
JUN 2001 WORKING DRAFT J3/01-007R2
Section 3: Characters, lexical tokens, and source form
This section describes the Fortran character set and the various lexical tokens such as names and

operators. This section also describes the rules for the forms that Fortran programs may take.

3.1 Processor character set
The processor character set is processor dependent. The structure of a processor character set is:

(1) Control characters ("newline", for example)

(2) Graphic characters

(a) Letters (3.1.1)

(b) Digits (3.1.2)

(c) Underscore (3.1.3)

(d) Special characters (3.1.4)

(e) Other characters (3.1.5)

The letters, digits, underscore, and special characters make up the Fortran character set.

R301 character is alphanumeric-character
or special-character

R302 alphanumeric-character is letter
or digit
or underscore

Except for the currency symbol, the graphics used for the characters shall be as given in 3.1.1, 3.1.2,

3.1.3, and 3.1.4. However, the style of any graphic is not specified.

3.1.1 Letters

The twenty-six letters are:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The set of letters defines the syntactic class letter. The processor character set shall include lower-

case and upper-case letters. A lower-case letter is equivalent to the corresponding upper-case

letter in program units except in a character context (3.3).

3.1.2 Digits

The ten digits are:

0 1 2 3 4 5 6 7 8 9

The ten digits define the syntactic class digit.

NOTE 3.1
The following statements are equivalent:

CALL BIG_COMPLEX_OPERATION (NDATE)
call big_complex_operation (ndate)
Call Big_Complex_Operation (NDate)
JUN 2001 WORKING DRAFT 21

J3/01-007R2 WORKING DRAFT JUN 2001
3.1.3 Underscore

R303 underscore is _

The underscore may be used as a significant character in a name.

3.1.4 Special characters

The special characters are shown in Table 3.1.

The special characters define the syntactic class special-character. Some of the special characters are

used for operator symbols, bracketing, and various forms of separating and delimiting other

lexical tokens.

3.1.5 Other characters

Additional characters may be representable in the processor, but may appear only in comments

(3.3.1.1, 3.3.2.1), character constants (4.4.4), input/output records (9.1.1), and character string edit

descriptors (10.2.1).

The default character type shall support a character set that includes the Fortran character set.

Other character sets may be supported by the processor in terms of nondefault character types.

The characters available in the nondefault character types are not specified, except that one

character in each nondefault character type shall be designated as a blank character to be used as a

padding character.

3.2 Low-level syntax
The low-level syntax describes the fundamental lexical tokens of a program unit. Lexical tokens
are sequences of characters that constitute the building blocks of a program. They are keywords,

names, literal constants other than complex literal constants, operators, labels, delimiters, comma,

=, =>, :, ::, ;, and %.

Table 3.1 Special characters

Character Name of character Character Name of character

Blank ; Semicolon

= Equals ! Exclamation point

+ Plus " Quotation mark or quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ~ Tilde

\ Backslash < Less than

(Left parenthesis > Greater than

) Right parenthesis ? Question mark

[Left square bracket ' Apostrophe

] Right square bracket ‘ Grave accent

{ Left curly bracket ^ Circumflex accent

} Right curly bracket | Vertical bar

, Comma $ Currency symbol

. Decimal point or period # Number sign

: Colon @ Commercial at
22 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
3.2.1 Names

Names are used for various entities such as variables, program units, dummy arguments, named

constants, and derived types.

R304 name is letter [alphanumeric-character] ...

C301 (R304) The maximum length of a name is 31 characters.

3.2.2 Constants

R305 constant is literal-constant
or named-constant

R306 literal-constant is int-literal-constant
or real-literal-constant
or complex-literal-constant
or logical-literal-constant
or char-literal-constant
or boz-literal-constant

R307 named-constant is name

R308 int-constant is constant

C302 (R308) int-constant shall be of type integer.

R309 char-constant is constant

C303 (R309) char-constant shall be of type character.

3.2.3 Operators

R310 intrinsic-operator is power-op
or mult-op
or add-op
or concat-op
or rel-op
or not-op
or and-op
or or-op
or equiv-op

R707 power-op is ∗∗
R708 mult-op is ∗

or /

R709 add-op is +

or –

NOTE 3.1
Examples of names:

A1
NAME_LENGTH (single underscore)
S_P_R_E_A_D__O_U_T (two consecutive underscores)
TRAILER_ (trailing underscore)

NOTE 3.2
The word "name" always denotes this specific syntactic form. The word "identifier" is used
when entities may be identified by other syntactic forms or by values; its specific meaning
depends on the context in which it is used.
JUN 2001 WORKING DRAFT 23

J3/01-007R2 WORKING DRAFT JUN 2001
R711 concat-op is //

R713 rel-op is .EQ.
or .NE.
or .LT.
or .LE.
or .GT.
or .GE.
or ==

or /=

or <

or <=

or >

or >=

R718 not-op is .NOT.
R719 and-op is .AND.
R720 or-op is .OR.
R721 equiv-op is .EQV.

or .NEQV.
R311 defined-operator is defined-unary-op

or defined-binary-op
or extended-intrinsic-op

R703 defined-unary-op is . letter [letter]
R723 defined-binary-op is . letter [letter]
R312 extended-intrinsic-op is intrinsic-operator

3.2.4 Statement labels

A statement label provides a means of referring to an individual statement.

R313 label is digit [digit [digit [digit [digit]]]]

C304 (R313) At least one digit in a label shall be nonzero.

If a statement is labeled, the statement shall contain a nonblank character. The same statement

label shall not be given to more than one statement in a scoping unit. Leading zeros are not

significant in distinguishing between statement labels.

3.2.5 Delimiters

Delimiters are used to enclose syntactic lists. The following pairs are delimiters:

(...)
/ ... /

NOTE 3.3
For example:

99999
10

010

are all statement labels. The last two are equivalent.

There are 99999 unique statement labels and a processor shall accept any of them as a
statement label. However, a processor may have an implementation limit on the total number
of unique statement labels in one program unit.
24 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
[...]
(/ ... /)

3.3 Source form
A Fortran program unit is a sequence of one or more lines, organized as Fortran statements,

comments, and INCLUDE lines. A line is a sequence of zero or more characters. Lines following

a program unit END statement are not part of that program unit. A Fortran statement is a

sequence of one or more complete or partial lines.

A character context means characters within a character literal constant (4.4.4) or within a

character string edit descriptor (10.2.1).

A comment may contain any character that may occur in any character context.

There are two source forms: free and fixed. Free form and fixed form shall not be mixed in the same program unit.

The means for specifying the source form of a program unit are processor dependent.

3.3.1 Free source form

In free source form there are no restrictions on where a statement (or portion of a statement) may

appear within a line. A line may contain zero characters. If a line consists entirely of characters of

default kind (4.4.4), it may contain at most 132 characters. If a line contains any character that is

not of default kind, the maximum number of characters allowed on the line is processor

dependent.

Blank characters shall not appear within lexical tokens other than in a character context or in a

format specification. Blanks may be inserted freely between tokens to improve readability; for

example, blanks may occur between the tokens that form a complex literal constant. A sequence of

blank characters outside of a character context is equivalent to a single blank character.

A blank shall be used to separate names, constants, or labels from adjacent keywords, names,

constants, or labels.

One or more blanks shall be used to separate adjacent keywords except in the following cases,

where blanks are optional:

NOTE 3.4
For example, the blanks after REAL, READ, 30, and DO are required in the following:

REAL X
READ 10
30 DO K=1,3

Adjacent keywords where separating
blanks are optional

BLOCK DATA

DOUBLE PRECISION

ELSE IF

ELSE WHERE

END ASSOCIATE

END BLOCK DATA

END DO

END FILE

END FORALL
JUN 2001 WORKING DRAFT 25

J3/01-007R2 WORKING DRAFT JUN 2001
3.3.1.1 Free form commentary

The character "!" initiates a comment except when it appears within a character context. The

comment extends to the end of the source line. If the first nonblank character on a line is an "!", the

line is called a comment line. Lines containing only blanks or containing no characters are also

comment lines. Comments may appear anywhere in a program unit and may precede the first

statement of a program unit. Comments have no effect on the interpretation of the program unit.

3.3.1.2 Free form statement separation

The character ";" terminates a statement, except when the ";" appears in a character context or in a

comment. This optional termination allows another statement to begin following the ";" on the

same line. A ";" shall not appear as the first nonblank character on a line. If a ";" separator is

followed by zero or more blanks and one or more ";" separators, the sequence from the first ";" to

the last, inclusive, is interpreted as a single ";" separator.

3.3.1.3 Free form statement continuation

The character "&" is used to indicate that the current statement is continued on the next line that is

not a comment line. Comment lines shall not be continued; an "&" in a comment has no effect.

Comments may occur within a continued statement. When used for continuation, the "&" is not

part of the statement. No line shall contain a single "&" as the only nonblank character or as the

only nonblank character before an "!" that initiates a comment.

3.3.1.3.1 Noncharacter context continuation

If an "&" not in a comment is the last nonblank character on a line or the last nonblank character

before an "!", the statement is continued on the next line that is not a comment line. If the first

nonblank character on the next noncomment line is an "&", the statement continues at the next

END FUNCTION

END IF

END INTERFACE

END MODULE

END PROGRAM

END SELECT

END SUBROUTINE

END TYPE

END WHERE

GO TO

IN OUT

SELECT CASE

SELECT TYPE

NOTE 3.5
Allowing optional blanks at specific places in some keywords (for example, ENDIF or
END IF) is intended to permit a reasonable choice to users accustomed to insignificant blanks.

NOTE 3.6
The standard does not restrict the number of consecutive comment lines.

Adjacent keywords where separating
blanks are optional
26 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
character position following the "&"; otherwise, it continues with the first character position of the

next noncomment line.

If a lexical token is split across the end of a line, the first nonblank character on the first following

noncomment line shall be an "&" immediately followed by the successive characters of the split

token.

3.3.1.3.2 Character context continuation

If a character context is to be continued, the "&" shall be the last nonblank character on the line and

shall not be followed by commentary. An "&" shall be the first nonblank character on the next line

that is not a comment line and the statement continues with the next character following the "&".

3.3.1.4 Free form statements

A label may precede any statement not forming part of another statement.

A free form statement shall not have more than 99 continuation lines.

3.3.2 Fixed source form
In fixed source form, there are restrictions on where a statement may appear within a line. If a source line contains only

default kind characters, it shall contain exactly 72 characters; otherwise, its maximum number of characters is processor

dependent.

Except in a character context, blanks are insignificant and may be used freely throughout the program.

3.3.2.1 Fixed form commentary
The character "!" initiates a comment except when it appears within a character context or in character position 6. The

comment extends to the end of the line. If the first nonblank character on a line is an "!" in any character position other than

character position 6, the line is a comment line. Lines beginning with a "C" or "∗" in character position 1 and lines

containing only blanks are also comments. Comments may appear anywhere within a program unit and may precede the

first statement of the program unit. Comments have no effect on the interpretation of the program unit.

3.3.2.2 Fixed form statement separation
The character ";" terminates a statement, except when the ";" appears in a character context, in a comment, or in character

position 6. This optional termination allows another statement to begin following the ";" on the same line. A ";" shall not

appear as the first nonblank character on a line, except in character position 6. If a ";" separator is followed by zero or more

blanks and one or more ";" separators, the sequence from the first ";" to the last, inclusive, is interpreted as a single ";"

separator.

3.3.2.3 Fixed form statement continuation
Except within commentary, character position 6 is used to indicate continuation. If character position 6 contains a blank or

zero, the line is the initial line of a new statement, which begins in character position 7. If character position 6 contains any

character other than blank or zero, character positions 7–72 of the line constitute a continuation of the preceding

noncomment line.

Comment lines shall not be continued. Comment lines may occur within a continued statement.

NOTE 3.7
No Fortran statement begins with a digit.

NOTE 3.8
The standard does not restrict the number of consecutive comment lines.

NOTE 3.9
An "!" or ";" in character position 6 is interpreted as a continuation indicator unless it appears within commentary
indicated by a "C" or "*" in character position 1 or by an "!" in character positions 1–5.
JUN 2001 WORKING DRAFT 27

J3/01-007R2 WORKING DRAFT JUN 2001
3.3.2.4 Fixed form statements
A label, if present, shall occur in character positions 1 through 5 of the first line of a statement; otherwise, positions 1

through 5 shall be blank. Blanks may appear anywhere within a label. A statement following a ";" on the same line shall

not be labeled. Character positions 1 through 5 of any continuation lines shall be blank. A fixed form statement shall not

have more than 99 continuation lines. The program unit END statement shall not be continued. A statement whose initial

line appears to be a program unit END statement shall not be continued.

3.4 Including source text
Additional text may be incorporated into the source text of a program unit during processing. This

is accomplished with the INCLUDE line, which has the form

INCLUDE char-literal-constant

The char-literal-constant shall not have a kind type parameter value that is a named-constant.

An INCLUDE line is not a Fortran statement.

An INCLUDE line shall appear on a single source line where a statement may appear; it shall be

the only nonblank text on this line other than an optional trailing comment. Thus, a statement

label is not allowed.

The effect of the INCLUDE line is as if the referenced source text physically replaced the INCLUDE

line prior to program processing. Included text may contain any source text, including additional

INCLUDE lines; such nested INCLUDE lines are similarly replaced with the specified source text.

The maximum depth of nesting of any nested INCLUDE lines is processor dependent. Inclusion of

the source text referenced by an INCLUDE line shall not, at any level of nesting, result in inclusion

of the same source text.

When an INCLUDE line is resolved, the first included statement line shall not be a continuation

line and the last included statement line shall not be continued.

The interpretation of char-literal-constant is processor dependent. An example of a possible valid

interpretation is that char-literal-constant is the name of a file that contains the source text to be

included.

NOTE 3.10
In some circumstances, for example where source code is maintained in an INCLUDE file for use in programs whose
source form might be either fixed or free, observing the following rules allows the code to be used with either source
form:

(1) Confine statement labels to character positions 1 to 5 and statements to character positions 7 to 72;

(2) Treat blanks as being significant;

(3) Use only the exclamation mark (!) to indicate a comment, but do not start the comment in character
position 6;

(4) For continued statements, place an ampersand (&) in both character position 73 of a continued line and
character position 6 of a continuing line.
28 WORKING DRAFT JUN 2001

	Section 3: Characters, lexical tokens, and source form
	3.1�� Processor character set
	(1) Control characters ("newline", for example)
	(2) Graphic characters
	(a) Letters (3.1.1)
	(b) Digits (3.1.2)
	(c) Underscore (3.1.3)
	(d) Special characters (3.1.4)
	(e) Other characters (3.1.5)

	R302 alphanumeric�character is letter
	3.1.1�� Letters
	NOTE 3.1

	3.1.2�� Digits
	3.1.3�� Underscore
	R303 underscore is _

	3.1.4�� Special characters
	Table 3.1 Special characters

	3.1.5�� Other characters

	3.2�� Low-level syntax
	3.2.1�� Names
	R304 name is letter [alphanumeric�character] ...
	C301 (R304) The maximum length of a name is 31 characters.
	NOTE 3.1
	NOTE 3.2

	3.2.2�� Constants
	R305 constant is literal�constant
	R306 literal�constant is int�literal�constant
	R307 named�constant is name
	R308 int�constant is constant
	C302 (R308) int�constant shall be of type integer.

	R309 char�constant is constant
	C303 (R309) char�constant shall be of type character.

	3.2.3�� Operators
	R310 intrinsic�operator is power�op
	R311 defined�operator is defined�unary�op
	R312 extended�intrinsic�op is intrinsic�operator

	3.2.4�� Statement labels
	R313 label is digit [digit [digit [digit [digit]]]]
	C304 (R313) At least one digit in a label shall be nonzero.
	NOTE 3.3

	3.2.5�� Delimiters

	3.3�� Source form
	3.3.1�� Free source form
	NOTE 3.4
	NOTE 3.5
	3.3.1.1�� Free form commentary
	NOTE 3.6

	3.3.1.2�� Free form statement separation
	3.3.1.3�� Free form statement continuation
	3.3.1.3.1�� Noncharacter context continuation
	3.3.1.3.2�� Character context continuation
	3.3.1.4�� Free form statements
	NOTE 3.7

	3.3.2�� Fixed source form
	3.3.2.1�� Fixed form commentary
	NOTE 3.8

	3.3.2.2�� Fixed form statement separation
	3.3.2.3�� Fixed form statement continuation
	NOTE 3.9

	3.3.2.4�� Fixed form statements

	3.4�� Including source text
	NOTE 3.10
	(1) Confine statement labels to character positions 1 to 5 and statements to character positions ...

