
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In the Ising model described below, the WHERE statement predominates in use over the ordinary

array assignment statement.

C.11.2.3 A simple program: the Ising model

The Ising model is a well-known Monte Carlo simulation in 3-dimensional Euclidean space which

is useful in certain physical studies. We will consider in some detail how this might be

programmed. The model may be described in terms of a logical array of shape N by N by N. Each

gridpoint is a single logical variable which is to be interpreted as either an up-spin (true) or a

down-spin (false).

The Ising model operates by passing through many successive states. The transition to the next

state is governed by a local probabilistic process. At each transition, all gridpoints change state

simultaneously. Every spin either flips to its opposite state or not according to a rule that depends

only on the states of its 6 nearest neighbors in the surrounding grid. The neighbors of gridpoints

on the boundary faces of the model cube are defined by assuming cubic periodicity. In effect, this

extends the grid periodically by replicating it in all directions throughout space.

The rule states that a spin is flipped to its opposite parity for certain gridpoints where a mere 3 or

fewer of the 6 nearest neighbors currently have the same parity as it does. Also, the flip is

executed only with probability P (4), P (5), or P (6) if as many as 4, 5, or 6 of them have the same

parity as it does. (The rule seems to promote neighborhood alignments that may presumably lead

to equilibrium in the long run.)

C.11.2.3.1 Problems to be solved

Some of the programming problems that we will need to solve in order to translate the Ising model

into Fortran statements using entire arrays are

(1) Counting nearest neighbors that have the same spin;

(2) Providing an array-valued function to return an array of random numbers; and

(3) Determining which gridpoints are to be flipped.

C.11.2.3.2 Solutions in Fortran

The arrays needed are:

LOGICAL ISING (N, N, N), FLIPS (N, N, N)
INTEGER ONES (N, N, N), COUNT (N, N, N)
REAL THRESHOLD (N, N, N)

The array-valued function needed is:

FUNCTION RAND (N)
REAL RAND (N, N, N)

The transition probabilities are specified in the array

REAL P (6)

The first task is to count the number of nearest neighbors of each gridpoint g that have the same

spin as g.

Assuming that ISING is given to us, the statements

ONES = 0
WHERE (ISING) ONES = 1

make the array ONES into an exact analog of ISING in which 1 stands for an up-spin and 0 for a

down-spin.
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The next array we construct, COUNT, will record for every gridpoint of ISING the number of spins

to be found among the 6 nearest neighbors of that gridpoint. COUNT will be computed by adding

together 6 arrays, one for each of the 6 relative positions in which a nearest neighbor is found.

Each of the 6 arrays is obtained from the ONES array by shifting the ONES array one place

circularly along one of its dimensions. This use of circular shifting imparts the cubic periodicity.

COUNT = CSHIFT (ONES, SHIFT = -1, DIM = 1) &
+ CSHIFT (ONES, SHIFT = 1, DIM = 1) &
+ CSHIFT (ONES, SHIFT = -1, DIM = 2) &
+ CSHIFT (ONES, SHIFT = 1, DIM = 2) &
+ CSHIFT (ONES, SHIFT = -1, DIM = 3) &
+ CSHIFT (ONES, SHIFT = 1, DIM = 3)

At this point, COUNT contains the count of nearest neighbor up-spins even at the gridpoints

where the Ising model has a down-spin. But we want a count of down-spins at those gridpoints,

so we correct COUNT at the down (false) points of ISING by writing:

WHERE (.NOT. ISING) COUNT = 6 - COUNT

Our object now is to use these counts of what may be called the "like-minded nearest neighbors" to

decide which gridpoints are to be flipped. This decision will be recorded as the true elements of an

array FLIP. The decision to flip will be based on the use of uniformly distributed random numbers

from the interval . These will be provided at each gridpoint by the array-valued function

RAND. The flip will occur at a given point if and only if the random number at that point is less

than a certain threshold value. In particular, by making the threshold value equal to 1 at the points

where there are 3 or fewer like-minded nearest neighbors, we guarantee that a flip occurs at those

points (because p is always less than 1). Similarly, the threshold values corresponding to counts of

4, 5, and 6 are assigned P (4), P (5), and P (6) in order to achieve the desired probabilities of a flip

at those points (P (4), P (5), and P (6) are input parameters in the range 0 to 1).

The thresholds are established by the statements:

THRESHOLD = 1.0
WHERE (COUNT .EQ. 4) THRESHOLD = P (4)
WHERE (COUNT .EQ. 5) THRESHOLD = P (5)
WHERE (COUNT .EQ. 6) THRESHOLD = P (6)

and the spins that are to be flipped are located by the statement:

FLIPS = RAND (N) .LE. THRESHOLD

All that remains to complete one transition to the next state of the ISING model is to reverse the

spins in ISING wherever FLIPS is true:

WHERE (FLIPS) ISING = .NOT. ISING

C.11.2.3.3 The complete Fortran subroutine

The complete code, enclosed in a subroutine that performs a sequence of transitions, is as follows:

SUBROUTINE TRANSITION (N, ISING, ITERATIONS, P)

LOGICAL ISING (N, N, N), FLIPS (N, N, N)
INTEGER ONES (N, N, N), COUNT (N, N, N)
REAL THRESHOLD (N, N, N), P (6)

DO I = 1, ITERATIONS
ONES = 0
WHERE (ISING) ONES = 1
COUNT = CSHIFT (ONES, -1, 1) + CSHIFT (ONES, 1, 1) &

+ CSHIFT (ONES, -1, 2) + CSHIFT (ONES, 1, 2) &
+ CSHIFT (ONES, -1, 3) + CSHIFT (ONES, 1, 3)

0 p 1<≤
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WHERE (.NOT. ISING) COUNT = 6 - COUNT
THRESHOLD = 1.0
WHERE (COUNT .EQ. 4) THRESHOLD = P (4)
WHERE (COUNT .EQ. 5) THRESHOLD = P (5)
WHERE (COUNT .EQ. 6) THRESHOLD = P (6)
FLIPS = RAND (N) .LE. THRESHOLD
WHERE (FLIPS) ISING = .NOT. ISING

END DO

CONTAINS
FUNCTION RAND (N)

REAL RAND (N, N, N)
CALL RANDOM_NUMBER (HARVEST = RAND)
RETURN

END FUNCTION RAND
END

C.11.2.3.4 Reduction of storage

The array ISING could be removed (at some loss of clarity) by representing the model in ONES all

the time. The array FLIPS can be avoided by combining the two statements that use it as:

WHERE (RAND (N) .LE. THRESHOLD) ISING = .NOT. ISING

but an extra temporary array would probably be needed. Thus, the scope for saving storage while

performing whole array operations is limited. If N is small, this will not matter and the use of

whole array operations is likely to lead to good execution speed. If N is large, storage may be very

important and adequate efficiency will probably be available by performing the operations plane

by plane. The resulting code is not as elegant, but all the arrays except ISING will have size of

order instead of .

C.11.3 FORmula TRANslation and array processing

Many mathematical formulas can be translated directly into Fortran by use of the array processing

features.

We assume the following array declarations:

REAL X (N), A (M, N)

Some examples of mathematical formulas and corresponding Fortran expressions follow.

C.11.3.1 A sum of products

The expression

can be formed using the Fortran expression

SUM (PRODUCT (A, DIM=1))

The argument DIM=1 means that the product is to be computed down each column of A. If A had

the value the result of this expression is BE + CF + DG.

N
2

N
3

aij
i 1=

M

∏
j 1=

N

∑

B C D

E F G
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C.11.3.2 A product of sums

The expression can be formed using the Fortran expression

PRODUCT (SUM (A, DIM = 2))

The argument DIM = 2 means that the sum is to be computed along each row of A. If A had the

value the result of this expression is (B+C+D)(E+F+G).

C.11.3.3 Addition of selected elements

The expression can be formed using the Fortran expression

SUM (X, MASK = X .GT. 0.0)

The mask locates the positive elements of the array of rank one. If X has the vector value

(0.0, –0.1, 0.2, 0.3, 0.2, –0.1, 0.0), the result of this expression is 0.7.

C.11.4 Sum of squared residuals

The expression can be formed using the Fortran statements

XMEAN = SUM (X) / SIZE (X)
SS = SUM ((X - XMEAN) ** 2)

Thus, SS is the sum of the squared residuals.

C.11.5 Vector norms: infinity-norm and one-norm

The infinity-norm of vector X = (X (1), ..., X (N)) is defined as the largest of the numbers

ABS (X (1)), ..., ABS (X (N)) and therefore has the value MAXVAL (ABS (X)).

The one-norm of vector X is defined as the sum of the numbers ABS (X (1)), ..., ABS (X (N)) and

therefore has the value SUM ( ABS (X)).

C.11.6 Matrix norms: infinity-norm and one-norm

The infinity-norm of the matrix A = (A (I, J)) is the largest row-sum of the matrix ABS (A (I, J)) and

therefore has the value MAXVAL (SUM (ABS (A), DIM = 2)).

The one-norm of the matrix A = (A (I, J)) is the largest column-sum of the matrix ABS (A (I, J)) and

therefore has the value MAXVAL (SUM (ABS (A), DIM = 1)).

C.11.7 Logical queries

The intrinsic functions allow quite complicated questions about tabular data to be answered

without use of loops or conditional constructs. Consider, for example, the questions asked below

about a simple tabulation of students’ test scores.

Suppose the rectangular table T (M, N) contains the test scores of M students who have taken N

different tests. T is an integer matrix with entries in the range 0 to 100.

Example: The scores on 4 tests made by 3 students are held as the table

aij
j 1=

N

∑
i 1=

M

∏

B C D

E F G

xi
xi 0.0>
∑

xi xmean–( )2

i 1=

N

∑
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T =

Question: What is each student’s top score?

Answer: MAXVAL (T, DIM = 2); in the example: [90, 80, 66].

Question: What is the average of all the scores?

Answer: SUM (T) / SIZE (T); in the example: 62.

Question: How many of the scores in the table are above average?

Answer: ABOVE = T.GT. SUM (T) / SIZE (T); N = COUNT (ABOVE); in the example: ABOVE is

the logical array (t = true, . = false): and COUNT (ABOVE) is 6.

Question: What was the lowest score in the above-average group of scores?

Answer: MINVAL (T, MASK = ABOVE), where ABOVE is as defined previously; in the example:

66.

Question: Was there a student whose scores were all above average?

Answer: With ABOVE as previously defined, the answer is yes or no according as the value of the

expression ANY (ALL (ABOVE, DIM = 2)) is true or false; in the example, the answer is no.

C.11.8 Parallel computations

The most straightforward kind of parallel processing is to do the same thing at the same time to

many operands. Matrix addition is a good example of this very simple form of parallel processing.

Thus, the array assignment A = B + C specifies that corresponding elements of the identically-

shaped arrays B and C be added together in parallel and that the resulting sums be assigned in

parallel to the array A.

The process being done in parallel in the example of matrix addition is of course the process of

addition; the array feature that implements matrix addition as a parallel process is the element-by-

element evaluation of array expressions.

These observations lead us to look to element-by-element computation as a means of

implementing other simple parallel processing algorithms.

C.11.9 Example of element-by-element computation

Several polynomials of the same degree may be evaluated at the same point by arranging their

coefficients as the rows of a matrix and applying Horner’s method for polynomial evaluation to

the columns of the matrix so formed.

The procedure is illustrated by the code to evaluate the three cubic polynomials

85 76 90 60

71 45 50 80

66 45 21 55

t t t .

t . . t

t . . .

P t( ) 1 2t 3t
2

– 4t3+ +=

Q t( ) 2 3t– 4t
2

5t3–+=

R t( ) 3 4t 5t2– 6t3+ +=
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in parallel at the point t = X and to place the resulting vector of numbers [P (X), Q (X), R (X)] in the

real array RESULT (3).

The code to compute RESULT is just the one statement

RESULT = M (:, 1) + X * (M (:, 2) + X * (M (:, 3) + X * M (:, 4)))

where M represents the matrix M (3, 4) with value .

C.11.10 Bit manipulation and inquiry procedures

The procedures IOR, IAND, NOT, IEOR, ISHFT, ISHFTC, IBITS, MVBITS, BTEST, IBSET, and

IBCLR are defined by MIL-STD 1753 for scalar arguments and are extended in this standard to

accept array arguments and to return array-valued results.

C.12 Section 16 notes

C.12.1 Runtime environments

This standard allows programs to contain procedures defined by means other than Fortran. That

raises the issues of initialization of and interaction between the runtime environments involved.

Implementations are free to solve these issues as they see fit, provided that:

(1) Heap allocation/deallocation (e.g., (DE)ALLOCATE in a Fortran subprogram and
malloc/free in a C function) can be performed without interference.

(2) I/O to and from external files can be performed without interference, as long as
procedures defined by different means do not do I/O to/from the same external file.

(3) I/O preconnections exist as required by the respective standards.

(4) Initialized data is initialized according to the respective standards.

(5) The command line environment intrinsic routines GET_COMMAND,
GET_COMMAND_ARGUMENT, COMMAND_ARGUMENT_COUNT and
GET_ENVIRONMENT_VARIABLE function correctly, even if the main program is
defined by means other than Fortran.

C.12.2 Examples of Interoperation between Fortran and C Functions

The following examples illustrate the interoperation of Fortran and C functions. Two examples are

shown: one of Fortran calling C, and one of C calling Fortran. In each of the examples, the

correspondences of Fortran actual arguments, Fortran dummy arguments, and C formal

parameters are described.

C.12.2.1 Example of Fortran calling C

C Function Prototype:

int C_Library_Function(void* sendbuf, int sendcount, My_Own_Datatype
         sendtype, int *recvcounts)

Fortran Modules:

MODULE FTN_C_1
   USE ISO_C_BINDING
   TYPEALIAS ::    MY_OWN_DATATYPE => INTEGER(C_INT)
END MODULE FTN_C_1

1 2 3– 4

2 3– 4 5–

3 4 5– 6
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MODULE FTN_C_2
   INTERFACE
      INTEGER (C_INT) FUNCTION C_LIBRARY_FUNCTION    &
      (SENDBUF, SENDCOUNT, SENDTYPE, RECVCOUNTS),    &
      BIND(C, NAME='C_Library_Function')
         USE FTN_C_1
         IMPLICIT NONE
         TYPE (C_PTR), VALUE :: SENDBUF
         INTEGER (C_INT), VALUE :: SENDCOUNT
         TYPE (MY_OWN_DATATYPE), VALUE :: SENDTYPE
         TYPE (C_PTR), VALUE :: RECVCOUNTS
      END FUNCTION C_LIBRARY_FUNCTION
   END INTERFACE
END MODULE FTN_C_2

The module FTN_C_2 contains the declaration of the Fortran dummy arguments, which

correspond to the C formal parameters. The intrinsic module ISO_C_BINDING is referenced in the

module FTN_C_1. The NAME specifier is used in the BIND attribute in order to handle the case-

sensitive name change between Fortran and C from 'C_LIBRARY_FUNCTION' to

'C_Library_Function'. See also Note 12.39.

The first C formal parameter is the pointer to void sendbuf , which corresponds to the Fortran

dummy argument SENDBUF, which has the type C_PTR and the VALUE attribute.

The second C formal parameter is the int sendcount , which corresponds to the Fortran dummy

argument SENDCOUNT, which has the type INTEGER(C_INT) and the VALUE attribute.

The third C formal parameter is sendtype , which has the type My_Own_Datatype defined by C's

typedef facility. The TYPEALIAS statement is specified in Fortran in order to define a

corresponding type alias name. The C formal parameter sendtype corresponds to the Fortran

dummy argument SENDTYPE of type MY_OWN_DATATYPE.

The fourth C formal parameter is the pointer to int recvcounts , which corresponds to the Fortran

dummy argument RECVCOUNTS, which has the type C_PTR and the VALUE attribute.

Fortran Calling Sequence:

USE ISO_C_BINDING
USE FTN_C_2
...
REAL (C_FLOAT), TARGET  :: SEND(100)
INTEGER (C_INT)         :: SENDCOUNT
TYPE (MY_OWN_DATATYPE)  :: SENDTYPE
INTEGER (C_INT), TARGET :: RECVCOUNTS(100)
...
CALL C_LIBRARY_FUNCTION(C_LOC(SEND), SENDCOUNT, SENDTYPE, &
C_LOC(RECVCOUNTS))
...

The preceding code contains the declaration of the Fortran actual arguments associated with the

above-listed Fortran dummy arguments.

The first Fortran actual argument is the address of the first element of the array SEND, which has

the type REAL(C_FLOAT) and the TARGET attribute. This address is returned by the intrinsic

function C_LOC. This actual argument is associated with the Fortran dummy argument

SENDBUF, which has the type C_PTR and the VALUE attribute.

The second Fortran actual argument is SENDCOUNT of type INTEGER(C_INT), which is

associated with the Fortran dummy argument SENDCOUNT, which has the type

INTEGER(C_INT) and the VALUE attribute.
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The third Fortran actual argument is SENDTYPE of type MY_OWN_DATATYPE, which is

associated with the Fortran dummy argument SENDTYPE, which has the type

MY_OWN_DATATYPE and the VALUE attribute.

The fourth Fortran actual argument is the address of the first element of the array RECVCOUNTS,

with has the type REAL(C_FLOAT) and the TARGET attribute. This address is returned by the

intrinsic function C_LOC. This actual argument is associated with the Fortran dummy argument

RECVCOUNTS, which has the type C_PTR and the VALUE attribute.

C.12.3 Example of C calling Fortran

Fortran Code:

SUBROUTINE SIMULATION(ALPHA, BETA, GAMMA, DELTA), BIND(C)
   USE ISO_C_BINDING
   IMPLICIT NONE
   INTEGER (C_LONG), VALUE                 :: ALPHA
   REAL (C_DOUBLE), INTENT(INOUT)          :: BETA
   INTEGER (C_LONG), INTENT(OUT)           :: GAMMA
   REAL (C_DOUBLE),DIMENSION(*),INTENT(IN) :: DELTA
   ...
   ...
END SUBROUTINE SIMULATION

C Function Prototype:

void *simulation(long alpha, double *beta, long *gamma, double delta[])

C Calling Sequence:
simulation(alpha, &beta, &gamma, delta);

The above-listed Fortran code specifies a subroutine with the name SIMULATION. This

subroutine corresponds to the C function with the name simulation, which returns a pointer to

void.

The Fortran subroutine references the intrinsic module ISO_C_BINDING.

The first Fortran dummy argument of the subroutine is ALPHA, which has the type

INTEGER(C_LONG) and the attribute VALUE. Note that the VALUE attribute implies the

INTENT(IN) attribute. This dummy argument corresponds to the C formal parameter alpha ,

which is a long. The actual C parameter is also a long.

The second Fortran dummy argument of the subroutine is BETA, which has the type

REAL(C_DOUBLE) and the INTENT(INOUT) attribute. This dummy argument corresponds to the

C formal parameter beta , which is a pointer to double. An address is passed as the actual

parameter in the C calling sequence.

The third Fortran dummy argument of the subroutine is GAMMA, which has the type

INTEGER(C_LONG) and the INTENT(OUT) attribute. This dummy argument corresponds to the

C formal parameter gamma, which is a pointer to long. An address is passed as the actual

parameter in the C calling sequence.

The fourth Fortran dummy parameter is the assumed-size array DELTA, which has the type REAL

(C_DOUBLE) and the attribute INTENT(IN). This dummy argument corresponds to the C formal

parameter delta , which is a double array. The actual C parameter is also a double array.
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