JUN 2001 WORKING DRAFT J3/01-007R2

Section 7. Expressions and assignment

This section describes the formation, interpretation, and evaluation rules for expressions and the
assignment statements.

7.1 Expressions

An expression represents either a data reference or a computation, and its value is either a scalar
or an array. An expression is formed from operands, operators, and parentheses.

NOTE 7.1
Simple forms of an operand are constants and variables, such as:

3.0
.FALSE.
A
B (I)

C (1:J)

An operand is either a scalar or an array. An operation is either intrinsic (7.2) or defined (7.3).
More complicated expressions can be formed using operands which are themselves expressions.

NOTE 7.2
Examples of intrinsic operators are:

+

*

>

.AND.

7.1.1 Form of an expression

Evaluation of an expression produces a value, which has a type, type parameters (if appropriate),
and a shape (7.1.4).

NOTE 7.3
Examples of expressions are:

A+ B
(A -B)*C
A * B

C .AND. D
F Il G

An expression is defined in terms of several categories: primary, level-1 expression, level-2
expression, level-3 expression, level-4 expression, and level-5 expression.

These categories are related to the different operator precedence levels and, in general, are defined
in terms of other categories. The simplest form of each expression category is a primary. The rules
given below specify the syntax of an expression. The semantics are specified in 7.2 and 7.3.

JUN 2001 WORKING DRAFT 107

J3/01-007R2 WORKING DRAFT JUN 2001

7.1.1.1 Primary

R701 primary is constant
or designator
or array-constructor
or structure-constructor
or function-reference
or type-param-inquiry
or type-param-name
or (expr)

C701 (R701) The type-param-name shall be the name of a type-parameter.

A designator that is a primary shall not be a whole assumed-size array.

NOTE 7.4

Examples of a primary are:
Example Syntactic class
1.0 constant
'"ABCDEFGHIJKLMNOPQRSTUVWXYZ' (I:1) constant-subobject
A variable
(/ 1.0, 2.0) array-constructor
PERSON (12, 'Jones’) structure-constructor
F (X, Y) function-reference
(S +) (expr)

7.1.1.2 Level-1 expressions

Defined unary operators have the highest operator precedence (Table 7.7). Level-1 expressions are
primaries optionally operated on by defined unary operators:

R702 level-1-expr is [defined-unary-op] primary

R703 defined-unary-op is . letter [letter]

C702 (R703) A defined-unary-op shall not contain more than 31 letters and shall not be the same as
any intrinsic-operator or logical-literal-constant.

NOTE 7.5
Simple examples of a level-1 expression are:
Example Syntactic class
A primary (R701)
INVERSE. B level-1-expr (R702)
A more complicated example of a level-1 expression is:
INVERSE. (A + B)

7.1.1.3 Level-2 expressions

Level-2 expressions are level-1 expressions optionally involving the numeric operators power-op,
mult-op, and add-op.

R704 mult-operand is level-1-expr [power-op mult-operand]
R705 add-operand is [add-operand mult-op] mult-operand
R706 level-2-expr is [[level-2-expr] add-op] add-operand
R707 power-op is **

108 WORKING DRAFT JUN 2001

| JUN 2001 WORKING DRAFT J3/01-007R2

R708 mult-op is *
or /
R709 add-op is +
or -
NOTE 7.6
Simple examples of a level-2 expression are:
Example Syntactic class Remarks
A level-1-expr A is a primary. (R702)
B ** C mult-operand B is a level-1-expr, [TJis a power-op,
and C is a mult-operand. (R704)
D * E add-operand D is an add-operand, Ois a mult-op,
and E is a mult-operand. (R705)
+1 level-2-expr + is an add-op
and 1 is an add-operand. (R706)
F -1 level-2-expr F is a level-2-expr, — is an add-op,
and | is an add-operand. (R706)
A more complicated example of a level-2 expression is:
-A+D*E+B*C

7.1.1.4 Level-3 expressions

Level-3 expressions are level-2 expressions optionally involving the character operator concat-op.

R710 level-3-expr is [level-3-expr concat-op] level-2-expr
R711 concat-op is //
NOTE 7.7
Simple examples of a level-3 expression are:
Example Syntactic class
A level-2-expr (R706)
B // C level-3-expr (R710)
A more complicated example of a level-3 expression is:
X /'Y [l 'ABCD'

7.1.1.5 Level-4 expressions
Level-4 expressions are level-3 expressions optionally involving the relational operators rel-op.
R712 level-4-expr is [level-3-expr rel-op] level-3-expr

R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
or <=
or >

| JUN 2001 WORKING DRAFT 109

| J3/01-007R2

NOTE 7.8

WORKING DRAFT

or >=

JUN 2001

Example
A

B .EQ. C
D<E

(A + B) NE. C

Simple examples of a level-4 expression are:

Syntactic class

level-3-expr (R710)
level-4-expr (R712)
level-4-expr (R712)

A more complicated example of a level-4 expression is:

7.1.1.6 Level-5 expressions

Level-5 expressions are level-4 expressions optionally involving the logical operators not-op, and-op,

or-op, and equiv-op.
R714 and-operand
R715 or-operand
R716 equiv-operand
R717 level-5-expr

R718 not-op
R719 and-op
R720 or-op

R721 equiv-op

NOTE 7.9

is [not-op] level-4-expr

is [or-operand and-op] and-operand

is [equiv-operand or-op] or-operand

is [level-5-expr equiv-op] equiv-operand
is .NOT.

is .AND.
is .OR.
is .EQW.
or .NEQW.

Example
A

NOT. B
C .AND. D
E OR. F
G .EQV. H
S .NEQV. T

Simple examples of a level-5 expression are:

Syntactic class
level-4-expr (R712)
and-operand (R714)
or-operand (R715)
equiv-operand (R716)
level-5-expr (R717)
level-5-expr (R717)

A more complicated example of a level-5 expression is:
A .AND. B .EQV. .NOT. C

7.1.1.7 General form of an expression

Expressions are level-5 expressions optionally involving defined binary operators. Defined binary
operators have the lowest operator precedence (Table 7.7).

R722 expr
R723 defined-binary-op

is [expr defined-binary-op] level-5-expr
is . letter [letter]

C703 (R723) A defined-binary-op shall not contain more than 31 letters and shall not be the same
as any intrinsic-operator or logical-literal-constant.

| 110

WORKING DRAFT

JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2

NOTE 7.10

Simple examples of an expression are:
Example Syntactic class
A level-5-expr (R717)
B.UNION.C expr (R722)

More complicated examples of an expression are:
(B .INTERSECT. C) .UNION. (X - Y)

A+B .EQ. C*D

ANVERSE. (A + B)

A+B AND . C *D

E // G .EQ. H (1:10)

7.1.2 Intrinsic operations

An intrinsic operation is either an intrinsic unary operation or an intrinsic binary operation. An
intrinsic unary operation is an operation of the form intrinsic-operator x, where x, is of an
intrinsic type (4.4) listed in Table 7.1 for the unary intrinsic operator.

An intrinsic binary operation is an operation of the form x, intrinsic-operator x, where x; and x,
are of the intrinsic types (4.4) listed in Table 7.1 for the binary intrinsic operator and are in shape
conformance (7.1.5).

Table 7.1 Type of operands and results for intrinsic operators

Intrinsic operator Type of Type of Type of
op X1 X2 [x,10p X,
Unary +, — LR Z LR Z
I LR, Z LR, Z
Binary +, —, 0 /, [1J R IR, Z R,R, Z
z LR Z Z,72,Z
// C C C
I LR, Z L, L L
— - R IR, Z L, L, L
-EQ-, NE., ==, /= z IR, Z LLL
C C L
.GT., .GE., .LT., .LE. ! IR L L
S S>— < <= R I, R L, L
A C C L
.NOT. L L
.AND., .OR., .EQV., .NEQW. L L L
Note: The symbols I, R, Z, C, and L stand for the types integer, real, complex,
character, and logical, respectively. Where more than one type for X, is
given, the type of the result of the operation is given in the same relative
position in the next column. For the intrinsic operators requiring operands of
type character, the kind type parameters of the operands shall be the same.

A numeric intrinsic operation is an intrinsic operation for which the intrinsic-operator is a numeric
operator (+, —, 00 /, or [1I). A numeric intrinsic operator is the operator in a numeric intrinsic
operation.

For numeric intrinsic binary operations, the two operands may be of different numeric types or
different kind type parameters. Except for a value raised to an integer power, if the operands have

JUN 2001 WORKING DRAFT 111

J3/01-007R2 WORKING DRAFT JUN 2001

different types or kind type parameters, the effect is as if each operand that differs in type or kind
type parameter from those of the result is converted to the type and kind type parameter of the
result before the operation is performed. When a value of type real or complex is raised to an
integer power, the integer operand need not be converted.

A character intrinsic operation, relational intrinsic operation, and logical intrinsic operation are
similarly defined in terms of a character intrinsic operator (//), relational intrinsic operator
(.EQ., .NE., .GT., .GE., .LT., .LE., ==, /=, >, >=, <, and <=), and logical intrinsic operator
(.AND., .OR., .NOT., .EQWV., and .NEQW.), respectively. For the character intrinsic operator //,
the kind type parameters shall be the same.

A numeric relational intrinsic operation is a relational intrinsic operation where the operands are
of numeric type. A character relational intrinsic operation is a relational intrinsic operation
where the operands are of type character and have the same kind type parameter value.

7.1.3 Defined operations

A defined operation is either a defined unary operation or a defined binary operation. A defined
unary operation is an operation that has the form defined-unary-op X, and that is defined by a
function and a generic interface (4.5.1.5, 12.3.2.1) or that has the form intrinsic-operator x, where
the type of x, is not that required for the unary intrinsic operation (7.1.2), and that is defined by a
function and a generic interface.

A defined binary operation is an operation that has the form x; defined-binary-op x, and that is
defined by a function and a generic interface or that has the form x, intrinsic-operator x, where the
types or ranks of either x; or x, or both are not those required for the intrinsic binary operation
(7.1.2), and that is defined by a function and a generic interface.

NOTE 7.11
An intrinsic operator may be used as the operator in a defined operation. In such a case, the
generic properties of the operator are extended.

An extension operation is a defined operation in which the operator is of the form defined-unary-op
or defined-binary-op. Such an operator is called an extension operator. The operator used in an
extension operation may be such that a generic interface for the operator may specify more than
one function.

A defined elemental operation is a defined operation for which the function is elemental (12.7).

7.1.4 Data type, type parameters, and shape of an expression

The data type, type parameters, and shape of an expression depend on the operators and on the
data types, type parameters, and shapes of the primaries used in the expression, and are
determined recursively from the syntactic form of the expression. The data type of an expression
is one of the intrinsic types (4.4) or a derived type (4.5).

If an expression is a polymorphic primary or defined operation, the type parameters and the
declared and dynamic types of the expression are the same as those of the primary or defined
operation. Otherwise the type parameters and dynamic type of the expression are the same as its
declared type and type parameters; they are referred to simply as the type and type parameters of
the expression.

R724 logical-expr is expr
C704 (R724) logical-expr shall be of type logical.
R725 char-expr is expr
C705 (R725) char-expr shall be of type character.

112 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2

R726 default-char-expr is expr

C706 (R726) default-char-expr shall be of type default character.
R727 int-expr is expr

C707 (R727) int-expr shall be of type integer.

R728 numeric-expr is expr

C708 (R728) numeric-expr shall be of type integer, real or complex.

7.1.4.1 Data type, type parameters, and shape of a primary

The data type, type parameters, and shape of a primary are determined according to whether the
primary is a constant, variable, array constructor, structure constructor, function reference, or
parenthesized expression. If a primary is a constant, its type, type parameters, and shape are those
of the constant. If it is a structure constructor, it is scalar and its type and type parameters are as
described in (4.5.8). If it is an array constructor, its type, type parameters, and shape are as
described in 4.8. If it is a variable or function reference, its type, type parameters, and shape are
those of the variable (5.1.1, 5.1.2) or the function reference (12.4.2), respectively. In the case of a
function reference, the function may be generic (12.3.2.1, 13.8), in which case its type, type
parameters, and shape are those of the specific function referenced, which is determined by the
types, type parameters, and ranks of its actual arguments as specified in 16.1.2.3.

If a primary is a parenthesized expression, its type, type parameters, and shape are those of the
expression.

If a pointer appears as one of the following, the associated target object is referenced:
(1) A primary in an intrinsic or defined operation,
(2) As the expr of a parenthesized primary, or
(3) As the only primary on the right-hand side of an intrinsic assignment statement.

The type, type parameters, and shape of the primary are those of the current target. If the pointer
is not associated with a target, it may appear as a primary only as an actual argument in a
reference to a procedure whose corresponding dummy argument is declared to be a pointer, or as
the target in a pointer assignment statement.

A disassociated array pointer or an unallocated allocatable array has no shape but does have rank.
The type, type parameters, and rank of the result of the NULL intrinsic function depend on context
(13.11.84).

7.1.4.2 Data type, type parameters, and shape of the result of an operation

The type of the result of an intrinsic operation [x;] op X, is specified by Table 7.1. The type of the
result of a defined operation [x;] op X, is specified by the function defining the operation (7.3).

The shape of the result of an intrinsic operation is the shape of x, if op is unary or if x; is scalar,
and is the shape of x; otherwise.

An expression of an intrinsic type has a kind type parameter. An expression of type character also
has a character length parameter. For an expression x, // X, where // is the character intrinsic
operator and x; and X, are of type character, the character length parameter is the sum of the
lengths of the operands and the kind type parameter is the kind type parameter of x,, which shall
be the same as the kind type parameter of x,. For an expression op x, where op is an intrinsic
unary operator and X, is of type integer, real, complex, or logical, the kind type parameter of the
expression is that of the operand. For an expression x; op X, where op is a numeric intrinsic
binary operator with one operand of type integer and the other of type real or complex, the kind
type parameter of the expression is that of the real or complex operand. For an expression X; op
X, Where op is a numeric intrinsic binary operator with both operands of the same type and kind

JUN 2001 WORKING DRAFT 113

J3/01-007R2 WORKING DRAFT JUN 2001

type parameters, or with one real and one complex with the same kind type parameters, the kind
type parameter of the expression is identical to that of each operand. In the case where both
operands are integer with different kind type parameters, the kind type parameter of the
expression is that of the operand with the greater decimal exponent range or is processor
dependent if the operands have the same decimal exponent range. In the case where both
operands are any of type real or complex with different kind type parameters, the kind type
parameter of the expression is that of the operand with the greater decimal precision or is
processor dependent if the operands have the same decimal precision. For an expression X; op X,
where op is a logical intrinsic binary operator with both operands of the same kind type parameter,
the kind type parameter of the expression is identical to that of each operand. In the case where
both operands are of type logical with different kind type parameters, the kind type parameter of
the expression is processor dependent. For an expression X; op X, where op is a relational intrinsic
operator, the expression has the default logical kind type parameter.

7.1.5 Conformability rules for elemental operations

An elemental operation is an intrinsic operation or a defined elemental operation. Two entities are
in shape conformance if both are arrays of the same shape, or one or both are scalars.

For all elemental binary operations, the two operands shall be in shape conformance. In the case
where one is a scalar and the other an array, the scalar is treated as if it were an array of the same
shape as the array operand with every element, if any, of the array equal to the value of the scalar.

7.1.6 Specification expression

A specification expression is an expression with limitations that make it suitable for use in

specifications such as nonkind type parameters (R502) and array bounds (R517, R518).

R729 specification-expr is scalar-int-expr

C709 (R729) The scalar-int-expr shall be a restricted expression.

A restricted expression is an expression in which each operation is intrinsic and each primary is
(1) A constant or subobject of a constant,

(2) An object designator with a base object that is a dummy argument that has neither the
OPTIONAL nor the INTENT (OUT) attribute,

(3) An object designator with a base object that is in a common block,

(4) An object designator with a base object that is made accessible by use association or
host association,

(5) An array constructor where each element and the bounds and strides of each implied-
DO are restricted expressions,

(6) A structure constructor where each component is a restricted expression,
(7) A specification inquiry where each designator or function argument is
(a) arestricted expression or
(b) avariable whose properties inquired about are not

(i) dependent on the upper bound of the last dimension of an assumed-size
array,

(ii) deferred, or

(iii) defined by an expression that is not a restricted expression,

(8) A reference to any other standard intrinsic function where each argument is a
restricted expression,

(9) A reference to a specification function where each argument is a restricted expression,

114 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2

(10) A type parameter of the derived type being defined,

(11) An implied-DO variable within an array constructor where the bounds and strides of
the corresponding implied-DO are restricted expressions, or

(12) A restricted expression enclosed in parentheses,
where each subscript, section subscript, substring starting point, substring ending point, and type
parameter value is a restricted expression, and where any final subroutine that is invoked is pure.
A specification inquiry is a reference to

(1) an array inquiry function (13.8.15),

(2) the bit inquiry function BIT_SIZE,

(3) the character inquiry function LEN,

(4) the kind inquiry function KIND,

(5) anumeric inquiry function (13.8.8), or

(6) atype parameter inquiry (6.1.3).
A function is a specification function if it is a pure function, is not a standard intrinsic function, is
not an internal function, is not a statement function, and does not have a dummy procedure argument.

Evaluation of a specification expresion shall not directly or indirectly cause a procedure defined by
the subprogram in which it appears to be invoked.

NOTE 7.12

Specification functions are nonintrinsic functions that may be used in specification
expressions to determine the attributes of data objects. The requirement that they be pure
ensures that they cannot have side effects that could affect other objects being declared in the
same specification-part. The requirement that they not be internal ensures that they cannot
inquire, via host association, about other objects being declared in the same specification-part.
The prohibition against recursion avoids the creation of a new activation record while
construction of one is in progress.

A variable in a specification expression shall have its type and type parameters, if any, specified by
a previous declaration in the same scoping unit, by the implicit typing rules in effect for the
scoping unit, or by host or use association. If a variable in a specification expression is typed by
the implicit typing rules, its appearance in any subsequent type declaration statement shall
confirm the implied type and type parameters.

If a specification expression includes a specification inquiry for a type parameter or an array bound
of an entity specified in the same specification-part, the type parameter or array bound shall be
specified in a prior specification of the specification-part. The prior specification may be to the left
of the specification inquiry in the same statement. If a specification expression includes a reference
to the value of an element of an array specified in the same specification-part, the array shall be
completely specified in prior declarations.

NOTE 7.13
The following are examples of specification expressions:

LBOUND (B, 1) + 5 ! B is an assumed-shape dummy array
M + LEN (C) I' M and C are dummy arguments
2 * PRECISION (A) ! A is a real variable made accessible

I by a USE statement

JUN 2001 WORKING DRAFT 115

J3/01-007R2 WORKING DRAFT JUN 2001

7.1.7 Initialization expression

An initialization expression is an expression in which each operation is intrinsic, the
exponentiation operation is permitted only with an integer power, and each primary is

(1) A constant or subobject of a constant,

(2) An array constructor where each element and the bounds and strides of each implied-
DO are initialization expressions,

(3) A structure constructor where each component-spec corresponding to an allocatable
component is a reference to the transformational intrinsic function NULL, each other
component-spec is an initialization expression,

(4) A reference to the elemental intrinsic function ABS where the argument is an
initialization expression of type integer or real, or a reference to one of the elemental
intrinsic functions ACHAR, ADJUSTL, ADJUSTR, AIMAG, AINT, AMAX0, AMAX1,
AMINO, AMIN1, AMOD, ANINT, BTEST, CEILING, CHAR, CMPLX, CONJG, DABS,
DBLE, DDIM, DIM, DINT, DMAX1, DMIN1, DMOD, DNINT, DPROD, DSIGN,
EXPONENT, FLOAT, FLOOR, FRACTION, IABS, IACHAR, IAND, IBCLR, IBITS,
IBSET, ICHAR, IDIM, IDINT, IDNINT, IEOR, IFIX, INDEX, INT, IOR, ISHFT, ISHFTC,
ISIGN, LEN_TRIM, LGE, LGT, LLE, LLT, LOGICAL, MAX, MAX0, MAX1, MERGE,
MIN, MINO, MIN1, MOD, MODULO, NEAREST, NINT, NOT, REAL, RRSPACING,
SCALE, SCAN, SET_EXPONENT, SIGN, SNGL, SPACING, or VERIFY, where each
argument is an initialization expression,

NOTE 7.14

All elemental intrinsic functions are permitted in an initialization expression except the
mathematical generic intrinsic functions ABS (with an argument of complex type), ACOS,
ASIN, ATAN, ATAN2, COS, COSH, EXP, LOG, LOGI10, SIN, SINH, SQRT, TAN, and TANH,
and the additional mathematical specific intrinsic functions ALOG, ALOG10, CABS, CCOS,
CEXP, CLOG, CSIN, CSQRT, DACOS, DASIN, DATAN, DATANZ2, DCOS, DCOSH, DEXP,
DLOG, DLOG10, DSIN, DSINH, DSQRT, DTAN, and DTANH.

(5) A reference to one of the transformational functions REPEAT, RESHAPE,
SELECTED_INT_KIND, SELECTED_CHAR_KIND, SELECTED_REAL_KIND, TRIM,
or TRANSFER, where each argument is an initialization expression,

(6) A reference to the transformational function IEEE_SELECTED _REAL_KIND from the
intrinsic module IEEE_ARITHMETIC (14), where each argument is an initialization
expression.

(7) A reference to the transformational intrinsic function NULL,
(8) A specification inquiry where each designator or function argument is
(a) an initialization expression or
(b) avariable whose properties inquired about are not
(i) assumed,
(ii)y deferred, or
(iii) defined by an expression that is not an initialization expression,
(99 A kind type parameter of the derived type being defined,

(10) An implied-DO variable within an array constructor where the bounds and strides of
the corresponding implied-DO are initialization expressions, or

(11) An initialization expression enclosed in parentheses,

and where each subscript, section subscript, substring starting point, substring ending point, and
type parameter value is an initialization expression.

R730 initialization-expr is expr

116 WORKING DRAFT JUN 2001

| JUN 2001 WORKING DRAFT J3/01-007R2

C710 (R730) initialization-expr shall be an initialization expression.
R731 char-initialization-expr is char-expr

C711 (R731) char-initialization-expr shall be an initialization expression.
R732 int-initialization-expr is int-expr

C712 (R732) int-initialization-expr shall be an initialization expression.

R733 logical-initialization-expr is logical-expr

C713 (R733) logical-initialization-expr shall be an initialization expression.

If an initialization expression includes a specification inquiry for a type parameter or an array
bound of an entity specified in the same specification-part, the type parameter or array bound shall
be specified in a prior specification of the specification-part. The prior specification may be to the
left of the specification inquiry in the same statement.

NOTE 7.15
The following are examples of initialization expressions:
3
-3+ 4
AB'
'‘AB' /| 'CD'
(AB' /| 'CD") /I 'EF'
SIZE (A)
DIGITS (X) + 4

where A is an explicit-shaped array with constant bounds and X is of type default real.
The following are examples of expressions that are not initialization expressions:
ABS (9.0) ! Not an integer argument

3.0 * 2.0 I Not an integer power

DOT_PRODUCT ((/ 2, 3 /), (/ 1, 7 /)) ! Not an allowed function

7.1.8 Evaluation of operations
An intrinsic operation requires the values of its operands.

The execution of any numeric operation whose result is not defined by the arithmetic used by the
processor is prohibited. Raising a negative-valued primary of type real to a real power is
prohibited.

The evaluation of a function reference shall neither affect nor be affected by the evaluation of any
other entity within the statement. If a function reference causes definition or undefinition of an
actual argument of the function, that argument or any associated entities shall not appear
elsewhere in the same statement. However, execution of a function reference in the logical
expression in an IF statement (8.1.2.4), the mask expression in a WHERE statement (7.5.3.1), or the
subscripts and strides in a FORALL statement (7.5.4) is permitted to define variables in the
statement that is conditionally executed.

| JUN 2001 WORKING DRAFT 117

J3/01-007R2 WORKING DRAFT JUN 2001

NOTE 7.16
For example, the statements
A®M=F(®

Y =G (X) + X

are prohibited if the reference to F defines or undefines | or the reference to G defines or
undefines X.

However, in the statements
IF (F (X)) A =X
WHERE (G (X)) B = X

F or G may define X.

The type of an expression in which a function reference appears does not affect, and is not affected
by, the evaluation of the actual arguments of the function.

Execution of an array element reference requires the evaluation of its subscripts. The type of an
expression in which the array element reference appears does not affect, and is not affected by, the
evaluation of its subscripts. Execution of an array section reference requires the evaluation of its
section subscripts. The type of an expression in which an array section appears does not affect,
and is not affected by, the evaluation of the array section subscripts. Execution of a substring
reference requires the evaluation of its substring expressions. The type of an expression in which
a substring appears does not affect, and is not affected by, the evaluation of the substring
expressions. It is not necessary for a processor to evaluate any subscript expressions or substring
expressions for an array of zero size or a character entity of zero length.

The appearance of an array constructor requires the evaluation of the bounds and stride of any
array constructor implied-DO it may contain. The type of an expression in which an array
constructor appears does not affect, and is not affected by, the evaluation of such bounds and
stride expressions.

When an elemental binary operation is applied to a scalar and an array or to two arrays of the
same shape, the operation is performed element-by-element on corresponding array elements of
the array operands. The processor may perform the element-by-element operations in any order.

NOTE 7.17
For example, the array expression

A+ B

produces an array the same shape as A and B. The individual array elements of the result
have the values of the first element of A added to the first element of B, the second element of
A added to the second element of B, etc.

When an elemental unary operator operates on an array operand, the operation is performed
element-by-element, in any order, and the result is the same shape as the operand.

7.1.8.1 Evaluation of operands

It is not necessary for a processor to evaluate all of the operands of an expression, or to evaluate
entirely each operand, if the value of the expression can be determined otherwise.

118 WORKING DRAFT JUN 2001

| JUN 2001 WORKING DRAFT J3/01-007R2

NOTE 7.18

This principle is most often applicable to logical expressions, zero-sized arrays, and zero-
length strings, but it applies to all expressions.

For example, in evaluating the expression
X >Y .OR. L (2

where X, Y, and Z are real and L is a function of type logical, the function reference L (Z) need
not be evaluated if X is greater than Y. Similarly, in the array expression

W (2) + X

where X is of size zero and W is a function, the function reference W (Z) need not be
evaluated.

If a statement contains a function reference in a part of an expression that need not be evaluated,
all entities that would have become defined in the execution of that reference become undefined at
the completion of evaluation of the expression containing the function reference.

NOTE 7.19

In the preceding examples, evaluation of these expressions causes Z to become undefined if L
or W defines its argument.

7.1.8.2 Integrity of parentheses

The sections that follow state certain conditions under which a processor may evaluate an
expression that is different from the one specified by applying the rules given in 7.1.1, 7.2, and 7.3.
However, any expression in parentheses shall be treated as a data entity.

NOTE 7.20

For example, in evaluating the expression A + (B — C) where A, B, and C are of numeric types,
the difference of B and C shall be evaluated before the addition operation is performed; the
processor shall not evaluate the mathematically equivalent expression (A + B) - C.

7.1.8.3 Evaluation of numeric intrinsic operations

The rules given in 7.2.1 specify the interpretation of a numeric intrinsic operation. Once the
interpretation has been established in accordance with those rules, the processor may evaluate any
mathematically equivalent expression, provided that the integrity of parentheses is not violated.

Two expressions of a numeric type are mathematically equivalent if, for all possible values of their
primaries, their mathematical values are equal. However, mathematically equivalent expressions
of numeric type may produce different computational results.

NOTE 7.21

Any difference between the values of the expressions (1./3.)[B. and 1. is a computational
difference, not a mathematical difference.

The mathematical definition of integer division is given in 7.2.1.1.

NOTE 7.22

The difference between the values of the expressions 5/2 and 5./2. is a mathematical
difference, not a computational difference.

| JUN 2001 WORKING DRAFT 119

J3/01-007R2 WORKING DRAFT JUN 2001

NOTE 7.23

The following are examples of expressions with allowable alternative forms that may be used
by the processor in the evaluation of those expressions. A, B, and C represent arbitrary real or
complex operands; | and J represent arbitrary integer operands; and X, Y, and Z represent

arbitrary operands of numeric type.

Expression Allowable alternative form
X +Y Y + X

X *Y Y * X

X +Y Y - X

X+ Y + Z X + (Y + 2

X-Y +2Z X - (Y - 2)
X*A/lZ X * (Al 2)

X*Y -X*2Z X * (Y - 2)

A/ B/C A/l (B * C)

A/ 50 0.2 * A

used by a processor in the evaluation of those expressions.

Expression Nonallowable alternative form
I/ 2 05 * |

X * 1/ X * (/1 J)

/31 A I/ @ * A)

X +Y) + Z X + (Y + 2

X *Y) - (X * 2 X * (Y - 2)

X * (Y - 2) X*Y - X*2Z

The following are examples of expressions with forbidden alternative forms that shall not be

In addition to the parentheses required to establish the desired interpretation, parentheses may be
included to restrict the alternative forms that may be used by the processor in the actual evaluation
of the expression. This is useful for controlling the magnitude and accuracy of intermediate values

developed during the evaluation of an expression.
NOTE 7.24

For example, in the expression
A+ (B -C)
the parenthesized expression (B — C) shall be evaluated and then added to A.

example, the two expressions
A *1/J
A *(11J)
may have different mathematical values if | and J are of type integer.

The inclusion of parentheses may change the mathematical value of an expression. For

Each operand in a numeric intrinsic operation has a data type that may depend on the order of

evaluation used by the processor.

120 WORKING DRAFT

JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2

NOTE 7.25
For example, in the evaluation of the expression

Z+ R+ 1

where Z, R, and | represent data objects of complex, real, and integer data type, respectively,
the data type of the operand that is added to | may be either complex or real, depending on
which pair of operands (Z and R, R and I, or Z and |) is added first.

7.1.8.4 Evaluation of the character intrinsic operation

The rules given in 7.2.2 specify the interpretation of the character intrinsic operation. A processor
is only required to evaluate as much of the character intrinsic operation as is required by the
context in which the expression appears.

NOTE 7.26
For example, the statements

CHARACTER (LEN = 2) C1, C2, C3, CF
Cl = C2 /| CF (C3)

do not require the function CF to be evaluated, because only the value of C2 is needed to
determine the value of C1 because C1 and C2 both have a length of 2.

7.1.8.5 Evaluation of relational intrinsic operations

The rules given in 7.2.3 specify the interpretation of relational intrinsic operations. Once the
interpretation of an expression has been established in accordance with those rules, the processor
may evaluate any other expression that is relationally equivalent, provided that the integrity of
parentheses in any expression is not violated.

NOTE 7.27

For example, the processor may choose to evaluate the expression

I .GT. J

where | and J are integer variables, as
J-1.LT. 0

Two relational intrinsic operations are relationally equivalent if their logical values are equal for all
possible values of their primaries.

7.1.8.6 Evaluation of logical intrinsic operations

The rules given in 7.2.4 specify the interpretation of logical intrinsic operations. Once the
interpretation of an expression has been established in accordance with those rules, the processor
may evaluate any other expression that is logically equivalent, provided that the integrity of
parentheses in any expression is not violated.

NOTE 7.28

For example, for the variables L1, L2, and L3 of type logical, the processor may choose to
evaluate the expression

L1 .AND. L2 .AND. L3

as
L1 .AND. (L2 .AND. L3)

Two expressions of type logical are logically equivalent if their values are equal for all possible
values of their primaries.

JUN 2001 WORKING DRAFT 121

J3/01-007R2 WORKING DRAFT JUN 2001

7.1.8.7 Evaluation of a defined operation

The rules given in 7.3 specify the interpretation of a defined operation. Once the interpretation of
an expression has been established in accordance with those rules, the processor may evaluate any
other expression that is equivalent, provided that the integrity of parentheses is not violated.

Two expressions of derived type are equivalent if their values are equal for all possible values of
their primaries.

7.2 Interpretation of intrinsic operations

The intrinsic operations are those defined in 7.1.2. These operations are divided into the following
categories: numeric, character, relational, and logical. The interpretations defined in the following
sections apply to both scalars and arrays; the interpretation for arrays is obtained by applying the
interpretation for scalars element by element.

The type, type parameters, and interpretation of an expression that consists of an intrinsic unary or
binary operation are independent of the context in which the expression appears. In particular, the
type, type parameters, and interpretation of such an expression are independent of the type and
type parameters of any other larger expression in which it appears.

NOTE 7.29
For example, if X is of type real, J is of type integer, and INT is the real-to-integer intrinsic
conversion function, the expression INT (X +1]) is an integer expression and X +1] is a real
expression.

7.2.1 Numeric intrinsic operations

A numeric operation is used to express a numeric computation. Evaluation of a numeric operation
produces a numeric value. The permitted data types for operands of the numeric intrinsic
operations are specified in 7.1.2.

The numeric operators and their interpretation in an expression are given in Table 7.2, where x;
denotes the operand to the left of the operator and x, denotes the operand to the right of the
operator.

Table 7.2 Interpretation of the numeric intrinsic operators

Operator Representing ogsfa?;r Interpretation
** Exponentiation X1**Xy Raise x; to the power X,
Division X1 / X, Divide x; by x,
* Multiplication X1 * Xo Multiply x; by x,
- Subtraction X1 - Xy Subtract x, from x;
- Negation - Xo Negate X,
+ Addition X; + X Add x; and x,
+ Identity + X5 Same as X,

The interpretation of a division depends on the data types of the operands (7.2.1.1).

If x;, and x, are of type integer and x, has a negative value, the interpretation of x; [1Ix, is the
same as the interpretation of 1/(x; JABS (x,)), which is subject to the rules of integer division
(7.2.1.1).

NOTE 7.30
‘For example, 2 [T1(-3) has the value of 1/(2 [1J3), which is zero.

122 WORKING DRAFT JUN 2001

| JUN 2001 WORKING DRAFT J3/01-007R2

7.2.1.1 Integer division

One operand of type integer may be divided by another operand of type integer. Although the
mathematical quotient of two integers is not necessarily an integer, Table 7.1 specifies that an
expression involving the division operator with two operands of type integer is interpreted as an
expression of type integer. The result of such an operation is the integer closest to the
mathematical quotient and between zero and the mathematical quotient inclusively.

NOTE 7.31
For example, the expression (-8) / 3 has the value (-2).

7.2.1.2 Complex exponentiation

In the case of a complex value raised to a complex power, the value of the operation x; [IIx, is the
principal value of x;2.

7.2.2 Character intrinsic operation

The character intrinsic operator // is used to concatenate two operands of type character with the
same kind type parameter. Evaluation of the character intrinsic operation produces a result of type
character.

The interpretation of the character intrinsic operator // when used to form an expression is given
in Table 7.3, where x; denotes the operand to the left of the operator and x, denotes the operand
to the right of the operator.

Table 7.3 Interpretation of the character intrinsic operator //

- Use of .
Operator Representing operator Interpretation
// Concatenation X, // X, Concatenate x; with x,

The result of the character intrinsic operation // is a character string whose value is the value of
X, concatenated on the right with the value of x, and whose length is the sum of the lengths of x;
and x,. Parentheses used to specify the order of evaluation have no effect on the value of a
character expression.

NOTE 7.32

For example, the value of (AB' // 'CDE") //'F'is the string 'ABCDEF'. Also, the value of
‘AB' // (CDE' // 'F") is the string 'ABCDEF'.

7.2.3 Relational intrinsic operations

A relational intrinsic operation is used to compare values of two operands using the relational

intrinsic operators .LT., .LE., .GT., .GE., .EQ., .NE., <, <=, >, >= == and /=. The permitted
data types for operands of the relational intrinsic operators are specified in 7.1.2.
NOTE 7.33

As shown in Table 7.1, a relational intrinsic operator cannot be used to compare the value of
an expression of a numeric type with one of type character or logical. Also, two operands of
type logical cannot be compared, a complex operand may be compared with another numeric
operand only when the operator is .EQ., .NE., ==, or /=, and two character operands cannot
be compared unless they have the same kind type parameter value.

Evaluation of a relational intrinsic operation produces a result of type default logical.

The interpretation of the relational intrinsic operators is given in Table 7.4, where x; denotes the
operand to the left of the operator and x, denotes the operand to the right of the operator. The

| JUN 2001 WORKING DRAFT 123

J3/01-007R2 WORKING DRAFT JUN 2001

operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT.,
.LE., .GT., .GE., .EQ., and .NE., respectively.

Table 7.4 Interpretation of the relational intrinsic operators

Operator Representing oggsa?cf)r Interpretation
.LT. Less than X «LTe X, X, less than x,
< Less than Xy < X, X, less than x,
.LE. Less than or equal to Xy «LE. X, X less than or equal to X,
<= Less than or equal to Xy <= X, X, less than or equal to x,
.GT. Greater than X; «GT. X, Xx; greater than x,
> Greater than X1 > X X, greater than x,
.GE. Greater than or equal to X; «GE. X, X; greater than or equal to x,
>= Greater than or equal to Xy >= X, X, greater than or equal to X,
.EQ. Equal to X; .EQ. X, x; equal to x,
== Equal to Xy == X, X, equal to x,
.NE. Not equal to X; «NE. X, X, notequal to x,
/= Not equal to Xy /= Xo X; not equal to X,

A numeric relational intrinsic operation is interpreted as having the logical value true if the values
of the operands satisfy the relation specified by the operator. A numeric relational intrinsic
operation is interpreted as having the logical value false if the values of the operands do not satisfy
the relation specified by the operator.

In the numeric relational operation
X4 rel-op X,

if the types or kind type parameters of x; and x, differ, their values are converted to the type and
kind type parameter of the expression x; + X, before evaluation.

A character relational intrinsic operation is interpreted as having the logical value true if the values
of the operands satisfy the relation specified by the operator. A character relational intrinsic
operation is interpreted as having the logical value false if the values of the operands do not satisfy
the relation specified by the operator.

For a character relational intrinsic operation, the operands are compared one character at a time in
order, beginning with the first character of each character operand. If the operands are of unequal
length, the shorter operand is treated as if it were extended on the right with blanks to the length
of the longer operand. If both x; and x, are of zero length, x; is equal to X,; if every character of
X4 is the same as the character in the corresponding position in x,, x; is equal to x,. Otherwise,
at the first position where the character operands differ, the character operand x, is considered to
be less than x, if the character value of x; at this position precedes the value of x, in the collating
sequence (4.4.4.1); x, is greater than x, if the character value of x; at this position follows the
value of x, in the collating sequence.

NOTE 7.34
The collating sequence depends partially on the processor; however, the result of the use of
the operators .EQ., .NE., ==, and /= does not depend on the collating sequence.

For nondefault character types, the blank padding character is processor dependent.

124 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2

7.2.4 Logical intrinsic operations

A logical operation is used to express a logical computation. Evaluation of a logical operation
produces a result of type logical. The permitted data types for operands of the logical intrinsic
operations are specified in 7.1.2.

The logical operators and their interpretation when used to form an expression are given in Table
7.5, where x, denotes the operand to the left of the operator and x, denotes the operand to the
right of the operator.

Table 7.5 Interpretation of the logical intrinsic operators

Operator Representing Use of operator Interpretation

.NOT. Logical negation «NOT. x, True if x, is false

.AND. Logical conjunction X; +AND. X, True if x; and x, are both true
Logical inclusive . .

.OR, disjunction X; «OR. X, True if x; and/or X, is true

True if either x; or X, is true,
but not both

True if both x; and x, are true
or both are false

.NEQV. Logical nonequivalence X; «NEQV. X,

.EQWV. Logical equivalence X; EQV: X,

The values of the logical intrinsic operations are shown in Table 7.6.
Table 7.6 The values of operations involving logical intrinsic operators

X1 X, .NOT. X, X; .AND. X, X; .OR. X, X; .EQV. X, X; .NEQV. X,
true true false true true true false
true false true false true false true
false true false false true false true
false false true false false true false

7.3 Interpretation of defined operations

The interpretation of a defined operation is provided by the function that defines the operation.
The type, type parameters, and interpretation of an expression that consists of a defined operation
are independent of the type and type parameters of any larger expression in which it appears. The
operators <, <=, >, >=, ==, and /= always have the same interpretations as the operators .LT.,
.LE., .GT., .GE., .EQ., and .NE., respectively.

7.3.1 Unary defined operation

A function defines the unary operation op %, if

(1) The function is specified with a FUNCTION (12.5.2.1) or ENTRY (12.5.2.4) statement
that specifies one dummy argument d,,

(2) A type-bound generic binding (4.5.1.5) in the dynamic type of x, with a generic spec
of OPERATOR (op) specifies the function, and there is a corresponding specific
interface in the declared type of x,; or a generic interface (12.3.2.1) provides the
function with a generic-spec of OPERATOR (op),

(3) The type of x, is the same as the type of dummy argument d,,
(4) The type parameters, if any, of x, match those of d,, and
(5) Either

(@ The rank of x, matches that of d, or

JUN 2001 WORKING DRAFT 125

J3/01-007R2 WORKING DRAFT JUN 2001

(b) The function is elemental and there is no other function that defines the
operation.

If d, is an array, the shape of x, shall match the shape of d,.

7.3.2 Binary defined operation

A function defines the binary operation x; op X, if

(1) The function is specified with a FUNCTION (12.5.2.1) or ENTRY (12.5.2.4) statement
that specifies two dummy arguments, d; and d,,

(2) A type-bound generic binding (4.5.1.5) in the dynamic type of x; or x, with a generic
spec of OPERATOR (op) specifies the function, and there is a corresponding specific
interface in the corresponding declared type; or a generic interface (12.3.2.1) provides
the function with a generic-spec of OPERATOR (op),

(3) The types of x; and x, are the same as those of the dummy arguments d, and d,,
respectively,

(4) The type parameters, if any, of x; and x, match those of d; and d,, respectively, and
(5) Either
(@ The ranks of x; and x, match those of d; and d, or

(b) The function is elemental and there is no other function that defines the
operation.

If d; or d, is an array, the shapes of x; and x, shall match the shapes of d; and d,, respectively.

J3 internal note
Unresolved issue 335

Paper 01-251 deleted the conformability requirements for elemental defined binary ops and
for elemental defined assignment in 7.3.2 and 7.5.1.6. | hope this is claimed to be covered
elsewhere; if not, this will need fixing.

7.4 Precedence of operators

There is a precedence among the intrinsic and extension operations implied by the general form in
7.1.1, which determines the order in which the operands are combined, unless the order is changed
by the use of parentheses. This precedence order is summarized in Table 7.7.

Table 7.7 Categories of operations and relative precedence

Cc?;?a?gt?ér?f Operators Precedence
Extension defined-unary-op Highest
Numeric *x
Numeric *or/

Numeric unary + or —
Numeric binary + or —
Character //
Relational -EQ., '\5/5; <L:E>S:T -GE.,
Logical .NOT.
Logical .AND.
Logical .OR,
Logical .EQV. or .NEQW. .
Extension defined-binary-op Lowest

126 WORKING DRAFT JUN 2001

| JUN 2001 WORKING DRAFT J3/01-007R2

I The precedence of a defined operation is that of its operator.

NOTE 7.35
For example, in the expression

_A **2

the exponentiation operator ([T) has precedence over the negation operator (-); therefore, the
operands of the exponentiation operator are combined to form an expression that is used as
the operand of the negation operator. The interpretation of the above expression is the same
as the interpretation of the expression

- (A 2)

The general form of an expression (7.1.1) also establishes a precedence among operators in the

same syntactic class. This precedence determines the order in which the operands are to be

combined in determining the interpretation of the expression unless the order is changed by the
| use of parentheses.

| JUN 2001 WORKING DRAFT 127

J3/01-007R2 WORKING DRAFT JUN 2001

128

NOTE 7.36

In interpreting a level-2-expr containing two or more binary operators + or —, each operand
(add-operand) is combined from left to right. Similarly, the same left-to-right interpretation for
a mult-operand in add-operand, as well as for other kinds of expressions, is a consequence of the
general form. However, for interpreting a mult-operand expression when two or more
exponentiation operators [I1combine level-1-expr operands, each level-1-expr is combined from
right to left.

For example, the expressions
21 + 34 + 4.9
21 * 34 * 49
21/ 341 49
9 %k 3wk 4
'‘AB' /['CD' I/l 'EF'
have the same interpretations as the expressions
(21 + 3.4) + 49
(2.1 * 3.4) * 49
(21 / 3.4) / 49
2 = (3 = 4)
(AB' // 'CD") /I 'EF'

As a consequence of the general form (7.1.1), only the first add-operand of a level-2-expr may be
preceded by the identity (+) or negation (-) operator. These formation rules do not permit
expressions containing two consecutive numeric operators, such as A [1J-B or A +-B.
However, expressions such as A [11(-B) and A + (-B) are permitted. The rules do allow a
binary operator or an intrinsic unary operator to be followed by a defined unary operator,
such as:

A * (INVERSE. B
- INVERSE. (B)

As another example, in the expression
A .OR. B .AND. C

the general form implies a higher precedence for the .AND. operator than for the .OR.
operator; therefore, the interpretation of the above expression is the same as the interpretation
of the expression

A .OR. (B .AND. C)

NOTE 7.37

An expression may contain more than one category of operator. The logical expression
L .OR. A+ B >=C

where A, B, and C are of type real, and L is of type logical, contains a numeric operator, a
relational operator, and a logical operator. This expression would be interpreted the same as
the expression

L .OR. (A + B) >= C)

WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2

NOTE 7.37 (Continued)
For example, if

(1) The operator [1l