
JUN 2001 WORKING DRAFT J3/01-007R2
Section 6: Use of data objects
The appearance of a data object designator in a context that requires its value is termed a reference.

A reference is permitted only if the data object is defined. A reference to a pointer is permitted

only if the pointer is associated with a target object that is defined. A data object becomes defined

with a value when the data object designator appears in certain contexts and when certain events

occur (16.8).

R601 variable is designator

C601 (R601) designator shall not be a constant or a subobject of a constant.

R602 variable-name is name

C602 (R602) A variable-name shall be the name of a variable.

R603 designator is object-name
or array-element
or array-section
or structure-component
or substring

R604 logical-variable is variable

C603 (R604) logical-variable shall be of type logical.

R605 default-logical-variable is variable

C604 (R605) default-logical-variable shall be of type default logical.

R606 char-variable is variable

C605 (R606) char-variable shall be of type character.

R607 default-char-variable is variable

C606 (R607) default-char-variable shall be of type default character.

R608 int-variable is variable

C607 (R608) int-variable shall be of type integer.

A literal constant is a scalar denoted by a syntactic form, which indicates its type, type parameters,

and value. A named constant is a constant that has been associated with a name that has the

PARAMETER attribute (5.1.2.10, 5.2.9). A reference to a constant is always permitted; redefinition

of a constant is never permitted.

6.1 Scalars
A scalar (2.4.4) is a data entity that can be represented by a single value of the data type and that

is not an array (6.2). Its value, if defined, is a single element from the set of values that

characterize its data type.

NOTE 6.1
For example, given the declarations:

CHARACTER (10) A, B (10)
TYPE (PERSON) P ! See Note 4.21

then A, B, B (1), B (1:5), P % AGE, and A (1:1) are all variables.
JUN 2001 WORKING DRAFT 93

J3/01-007R2 WORKING DRAFT JUN 2001
A scalar has rank zero.

6.1.1 Substrings

A substring is a contiguous portion of a character string (4.4.4). The following rules define the

forms of a substring:

R609 substring is parent-string (substring-range)

R610 parent-string is scalar-variable-name
or array-element
or scalar-structure-component
or scalar-constant

R611 substring-range is [scalar-int-expr] : [scalar-int-expr]

C608 (R610) parent-string shall be of type character.

The first scalar-int-expr in substring-range is called the starting point and the second one is called

the ending point. The length of a substring is the number of characters in the substring and is

MAX (, 0), where and are the starting and ending points, respectively.

Let the characters in the parent string be numbered 1, 2, 3, ..., , where is the length of the parent

string. Then the characters in the substring are those from the parent string from the starting point

and proceeding in sequence up to and including the ending point. Both the starting point and the

ending point shall be within the range 1, 2, ..., unless the starting point exceeds the ending point,

in which case the substring has length zero. If the starting point is not specified, the default value

is 1. If the ending point is not specified, the default value is .

If the parent is a variable, the substring is also a variable.

6.1.2 Structure components

A structure component is part of an object of derived type; it may be referenced by an object

designator. A structure component may be a scalar or an array.

R612 data-ref is part-ref [% part-ref] ...

R613 part-ref is part-name [(section-subscript-list)]

C609 (R612) In a data-ref, each part-name except the rightmost shall be of derived type.

C610 (R612) In a data-ref, each part-name except the leftmost shall be the name of a component of
the derived-type definition of the declared type of the preceding part-name.

C611 (R612) The leftmost part-name shall be the name of a data object.

C612 (R613) In a part-ref containing a section-subscript-list, the number of section-subscripts shall
equal the rank of part-name.

NOTE 6.2
A scalar object of derived type has a single value that consists of the values of its components
(4.5.6).

NOTE 6.3
Examples of character substrings are:

B(1)(1:5) array element as parent string
P%NAME(1:1) structure component as parent string
ID(4:9) scalar variable name as parent string
'0123456789'(N:N) character constant as parent string

l f– 1+ f l

n n

n

n

94 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
The rank of a part-ref of the form part-name is the rank of part-name. The rank of a part-ref that has

a section subscript list is the number of subscript triplets and vector subscripts in the list.

C613 (R612) In a data-ref, there shall not be more than one part-ref with nonzero rank. A
part-name to the right of a part-ref with nonzero rank shall not have the ALLOCATABLE or
POINTER attribute.

The rank of a data-ref is the rank of the part-ref with nonzero rank, if any; otherwise, the rank is

zero. The base object of a data-ref is the data object whose name is the leftmost part name.

A data-ref with more than one part-ref is a subobject of its base object if none of the part-names,

except for possibly the rightmost, are pointers. If the rightmost part-name is the only pointer, then

the data-ref is a subobject of its base object where used in contexts that pertain to its pointer

association, but not where used in contexts in which it is dereferenced to refer to its target.

R614 structure-component is data-ref

C614 (R614) In a structure-component, there shall be more than one part-ref and the rightmost
part-ref shall be of the form part-name.

The type and type parameters, if any, of a structure component are those of the rightmost part

name. A structure component shall be neither referenced nor defined before the declaration of the

base object. A structure component is a pointer only if the rightmost part name is defined to have

the POINTER attribute.

A subcomponent of an object of derived type is a component of that object or of a subobject of that

object.

6.1.3 Type parameter inquiry

A type parameter inquiry is used to inquire about a type parameter of a data object. It applies to

both intrinsic and derived data types.

R615 type-param-inquiry is designator % type-param-name

C615 (R615) The type-param-name shall be the name of a type parameter of the object designated
by the designator.

NOTE 6.4
If X is an object of derived type with a pointer component P, then the pointer X%P is a
subobject of X when considered as a pointer - that is in contexts where it is not dereferenced.

However the target of X%P is not a subobject of X. Thus, in contexts where X%P is
dereferenced to refer to the target, it is not a subobject of X.

NOTE 6.5
Examples of structure components are:

SCALAR_PARENT%SCALAR_FIELD scalar component of scalar parent
ARRAY_PARENT(J)%SCALAR_FIELD component of array element parent
ARRAY_PARENT(1:N)%SCALAR_FIELD component of array section parent

For a more elaborate example see C.3.1.

NOTE 6.6
The syntax rules are structured such that a data-ref that ends in a component name without a
following subscript list is a structure component, even when other component names in the
data-ref are followed by a subscript list. A data-ref that ends in a component name with a
following subscript list is either an array element or an array section. A data-ref of nonzero
rank that ends with a substring-range is an array section. A data-ref of zero rank that ends with
a substring-range is a substring.
JUN 2001 WORKING DRAFT 95

J3/01-007R2 WORKING DRAFT JUN 2001
A deferred type parameter of a pointer that is not associated or of an allocatable variable that is not

currently allocated shall not be inquired about.

6.2 Arrays
An array is a set of scalar data, all of the same type and type parameters, whose individual

elements are arranged in a rectangular pattern. The scalar data that make up an array are the array
elements.

No order of reference to the elements of an array is indicated by the appearance of the array

designator, except where array element ordering (6.2.2.2) is specified.

6.2.1 Whole arrays

A whole array is a named array, which may be either a named constant (5.1.2.10, 5.2.9) or a

variable; no subscript list is appended to the name.

The appearance of a whole array variable in an executable construct specifies all the elements of

the array (2.4.5). An assumed-size array is permitted to appear as a whole array in an executable

construct only as an actual argument in a procedure reference that does not require the shape.

The appearance of a whole array name in a nonexecutable statement specifies the entire array

except for the appearance of a whole array name in an equivalence set (5.5.1.3).

6.2.2 Array elements and array sections

R616 array-element is data-ref

C616 (R616) In an array-element, every part-ref shall have rank zero and the last part-ref shall
contain a subscript-list.

R617 array-section is data-ref [(substring-range)]

C617 (R617) In an array-section, exactly one part-ref shall have nonzero rank, and either the final
part-ref shall have a section-subscript-list with nonzero rank or another part-ref shall have
nonzero rank.

C618 (R617) In an array-section with a substring-range, the rightmost part-name shall be of type
character.

R618 subscript is scalar-int-expr

R619 section-subscript is subscript
or subscript-triplet
or vector-subscript

NOTE 6.7
A type-param-inquiry has a syntax like that of a structure component reference, but it does not
have the same semantics. It is not a variable and thus can never be assigned to. It may be
used only as a primary in an expression. It is scalar even if designator is an array.

The intrinsic type parameters can also be inquired about by using the intrinsic functions
KIND and LEN.

NOTE 6.8
The following are examples of type parameter inquiries:

a%kind !-- A is real. Same value as KIND(a).
s%len !-- S is character. Same value as LEN(s).
b(10)%kind !-- Inquiry about an array element.
p%dim !-- P is of the derived type general_point
 !-- defined in Note 4.22.
96 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
R620 subscript-triplet is [subscript] : [subscript] [: stride]

R621 stride is scalar-int-expr

R622 vector-subscript is int-expr

C619 (R622) A vector-subscript shall be an integer array expression of rank one.

C620 (R620) The second subscript shall not be omitted from a subscript-triplet in the last
dimension of an assumed-size array.

An array element is a scalar. An array section is an array. If a substring-range is present in an

array-section, each element is the designated substring of the corresponding element of the array

section.

An array element or an array section never has the POINTER attribute.

6.2.2.1 Array elements

The value of a subscript in an array element shall be within the bounds for that dimension.

6.2.2.2 Array element order

The elements of an array form a sequence known as the array element order. The position of an

array element in this sequence is determined by the subscript order value of the subscript list

designating the element. The subscript order value is computed from the formulas in Table 6.1.

NOTE 6.9
For example, with the declarations:

REAL A (10, 10)
CHARACTER (LEN = 10) B (5, 5, 5)

A (1, 2) is an array element, A (1:N:2, M) is a rank-one array section, and B (:, :, :) (2:3) is an
array of shape (5, 5, 5) whose elements are substrings of length 2 of the corresponding
elements of B.

NOTE 6.10
Examples of array elements and array sections are:

ARRAY_A(1:N:2)%ARRAY_B(I, J)%STRING(K)(:) array section
SCALAR_PARENT%ARRAY_FIELD(J) array element
SCALAR_PARENT%ARRAY_FIELD(1:N) array section
SCALAR_PARENT%ARRAY_FIELD(1:N)%SCALAR_FIELD array section
JUN 2001 WORKING DRAFT 97

J3/01-007R2 WORKING DRAFT JUN 2001
6.2.2.3 Array sections

An array section is an array subobject optionally followed by a substring range.

In an array-section having a section-subscript-list, each subscript-triplet and vector-subscript in the

section subscript list indicates a sequence of subscripts, which may be empty. Each subscript in

such a sequence shall be within the bounds for its dimension unless the sequence is empty. The

array section is the set of elements from the array determined by all possible subscript lists

obtainable from the single subscripts or sequences of subscripts specified by each section subscript.

In an array-section with no section-subscript-list, the rank and shape of the array is the rank and

shape of the part-ref with nonzero rank; otherwise, the rank of the array section is the number of

subscript triplets and vector subscripts in the section subscript list. The shape is the rank-one

array whose ith element is the number of integer values in the sequence indicated by the ith
subscript triplet or vector subscript. If any of these sequences is empty, the array section has size

zero. The subscript order of the elements of an array section is that of the array data object that the

array section represents.

6.2.2.3.1 Subscript triplet

A subscript triplet designates a regular sequence of subscripts consisting of zero or more subscript

values. The third expression in the subscript triplet is the increment between the subscript values

and is called the stride. The subscripts and stride of a subscript triplet are optional. An omitted

first subscript in a subscript triplet is equivalent to a subscript whose value is the lower bound for

the array and an omitted second subscript is equivalent to the upper bound. An omitted stride is

equivalent to a stride of 1.

When the stride is positive, the subscripts specified by a triplet form a regularly spaced sequence

of integers beginning with the first subscript and proceeding in increments of the stride to the

largest such integer not greater than the second subscript; the sequence is empty if the first

subscript is greater than the second.

Table 6.1 Subscript order value

Rank
Subscript
bounds

Subscript
list

Subscript
order
value

1 :

2 : , :

3 : : :

. . . .

. . . .

. . . .

7 : :

Notes for Table 6.1:
1) = max (- + 1, 0) is the size of the th dimension.
2) If the size of the array is nonzero, for all

= 1, 2, ..., 7.

j1 k1 s1 1 s1 j1–()+

j1 k1 j2 k2 s1 s2, 1 s1 j1)–(+
s2 j2) d1×–(+

j1 k1 j2, k2 j3, k3 s1 s2 s3, ,
1 s1 j1)–(+

s2 j2) d1×–(+
s3 j3) d2 d1××–(+

j1 k1 … j7, , k7 s1 … s7, ,

1 s1(j1)–+
s2 j2) d1×–(+
s3 j3) d2×–(d1×+

…+
s7(j7) d6×–+
d5× … d1××

di ki j i i
j i si ki≤ ≤

i

98 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
The stride shall not be zero.

If the stride is negative, the sequence begins with the first subscript and proceeds in increments of

the stride down to the smallest such integer equal to or greater than the second subscript; the

sequence is empty if the second subscript is greater than the first.

6.2.2.3.2 Vector subscript

A vector subscript designates a sequence of subscripts corresponding to the values of the elements

of the expression. Each element of the expression shall be defined. A many-one array section is

an array section with a vector subscript having two or more elements with the same value. A

many-one array section shall appear neither on the left of the equals in an assignment statement

nor as an input item in a READ statement.

An array section with a vector subscript shall not be argument associated with a dummy array that

is defined or redefined. An array section with a vector subscript shall not be the target in a pointer

assignment statement. An array section with a vector subscript shall not be an internal file.

NOTE 6.11
For example, suppose an array is declared as A (5, 4, 3). The section A (3 : 5, 2, 1 : 2) is the
array of shape (3, 2):

A (3, 2, 1) A (3, 2, 2)
A (4, 2, 1) A (4, 2, 2)
A (5, 2, 1) A (5, 2, 2)

NOTE 6.12
For example, if an array is declared B (10), the section B (9 : 1 : –2) is the array of shape (5)
whose elements are B (9), B (7), B (5), B (3), and B (1), in that order.

NOTE 6.13
A subscript in a subscript triplet need not be within the declared bounds for that dimension if
all values used in selecting the array elements are within the declared bounds.

For example, if an array is declared as B (10), the array section B (3 : 11 : 7) is the array of
shape (2) consisting of the elements B (3) and B (10), in that order.

NOTE 6.14
For example, suppose Z is a two-dimensional array of shape (5, 7) and U and V are one-
dimensional arrays of shape (3) and (4), respectively. Assume the values of U and V are:

U = (/ 1, 3, 2 /)
V = (/ 2, 1, 1, 3 /)

Then Z (3, V) consists of elements from the third row of Z in the order:

Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3)

and Z (U, 2) consists of the column elements:

Z (1, 2) Z (3, 2) Z(2, 2)

and Z (U, V) consists of the elements:

Z (1, 2) Z (1, 1) Z (1, 1) Z (1, 3)
Z (3, 2) Z (3, 1) Z (3, 1) Z (3, 3)
Z (2, 2) Z (2, 1) Z (2, 1) Z (2, 3)

Because Z (3, V) and Z (U, V) contain duplicate elements from Z, the sections Z (3, V) and
Z (U, V) shall not be redefined as sections.
JUN 2001 WORKING DRAFT 99

J3/01-007R2 WORKING DRAFT JUN 2001
6.3 Dynamic association
Dynamic control over the creation, association, and deallocation of pointer targets is provided by

the ALLOCATE, NULLIFY, and DEALLOCATE statements and pointer assignment. ALLOCATE

(6.3.1) creates targets for pointers; pointer assignment (7.5.2) associates pointers with existing

targets; NULLIFY (6.3.2) disassociates pointers from targets, and DEALLOCATE (6.3.3) deallocates

targets. Dynamic association applies to scalars and arrays of any type.

The ALLOCATE and DEALLOCATE statements also are used to create and deallocate variables

with the ALLOCATABLE attribute.

6.3.1 ALLOCATE statement

The ALLOCATE statement dynamically creates pointer targets and allocatable variables.

R623 allocate-stmt is ALLOCATE ([type-spec ::] allocation-list [, alloc-opt-list])

R624 alloc-opt is STAT = stat-variable
or ERRMSG = errmsg-variable
or SOURCE = source-variable

R625 stat-variable is scalar-int-variable

R626 errmsg-variable is scalar-default-char-variable

R627 allocation is allocate-object [(allocate-shape-spec-list)]

R628 allocate-object is variable-name
or structure-component

R629 allocate-shape-spec is [allocate-lower-bound :] allocate-upper-bound

R630 allocate-lower-bound is scalar-int-expr

R631 allocate-upper-bound is scalar-int-expr

R632 source-variable is variable

C621 (R628) Each allocate-object shall be a nonprocedure pointer or an allocatable variable.

C622 (R623) If any allocate-object in the statement has a deferred type parameter, type-spec shall
appear.

C623 (R623) If a type-spec appears, it shall specify a type with which each allocate-object is type-
compatible.

C624 (R623) A type-spec shall appear if any allocate-object is unlimited polymorphic.

C625 (R623) A type-param-value in a type-spec shall be an asterisk if and only if each allocate-object
is a dummy argument for which the corresponding type parameter is assumed.

C626 (R623) If a type-spec appears, the values of the kind type parameters of each allocate-object
shall be the same as those of the type-spec.

C627 (R627) An allocate-shape-spec-list shall appear if and only if the allocate-object is an array.

C628 (R627) The number of allocate-shape-specs in an allocate-shape-spec-list shall be the same as
the rank of the allocate-object.

C629 (R624) No alloc-opt shall appear more than once in a given alloc-opt-list.

C630 (R623) If SOURCE= appears, type-spec shall not appear and allocation-list shall contain only
one allocate-object, which shall be type-compatible (5.1.1.8) with source-variable.

C631 (R623) The source-variable shall be a scalar or have the same rank as allocate-object.

NOTE 6.15
For detailed remarks regarding pointers and dynamic association see C.3.3.
100 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C632 (R623) Corresponding kind type parameters of allocate-object and source-variable shall have
the same values.

An allocate-object or a bound or type parameter of an allocate-object shall not depend on stat-variable,

errmsg-variable, or on the value, bounds, allocation status, or association status of any allocate-object
in the same ALLOCATE statement.

Neither stat-variable, source-variable, nor errmsg-variable shall be allocated within the ALLOCATE

statement in which it appears; nor shall they depend on the value, bounds, allocation status, or

association status of any allocate-object in the same ALLOCATE statement.

The optional type-spec specifies the dynamic type and type parameters of the objects to be

allocated. If a type-spec is specified, allocation of a polymorphic object allocates an object with the

specified dynamic type; if a source-variable is specified, the allocation allocates an object whose

dynamic type and type parameters are the same as those of the source-variable; otherwise it

allocates an object with a dynamic type the same as its declared type.

When an ALLOCATE statement having a type-spec is executed, any type-param-values in the type-
spec specify the type parameters. If the value specified for a type parameter differs from a

corresponding nondeferred value specified in the declaration of any of the allocate-objects then an

error condition occurs.

If a type-param-value in a type-spec in an ALLOCATE statement is an asterisk, it denotes the current

value of that assumed type parameter.

When an ALLOCATE statement is executed for an array, the values of the lower bound and upper

bound expressions determine the bounds of the array. Subsequent redefinition or undefinition of

any entities in the bound expressions do not affect the array bounds. If the lower bound is

omitted, the default value is 1. If the upper bound is less than the lower bound, the extent in that

dimension is zero and the array has zero size.

If SOURCE= appears, source-variable shall be conformable (2.4.5) with allocation. If the value of a

nondeferred nonkind type parameter of allocate-object is different from the value of the

corresponding type parameter of source-variable, an error condition occurs. If the allocation is

sucessful, source-variable is then assigned to allocate-object by intrinsic assignment for objects whose

declared type is the dynamic type of source-variable.

If the STAT= specifier appears, successful execution of the ALLOCATE statement causes the

stat-variable to become defined with a value of zero. If an error condition occurs during the

execution of the ALLOCATE statement, the stat-variable becomes defined with a processor-

NOTE 6.16
An example of an ALLOCATE statement is:

ALLOCATE (X (N), B (-3 : M, 0:9), STAT = IERR_ALLOC)

NOTE 6.17
An allocate-object may be of type character with zero character length.

NOTE 6.18
An example of an ALLOCATE statement in which the value and dynamic type are
determined by reference to another object is:

CLASS(*), ALLOCATABLE :: NEW
CLASS(*), POINTER :: OLD
! ...
ALLOCATE (NEW, SOURCE=OLD) ! Allocate NEW with the value and dynamic type of OLD

A more extensive example is given in C.3.2.
JUN 2001 WORKING DRAFT 101

J3/01-007R2 WORKING DRAFT JUN 2001
dependent positive integer value and each allocate-object will have a processor-dependent status;

each allocate-object that was successfully allocated shall be currently allocated or be associated, each

allocate-object that was not successfully allocated shall retain its previous allocation status or

pointer association status.

If an error condition occurs during execution of an ALLOCATE statement that does not contain the

STAT= specifier, execution of the program is terminated.

The ERRMSG= specifier is described in 6.3.1.4.

6.3.1.1 Allocation of allocatable variables

An allocatable variable that has been allocated by an ALLOCATE statement and has not been

subsequently deallocated (6.3.3) is currently allocated and is definable. Allocating a currently

allocated allocatable variable causes an error condition in the ALLOCATE statement. At the

beginning of execution of a program, allocatable variables have the allocation status of not

currently allocated and are not definable. The intrinsic function ALLOCATED (13.11.9) may be

used to determine whether an allocatable variable is currently allocated.

When an object of derived type is created by an ALLOCATE statement, any allocatable ultimate

components have an allocation status of not currently allocated.

6.3.1.2 Allocation status

The allocation status of an allocatable entity is one of the following at any time during the

execution of a program:

(1) Not currently allocated. An allocatable variable with this status shall not be referenced
or defined; it may be allocated with the ALLOCATE statement. Deallocating it causes
an error condition in the DEALLOCATE statement. The intrinsic function
ALLOCATED returns false for such a variable.

(2) Currently allocated. An allocatable variable with this status may be referenced,
defined, or deallocated; allocating it causes an error condition in the ALLOCATE
statement. The intrinsic function ALLOCATED returns true for such a variable.

A saved allocatable object has an initial status of not currently allocated. If the object is allocated,

its status changes to currently allocated. The status remains currently allocated until the object is

deallocated.

When the allocation status of an allocatable variable changes, the allocation status of any

associated allocatable variable changes accordingly. Allocation of an allocatable variable

establishes values for the deferred type parameters of all associated allocatable variables.

An unsaved allocatable object that is a local variable of a procedure has a status of not currently

allocated at the beginning of each invocation of the procedure. The status may change during

execution of the procedure. An unsaved allocatable object that is a local variable of a module or a

subobject thereof has an initial status of not currently allocated. The status may change during

execution of the program.
102 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
6.3.1.3 Allocation of pointer targets

Following successful execution of an ALLOCATE statement for a pointer, the pointer is associated

with the target and may be used to reference or define the target. Allocation of a pointer creates an

object that implicitly has the TARGET attribute. Additional pointers may become associated with

the pointer target or a part of the pointer target by pointer assignment. It is not an error to allocate

a pointer that is currently associated with a target. In this case, a new pointer target is created as

required by the attributes of the pointer and any array bounds, type, and type parameters specified

by the ALLOCATE statement. The pointer is then associated with this new target. Any previous

association of the pointer with a target is broken. If the previous target had been created by

allocation, it becomes inaccessible unless it can still be referred to by other pointers that are

currently associated with it. The ASSOCIATED intrinsic function (13.11.13) may be used to

determine whether a pointer is currently associated.

At the beginning of execution of a function whose result is a pointer, the association status of the

result pointer is undefined. Before such a function returns, it shall either associate a target with

this pointer or cause the association status of this pointer to become defined as disassociated.

NOTE 6.19
The following example illustrates the effects of SAVE on allocation status.

MODULE MOD1
TYPE INITIALIZED_TYPE
 INTEGER :: I = 1 ! Default initialization
END TYPE INITIALIZED_TYPE
SAVE :: SAVED1, SAVED2
INTEGER :: SAVED1, UNSAVED1
TYPE(INITIALIZED_TYPE) :: SAVED2, UNSAVED2
ALLOCATABLE :: SAVED1(:), SAVED2(:), UNSAVED1(:), UNSAVED2(:)
END MODULE MOD1

PROGRAM MAIN
CALL SUB1 ! The values returned by the ALLOCATED intrinsic calls
 ! in the PRINT statement are:
 ! .FALSE., .FALSE., .FALSE., and .FALSE.
 ! Module MOD1 is used, and its variables are allocated.
 ! After return from the subroutine, whether the variables
 ! which were not specified with the SAVE attribute
 ! retain their allocation status is processor dependent.

CALL SUB1 ! The values returned by the first two ALLOCATED intrinsic
 ! calls in the PRINT statement are:
 ! .TRUE., .TRUE.
 ! The values returned by the second two ALLOCATED
 ! intrinsic calls in the PRINT statement are
 ! processor dependent and each could be either
 ! .TRUE. or .FALSE.

CONTAINS

 SUBROUTINE SUB1
 USE MOD1 ! Brings in saved and not saved variables.
 PRINT *, ALLOCATED(SAVED1), ALLOCATED(SAVED2), &
 ALLOCATED(UNSAVED1), ALLOCATED(UNSAVED2)
 IF (.NOT. ALLOCATED(SAVED1)) ALLOCATE(SAVED1(10))
 IF (.NOT. ALLOCATED(SAVED2)) ALLOCATE(SAVED2(10))
 IF (.NOT. ALLOCATED(UNSAVED1)) ALLOCATE(UNSAVED1(10))
 IF (.NOT. ALLOCATED(UNSAVED2)) ALLOCATE(UNSAVED2(10))
 END SUBROUTINE SUB1
END PROGRAM MAIN
JUN 2001 WORKING DRAFT 103

J3/01-007R2 WORKING DRAFT JUN 2001
6.3.1.4 ERRMSG= specifier

If an error condition occurs during execution of an ALLOCATE or DEALLOCATE statement, the

processor shall assign an explanatory message to errmsg-variable. If no such condition occurs, the

processor shall not change the value of errmsg-variable.

6.3.2 NULLIFY statement

The NULLIFY statement causes pointers to be disassociated.

R633 nullify-stmt is NULLIFY (pointer-object-list)

R634 pointer-object is variable-name
or structure-component
or proc-pointer-name

C633 (R634) Each pointer-object shall have the POINTER attribute.

A pointer-object shall not depend on the value, bounds, or association status of another pointer-object
in the same NULLIFY statement.

6.3.3 DEALLOCATE statement

The DEALLOCATE statement causes allocatable variables to be deallocated and it causes pointer

targets to be deallocated and the pointers to be disassociated.

R635 deallocate-stmt is DEALLOCATE (allocate-object-list [, dealloc-opt-list])

C634 (R635) Each allocate-object shall be a nonprocedure pointer or an allocatable variable.

R636 dealloc-opt is STAT = stat-variable
or ERRMSG = errmsg-variable

C635 (R636) No dealloc-opt shall appear more than once in a given dealloc-opt-list.

An allocate-object shall not depend on the value, bounds, allocation status, or association status of

another allocate-object in the same DEALLOCATE statement; nor shall it depend on the value of the

stat-variable or errmsg-variable in the same DEALLOCATE statement.

Neither stat-variable nor errmsg-variable shall be deallocated within the same DEALLOCATE

statement; nor shall they depend on the value, bounds, allocation status, or association status of

any allocate-object in the same DEALLOCATE statement.

If the STAT= specifier is present, successful execution of the DEALLOCATE statement causes the

stat-variable to become defined with a value of zero. If an error condition occurs during the

execution of the DEALLOCATE statement, the stat-variable becomes defined with a processor-

dependent positive integer value and each allocate-object that was successfully deallocated shall be

not currently allocated or shall be disassociated. Each allocate-object that was not successfully

deallocated shall retain its previous allocation status or pointer association status.

If an error condition occurs during execution of a DEALLOCATE statement that does not contain

the STAT= specifier, execution of the program is terminated.

The ERRMSG= specifier is described in 6.3.1.4.

NOTE 6.20
When a NULLIFY statement is applied to a polymorphic pointer (5.1.1.8), its dynamic type
becomes the declared type.

NOTE 6.21
The status of objects that were not successfully deallocated can be individually checked with
the ALLOCATED or ASSOCIATED intrinsic functions.
104 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
6.3.3.1 Deallocation of allocatable variables

Deallocating an allocatable variable that is not currently allocated causes an error condition in the

DEALLOCATE statement. An allocatable variable with the TARGET attribute shall not be

deallocated through an associated pointer. Deallocating an allocatable variable with the TARGET

attribute causes the pointer association status of any pointer associated with it to become

undefined.

When the execution of a procedure is terminated by execution of a RETURN or END statement, an

allocatable variable that is a named local variable of the procedure retains its allocation and

definition status if it has the SAVE attribute or is a function result variable or a subobject thereof;

otherwise, it is deallocated.

If an unsaved allocatable object is a local variable of a module, and it is currently allocated when

execution of a RETURN or END statement results in no active scoping unit having access to the

module, it is processor-dependent whether the object retains its allocation status or is deallocated.

If an executable construct references a function whose result is allocatable or a structure with a

subobject that is allocatable, and the function reference is executed, an allocatable result and any

subobject that is an allocated allocatable entity in the result returned by the function is deallocated

after execution of the innermost executable construct containing the reference.

If a specification expression in a scoping unit references a function whose result is allocatable or a

structure with a subobject that is allocatable, and the function reference is executed, an allocatable

result and any subobject that is an allocated allocatable entity in the result returned by the function

is deallocated before execution of the first executable statement in the scoping unit.

When a procedure is invoked, a currently allocated allocatable object that is an actual argument or

a subobject of an actual argument associated with an INTENT(OUT) allocatable dummy argument

is deallocated.

When an intrinsic assignment statement (7.5.1.5) is executed, any allocated allocatable subobject of

the variable is deallocated before the assignment takes place.

When a variable of derived type is deallocated, any allocated allocatable subobject is deallocated.

If an allocatable component is a subobject of a finalizable object, that object is finalized before the

component is automatically deallocated.

The effect of automatic deallocation is the same as that of a DEALLOCATE statement.

NOTE 6.22
An example of a DEALLOCATE statement is:

DEALLOCATE (X, B)

NOTE 6.23
The ALLOCATED intrinsic function may be used to determine whether a variable is currently
allocated or has been deallocated.
JUN 2001 WORKING DRAFT 105

J3/01-007R2 WORKING DRAFT JUN 2001
6.3.3.2 Deallocation of pointer targets

If a pointer appears in a DEALLOCATE statement, its association status shall be defined.

Deallocating a pointer that is disassociated or whose target was not created by an ALLOCATE

statement causes an error condition in the DEALLOCATE statement. If a pointer is currently

associated with an allocatable entity, the pointer shall not be deallocated.

A pointer that is not currently associated with the whole of an allocated target object shall not be

deallocated. If a pointer is currently associated with a portion (2.4.3.1) of a target object that is

independent of any other portion of the target object, it shall not be deallocated. Deallocating a

pointer target causes the pointer association status of any other pointer that is associated with the

target or a portion of the target to become undefined.

When the execution of a procedure is terminated by execution of a RETURN or END statement, the

pointer association status of a pointer declared or accessed in the subprogram that defines the

procedure becomes undefined unless it is one of the following:

(1) A pointer with the SAVE attribute,

(2) A pointer in blank common,

(3) A pointer in a named common block that appears in at least one other scoping unit
that is currently in execution,

(4) A pointer declared in the scoping unit of a module if the module also is accessed by
another scoping unit that is currently in execution,

(5) A pointer accessed by host association, or

(6) A pointer that is the return value of a function declared to have the POINTER
attribute.

When a pointer target becomes undefined by execution of a RETURN or END statement, the

pointer association status (16.7.2.1) becomes undefined.

NOTE 6.24
In the following example:

SUBROUTINE PROCESS
 REAL, ALLOCATABLE :: TEMP(:)
 REAL, ALLOCATABLE, SAVE :: X(:)
 ...
END SUBROUTINE PROCESS

on return from subroutine PROCESS, the allocation status of X is preserved because X has the
SAVE attribute. TEMP does not have the SAVE attribute, so it will be deallocated. On the
next invocation of PROCESS, TEMP will have an allocation status of not currently allocated.
106 WORKING DRAFT JUN 2001

	Section 6: Use of data objects
	C601 (R601) designator shall not be a constant or a subobject of a constant.
	R602 variable-name is name
	C602 (R602) A variable-name shall be the name of a variable.

	R603 designator is object-name
	R604 logical�variable is variable
	C603 (R604) logical�variable shall be of type logical.

	R605 default�logical�variable is variable
	C604 (R605) default�logical�variable shall be of type default logical.

	R606 char�variable is variable
	C605 (R606) char�variable shall be of type character.

	R607 default�char�variable is variable
	C606 (R607) default�char�variable shall be of type default character.

	R608 int�variable is variable
	C607 (R608) int�variable shall be of type integer.
	NOTE 6.1

	6.1�� Scalars
	NOTE 6.2
	6.1.1�� Substrings
	R609 substring is parent�string (substring�range)
	R610 parent�string is scalar�variable�name
	R611 substring�range is [scalar�int�expr] : [scalar�int�expr]
	C608 (R610) parent�string shall be of type character.
	NOTE 6.3

	6.1.2�� Structure components
	R612 data�ref is part�ref [% part�ref] ...
	R613 part�ref is part�name [(section�subscript�list)]
	C609 (R612) In a data�ref, each part�name except the rightmost shall be of derived type.
	C610 (R612) In a data�ref, each part�name except the leftmost shall be the name of a component of...
	C611 (R612) The leftmost part-name shall be the name of a data object.
	C612 (R613) In a part�ref containing a section�subscript�list, the number of section�subscripts s...
	C613 (R612) In a data�ref, there shall not be more than one part�ref with nonzero rank. A part�na...
	NOTE 6.4

	R614 structure�component is data�ref
	C614 (R614) In a structure�component, there shall be more than one part�ref and the rightmost par...
	NOTE 6.5
	NOTE 6.6

	6.1.3�� Type parameter inquiry
	R615 type-param-inquiry is designator % type-param-name
	C615 (R615) The type-param-name shall be the name of a type parameter of the object designated by...
	NOTE 6.7
	NOTE 6.8

	6.2�� Arrays
	6.2.1�� Whole arrays
	6.2.2�� Array elements and array sections
	R616 array�element is data�ref
	C616 (R616) In an array�element, every part�ref shall have rank zero and the last part�ref shall ...

	R617 array�section is data�ref [(substring�range)]
	C617 (R617) In an array�section, exactly one part�ref shall have nonzero rank, and either the fin...
	C618 (R617) In an array�section with a substring�range, the rightmost part�name shall be of type ...

	R618 subscript is scalar�int�expr
	R619 section�subscript is subscript
	R620 subscript�triplet is [subscript] : [subscript] [: stride]
	R621 stride is scalar�int�expr
	R622 vector�subscript is int�expr
	C619 (R622) A vector�subscript shall be an integer array expression of rank one.
	C620 (R620) The second subscript shall not be omitted from a subscript�triplet in the last dimens...
	NOTE 6.9
	NOTE 6.10

	6.2.2.1�� Array elements
	6.2.2.2�� Array element order
	Table 6.1 Subscript order value

	6.2.2.3�� Array sections
	6.2.2.3.1�� Subscript triplet
	NOTE 6.11
	NOTE 6.12
	NOTE 6.13

	6.2.2.3.2�� Vector subscript
	NOTE 6.14

	6.3�� Dynamic association
	NOTE 6.15
	6.3.1�� ALLOCATE statement
	R623 allocate�stmt is ALLOCATE ([type-spec ::] allocation�list [, alloc-opt-list])
	R624 alloc-opt is STAT = stat�variable
	R625 stat�variable is scalar�int�variable
	R626 errmsg-variable is scalar-default-char-variable
	R627 allocation is allocate�object [(allocate�shape�spec�list)]
	R628 allocate�object is variable�name
	R629 allocate�shape�spec is [allocate�lower�bound :] allocate�upper�bound
	R630 allocate�lower�bound is scalar�int�expr
	R631 allocate�upper�bound is scalar�int�expr
	R632 source-variable is variable
	C621 (R628) Each allocate�object shall be a nonprocedure pointer or an allocatable variable.
	C622 (R623) If any allocate-object in the statement has a deferred type parameter, type-spec shal...
	C623 (R623) If a type-spec appears, it shall specify a type with which each allocate-object is ty...
	C624 (R623) A type-spec shall appear if any allocate-object is unlimited polymorphic.
	C625 (R623) A type-param-value in a type-spec shall be an asterisk if and only if each allocate-o...
	C626 (R623) If a type-spec appears, the values of the kind type parameters of each allocate-objec...
	C627 (R627) An allocate-shape-spec-list shall appear if and only if the allocate-object is an array.
	C628 (R627) The number of allocate�shape�specs in an allocate�shape�spec�list shall be the same a...
	C629 (R624) No alloc-opt shall appear more than once in a given alloc-opt-list.
	C630 (R623) If SOURCE= appears, type-spec shall not appear and allocation-list shall contain only...
	C631 (R623) The source-variable shall be a scalar or have the same rank as allocate-object.
	C632 (R623) Corresponding kind type parameters of allocate-object and source-variable shall have ...
	NOTE 6.16
	NOTE 6.17
	NOTE 6.18

	6.3.1.1�� Allocation of allocatable variables
	6.3.1.2�� Allocation status
	(1) Not currently allocated. An allocatable variable with this status shall not be referenced or ...
	(2) Currently allocated. An allocatable variable with this status may be referenced, defined, or ...
	NOTE 6.19

	6.3.1.3�� Allocation of pointer targets
	6.3.1.4�� ERRMSG= specifier

	6.3.2�� NULLIFY statement
	R633 nullify�stmt is NULLIFY (pointer�object�list)
	R634 pointer�object is variable�name
	C633 (R634) Each pointer�object shall have the POINTER attribute.
	NOTE 6.20

	6.3.3�� DEALLOCATE statement
	R635 deallocate�stmt is DEALLOCATE (allocate�object�list [, dealloc-opt-list])
	C634 (R635) Each allocate�object shall be a nonprocedure pointer or an allocatable variable.

	R636 dealloc-opt is STAT = stat�variable
	C635 (R636) No dealloc-opt shall appear more than once in a given dealloc-opt-list.
	NOTE 6.21
	NOTE 6.22

	6.3.3.1�� Deallocation of allocatable variables
	NOTE 6.23
	NOTE 6.24

	6.3.3.2�� Deallocation of pointer targets
	(1) A pointer with the SAVE attribute,
	(2) A pointer in blank common,
	(3) A pointer in a named common block that appears in at least one other scoping unit that is cur...
	(4) A pointer declared in the scoping unit of a module if the module also is accessed by another ...
	(5) A pointer accessed by host association, or
	(6) A pointer that is the return value of a function declared to have the POINTER attribute.

