
JUN 2001 WORKING DRAFT J3/01-007R2
Section 5: Data object declarations and specifications
Every data object has a type and rank and may have type parameters and other attributes that

determine the uses of the object. Collectively, these properties are the attributes of the object. The

type of a named data object is either specified explicitly in a type declaration statement or

determined implicitly by the first letter of its name (5.3). All of its attributes may be included in a

type declaration statement or may be specified individually in separate specification statements.

5.1 Type declaration statements
R501 type-declaration-stmt is declaration-type-spec [[, attr-spec] ... ::] entity-decl-list

R502 declaration-type-spec is type-spec
or CLASS (derived-type-spec)

or CLASS (*)

C501 (R502) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk
shall be a specification-expr.

C502 (R502) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify
an extensible type.

R503 type-spec is INTEGER [kind-selector]

or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX [kind-selector]

or CHARACTER [char-selector]

or LOGICAL [kind-selector]

or TYPE (derived-type-spec)

or TYPE (type-alias-name)

C503 (R503) A type-alias-name shall be the name of a type alias.

R504 attr-spec is access-spec
or ALLOCATABLE

or ASYNCHRONOUS

or DIMENSION (array-spec)

or EXTERNAL

or INTENT (intent-spec)

or INTRINSIC

NOTE 5.1
For example:

INTEGER :: INCOME, EXPENDITURE

declares the two data objects named INCOME and EXPENDITURE to have the type integer.

REAL, DIMENSION (-5:+5) :: X, Y, Z

declares three data objects with names X, Y, and Z. These all have default real type and are
explicit-shape rank-one arrays with a lower bound of –5, an upper bound of +5, and therefore
a size of 11.

NOTE 5.2
A declaration-type-spec is used in a nonexecutable statement; a type-spec is used in an array
constructor or an ALLOCATE statement.
JUN 2001 WORKING DRAFT 63

J3/01-007R2 WORKING DRAFT JUN 2001
or language-binding-spec
or OPTIONAL

or PARAMETER

or POINTER

or SAVE

or TARGET

or VALUE

or VOLATILE

R505 entity-decl is object-name [(array-spec)] [∗ char-length] [initialization]

or function-name [∗ char-length]

C504 (R505) If a type-param-value in an entity-decl is not a colon or an asterisk, it shall be a
specification-expr.

R506 object-name is name

C505 (R506) The object-name shall be the name of a data object.

R507 initialization is = initialization-expr
or => NULL ()

R508 kind-selector is ([KIND =] scalar-int-initialization-expr)

C506 (R501) The same attr-spec shall not appear more than once in a given type-declaration-stmt.

C507 An entity shall not be explicitly given any attribute more than once in a scoping unit.

C508 (R501) An entity declared with the CLASS keyword shall be a dummy argument or have
the ALLOCATABLE or POINTER attribute.

C509 (R501) An array declared with a POINTER or an ALLOCATABLE attribute shall be
specified with an array-spec that is a deferred-shape-spec-list (5.1.2.5.3).

C510 (R501) An array-spec for an object-name that is a function result that does not have the
ALLOCATABLE or POINTER attribute shall be an explicit-shape-spec-list.

C511 (R501) If the POINTER attribute is specified, the ALLOCATABLE, TARGET, EXTERNAL,
or INTRINSIC attribute shall not be specified.

C512 (R501) If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute shall not be specified.

C513 (R501) The PARAMETER attribute shall not be specified for a dummy argument, a pointer,
an allocatable entity, a function, or an object in a common block.

C514 (R501) The INTENT, VALUE, and OPTIONAL attributes may be specified only for dummy
arguments.

C515 (R501) The SAVE attribute shall not be specified for an object that is in a common block, a
dummy argument, a procedure, a function result, an automatic data object, or an object
with the PARAMETER attribute.

C516 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.

C517 (R501) An entity in an entity-decl-list shall not have the EXTERNAL or INTRINSIC attribute
specified unless it is a function.

C518 (R505) The ∗ char-length option is permitted only if the type specified is character.

C519 (R505) The function-name shall be the name of an external function, an intrinsic function, a
function dummy procedure, or a statement function.

C520 (R501) The initialization shall appear if the statement contains a PARAMETER attribute
(5.1.2.10).

C521 (R501) If initialization appears, a double-colon separator shall appear before the
entity-decl-list.

C522 (R505) initialization shall not appear if object-name is a dummy argument, a function result,
an object in a named common block unless the type declaration is in a block data program
64 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
unit, an object in blank common, an allocatable variable, an external name, an intrinsic
name, or an automatic object.

C523 (R505) If => appears in initialization, the object shall have the POINTER attribute. If =
appears in initialization, the object shall not have the POINTER attribute.

C524 (R503) The value of scalar-int-initialization-expr in kind-selector shall be nonnegative and
shall specify a representation method that exists on the processor.

C525 (R501) If the VOLATILE attribute is specified, the PARAMETER, INTRINSIC, EXTERNAL,
or INTENT(IN) attribute shall not be specified.

C526 (R501) If the VALUE attribute is specified, the PARAMETER, EXTERNAL, POINTER,
ALLOCATABLE, DIMENSION, VOLATILE, INTENT(INOUT), or INTENT(OUT) attribute
shall not be specified.

C527 (R501) If the VALUE attribute is specified for a dummy argument of type character, the
length parameter shall be omitted or shall be specified by an initialization expression with
the value one.

C528 (R501) The VALUE attribute is permitted only for a scalar dummy argument of a
subprogram or interface body that has a language-binding-spec.

C529 (R501) The ALLOCATABLE, POINTER, and OPTIONAL attributes shall not be specified
for a dummy argument of a subprogram or interface body that has a language-binding-spec.

C530 (R504) A language-binding-spec shall appear only in the specification part of a module.

C531 (R501) If a language-binding-spec is specified, the POINTER, PARAMETER, ALLOCATABLE,
EXTERNAL, or INTRINSIC attribute shall not be specified. The entity declared shall be a
variable.

C532 (R501) If a language-binding-spec with a bind-spec-list appears, the entity-decl-list shall consist
of a single entity-decl.

A name that identifies a specific intrinsic function in a scoping unit has a type as specified in 13.10.

An explicit type declaration statement is not required; however, it is permitted. Specifying a type

for a generic intrinsic function name in a type declaration statement is not sufficient, by itself, to

remove the generic properties from that function.

A function result may be declared to have the POINTER attribute.

A specification-expr in an array-spec or a type-param-value in a declaration-type-spec corresponding to a

nonkind type parameter shall be an initialization expression unless it is in an interface body

(12.3.2.1), the specification part of a subprogram, or the declaration-type-spec of a FUNCTION

statement (12.5.2.1). If the data object being declared depends on the value of a specification-expr
that is not an initialization expression, and it is not a dummy argument, such an object is called an

automatic data object.

If a length-selector (5.1.1.5) is an expression that is not an initialization expression, the length is

declared at the entry of the procedure and is not affected by any redefinition or undefinition of the

variables in the specification expression during execution of the procedure.

If an entity-decl contains initialization and the object-name does not have the PARAMETER attribute,

the entity is a variable with explicit initialization. Explicit initialization alternatively may be

specified in a DATA statement unless the variable is of a derived type for which default

initialization is specified. If initialization is =initialization-expr, the object-name is initially defined

with the value specified by the initialization-expr; if necessary, the value is converted according to

the rules of intrinsic assignment (7.5.1.4) to a value that agrees in type, type parameters, and shape

with the object-name. A variable, or part of a variable, shall not be explicitly initialized more than

NOTE 5.3
An automatic object shall neither appear in a SAVE or DATA statement nor be declared with
a SAVE attribute nor be initially defined by an initialization.
JUN 2001 WORKING DRAFT 65

J3/01-007R2 WORKING DRAFT JUN 2001
once in a program. If the variable is an array, it shall have its shape specified in either the type

declaration statement or a previous attribute specification statement in the same scoping unit.

If initialization is =>NULL (), object-name shall be a pointer, and its initial association status is

disassociated. Use of =>NULL () in a scoping unit is a reference to the intrinsic function NULL.

The presence of initialization implies that object-name is saved, except for an object-name in a named

common block or an object-name with the PARAMETER attribute. The implied SAVE attribute may

be reaffirmed by explicit use of the SAVE attribute in the type declaration statement, by inclusion

of the object-name in a SAVE statement (5.2.11), or by the appearance of a SAVE statement without

a saved-entity-list in the same scoping unit.

5.1.1 Type specifiers

The type specifier in a type declaration statement specifies the type of the entities in the entity

declaration list. This explicit type declaration may override or confirm the implicit type that could

otherwise be indicated by the first letter of an entity name (5.3).

5.1.1.1 INTEGER

The INTEGER type specifier is used to declare entities of intrinsic type integer (4.4.1). The kind

selector, if present, specifies the integer representation method. If the kind selector is absent, the

kind type parameter is KIND (0) and the entities declared are of type default integer.

5.1.1.2 REAL

The REAL type specifier is used to declare entities of intrinsic type real (4.4.2). The kind selector,

if present, specifies the real approximation method. If the kind selector is absent, the kind type

parameter is KIND (0.0) and the entities declared are of type default real.

5.1.1.3 DOUBLE PRECISION

The DOUBLE PRECISION type specifier is used to declare entities of intrinsic type double

precision real (4.4.2). The kind parameter value is KIND (0.0D0). An entity declared with a type

specifier REAL (KIND (0.0D0)) is of the same kind as one declared with the type specifier DOUBLE

PRECISION.

5.1.1.4 COMPLEX

The COMPLEX type specifier is used to declare entities of intrinsic type complex (4.4.3). The kind

selector, if present, specifies the real approximation method of the two real values making up the

real and imaginary parts of the complex value. If the kind selector is absent, the kind type

parameter is KIND (0.0) and the entities declared are of type default complex.

NOTE 5.4
Examples of type declaration statements are:

REAL A (10)
LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2
COMPLEX :: CUBE_ROOT = (-0.5, 0.866)
INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)
INTEGER (SHORT) K ! Range at least –9999 to 9999.
REAL (KIND (0.0D0)) A
REAL (KIND = 2) B
COMPLEX (KIND = KIND (0.0D0)) :: C
TYPE (PERSON) :: CHAIRMAN
TYPE(NODE), POINTER :: HEAD => NULL ()
TYPE (matrix (kind=8, dim=1000)) :: mat
66 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
5.1.1.5 CHARACTER

The CHARACTER type specifier is used to declare entities of intrinsic type character (4.4.4).

R509 char-selector is length-selector
or (LEN = type-param-value , ■

■ KIND = scalar-int-initialization-expr)

or (type-param-value , ■
■ [KIND =] scalar-int-initialization-expr)

or (KIND = scalar-int-initialization-expr ■
■ [, LEN = type-param-value])

R510 length-selector is ([LEN =] type-param-value)
or ∗ char-length [,]

R511 char-length is (type-param-value)

or scalar-int-literal-constant

C533 (R509) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a
representation method that exists on the processor.

C534 (R511) The scalar-int-literal-constant shall not include a kind-param.

C535 (R511) A char-length type parameter value of * may be used only in the following ways:

(1) to declare a dummy argument,

(2) to declare a named constant,

(3) in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy
argument of type CHARACTER with an assumed character length, or

(4) in an external function, to declare the character length parameter of the function result.

C536 A function name shall not be declared with an asterisk type-param-value unless it is of type

CHARACTER and is the name of the result of an external function or the name of a dummy function.

C537 A function name declared with an asterisk type-param-value shall not be array-valued, pointer-valued, recursive,
or pure.

C538 (R510) The optional comma in a length-selector is permitted only in a declaration-type-spec in a
type-declaration-stmt.

C539 (R510) The optional comma in a length-selector is permitted only if no double-colon separator appears in the
type-declaration-stmt.

C540 (R509) The length specified for a character-valued statement function or for a statement function dummy
argument of type character shall be an initialization expression.

The char-selector in a CHARACTER type-spec and the * char-length in an entity-decl or in a

component-decl of a type definition specify character length. The * char-length in an entity-decl or a

component-decl specifies an individual length and overrides the length specified in the char-selector,
if any. If a * char-length is not specified in an entity-decl or a component-decl, the length-selector or

type-param-value specified in the char-selector is the character length. If the length is not specified in

a char-selector or a * char-length, the length is 1.

If the character length parameter value evaluates to a negative value, the length of character

entities declared is zero. A character length parameter value of : indicates a deferred type

parameter (4.2). A char-length type parameter value of * has the following meaning:

(1) If used to declare a dummy argument of a procedure, the dummy argument assumes
the length of the associated actual argument.

J3 internal note
Unresolved issue 337

Because C535 explicitly mentions the bnf term char-length, it "clearly" applies only to that bnf
term, which is used only in the obsolescent form of the character specifier. I seriously doubt
that was the intent. This also makes me notice that the bnf rule for char-length should
probably be in obsolescent font.
JUN 2001 WORKING DRAFT 67

J3/01-007R2 WORKING DRAFT JUN 2001
(2) If used to declare a named constant, the length is that of the constant value.

(3) If used in the type-spec of an ALLOCATE statement, each allocate-object assumes its
length from the associated actual argument.

(4) If used to specify the character length parameter of a function result, any scoping unit invoking the function

shall declare the function name with a character length parameter value other than ∗ or access such a

definition by host or use association. When the function is invoked, the length of the result variable in the

function is assumed from the value of this type parameter.

The kind selector, if present, specifies the character representation method. If the kind selector is

absent, the kind type parameter is KIND ('A') and the entities declared are of type default

character.

5.1.1.6 LOGICAL

The LOGICAL type specifier is used to declare entities of intrinsic type logical (4.4.5).

The kind selector, if present, specifies the representation method. If the kind selector is absent, the

kind type parameter is KIND (.FALSE.) and the entities declared are of type default logical.

5.1.1.7 Derived type

A TYPE type specifier is used to declare entities of the derived type specified by the type-name of

the derived-type-spec. The components of each such entity are declared to be of the types specified

by the corresponding component-def statements of the derived-type-def (4.5.1). When a data entity is

declared explicitly to be of a derived type, the derived type shall have been defined previously in

the scoping unit or be accessible there by use or host association. If the data entity is a function

result, the derived type may be specified in the FUNCTION statement provided the derived type

is defined within the body of the function or is accessible there by use or host association.

A scalar entity of derived type is a structure. If a derived type has the SEQUENCE property, a

scalar entity of the type is a sequence structure.

5.1.1.8 Polymorphic entities

A polymorphic entity is a data entity that is able to be of differing types during program

execution. The type of a data entity at a particular point during execution of a program is its

dynamic type. The declared type of a data entity is the data type that it is declared to have, either

explicitly or implicitly.

A CLASS type specifier is used to declare polymorphic objects. The declared type of a

polymorphic object is the specified type if the CLASS type specifier contains a type name, or no

type if the CLASS type specifier contains an asterisk. An object declared with the CLASS(*)

specifier is an unlimited polymorphic object.

An unlimited polymorphic object is type-compatible with all entities of extensible type; any other

polymorphic entity is type-compatible with entities of the same type or of any of its extension

types. A nonpolymorphic entity is type-compatible only with entities of the same type. An entity

is said to be type-compatible with a type if it is type-compatible with entities of that type.

A polymorphic allocatable object may be allocated to be of any type with which it is type-

compatible. A polymorphic pointer or dummy argument may, during program execution, be

associated with objects with which it is type-compatible.

NOTE 5.5
Examples of character type declaration statements are:

CHARACTER (LEN = 10, KIND = 2) A
CHARACTER B, C *20
68 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
The dynamic type of an allocatable polymorphic object that is currently allocated is the type with

which it was allocated. The dynamic type of a polymorphic pointer that is currently associated is

the dynamic type of its target. The dynamic type of a nonallocatable nonpointer polymorphic

dummy argument is the dynamic type of its associated actual argument. The dynamic type of an

unallocated allocatable or a disassociated pointer is the same as its declared type. The dynamic

type of an entity identified by an associate name (8.1.4) is the dynamic type of the selector with

which it is associated. The dynamic type of an object that is not polymorphic is its declared type.

5.1.2 Attributes

The additional attributes that may appear in the attribute specification of a type declaration

statement further specify the nature of the entities being declared or specify restrictions on their

use in the program.

5.1.2.1 Accessibility attribute

The accessibility attribute specifies the accessibility of an entity via a particular identifier.

R512 access-spec is PUBLIC

or PRIVATE

C541 (R512) An access-spec shall appear only in the specification-part of a module.

Identifiers that are declared with a PRIVATE attribute are not accessible outside the module.

Identifiers that are declared with a PUBLIC attribute may be made accessible in other program

units by the USE statement. Identifiers without an explicitly specified access-spec have default

accessibility. Default accessibility for a module is PUBLIC unless it has been changed by a

PRIVATE statement (5.2.1).

5.1.2.2 ALLOCATABLE attribute

An object with the ALLOCATABLE attribute is one for which space is allocated by an ALLOCATE

statement (6.3.1) or by a derived-type intrinsic assignment statement (7.5.1.5). If it is an array it

shall be a deferred-shape array.

5.1.2.3 ASYNCHRONOUS attribute

The base object of variable shall have the ASYNCHRONOUS attribute in a scoping unit if:

(1) the variable appears in an executable statement or specification expression in that
scoping unit and

(2) any statement of the scoping unit is executed while the variable is a pending I/O
storage sequence affector (9.5.1.4)

The ASYNCHRONOUS attribute may also be conferred implicitly by the use of a variable in an

asynchronous input/output statement (9.5.1.4).

NOTE 5.6
Only components of the declared type of a polymorphic object may be designated by
component selection (6.1.2).

NOTE 5.7
An example of an accessibility specification is:

REAL, PRIVATE :: X, Y, Z
JUN 2001 WORKING DRAFT 69

J3/01-007R2 WORKING DRAFT JUN 2001
5.1.2.4 BIND attribute

The BIND attribute specifies that a variable is interoperable with a C variable with external

linkage, as described in 15.2.7.

R513 language-binding-spec is BIND (C [, bind-spec-list])

R514 bind-spec is NAME = scalar-char-initialization-expr
or BINDNAME = scalar-char-initialization-expr

C542 (R513) A bind-spec-list shall not have more than one NAME= specifier.

C543 (R513) A bind-spec-list that appears in a BIND statement or a type declaration statement
shall not have more than one BINDNAME= specifier.

C544 (R514) The scalar-char-initialization-expr in a bind-spec shall be of default character kind.

The BIND attribute shall not be specified for a variable or common block with characteristics that

prevent interoperation with a C global variable (15.2.7). The BIND attribute implies the SAVE

attribute, which may be confirmed by explicit specification.

5.1.2.5 DIMENSION attribute

The DIMENSION attribute specifies entities that are arrays. The rank or shape is specified by the

array-spec, if there is one, in the entity-decl, or by the array-spec in the DIMENSION attr-spec
otherwise. An array-spec in an entity-decl specifies either the rank or the rank and shape for a single

array and overrides the array-spec in the DIMENSION attr-spec. To declare an array in a type

declaration statement, either the DIMENSION attr-spec shall appear, or an array-spec shall appear in

the entity-decl. The appearance of an array-spec in an entity-decl specifies the DIMENSION attribute

for the entity. The DIMENSION attribute alternatively may be specified in the specification

statements DIMENSION, ALLOCATABLE, POINTER, TARGET, or COMMON.

R515 array-spec is explicit-shape-spec-list
or assumed-shape-spec-list
or deferred-shape-spec-list
or assumed-size-spec

NOTE 5.8
The ASYNCHRONOUS attribute specifies the variables that might be associated with a
pending input/output storage sequence (the actual memory locations on which asynchronous
input/output is being performed). This information could be used by the compiler to disable
certain code motion optimizations.

The ASYNCHRONOUS attribute is similar to the VOLATILE attribute. It is intended to
facilitate traditional code motion optimizations in the presence of asynchronous
input/output.

NOTE 5.9
The C standard provides a facility for creating C identifiers whose characters are not restricted
to the C basic character set. Such a C identifier is referred to as a universal character name
(6.4.3 of the C standard). The name of such a C identifier may include characters that are not
part of the representation method used by the processor for type default character. If so, the
C entity cannot be linked (12.5.3, 15.2.7.1) with a Fortran entity.

This standard does not require a processor to provide a means of linking Fortran entities with
C entities whose names are specified using the universal character name facility.

NOTE 5.10
Specifying the BIND attribute for an entity might have no discernable effect for a processor
that is its own companion processor.
70 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C545 (R515)The maximum rank is seven.

5.1.2.5.1 Explicit-shape array

An explicit-shape array is a named array that is declared with an explicit-shape-spec-list. This

specifies explicit values for the bounds in each dimension of the array.

R516 explicit-shape-spec is [lower-bound :] upper-bound

R517 lower-bound is specification-expr

R518 upper-bound is specification-expr

C546 (R516) An explicit-shape array whose bounds are not initialization expressions shall be a
dummy argument, a function result, or an automatic array of a procedure.

An automatic array is an explicit-shape array that is declared in a subprogram, is not a dummy

argument, and has bounds that are not initialization expressions.

If an explicit-shape array has bounds that are not initialization expressions, the bounds, and hence

shape, are determined at entry to the procedure by evaluating the bounds expressions. The

bounds of such an array are unaffected by any redefinition or undefinition of the specification

expression variables during execution of the procedure.

The values of each lower-bound and upper-bound determine the bounds of the array along a

particular dimension and hence the extent of the array in that dimension. The value of a lower

bound or an upper bound may be positive, negative, or zero. The subscript range of the array in

that dimension is the set of integer values between and including the lower and upper bounds,

provided the upper bound is not less than the lower bound. If the upper bound is less than the

lower bound, the range is empty, the extent in that dimension is zero, and the array is of zero size.

If the lower-bound is omitted, the default value is 1. The number of sets of bounds specified is the

rank.

5.1.2.5.2 Assumed-shape array

An assumed-shape array is a nonpointer dummy argument array that takes its shape from the

associated actual argument array.

R519 assumed-shape-spec is [lower-bound] :

The rank is equal to the number of colons in the assumed-shape-spec-list.

The extent of a dimension of an assumed-shape array dummy argument is the extent of the

corresponding dimension of the associated actual argument array. If the lower bound value is d
and the extent of the corresponding dimension of the associated actual argument array is s, then

the value of the upper bound is s + d – 1. The lower bound is lower-bound, if present, and 1

otherwise.

5.1.2.5.3 Deferred-shape array

A deferred-shape array is an allocatable array or an array pointer.

NOTE 5.11
Examples of DIMENSION attribute specifications are:

SUBROUTINE EX (N, A, B)
REAL, DIMENSION (N, 10) :: W ! Automatic explicit-shape array
REAL A (:), B (0:) ! Assumed-shape arrays
REAL, POINTER :: D (:, :) ! Array pointer
REAL, DIMENSION (:), POINTER :: P ! Array pointer
REAL, ALLOCATABLE, DIMENSION (:) : : E ! Allocatable array
JUN 2001 WORKING DRAFT 71

J3/01-007R2 WORKING DRAFT JUN 2001
An allocatable array is an array that has the ALLOCATABLE attribute and a specified rank, but its

bounds, and hence shape, are determined by allocation or argument association.

An array with the ALLOCATABLE attribute shall be declared with a deferred-shape-spec-list.
Nonkind type parameters may be deferred.

An array pointer is an array with the POINTER attribute and a specified rank. Its bounds, and

hence shape, are determined when it is associated with a target. An array with the POINTER

attribute shall be declared with a deferred-shape-spec-list. Nonkind type parameters may be

deferred.

R520 deferred-shape-spec is :

The rank is equal to the number of colons in the deferred-shape-spec-list.

The size, bounds, and shape of an unallocated allocatable array or a disassociated array pointer are

undefined. No part of such an array shall be referenced or defined; however, the array may appear

as an argument to an intrinsic inquiry function as specified in 13.1.

The bounds of each dimension of an allocatable array are those specified when the array is

allocated.

The bounds of each dimension of an array pointer may be specified in two ways:

(1) in an ALLOCATE statement (6.3.1) when the target is allocated, or

(2) in a pointer assignment statement (7.5.2).

The bounds of the array target or allocatable array are unaffected by any subsequent redefinition

or undefinition of variables involved in the bounds’ specification expressions.

5.1.2.5.4 Assumed-size array

An assumed-size array is a dummy argument array whose size is assumed from that of an

associated actual argument. The rank and extents may differ for the actual and dummy arrays;

only the size of the actual array is assumed by the dummy array.

R521 assumed-size-spec is [explicit-shape-spec-list ,] [lower-bound :] *

C547 The function name of an array-valued function shall not be declared as an assumed-size
array.

C548 An assumed-size array with INTENT (OUT) shall not be of a type for which default
initialization is specified.

The size of an assumed-size array is determined as follows:

(1) If the actual argument associated with the assumed-size dummy array is an array of
any type other than default character, the size is that of the actual array.

(2) If the actual argument associated with the assumed-size dummy array is an array
element of any type other than default character with a subscript order value of r
(6.2.2.2) in an array of size x, the size of the dummy array is x - r + 1.

(3) If the actual argument is a default character array, default character array element, or a
default character array element substring (6.1.1), and if it begins at character storage
unit t of an array with c character storage units, the size of the dummy array is
MAX (INT ((c - t + 1)/e), 0), where e is the length of an element in the dummy character
array.

(4) If the actual argument is of type default character and is a scalar that is not an array
element or array element substring designator, the size of the dumy array is
MAX (INT (l/e), 0), where e is the length of an element in the dummy character array
and l is the length of the actual argument.

The rank equals one plus the number of explicit-shape-specs.
72 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
An assumed-size array has no upper bound in its last dimension and therefore has no extent in its

last dimension and no shape. An assumed-size array name shall not be written as a whole array

reference except as an actual argument in a procedure reference for which the shape is not required

or in a reference to the intrinsic function LBOUND.

The bounds of the first n - 1 dimensions are those specified by the explicit-shape-spec-list, if present,

in the assumed-size-spec. The lower bound of the last dimension is lower-bound, if present, and 1

otherwise. An assumed-size array may be subscripted or sectioned (6.2.2.3). The upper bound

shall not be omitted from a subscript triplet in the last dimension.

If an assumed-size array has bounds that are not initialization expressions, the bounds are

determined at entry to the procedure. The bounds of such an array are unaffected by any

redefinition or undefinition of the specification expression variables during execution of the

procedure.

5.1.2.6 EXTERNAL attribute

The EXTERNAL attribute specifies that a name is an external procedure, a dummy procedure, or a

procedure pointer. This attribute may be explicitly specified by a type declaration statement, an

EXTERNAL statement (12.3.2.2), a procedure declaration statement (12.3.2.3), or by the appearance

of the name as a specific procedure name in an interface body (12.3.2.1).

Any name that is used in a scoping unit as the function-name of a function-reference or as the

subroutine-name of a call-stmt implicitly acquires the EXTERNAL attribute in that scoping unit if it

is not the name of an accessible statement function or internal procedure, is not accessed by host or

USE association, and is not explicitly given the EXTERNAL attribute.

If a name that has the EXTERNAL attribute also has an explicitly specified type or appears as a

function name in a function reference (12.4) or interface body (12.3.2.1) then it is the name of a

function.

If a name that is not the name of a block data program unit has the EXTERNAL attribute then it

may be used as an actual argument, as a procedure name in a procedure reference (12.4), or as the

target of a procedure pointer assignment (7.5.2).

A dummy argument that has the EXTERNAL attribute is a dummy procedure or a dummy

procedure pointer. A name that has the EXTERNAL attribute and is not a dummy argument is the

name of an external procedure, a procedure pointer, or a block data program unit.

5.1.2.7 INTENT attribute

The INTENT attribute specifies the intended use of a dummy argument.

R522 intent-spec is IN

or OUT

or INOUT

C549 The INTENT attribute shall not be specified for a dummy argument that is a dummy
procedure.

C550 A nonpointer object with the INTENT (IN) attribute shall not appear in a variable
definition context (16.8.7).

NOTE 5.12
The EXTERNAL attribute for a block data program unit can only be specified by an
EXTERNAL statement (12.3.2.2); it is not possible to do so in a type declaration statement.

NOTE 5.13
A dummy procedure pointer is not a dummy procedure. Therefore, INTENT may be
specified for a dummy procedure pointer.
JUN 2001 WORKING DRAFT 73

J3/01-007R2 WORKING DRAFT JUN 2001
C551 A pointer object with the INTENT (IN) attribute shall not appear as

(1) A pointer-object in a pointer-assignment-stmt or nullify-stmt,

(2) An allocate-object in an allocate-stmt or deallocate-stmt, or

(3) An actual argument in a reference to a procedure if the associated dummy argument is
a pointer with the INTENT (OUT) or INTENT (INOUT) attribute.

The INTENT (IN) attribute for a nonpointer dummy argument specifies that it shall neither be

defined nor become undefined during the execution of the procedure. The INTENT (IN) attribute

for a pointer dummy argument specifies that during the execution of the procedure its association

shall not be changed except that it may become undefined if the target is deallocated other than

through the pointer (16.7.2.1.3).

The INTENT (OUT) attribute for a nonpointer dummy argument specifies that it shall be defined

before a reference to the dummy argument is made within the procedure and any actual argument

that becomes associated with such a dummy argument shall be definable. On invocation of the

procedure, such a dummy argument becomes undefined except for components of an object of

derived type for which default initialization has been specified. The INTENT (OUT) attribute for a

pointer dummy argument specifies that on invocation of the procedure the dummy argument

becomes disassociated. Any actual argument associated with such a pointer dummy shall be a

pointer variable.

The INTENT (INOUT) attribute for a nonpointer dummy argument specifies that it is intended for

use both to receive data from and to return data to the invoking scoping unit. Such a dummy

argument may be referenced or defined. Any actual argument that becomes associated with such

a dummy argument shall be definable. The INTENT (INOUT) attribute for a pointer dummy

argument specifies that it is intended for use both to receive a pointer association from and to

return a pointer association to the invoking scoping unit. Any actual argument associated with

such a pointer dummy shall be a pointer variable.

If no INTENT attribute is specified for a dummy argument, its use is subject to the limitations of

the associated actual argument (12.4.1.2, 12.4.1.3, 12.4.1.4).

If an object has an INTENT attribute, then all of its subobjects have the same INTENT attribute.

NOTE 5.14
An example of INTENT specification is:

SUBROUTINE MOVE (FROM, TO)
USE PERSON_MODULE
TYPE (PERSON), INTENT (IN) :: FROM
TYPE (PERSON), INTENT (OUT) :: TO

NOTE 5.15
If a dummy argument is a derived type object with a pointer component, then the pointer as
a pointer is a subobject of the dummy argument, but the target of the pointer is not.
Therefore, the restrictions on subobjects of the dummy object apply to the pointer in contexts
where it is used as a pointer, but not in contexts where it is dereferenced to indicate its target.
For example, if X is a dummy argument of derived type with an integer pointer component P,
and X has INTENT(IN), then the statement

X%P => NEW_TARGET

is prohibitted, but

X%P = 0

is allowed (provided that X%P is associated with a definable target).

Similarly, the INTENT restrictions on pointer dummy arguments apply only to the association
of the dummy argument; they do not restrict the operations allowed on its target.
74 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
5.1.2.8 INTRINSIC attribute

The INTRINSIC attribute confirms that a name is the specific name (13.10) or generic name (13.8,

13.9) of an intrinsic procedure. The INTRINSIC attribute allows the specific name of an intrinsic

procedure that is listed in 13.10 and not marked with a bullet (•) to be used as an actual argument

(12.4).

Declaring explicitly that a generic intrinsic procedure name has the INTRINSIC attribute does not

cause that name to lose its generic property.

If the specific name of an intrinsic procedure (13.10) is used as an actual argument, the name shall

be explicitly specified to have the INTRINSIC attribute.

The following constraint applies to syntax rules R504, R1201, and R1201:

C552 If the name of a generic intrinsic procedure is explicitly declared to have the INTRINSIC
attribute, and it is also the generic name in one or more generic interfaces (12.3.2.1)
accessible in the same scoping unit, the procedures in the interfaces and the specific
intrinsic procedures shall all be functions or all be subroutines, and the characteristics of
the specific intrinsic procedures and the procedures in the interfaces shall differ as
specified in 16.1.2.3.

5.1.2.9 OPTIONAL attribute

The OPTIONAL attribute specifies that the dummy argument need not be associated with an

actual argument in a reference to the procedure (12.4.1.6). The PRESENT intrinsic function may be

used to determine whether an actual argument has been associated with a dummy argument

having the OPTIONAL attribute.

5.1.2.10 PARAMETER attribute

The PARAMETER attribute specifies entities that are named constants. The object-name has the

value specified by the initialization-expr that appears on the right of the equals; if necessary, the

value is converted according to the rules of intrinsic assignment (7.5.1.4) to a value that agrees in

type, type parameters, and shape with the object-name.

NOTE 5.16
Argument intent specifications serve several purposes in addition to documenting the
intended use of dummy arguments. A processor can check whether an INTENT (IN) dummy
argument is used in a way that could redefine it. A slightly more sophisticated processor
could check to see whether an INTENT (OUT) dummy argument could possibly be referenced
before it is defined. If the procedure’s interface is explicit, the processor can also verify that
actual arguments corresponding to INTENT (OUT) or INTENT (INOUT) dummy arguments
are definable. A more sophisticated processor could use this information to optimize the
translation of the referencing scoping unit by taking advantage of the fact that actual
arguments corresponding to INTENT (IN) dummy arguments will not be changed and that
any prior value of an actual argument corresponding to an INTENT (OUT) dummy argument
will not be referenced and could thus be discarded.

INTENT (OUT) means that the value of the argument after invoking the procedure is entirely
the result of executing that procedure. If there is any possibility that an argument should
retain its current value rather than being redefined, INTENT (INOUT) should be used rather
than INTENT (OUT), even if there is no explicit reference to the value of the dummy
argument. Because an INTENT(OUT) variable is considered undefined on entry to the
procedure, any default initialization specified for its type will be applied.

INTENT (INOUT) is not equivalent to omitting the INTENT attribute. The argument
corresponding to an INTENT (INOUT) dummy argument always shall be definable, while an
argument corresponding to a dummy argument without an INTENT attribute need be
definable only if the dummy argument is actually redefined.
JUN 2001 WORKING DRAFT 75

J3/01-007R2 WORKING DRAFT JUN 2001
A named constant shall not be referenced unless it has been defined previously in the same

statement, defined in a prior statement, or made accessible by use or host association.

5.1.2.11 POINTER attribute

An object with the POINTER attribute shall neither be referenced nor defined unless it is pointer

associated with a target object that may be referenced or defined. If the pointer is an array, it shall

be declared with a deferred-shape-spec-list.

If a data pointer is associated, the values of its deferred type parameters are the same as the values

of the corresponding type parameters of its target.

A procedure pointer shall not be referenced unless it is pointer associated with a target procedure.

5.1.2.12 SAVE attribute

An object with the SAVE attribute, in the scoping unit of a subprogram, retains its association

status, allocation status, definition status, and value after execution of a RETURN or END

statement unless the object is a pointer and its target becomes undefined (16.7.2.1.3(3)). The object

is shared by all instances (12.5.2.3) of the subprogram. Such an object is called a saved object. An

object that does not have the SAVE attribute is called an unsaved object.

An object with the SAVE attribute, declared in the scoping unit of a module, retains its association

status, allocation status, definition status, and value after a RETURN or END statement is executed

in a procedure that accesses the module unless the object is a pointer and its target becomes

undefined.

A procedure pointer with the SAVE attribute retains its association status when execution of an

instance of any subprogram completes.

The SAVE attribute may appear in declarations in a main program and has no effect.

5.1.2.13 TARGET attribute

An object with the TARGET attribute may have a pointer associated with it (7.5.2). An object

without the TARGET attribute shall not have an accessible pointer associated with it.

If an object has the TARGET attribute, then all of its nonpointer subobjects also have the TARGET

attribute.

NOTE 5.17
Examples of declarations with a PARAMETER attribute are:

REAL, PARAMETER :: ONE = 1.0, Y = 4.1 / 3.0
INTEGER, DIMENSION (3), PARAMETER :: ORDER = (/ 1, 2, 3 /)
TYPE(NODE), PARAMETER :: DEFAULT = NODE(0, NULL ())

NOTE 5.18
Examples of POINTER attribute specifications are:

TYPE (NODE), POINTER :: CURRENT, TAIL
REAL, DIMENSION (:, :), POINTER :: IN, OUT, SWAP

For a more elaborate example see C.2.1.

NOTE 5.19
In addition to variables explicitly declared to have the TARGET attribute, the objects created
by allocation of pointers (6.3.1.3) have the TARGET attribute.
76 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
5.1.2.14 VALUE attribute

The VALUE attribute specifies a type of argument association (12.4.1) for a dummy argument.

5.1.2.15 VOLATILE attribute

An object shall have the VOLATILE attribute if there is a reference to or definition of the object, or

the object becomes undefined, by means not specified in this standard.

An object may have the VOLATILE attribute in a specific scoping unit without necessarily having

it in other scoping units. If an object has the VOLATILE attribute then all of its subobjects also

have the VOLATILE attribute.

If the POINTER and VOLATILE attributes are both specified, then the volatility shall apply to the

target of the pointer and to the pointer association.

The interpretation of a program containing objects with the volatile attribute is processor

dependent.

5.2 Attribute specification statements
All attributes (other than type) may be specified for entities, independently of type, by separate

attribute specification statements. The combination of attributes that may be specified for a

particular entity is subject to the same restrictions as for type declaration statements regardless of

NOTE 5.20
Examples of TARGET attribute specifications are:

TYPE (NODE), TARGET :: HEAD
REAL, DIMENSION (1000, 1000), TARGET :: A, B

For a more elaborate example see C.2.2.

NOTE 5.21
Every object designator that starts from a target object will have either the TARGET or
POINTER attribute. If pointers are involved, the designator might not necessarily be a
subobject of the original target object, but because pointers may point only to targets, there is
no way to end up at a nonpointer that is not a target.

NOTE 5.22
The name of the VALUE attribute is intended to be suggestive. Although a processor is not
required to use pass-by-value for an argument with the VALUE attribute, that might be a
possible implementation. In particular, if the VALUE attribute is specified for a dummy
argument, the processor shall use the same argument passing convention as the companion
processor, which is often pass-by-value (15.2.6).

NOTE 5.23
The Fortran processor should use the most recent definition of a volatile object when a value
is required. Likewise, it should make the most recent Fortran definition available. It is the
programmer’s responsibility to manage the interactions with the non-Fortran processes.

NOTE 5.24
If the value of the target of a pointer can change by means outside of Fortran, while a pointer
is associated with a target, then the pointer shall have the VOLATILE attribute. Usually a
pointer should have the VOLATILE attribute if its target has the VOLATILE attribute.
Similarly, all members of an EQUIVALENCE group should have the VOLATILE attribute if
one member has the VOLATILE attribute.
JUN 2001 WORKING DRAFT 77

J3/01-007R2 WORKING DRAFT JUN 2001
the method of specification. This also applies to PROCEDURE, EXTERNAL and INTRINSIC

statements.

5.2.1 Accessibility statements

R523 access-stmt is access-spec [[::] access-id-list]

R524 access-id is use-name
or generic-spec

C553 (R523) An access-stmt shall appear only in the specification-part of a module. Only one
accessibility statement with an omitted access-id-list is permitted in the specification-part of a
module.

C554 (R524) Each use-name shall be the name of a named variable, procedure, derived type,
named constant, or namelist group.

An access-stmt with an access-id-list specifies the accessibility attribute (5.1.2.1), PUBLIC or

PRIVATE, of each access-id in the list. An access-stmt without an access-id list specifies the default

accessibility that applies to all potentially accessible identifiers in the specification-part of the

module. The statement

PUBLIC

specifies a default of public accessibility. The statement

PRIVATE

specifies a default of private accessibility. If no such statement appears in a module, the default is

public accessibility.

5.2.2 ALLOCATABLE statement

R525 allocatable-stmt is ALLOCATABLE [::] ■
■ object-name [(deferred-shape-spec-list)] ■
■ [, object-name [(deferred-shape-spec-list)]] ...

This statement specifies the ALLOCATABLE attribute (5.1.2.2) for a list of objects.

5.2.3 ASYNCHRONOUS statement

R526 asynchronous-stmt is ASYNCHRONOUS [::] object-name-list

The ASYNCHRONOUS statement specifies the ASYNCHRONOUS attribute (5.1.2.3) for a list of

objects.

5.2.4 BIND statement

R527 bind-stmt is language-binding-spec [::] bind-entity-list

NOTE 5.25
Examples of accessibility statements are:

MODULE EX
PRIVATE
PUBLIC :: A, B, C, ASSIGNMENT (=), OPERATOR (+)

NOTE 5.26
An example of an ALLOCATABLE statement is:

REAL A, B (:), SCALAR
ALLOCATABLE :: A (:, :), B, SCALAR
78 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
R528 bind-entity is entity-name
or / common-block-name /

C555 (R527) If any bind-entity in a bind-stmt is an entity-name, the bind-stmt shall appear in the
specification part of a module.

C556 (R527) If the language-binding-spec has a bind-spec-list, the bind-entity-list shall consist of a
single bind-entity.

The BIND statement specifies the BIND attribute (5.1.2.4) for a list of entities.

5.2.5 DATA statement

R529 data-stmt is DATA data-stmt-set [[,] data-stmt-set] ...

This statement is used to specify explicit initialization (5.1).

A variable, or part of a variable, shall not be explicitly initialized more than once in a program. If

a nonpointer object has been specified with default initialization in a type definition, it shall not

appear in a data-stmt-object-list.

A variable that appears in a DATA statement and has not been typed previously may appear in a

subsequent type declaration only if that declaration confirms the implicit typing. An array name,

array section, or array element that appears in a DATA statement shall have had its array

properties established by a previous specification statement.

Except for variables in named common blocks, a named variable has the SAVE attribute if any part

of it is initialized in a DATA statement, and this may be confirmed by a SAVE statement or a type

declaration statement containing the SAVE attribute.

R530 data-stmt-set is data-stmt-object-list / data-stmt-value-list /

R531 data-stmt-object is variable
or data-implied-do

R532 data-implied-do is (data-i-do-object-list , data-i-do-variable = ■
■ scalar-int-expr , scalar-int-expr [, scalar-int-expr])

R533 data-i-do-object is array-element
or scalar-structure-component
or data-implied-do

R534 data-i-do-variable is scalar-int-variable

C557 (R531) In a variable that is a data-stmt-object, any subscript, section subscript, substring
starting point, and substring ending point shall be an initialization expression.

C558 (R531) A variable whose designator is included in a data-stmt-object-list or a
data-i-do-object-list shall not be: a dummy argument, made accessible by use association or
host association, in a named common block unless the DATA statement is in a block data
program unit, in a blank common block, a function name, a function result name, an
automatic object, or an allocatable variable.

C559 (R531) A data-i-do-object or a variable that appears as a data-stmt-object shall not be an object
designator in which a pointer appears other than as the entire rightmost part-ref.

C560 (R534) data-i-do-variable shall be a named variable.

C561 (R532) A scalar-int-expr of a data-implied-do shall involve as primaries only constants,
subobjects of constants, or DO variables of the containing data-implied-dos, and each
operation shall be intrinsic.

C562 (R533) The array-element shall be a variable.

C563 (R533) The scalar-structure-component shall be a variable.
JUN 2001 WORKING DRAFT 79

J3/01-007R2 WORKING DRAFT JUN 2001
C564 (R533) The scalar-structure-component shall contain at least one part-ref that contains a
subscript-list.

C565 (R533) In an array-element or a scalar-structure-component that is a data-i-do-object, any
subscript shall be an expression whose primaries are either constants, subobjects of
constants, or DO variables of the containing data-implied-dos, and each operation shall be
intrinsic.

R535 data-stmt-value is [data-stmt-repeat ∗] data-stmt-constant

R536 data-stmt-repeat is scalar-int-constant
or scalar-int-constant-subobject

C566 (R536) The data-stmt-repeat shall be positive or zero. If the data-stmt-repeat is a named
constant, it shall have been declared previously in the scoping unit or made accessible by
use association or host association.

R537 data-stmt-constant is scalar-constant
or scalar-constant-subobject
or signed-int-literal-constant
or signed-real-literal-constant
or NULL ()

or structure-constructor

C567 (R537) If a DATA statement constant value is a named constant or a structure constructor,
the named constant or derived type shall have been declared previously in the scoping
unit or made accessible by use or host association.

C568 (R537) If a data-stmt-constant is a structure-constructor, it shall be an initialization expression.

R538 int-constant-subobject is constant-subobject

C569 (R538) int-constant-subobject shall be of type integer.

R539 constant-subobject is designator

C570 (R539) constant-subobject shall be a subobject of a constant.

C571 (R535) Any subscript, substring starting point, or substring ending point shall be an
initialization expression.

The data-stmt-object-list is expanded to form a sequence of pointers and scalar variables, referred to

as ‘‘sequence of variables’’ in subsequent text. A nonpointer array whose unqualified name

appears in a data-stmt-object-list is equivalent to a complete sequence of its array elements in array

element order (6.2.2.2). An array section is equivalent to the sequence of its array elements in

array element order. A data-implied-do is expanded to form a sequence of array elements and

structure components, under the control of the implied-DO variable, as in the DO construct

(8.1.5.4).

The data-stmt-value-list is expanded to form a sequence of data-stmt-constants. A data-stmt-repeat
indicates the number of times the following data-stmt-constant is to be included in the sequence;

omission of a data-stmt-repeat has the effect of a repeat factor of 1.

A zero-sized array or an implied-DO list with an iteration count of zero contributes no variables to
the expanded sequence of variables, but a zero-length scalar character variable does contribute a
variable to the list. A data-stmt-constant with a repeat factor of zero contributes no data-stmt-
constants to the expanded sequence of scalar data-stmt-constants.

The expanded sequences of variables and data-stmt-constants are in one-to-one correspondence.

Each data-stmt-constant specifies the initial value or NULL () for the corresponding variable. The

lengths of the two expanded sequences shall be the same.

If a data-stmt-constant shall be NULL () if and only if the corresponding data-stmt-object has the

POINTER attribute. The initial association status of a pointer data-stmt-object is disassociated.
80 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
A data-stmt-constant other than NULL () shall be compatible with its corresponding variable

according to the rules of intrinsic assignment (7.5.1.4). The variable is initially defined with the

value specified by the data-stmt-constant; if necessary, the value is converted according to the rules

of intrinsic assignment (7.5.1.4) to a value that agrees in type, type parameters, and shape with the

variable.

5.2.6 DIMENSION statement

R540 dimension-stmt is DIMENSION [::] array-name (array-spec) ■
■ [, array-name (array-spec)] ...

This statement specifies the DIMENSION attribute (5.1.2.5) and the array properties for each object

named.

5.2.7 INTENT statement

R541 intent-stmt is INTENT (intent-spec) [::] dummy-arg-name-list

This statement specifies the INTENT attribute (5.1.2.7) for the dummy arguments in the list.

5.2.8 OPTIONAL statement

R542 optional-stmt is OPTIONAL [::] dummy-arg-name-list

This statement specifies the OPTIONAL attribute (5.1.2.9) for the dummy arguments in the list.

NOTE 5.27
Examples of DATA statements are:

CHARACTER (LEN = 10) NAME
INTEGER, DIMENSION (0:9) :: MILES
REAL, DIMENSION (100, 100) :: SKEW
TYPE (NODE), POINTER :: HEAD_OF_LIST
TYPE (PERSON) MYNAME, YOURNAME
DATA NAME / 'JOHN DOE' /, MILES / 1 0 * 0 /
DATA ((SKEW (K, J) , J = 1, K), K = 1, 100) / 5050 * 0.0 /
DATA ((SKEW (K, J) , J = K + 1, 100) , K = 1, 99) / 4950 * 1.0 /
DATA HEAD_OF_LIST / NULL() /
DATA MYNAME / PERSON (21, 'JOHN SMITH') /
DATA YOURNAME % AGE, YOURNAME % NAME / 35, 'FRED BROWN' /

The character variable NAME is initialized with the value JOHN DOE with padding on the
right because the length of the constant is less than the length of the variable. All ten
elements of the integer array MILES are initialized to zero. The two-dimensional array SKEW
is initialized so that the lower triangle of SKEW is zero and the strict upper triangle is one.
The structures MYNAME and YOURNAME are declared using the derived type PERSON
from Note 4.21. The pointer HEAD_OF_LIST is declared using the derived type NODE from
Note 4.31; it is initially disassociated. MYNAME is initialized by a structure constructor.
YOURNAME is initialized by supplying a separate value for each component.

NOTE 5.28
An example of a DIMENSION statement is:

DIMENSION A (10), B (10, 70), C (:)

NOTE 5.29
An example of an INTENT statement is:

SUBROUTINE EX (A, B)
INTENT (INOUT) :: A, B
JUN 2001 WORKING DRAFT 81

J3/01-007R2 WORKING DRAFT JUN 2001
5.2.9 PARAMETER statement

The PARAMETER statement specifies the PARAMETER attribute (5.1.2.10) and the values for the

named constants in the list.

R543 parameter-stmt is PARAMETER (named-constant-def-list)

R544 named-constant-def is named-constant = initialization-expr

The named constant shall have its type, type parameters, and shape specified in a prior

specification of the specification-part or declared implicitly (5.3). If the named constant is typed by

the implicit typing rules, its appearance in any subsequent specification of the specification-part
shall confirm this implied type and the values of any implied type parameters.

The value of each named constant is that specified by the corresponding initialization expression;

if necessary, the value is converted according to the rules of intrinsic assignment (7.5.1.4) to a value

that agrees in type, type parameters, and shape with the named constant.

5.2.10 POINTER statement

R545 pointer-stmt is POINTER [::] pointer-decl-list

R546 pointer-decl is object-name [(deferred-shape-spec-list)]

or proc-entity-name

C572 (R546) A proc-entity-name shall also be declared in a procedure-declaration-stmt.

This statement specifies the POINTER attribute (5.1.2.11) for a list of objects and procedure entities.

5.2.11 SAVE statement

R547 save-stmt is SAVE [[::] saved-entity-list]

R548 saved-entity is object-name
or proc-pointer-name
or / common-block-name /

R549 proc-pointer-name is name

C573 (R549) A proc-pointer-name shall be the name of a procedure pointer.

C574 (R547) If a SAVE statement with an omitted saved entity list occurs in a scoping unit, no
other explicit occurrence of the SAVE attribute or SAVE statement is permitted in the same
scoping unit.

NOTE 5.30
An example of an OPTIONAL statement is:

SUBROUTINE EX (A, B)
OPTIONAL :: B

NOTE 5.31
An example of a PARAMETER statement is:

PARAMETER (MODULUS = MOD (28, 3), NUMBER_OF_SENATORS = 100)

NOTE 5.32
An example of a POINTER statement is:

TYPE (NODE) :: CURRENT
POINTER :: CURRENT, A (:, :)
82 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
A SAVE statement with a saved entity list specifies the SAVE attribute (5.1.2.12) for all entities

named in the list or included within a common block named in the list. A SAVE statement without

a saved entity list is treated as though it contained the names of all allowed items in the same

scoping unit.

If a particular common block name is specified in a SAVE statement in any scoping unit of a

program other than the main program, it shall be specified in a SAVE statement in every scoping

unit in which that common block appears except in the scoping unit of the main program. For a

common block declared in a SAVE statement, the values in the common block storage sequence

(5.5.2.1) at the time a RETURN or END statement is executed are made available to the next

scoping unit in the execution sequence of the program that specifies the common block name or

accesses the common block. If a named common block is specified in the scoping unit of the main

program, the current values of the common block storage sequence are made available to each

scoping unit that specifies the named common block. The definition status of each object in the

named common block storage sequence depends on the association that has been established for

the common block storage sequence.

A SAVE statement may appear in the specification part of a main program and has no effect.

5.2.12 TARGET statement

R550 target-stmt is TARGET [::] object-name [(array-spec)] ■
■ [, object-name [(array-spec)]] ...

This statement specifies the TARGET attribute (5.1.2.13) for a list of objects.

5.2.13 VALUE statement

R551 value-stmt is VALUE [::] dummy-arg-name-list

The VALUE statement specifies the VALUE attribute (5.1.2.14) for a list of dummy arguments.

5.2.14 VOLATILE statement

R552 volatile-stmt is VOLATILE [::] object-name-list

The VOLATILE statement specifies the VOLATILE attribute (5.1.2.15) for a list of objects.

5.3 IMPLICIT statement
In a scoping unit, an IMPLICIT statement specifies a type, and possibly type parameters, for all

implicitly typed data entities whose names begin with one of the letters specified in the statement.

Alternatively, it may indicate that no implicit typing rules are to apply in a particular scoping unit.

R553 implicit-stmt is IMPLICIT implicit-spec-list
or IMPLICIT NONE

R554 implicit-spec is declaration-type-spec (letter-spec-list)

R555 letter-spec is letter [– letter]

NOTE 5.33
An example of a SAVE statement is:

SAVE A, B, C, / BLOCKA /, D

NOTE 5.34
An example of a TARGET statement is:

TARGET :: A (1000, 1000), B
JUN 2001 WORKING DRAFT 83

J3/01-007R2 WORKING DRAFT JUN 2001
C575 (R553)If IMPLICIT NONE is specified in a scoping unit, it shall precede any PARAMETER
statements that appear in the scoping unit and there shall be no other IMPLICIT
statements in the scoping unit.

C576 (R555) If the minus and second letter appear, the second letter shall follow the first letter
alphabetically.

A letter-spec consisting of two letters separated by a minus is equivalent to writing a list containing

all of the letters in alphabetical order in the alphabetic sequence from the first letter through the

second letter. For example, A–C is equivalent to A, B, C. The same letter shall not appear as a

single letter, or be included in a range of letters, more than once in all of the IMPLICIT statements

in a scoping unit.

In each scoping unit, there is a mapping, which may be null, between each of the letters A, B, ..., Z

and a type (and type parameters). An IMPLICIT statement specifies the mapping for the letters in

its letter-spec-list. IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is

not specified for a letter, the default for a program unit or an interface body is default integer if the

letter is I, J, ..., or N and default real otherwise, and the default for an internal or module procedure

is the mapping in the host scoping unit.

Any data entity that is not explicitly declared by a type declaration statement, is not an intrinsic

function, and is not made accessible by use association or host association is declared implicitly to

be of the type (and type parameters) mapped from the first letter of its name, provided the

mapping is not null. The mapping for the first letter of the data entity shall either have been

established by a prior IMPLICIT statement or be the default mapping for the letter. The mapping

may be to a derived type that is inaccessible in the local scope if the derived type is accessible to

the host scope. The data entity is treated as if it were declared in an explicit type declaration in the

outermost scoping unit in which it appears. An explicit type specification in a FUNCTION

statement overrides an IMPLICIT statement for the name of the result variable of that function

subprogram.
84 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
NOTE 5.35
The following are examples of the use of IMPLICIT statements:

MODULE EXAMPLE_MODULE
IMPLICIT NONE
...

INTERFACE
FUNCTION FUN (I) ! Not all data entities need

INTEGER FUN ! be declared explicitly
END FUNCTION FUN

END INTERFACE
CONTAINS

FUNCTION JFUN (J) ! All data entities need to
INTEGER JFUN, J ! be declared explicitly.
...

END FUNCTION JFUN
END MODULE EXAMPLE_MODULE

SUBROUTINE SUB
IMPLICIT COMPLEX (C)
C = (3.0, 2.0) ! C is implicitly declared COMPLEX
...

CONTAINS
SUBROUTINE SUB1

IMPLICIT INTEGER (A, C)
C = (0.0, 0.0) ! C is host associated and of

! type complex
Z = 1.0 ! Z is implicitly declared REAL
A = 2 ! A is implicitly declared INTEGER
CC = 1 ! CC is implicitly declared INTEGER
...

END SUBROUTINE SUB1

SUBROUTINE SUB2
Z = 2.0 ! Z is implicitly declared REAL and

! is different from the variable of
! the same name in SUB1

...
END SUBROUTINE SUB2

SUBROUTINE SUB3
USE EXAMPLE_MODULE ! Accesses integer function FUN

! by use association
Q = FUN (K) ! Q is implicitly declared REAL and
... ! K is implicitly declared INTEGER

END SUBROUTINE SUB3
END SUBROUTINE SUB
JUN 2001 WORKING DRAFT 85

J3/01-007R2 WORKING DRAFT JUN 2001
5.4 NAMELIST statement
A NAMELIST statement specifies a group of named data objects, which may be referred to by a

single name for the purpose of data transfer (9.5, 10.10).

R556 namelist-stmt is NAMELIST ■
■ / namelist-group-name / namelist-group-object-list ■
■ [[,] / namelist-group-name / namelist-group-object-list] ...

C577 (R556) The namelist-group-name shall not be a name made accessible by use association.

R557 namelist-group-object is variable-name

C578 (R557) A namelist-group-object shall not be an assumed-size array.

C579 (R556) A namelist-group-object shall not have the PRIVATE attribute if the
namelist-group-name has the PUBLIC attribute.

The order in which the data objects (variables) are specified in the NAMELIST statement

determines the order in which the values appear on output.

Any namelist-group-name may occur in more than one NAMELIST statement in a scoping unit. The

namelist-group-object-list following each successive appearance of the same namelist-group-name in a

scoping unit is treated as a continuation of the list for that namelist-group-name.

NOTE 5.36
An IMPLICIT statement may specify a declaration-type-spec of derived type.

For example, given an IMPLICIT statement and a type defined as follows:

IMPLICIT TYPE (POSN) (A-B, W-Z), INTEGER (C-V)
TYPE POSN

REAL X, Y
INTEGER Z

END TYPE POSN

variables beginning with the letters A, B, W, X, Y, and Z are implicitly typed with the type
POSN and the remaining variables are implicitly typed with type INTEGER.

NOTE 5.37
The following is an example of a mapping to a derived type that is inaccessible in the local
scope:

PROGRAM MAIN
 IMPLICIT TYPE(BLOB) (A)
 TYPE BLOB
 INTEGER :: I
 END TYPE BLOB
 TYPE(BLOB) :: B
 CALL STEVE
CONTAINS
 SUBROUTINE STEVE
 INTEGER :: BLOB
 ..
 AA = B
 ..
 END SUBROUTINE STEVE
END PROGRAM MAIN

In the subroutine STEVE, it is not possible to explicitly declare a variable to be of type BLOB
because BLOB has been given a different meaning, but implicit mapping for the letter A still
maps to type BLOB, so AA is of type BLOB.
86 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
A namelist group object may be a member of more than one namelist group.

A namelist group object shall either be accessed by use or host association or shall have its type,

type parameters, and shape specified by previous specification statements or the procedure

heading in the same scoping unit or by the implicit typing rules in effect for the scoping unit. If a

namelist group object is typed by the implicit typing rules, its appearance in any subsequent type

declaration statement shall confirm the implied type and type parameters.

5.5 Storage association of data objects
In general, the physical storage units or storage order for data objects is not specifiable. However,

the EQUIVALENCE, COMMON, and SEQUENCE statements and the BIND(C) type-attr-spec
provide for control of the order and layout of storage units. The general mechanism of storage

association is described in 16.7.3.

5.5.1 EQUIVALENCE statement

An EQUIVALENCE statement is used to specify the sharing of storage units by two or more

objects in a scoping unit. This causes storage association of the objects that share the storage units.

If the equivalenced objects have differing type or type parameters, the EQUIVALENCE statement

does not cause type conversion or imply mathematical equivalence. If a scalar and an array are

equivalenced, the scalar does not have array properties and the array does not have the properties

of a scalar.

R558 equivalence-stmt is EQUIVALENCE equivalence-set-list

R559 equivalence-set is (equivalence-object , equivalence-object-list)

R560 equivalence-object is variable-name
or array-element
or substring

C580 (R560) An equivalence-object shall not be a designator with a base object that is a dummy
argument, a pointer, an allocatable variable, an object of a derived type that has an
allocatable ultimate component, an object of a nonsequence derived type, an object of a
derived type that has a pointer at any level of component selection, an automatic object, a
function name, an entry name, a result name, a variable with the BIND attribute, a variable
in a common block that has the BIND attribute, or a named constant.

C581 (R560) An equivalence-object shall not be a designator that has more than one part-ref.

C582 (R560) An equivalence-object shall not have the TARGET attribute.

C583 (R560) Each subscript or substring range expression in an equivalence-object shall be an
integer initialization expression (7.1.7).

C584 (R559) If an equivalence-object is of type default integer, default real, double precision real,
default complex, default logical, or numeric sequence type, all of the objects in the
equivalence set shall be of these types.

C585 (R559) If an equivalence-object is of type default character or character sequence type, all of
the objects in the equivalence set shall be of these types.

C586 (R559) If an equivalence-object is of a derived type that is not a numeric sequence or
character sequence type, all of the objects in the equivalence set shall be of the same type
with the same type parameter values.

NOTE 5.38
An example of a NAMELIST statement is:

NAMELIST /NLIST/ A, B, C
JUN 2001 WORKING DRAFT 87

J3/01-007R2 WORKING DRAFT JUN 2001
C587 (R559) If an equivalence-object is of an intrinsic type other than default integer, default real,
double precision real, default complex, default logical, or default character, all of the
objects in the equivalence set shall be of the same type with the same kind type parameter
value.

C588 (R560) The name of an equivalence-object shall not be a name made accessible by use
association.

C589 (R560) A substring shall not have length zero.

5.5.1.1 Equivalence association

An EQUIVALENCE statement specifies that the storage sequences (16.7.3.1) of the data objects

specified in an equivalence-set are storage associated. All of the nonzero-sized sequences in the

equivalence-set, if any, have the same first storage unit, and all of the zero-sized sequences in the

equivalence-set, if any, are storage associated with one another and with the first storage unit of any

nonzero-sized sequences. This causes the storage association of the data objects in the

equivalence-set and may cause storage association of other data objects.

5.5.1.2 Equivalence of default character objects

A data object of type default character may be equivalenced only with other objects of type default

character. The lengths of the equivalenced objects need not be the same.

An EQUIVALENCE statement specifies that the storage sequences of all the default character data

objects specified in an equivalence-set are storage associated. All of the nonzero-sized sequences in

the equivalence-set, if any, have the same first character storage unit, and all of the zero-sized

sequences in the equivalence-set, if any, are storage associated with one another and with the first

character storage unit of any nonzero-sized sequences. This causes the storage association of the

data objects in the equivalence-set and may cause storage association of other data objects.

NOTE 5.39
The EQUIVALENCE statement allows the equivalencing of sequence structures and the
equivalencing of objects of intrinsic type with nondefault type parameters, but there are strict
rules regarding the appearance of these objects in an EQUIVALENCE statement.

A structure that appears in an EQUIVALENCE statement shall be a sequence structure. If a
sequence structure is not of numeric sequence type or of character sequence type, it shall be
equivalenced only to objects of the same type with the same type parameter values.

A structure of a numeric sequence type may be equivalenced to another structure of a
numeric sequence type, an object of default integer type, default real type, double precision
real type, default complex type, or default logical type such that components of the structure
ultimately become associated only with objects of these types.

A structure of a character sequence type may be equivalenced to an object of default character
type or another structure of a character sequence type.

An object of intrinsic type with nondefault kind type parameters may be equivalenced only to
objects of the same type and kind type parameters.

Further rules on the interaction of EQUIVALENCE statements and default initialization are
given in 16.7.3.3.
88 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
5.5.1.3 Array names and array element designators

For a nonzero-sized array, the use of the array name unqualified by a subscript list in an

EQUIVALENCE statement has the same effect as using an array element designator that identifies

the first element of the array.

5.5.1.4 Restrictions on EQUIVALENCE statements

An EQUIVALENCE statement shall not specify that the same storage unit is to occur more than

once in a storage sequence.

An EQUIVALENCE statement shall not specify that consecutive storage units are to be

nonconsecutive.

5.5.2 COMMON statement

The COMMON statement specifies blocks of physical storage, called common blocks, that may be

accessed by any of the scoping units in a program. Thus, the COMMON statement provides a

global data facility based on storage association (16.7.3).

The common blocks specified by the COMMON statement may be named and are called named
common blocks, or may be unnamed and are called blank common.

R561 common-stmt is COMMON ■
■ [/ [common-block-name] /] common-block-object-list ■
■ [[,] / [common-block-name] /common-block-object-list] ...

R562 common-block-object is variable-name [(explicit-shape-spec-list)]

or proc-pointer-name

C590 (R562) Only one appearance of a given variable-name is permitted in all
common-block-object-lists within a scoping unit.

NOTE 5.40
For example, using the declarations:

CHARACTER (LEN = 4) :: A, B
CHARACTER (LEN = 3) :: C (2)
EQUIVALENCE (A, C (1)), (B, C (2))

the association of A, B, and C can be illustrated graphically as:

1 2 3 4 5 6 7
|--- --- A --- ---|

|--- --- B --- ---|
|--- C(1) ---| |--- C(2) ---|

NOTE 5.41
For example:

REAL, DIMENSION (2) :: A
REAL :: B
EQUIVALENCE (A (1), B), (A (2), B) ! Not standard conforming

is prohibited, because it would specify the same storage unit for A (1) and A (2).

NOTE 5.42
For example, the following is prohibited:

REAL A (2)
DOUBLE PRECISION D (2)
EQUIVALENCE (A (1), D (1)), (A (2), D (2)) ! Not standard conforming
JUN 2001 WORKING DRAFT 89

J3/01-007R2 WORKING DRAFT JUN 2001
C591 (R562) A common-block-object shall not be a dummy argument, an allocatable variable, a
derived type object with an ultimate component that is allocatable, an automatic object, a
function name, an entry name, a variable with the BIND attribute, or a result name.

C592 (R562) If a common-block-object is of a derived type, it shall be a sequence type (4.5.1) with
no default initialization.

C593 (R562) A variable-name or proc-pointer-name shall not be a name made accessible by use
association.

In each COMMON statement, the data objects whose names appear in a common block object list

following a common block name are declared to be in that common block. If the first common

block name is omitted, all data objects whose names appear in the first common block object list

are specified to be in blank common. Alternatively, the appearance of two slashes with no

common block name between them declares the data objects whose names appear in the common

block object list that follows to be in blank common.

Any common block name or an omitted common block name for blank common may occur more

than once in one or more COMMON statements in a scoping unit. The common block list

following each successive appearance of the same common block name in a scoping unit is treated

as a continuation of the list for that common block name. Similarly, each blank common block

object list in a scoping unit is treated as a continuation of blank common.

The form variable-name (explicit-shape-spec-list) declares variable-name to have the DIMENSION

attribute and specifies the array properties that apply. If derived-type objects of numeric sequence

type (4.5.1) or character sequence type (4.5.1) appear in common, it is as if the individual

components were enumerated directly in the common list.

5.5.2.1 Common block storage sequence

For each common block in a scoping unit, a common block storage sequence is formed as follows:

(1) A storage sequence is formed consisting of the sequence of storage units in the storage
sequences (16.7.3.1) of all data objects in the common block object lists for the common
block. The order of the storage sequences is the same as the order of the appearance of
the common block object lists in the scoping unit.

(2) The storage sequence formed in (1) is extended to include all storage units of any
storage sequence associated with it by equivalence association. The sequence may be
extended only by adding storage units beyond the last storage unit. Data objects
associated with an entity in a common block are considered to be in that common
block.

Only COMMON statements and EQUIVALENCE statements appearing in the scoping unit

contribute to common block storage sequences formed in that unit.

5.5.2.2 Size of a common block

The size of a common block is the size of its common block storage sequence, including any

extensions of the sequence resulting from equivalence association.

5.5.2.3 Common association

Within a program, the common block storage sequences of all nonzero-sized common blocks with

the same name have the same first storage unit, and the common block storage sequences of all

zero-sized common blocks with the same name are storage associated with one another. Within a

NOTE 5.43
Examples of COMMON statements are:

COMMON /BLOCKA/ A, B, D (10, 30)
COMMON I, J, K
90 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
program, the common block storage sequences of all nonzero-sized blank common blocks have the

same first storage unit and the storage sequences of all zero-sized blank common blocks are

associated with one another and with the first storage unit of any nonzero-sized blank common

blocks. This results in the association of objects in different scoping units. Use association or host

association may cause these associated objects to be accessible in the same scoping unit.

A nonpointer object of default integer type, default real type, double precision real type, default

complex type, default logical type, or numeric sequence type shall become associated only with

nonpointer objects of these types.

A nonpointer object of type default character or character sequence type shall become associated

only with nonpointer objects of these types.

A nonpointer object of a derived type that is not a numeric sequence or character sequence type

shall become associated only with nonpointer objects of the same type with the same type

parameter values.

A nonpointer object of intrinsic type other than default integer, default real, double precision real,

default complex, default logical, or default character shall become associated only with nonpointer

objects of the same type and type parameters.

A data pointer shall become storage associated only with data pointers of the same type and rank.

Data pointers that are storage associated shall have deferred the same type parameters;

corresponding nondeferred type parameters shall have the same value. A procedure pointer shall

become storage associated only with another procedure pointer; either both interfaces shall be

explicit or both interfaces shall be implicit. If the interfaces are explicit, the characteristics shall be

the same. If the interfaces are implicit, either both shall be subroutines or both shall be functions

with the same type and type parameters.

An object with the TARGET attribute may become storage associated only with another object that

has the TARGET attribute and the same type and type parameters.

5.5.2.4 Differences between named common and blank common

A blank common block has the same properties as a named common block, except for the

following:

(1) Execution of a RETURN or END statement may cause data objects in a named common
block to become undefined unless the common block name has been declared in a
SAVE statement, but never causes data objects in blank common to become undefined
(16.8.6).

(2) Named common blocks of the same name shall be of the same size in all scoping units
of a program in which they appear, but blank common blocks may be of different sizes.

(3) A data object in a named common block may be initially defined by means of a DATA
statement or type declaration statement in a block data program unit (11.4), but objects
in blank common shall not be initially defined.

NOTE 5.44
A common block is permitted to contain sequences of different storage units, provided each
scoping unit that accesses the common block specifies an identical sequence of storage units
for the common block. For example, this allows a single common block to contain both
numeric and character storage units.

Association in different scoping units between objects of default type, objects of double
precision real type, and sequence structures is permitted according to the rules for
equivalence objects (5.5.1).
JUN 2001 WORKING DRAFT 91

J3/01-007R2 WORKING DRAFT JUN 2001
5.5.2.5 Restrictions on common and equivalence

An EQUIVALENCE statement shall not cause the storage sequences of two different common

blocks to be associated.

Equivalence association shall not cause a common block storage sequence to be extended by

adding storage units preceding the first storage unit of the first object specified in a COMMON

statement for the common block.

Equivalence association shall not cause a derived-type object with default initialization to be

associated with an object in a common block.

NOTE 5.45
For example, the following is not permitted:

COMMON /X/ A
REAL B (2)
EQUIVALENCE (A, B (2)) ! Not standard conforming
92 WORKING DRAFT JUN 2001

	Section 5: Data object declarations and specifications
	NOTE 5.1
	5.1�� Type declaration statements
	R502 declaration-type-spec is type-spec
	C501 (R502) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk...
	C502 (R502) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall speci...
	NOTE 5.2

	R503 type�spec is INTEGER [kind�selector]
	C503 (R503) A type-alias-name shall be the name of a type alias.

	R504 attr�spec is access�spec
	R505 entity�decl is object�name [(array�spec)] [* char�length] [initialization]
	C504 (R505) If a type-param-value in an entity-decl is not a colon or an asterisk, it shall be a ...

	R506 object-name is name
	C505 (R506) The object-name shall be the name of a data object.

	R507 initialization is = initialization�expr
	R508 kind�selector is ([KIND =] scalar�int�initialization�expr)
	C506 (R501) The same attr�spec shall not appear more than once in a given type�declaration�stmt.
	C507 An entity shall not be explicitly given any attribute more than once in a scoping unit.
	C508 (R501) An entity declared with the CLASS keyword shall be a dummy argument or have the ALLOC...
	C509 (R501) An array declared with a POINTER or an ALLOCATABLE attribute shall be specified with ...
	C510 (R501) An array�spec for an object�name that is a function result that does not have the ALL...
	C511 (R501) If the POINTER attribute is specified, the ALLOCATABLE, TARGET, EXTERNAL, or INTRINSI...
	C512 (R501) If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or PARAMETER ...
	C513 (R501) The PARAMETER attribute shall not be specified for a dummy argument, a pointer, an al...
	C514 (R501) The INTENT, VALUE, and OPTIONAL attributes may be specified only for dummy arguments.
	C515 (R501) The SAVE attribute shall not be specified for an object that is in a common block, a ...
	C516 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.
	C517 (R501) An entity in an entity-decl-list shall not have the EXTERNAL or INTRINSIC attribute s...
	C518 (R505) The * char�length option is permitted only if the type specified is character.
	C519 (R505) The function�name shall be the name of an external function, an intrinsic function, a...
	C520 (R501) The initialization shall appear if the statement contains a PARAMETER attribute (5.1....
	C521 (R501) If initialization appears, a double-colon separator shall appear before the entity�de...
	C522 (R505) initialization shall not appear if object�name is a dummy argument, a function result...
	C523 (R505) If => appears in initialization, the object shall have the POINTER attribute. If = ap...
	C524 (R503) The value of scalar�int�initialization�expr in kind�selector shall be nonnegative and...
	C525 (R501) If the VOLATILE attribute is specified, the PARAMETER, INTRINSIC, EXTERNAL, or INTENT...
	C526 (R501) If the VALUE attribute is specified, the PARAMETER, EXTERNAL, POINTER, ALLOCATABLE, D...
	C527 (R501) If the VALUE attribute is specified for a dummy argument of type character, the lengt...
	C528 (R501) The VALUE attribute is permitted only for a scalar dummy argument of a subprogram or ...
	C529 (R501) The ALLOCATABLE, POINTER, and OPTIONAL attributes shall not be specified for a dummy ...
	C530 (R504) A language-binding-spec shall appear only in the specification part of a module.
	C531 (R501) If a language-binding-spec is specified, the POINTER, PARAMETER, ALLOCATABLE, EXTERNA...
	C532 (R501) If a language-binding-spec with a bind-spec-list appears, the entity-decl-list shall ...
	NOTE 5.3
	NOTE 5.4

	5.1.1�� Type specifiers
	5.1.1.1�� INTEGER
	5.1.1.2�� REAL
	5.1.1.3�� DOUBLE PRECISION
	5.1.1.4�� COMPLEX
	5.1.1.5�� CHARACTER
	R509 char�selector is length�selector
	R510 length�selector is ([LEN =] type�param�value)
	R511 char�length is (type�param�value)
	C533 (R509) The value of scalar�int�initialization�expr shall be nonnegative and shall specify a ...
	C534 (R511) The scalar�int�literal�constant shall not include a kind�param.
	C535 (R511) A char-length type parameter value of * may be used only in the following ways:
	(1) to declare a dummy argument,
	(2) to declare a named constant,
	(3) in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy argument of...
	(4) in an external function, to declare the character length parameter of the function result.

	C536 A function name shall not be declared with an asterisk type�param�value unless it is of type...
	C537 A function name declared with an asterisk type-param-value shall not be array-valued, pointe...
	C538 (R510) The optional comma in a length�selector is permitted only in a declaration-type-spec ...
	C539 (R510) The optional comma in a length�selector is permitted only if no double-colon separato...
	C540 (R509) The length specified for a character-valued statement function or for a statement fun...
	(1) If used to declare a dummy argument of a procedure, the dummy argument assumes the length of ...
	(2) If used to declare a named constant, the length is that of the constant value.
	(3) If used in the type-spec of an ALLOCATE statement, each allocate-object assumes its length fr...
	(4) If used to specify the character length parameter of a function result, any scoping unit invo...

	NOTE 5.5

	5.1.1.6�� LOGICAL
	5.1.1.7�� Derived type
	5.1.1.8�� Polymorphic entities
	NOTE 5.6

	5.1.2�� Attributes
	5.1.2.1�� Accessibility attribute
	R512 access�spec is PUBLIC
	C541 (R512) An access�spec shall appear only in the specification�part of a module.
	NOTE 5.7

	5.1.2.2�� ALLOCATABLE attribute
	5.1.2.3�� ASYNCHRONOUS attribute
	(1) the variable appears in an executable statement or specification expression in that scoping u...
	(2) any statement of the scoping unit is executed while the variable is a pending I/O storage seq...
	NOTE 5.8

	5.1.2.4�� BIND attribute
	NOTE 5.9
	R513 language-binding-spec is BIND (C [, bind-spec-list])
	R514 bind-spec is NAME = scalar-char-initialization-expr
	C542 (R513) A bind-spec-list shall not have more than one NAME= specifier.
	C543 (R513) A bind-spec-list that appears in a BIND statement or a type declaration statement sha...
	C544 (R514) The scalar-char-initialization-expr in a bind-spec shall be of default character kind.
	NOTE 5.10

	5.1.2.5�� DIMENSION attribute
	R515 array�spec is explicit�shape�spec�list
	C545 (R515)The maximum rank is seven.
	NOTE 5.11

	5.1.2.5.1�� Explicit-shape array
	R516 explicit�shape�spec is [lower�bound :] upper�bound
	R517 lower�bound is specification�expr
	R518 upper�bound is specification�expr
	C546 (R516) An explicit-shape array whose bounds are not initialization expressions shall be a du...

	5.1.2.5.2�� Assumed-shape array
	R519 assumed�shape�spec is [lower�bound] :

	5.1.2.5.3�� Deferred-shape array
	R520 deferred�shape�spec is :
	(1) in an ALLOCATE statement (6.3.1) when the target is allocated, or
	(2) in a pointer assignment statement (7.5.2).

	5.1.2.5.4�� Assumed-size array
	R521 assumed�size�spec is [explicit�shape�spec�list ,] [lower�bound :] *
	C547 The function name of an array-valued function shall not be declared as an assumed-size array.
	C548 An assumed-size array with INTENT�(OUT) shall not be of a type for which default initializat...
	(1) If the actual argument associated with the assumed-size dummy array is an array of any type o...
	(2) If the actual argument associated with the assumed-size dummy array is an array element of an...
	(3) If the actual argument is a default character array, default character array element, or a de...
	(4) If the actual argument is of type default character and is a scalar that is not an array elem...

	5.1.2.6�� EXTERNAL attribute
	NOTE 5.12

	5.1.2.7�� INTENT attribute
	R522 intent�spec is IN
	C549 The INTENT attribute shall not be specified for a dummy argument that is a dummy procedure.
	NOTE 5.13
	C550 A nonpointer object with the INTENT�(IN) attribute shall not appear in a variable definition...
	C551 A pointer object with the INTENT�(IN) attribute shall not appear as
	(1) A pointer-object in a pointer-assignment-stmt or nullify-stmt,
	(2) An allocate-object in an allocate-stmt or deallocate-stmt, or
	(3) An actual argument in a reference to a procedure if the associated dummy argument is a pointe...

	NOTE 5.14
	NOTE 5.15
	NOTE 5.16 �

	5.1.2.8�� INTRINSIC attribute
	C552 If the name of a generic intrinsic procedure is explicitly declared to have the INTRINSIC at...

	5.1.2.9�� OPTIONAL attribute
	5.1.2.10�� PARAMETER attribute
	NOTE 5.17

	5.1.2.11�� POINTER attribute
	NOTE 5.18

	5.1.2.12�� SAVE attribute
	5.1.2.13�� TARGET attribute
	NOTE 5.19
	NOTE 5.20
	NOTE 5.21

	5.1.2.14�� VALUE attribute
	NOTE 5.22

	5.1.2.15�� VOLATILE attribute
	NOTE 5.23
	NOTE 5.24

	5.2�� Attribute specification statements
	5.2.1�� Accessibility statements
	R523 access�stmt is access�spec [[::] access�id�list]
	R524 access�id is use�name
	C553 (R523) An access�stmt shall appear only in the specification�part of a module. Only one acce...
	C554 (R524) Each use�name shall be the name of a named variable, procedure, derived type, named c...
	NOTE 5.25

	5.2.2�� ALLOCATABLE statement
	R525 allocatable�stmt is ALLOCATABLE [::] n
	NOTE 5.26

	5.2.3�� ASYNCHRONOUS statement
	R526 asynchronous-stmt is ASYNCHRONOUS [::] object-name-list

	5.2.4�� BIND statement
	R527 bind-stmt is language-binding-spec [::] bind-entity-list
	R528 bind-entity is entity-name
	C555 (R527) If any bind-entity in a bind-stmt is an entity-name, the bind-stmt shall appear in th...
	C556 (R527) If the language-binding-spec has a bind-spec-list, the bind-entity-list shall consist...

	5.2.5�� DATA statement
	R529 data�stmt is DATA data�stmt�set [[,] data�stmt�set] ...
	R530 data�stmt�set is data�stmt�object�list / data�stmt�value�list /
	R531 data�stmt�object is variable
	R532 data�implied�do is (data�i�do�object�list , data�i�do�variable = n
	R533 data�i�do�object is array�element
	R534 data�i�do�variable is scalar�int�variable
	C557 (R531) In a variable that is a data�stmt�object, any subscript, section subscript, substring...
	C558 (R531) A variable whose designator is included in a data�stmt�object�list or a data�i�do�obj...
	C559 (R531) A data-i-do-object or a variable that appears as a data-stmt-object shall not be an o...
	C560 (R534) data�i�do�variable shall be a named variable.
	C561 (R532) A scalar�int�expr of a data�implied�do shall involve as primaries only constants, sub...
	C562 (R533) The array�element shall be a variable.
	C563 (R533) The scalar�structure�component shall be a variable.
	C564 (R533) The scalar�structure�component shall contain at least one part�ref that contains a su...
	C565 (R533) In an array�element or a scalar�structure�component that is a data�i�do�object, any s...

	R535 data�stmt�value is [data�stmt�repeat *] data�stmt�constant
	R536 data�stmt�repeat is scalar�int�constant
	C566 (R536) The data�stmt�repeat shall be positive or zero. If the data�stmt�repeat is a named co...

	R537 data�stmt�constant is scalar�constant
	C567 (R537) If a DATA statement constant value is a named constant or a structure constructor, th...
	C568 (R537) If a data�stmt�constant is a structure�constructor, it shall be an initialization exp...

	R538 int-constant-subobject is constant-subobject
	C569 (R538) int-constant-subobject shall be of type integer.

	R539 constant-subobject is designator
	C570 (R539) constant-subobject shall be a subobject of a constant.
	C571 (R535) Any subscript, substring starting point, or substring ending point shall be an initia...
	NOTE 5.27

	5.2.6�� DIMENSION statement
	R540 dimension�stmt is DIMENSION [::] array�name (array�spec) n
	NOTE 5.28

	5.2.7�� INTENT statement
	R541 intent�stmt is INTENT (intent�spec) [::] dummy�arg�name�list
	NOTE 5.29

	5.2.8�� OPTIONAL statement
	R542 optional�stmt is OPTIONAL [::] dummy�arg�name�list
	NOTE 5.30

	5.2.9�� PARAMETER statement
	R543 parameter�stmt is PARAMETER (named�constant�def�list)
	R544 named�constant�def is named�constant = initialization�expr
	NOTE 5.31

	5.2.10�� POINTER statement
	R545 pointer�stmt is POINTER [::] pointer-decl-list
	R546 pointer-decl is object�name [(deferred�shape�spec�list)]
	C572 (R546) A proc-entity-name shall also be declared in a procedure-declaration-stmt.
	NOTE 5.32

	5.2.11�� SAVE statement
	R547 save�stmt is SAVE [[::] saved�entity�list]
	R548 saved�entity is object�name
	R549 proc-pointer-name is name
	C573 (R549) A proc-pointer-name shall be the name of a procedure pointer.
	C574 (R547) If a SAVE statement with an omitted saved entity list occurs in a scoping unit, no ot...
	NOTE 5.33

	5.2.12�� TARGET statement
	R550 target�stmt is TARGET [::] object�name [(array�spec)] n
	NOTE 5.34

	5.2.13�� VALUE statement
	R551 value-stmt is VALUE [::] dummy-arg-name-list

	5.2.14�� VOLATILE statement
	R552 volatile-stmt is VOLATILE [::] object-name-list

	5.3�� IMPLICIT statement
	R553 implicit�stmt is IMPLICIT implicit�spec�list
	R554 implicit�spec is declaration-type-spec (letter�spec�list)
	R555 letter�spec is letter [– letter]
	C575 (R553)If IMPLICIT�NONE is specified in a scoping unit, it shall precede any PARAMETER statem...
	C576 (R555) If the minus and second letter appear, the second letter shall follow the first lette...
	NOTE 5.35 �
	NOTE 5.36
	NOTE 5.37 �

	5.4�� NAMELIST statement
	R556 namelist�stmt is NAMELIST n
	C577 (R556) The namelist�group�name shall not be a name made accessible by use association.

	R557 namelist�group�object is variable�name
	C578 (R557) A namelist�group�object shall not be an assumed-size array.
	C579 (R556) A namelist�group�object shall not have the PRIVATE attribute if the namelist�group�na...
	NOTE 5.38

	5.5�� Storage association of data objects
	5.5.1�� EQUIVALENCE statement
	R558 equivalence�stmt is EQUIVALENCE equivalence�set�list
	R559 equivalence�set is (equivalence�object , equivalence�object�list)
	R560 equivalence�object is variable�name
	C580 (R560) An equivalence�object shall not be a designator with a base object that is a dummy ar...
	C581 (R560) An equivalence�object shall not be a designator that has more than one part-ref.
	C582 (R560) An equivalence�object shall not have the TARGET attribute.
	C583 (R560) Each subscript or substring range expression in an equivalence�object shall be an int...
	C584 (R559) If an equivalence�object is of type default integer, default real, double precision r...
	C585 (R559) If an equivalence�object is of type default character or character sequence type, all...
	C586 (R559) If an equivalence�object is of a derived type that is not a numeric sequence or chara...
	C587 (R559) If an equivalence�object is of an intrinsic type other than default integer, default ...
	C588 (R560) The name of an equivalence�object shall not be a name made accessible by use associat...
	C589 (R560) A substring shall not have length zero.
	NOTE 5.39

	5.5.1.1�� Equivalence association
	5.5.1.2�� Equivalence of default character objects
	NOTE 5.40

	5.5.1.3�� Array names and array element designators
	5.5.1.4�� Restrictions on EQUIVALENCE statements
	NOTE 5.41
	NOTE 5.42

	5.5.2�� COMMON statement
	R561 common�stmt is COMMON n
	R562 common�block�object is variable�name [(explicit�shape�spec�list)]
	C590 (R562) Only one appearance of a given variable�name is permitted in all common�block�object�...
	C591 (R562) A common�block�object shall not be a dummy argument, an allocatable variable, a deriv...
	C592 (R562) If a common�block�object is of a derived type, it shall be a sequence type (4.5.1) wi...
	C593 (R562) A variable�name or proc-pointer-name shall not be a name made accessible by use assoc...
	NOTE 5.43

	5.5.2.1�� Common block storage sequence
	(1) A storage sequence is formed consisting of the sequence of storage units in the storage seque...
	(2) The storage sequence formed in (1) is extended to include all storage units of any storage se...

	5.5.2.2�� Size of a common block
	5.5.2.3�� Common association
	NOTE 5.44 �

	5.5.2.4�� Differences between named common and blank common
	(1) Execution of a RETURN or END statement may cause data objects in a named common block to beco...
	(2) Named common blocks of the same name shall be of the same size in all scoping units of a prog...
	(3) A data object in a named common block may be initially defined by means of a DATA statement o...

	5.5.2.5�� Restrictions on common and equivalence
	NOTE 5.45

