WORKING DRAFT J3/01-007R2

Information technology — Programming languages —
Fortran —

Part 1:
Base language

Section 1: Overview

1.1 Scope

ISO/IEC 1539 is a multipart International Standard; the parts are published separately. This
publication, ISO/IEC 1539-1, which is the first part, specifies the form and establishes the
interpretation of programs expressed in the base Fortran language. The purpose of this part of
ISO/IEC 1539 is to promote portability, reliability, maintainability, and efficient execution of
Fortran programs for use on a variety of computing systems. The second part, ISO/IEC 1539-2,
defines additional facilities for the manipulation of character strings of variable length. The third
part, ISO/IEC 1539-3, defines a standard conditional compilation facility for Fortran. A processor
conforming to part 1 need not conform to ISO/IEC 1539-2 or ISO/IEC 1539-3; however,
conformance to either assumes conformance to this part. Throughout this publication, the term
“this standard” refers to ISO/IEC 1539-1.

1.2 Processor

The combination of a computing system and the mechanism by which programs are transformed
for use on that computing system is called a processor in this standard.

1.3 Inclusions

This standard specifies
(1) The forms that a program written in the Fortran language may take,
(2) The rules for interpreting the meaning of a program and its data,
(3) The form of the input data to be processed by such a program, and
(4) The form of the output data resulting from the use of such a program.

1.4 Exclusions

This standard does not specify
(1) The mechanism by which programs are transformed for use on computing systems,

(2) The operations required for setup and control of the use of programs on computing
systems,

(3) The method of transcription of programs or their input or output data to or from a
storage medium,

(4) The program and processor behavior when this standard fails to establish an
interpretation except for the processor detection and reporting requirements in items
(2) through (8) of 1.5,

(5) The size or complexity of a program and its data that will exceed the capacity of any
specific computing system or the capability of a particular processor,

JUN 2001 WORKING DRAFT 1

J3/01-007R2 WORKING DRAFT JUN 2001

(6) The physical properties of the representation of quantities and the method of rounding,
approximating, or computing numeric values on a particular processor,

(7) The physical properties of input/output records, files, and units, or
(8) The physical properties and implementation of storage.

1.5 Conformance

A program (2.2.1) is a standard-conforming program if it uses only those forms and relationships
described herein and if the program has an interpretation according to this standard. A program
unit (2.2) conforms to this standard if it can be included in a program in a manner that allows the
program to be standard conforming.

A processor conforms to this standard if

(1) It executes any standard-conforming program in a manner that fulfills the
interpretations herein, subject to any limits that the processor may impose on the size
and complexity of the program;

(2) It contains the capability to detect and report the use within a submitted program unit
of a form designated herein as obsolescent, insofar as such use can be detected by
reference to the numbered syntax rules and constraints;

(3) It contains the capability to detect and report the use within a submitted program unit
of an additional form or relationship that is not permitted by the numbered syntax
rules or constraints, including the deleted features described in Annex B;

(4) It contains the capability to detect and report the use within a submitted program unit
of kind type parameter values (4.4) not supported by the processor;

(5) It contains the capability to detect and report the use within a submitted program unit
of source form or characters not permitted by Section 3;

(6) It contains the capability to detect and report the use within a submitted program of
name usage not consistent with the scope rules for names, labels, operators, and
assignment symbols in Section 16;

(7) It contains the capability to detect and report the use within a submitted program unit
of intrinsic procedures whose names are not defined in Section 13; and

(8) It contains the capability to detect and report the reason for rejecting a submitted
program.

However, in a format specification that is not part of a FORMAT statement (10.1.1), a processor
need not detect or report the use of deleted or obsolescent features, or the use of additional forms
or relationships.

A standard-conforming processor may allow additional forms and relationships provided that
such additions do not conflict with the standard forms and relationships. However, a standard-
conforming processor may allow additional intrinsic procedures even though this could cause a
conflict with the name of a procedure in a standard-conforming program. If such a conflict occurs
and involves the name of an external procedure, the processor is permitted to use the intrinsic
procedure unless the name is given the EXTERNAL attribute (5.1.2.6) in the same scoping unit (16).
A standard-conforming program shall not use nonstandard intrinsic procedures or modules that
have been added by the processor.

Because a standard-conforming program may place demands on a processor that are not within the
scope of this standard or may include standard items that are not portable, such as external
procedures defined by means other than Fortran, conformance to this standard does not ensure
that a program will execute consistently on all or any standard-conforming processors.

In some cases, this standard allows the provision of facilities that are not completely specified in
the standard. These facilities are identified as processor dependent. They shall be provided, with
methods or semantics determined by the processor.

2 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2

NOTE 1.1

The processor should be accompanied by documentation that specifies the limits it imposes
on the size and complexity of a program and the means of reporting when these limits are
exceeded, that defines the additional forms and relationships it allows, and that defines the
means of reporting the use of additional forms and relationships and the use of deleted or
obsolescent forms. In this context, the use of a deleted form is the use of an additional form.

The processor should be accompanied by documentation that specifies the methods or
semantics of processor-dependent facilities.

1.5.1 Fortran 95 compatibility

Except as noted in this section, this standard is an upward compatible extension to the preceding
Fortran International Standard, ISO/IEC 1539:1997, informally referred to as Fortran 95. Any
standard-conforming Fortran 95 program remains standard-conforming under this standard.

This standard has more intrinsic procedures than did Fortran 95. Therefore, a standard-
conforming Fortran 95 program may have a different interpretation under this standard if it
invokes an external procedure having the same name as one of the new standard intrinsic
procedures, unless that procedure is specified to have the EXTERNAL attribute.

Earlier Fortran standards had the concept of printing, meaning that column one of formatted
output had special meaning for a processor-dependent (possibly empty) set of logical units. This
could be neither detected nor specified by a standard-specified means. The interpretation of the
first column is not specified by this standard.

The PAD= specifier in the INQUIRE statement in this standard returns the value '"UNDEFINED’ if
there is no connection or the connection is for unformatted input/output. The previous standard
specified 'YES'.

1.5.2 Fortran 90 compatibility

Except for the deleted features noted in Annex B.1, and except as noted in this section, this
standard is an upward compatible extension to ISO/IEC 1539:1991 (Fortran 90). Any standard-
conforming Fortran 90 program that does not use one of the deleted features remains standard-
conforming under this standard.

This standard has more intrinsic procedures than did Fortran 90. Therefore, a standard-
conforming Fortran 90 program may have a different interpretation under this standard if it
invokes an external procedure having the same name as one of the standard intrinsic procedures
added in either Fortran 95 or Fortran 2000, unless that procedure is specified to have the
EXTERNAL attribute.

1.5.3 FORTRAN 77 compatibility

Except for the deleted features noted in Annex B.1, and except as noted in this section, this
standard is an upward compatible extension to I1SO 1539:1980 (FORTRAN 77). Any standard-
conforming FORTRAN 77 program that does not use one of the deleted features noted in Annex B.1
remains standard conforming under this standard; however, see item (4) below regarding intrinsic
procedures. This standard restricts the behavior for some features that were processor dependent
in FORTRAN 77. Therefore, a standard-conforming FORTRAN 77 program that uses one of these
processor-dependent features may have a different interpretation under this standard, yet remain a
standard-conforming program. The following FORTRAN 77 features have different interpretations
in this standard:

(1) FORTRAN 77 permitted a processor to supply more precision derived from a real
constant than can be represented in a real datum when the constant is used to initialize

JUN 2001 WORKING DRAFT 3

J3/01-007R2 WORKING DRAFT JUN 2001

a data object of type double precision real in a DATA statement. This standard does
not permit a processor this option.

(2) If a named variable that was not in a common block was initialized in a DATA
statement and did not have the SAVE attribute specified, FORTRAN 77 left its SAVE
attribute processor dependent. This standard specifies (5.2.5) that this named variable
has the SAVE attribute.

(3) FORTRAN 77 required that the number of characters required by the input list was to be
less than or equal to the number of characters in the record during formatted input.
This standard specifies (9.5.4.4.2) that the input record is logically padded with blanks
if there are not enough characters in the record, unless the PAD= specifier with the
value 'NO' is specified in an appropriate OPEN statement.

(4) This standard has more intrinsic functions than did FORTRAN 77 and adds a few
intrinsic subroutines. Therefore, a standard-conforming FORTRAN 77 program may
have a different interpretation under this standard if it invokes an external procedure
having the same name as one of the standard intrinsic procedures added in either
Fortran 90, Fortran 95, or Fortran 2000, unless that procedure is specified to have the
EXTERNAL attribute.

(5) A value of 0 for a list item in a formatted output statement will be formatted in a
different form for some G edit descriptors. In addition, this standard specifies how
rounding of values will affect the output field form, but FORTRAN 77 did not address
this issue. Therefore, some FORTRAN 77 processors may produce an output form
different from the output form produced by Fortran 2000 processors for certain
combinations of values and G edit descriptors.

(6) If the processor can distinguish between positive and negative real zero, the behavior
of the SIGN intrinsic function when the second argument is negative real zero is
changed by this standard.

1.6 Notation used in this standard

In this standard, "shall" is to be interpreted as a requirement; conversely, "shall not" is to be
interpreted as a prohibition. Except where stated otherwise, such requirements and prohibitions
apply to programs rather than processors.

1.6.1 Informative notes

Informative notes of explanation, rationale, examples, and other material are interspersed with the
normative body of this publication. The informative material is identified by shading and is
nonnormative.

1.6.2 Syntax rules

Syntax rules are used to help describe the forms that Fortran lexical tokens, statements, and
constructs may take. These syntax rules are expressed in a variation of Backus-Naur form (BNF) in
which:

(1) Characters from the Fortran character set (3.1) are interpreted literally as shown, except
where otherwise noted.

(2) Lower-case italicized letters and words (often hyphenated and abbreviated) represent
general syntactic classes for which specific syntactic entities shall be substituted in
actual statements.

Common abbreviations used in syntactic terms are:

4 WORKING DRAFT JUN 2001

| JUN 2001 WORKING DRAFT J3/01-007R2

stmt for statement attr for attribute

expr for expression decl for declaration

spec for specifier def for definition

int for integer desc for descriptor

arg for argument op for operator
(3) The syntactic metasymbols used are:

is introduces a syntactic class definition

or introduces a syntactic class alternative

[] encloses an optional item

[1.. encloses an optionally repeated item
which may occur zero or more times

[continues a syntax rule

(4) Each syntax rule is given a unique identifying number of the form Rsnn, where s is a
one- or two-digit section number and nn is a two-digit sequence number within that
section. The syntax rules are distributed as appropriate throughout the text, and are
referenced by number as needed. Some rules in Sections 2 and 3 are more fully
described in later sections; in such cases, the section number s is the number of the

| later section where the rule is repeated.

(5) The syntax rules are not a complete and accurate syntax description of Fortran, and
cannot be used to generate a Fortran parser automatically; where a syntax rule is
incomplete, it is restricted by the corresponding constraints and text.

NOTE 1.2
An example of the use of the syntax rules is:

digit-string is digit [digit] ...

The following are examples of forms for a digit string allowed by the above rule:
digit
digit digit
digit digit digit digit
digit digit digit digit digit digit digit digit
When specific entities are substituted for digit, actual digit strings might be:

4
67

1999
10243852

1.6.3 Constraints

Each constraint is given a unique identifying number of the form Csnn, where s is a one- or two-
digit section number and nn is a two-digit sequence number within that section.

Often a constraint is associated with a particular syntax rule. Where that is the case, the constraint
is annotated with the syntax rule number in parentheses. A constraint that is associated with a
syntax rule constitutes part of the definition of the syntax term defined by the rule. It thus applies
in all places where the syntax term appears.

Some constraints are not associated with particular syntax rules. The effect of such a constraint is
similar to that of a restriction stated in the text, except that a processor is required to have the
capability to detect and report violations of constraints (1.5). In some cases, a broad requirement is

| JUN 2001 WORKING DRAFT 5

J3/01-007R2 WORKING DRAFT JUN 2001

stated in text and a subset of the same requirement is also stated as a constraint. This indicates
that a standard-conforming program is required to adhere to the broad requirement, but that a
standard-conforming processor is required only to have the capability of diagnosing violations of
the constraint.

1.6.4 Assumed syntax rules

In order to minimize the number of additional syntax rules and convey appropriate constraint
information, the following rules are assumed; an explicit syntax rule for a term overrides an
assumed rule. The letters "xyz" stand for any syntactic class phrase:

R101 xyz-list is xyz[,xyz]..
R102 xyz-name is name
R103 scalar-xyz is Xxyz

C101 (R103) scalar-xyz shall be scalar.

1.6.5 Syntax conventions and characteristics

(1) Any syntactic class name ending in "-stmt" follows the source form statement rules: it
shall be delimited by end-of-line or semicolon, and may be labeled unless it forms part
of another statement (such as an IF or WHERE statement). Conversely, everything
considered to be a source form statement is given a "-stmt" ending in the syntax rules.

(2) The rules on statement ordering are described rigorously in the definition of
program-unit (R202). Expression hierarchy is described rigorously in the definition of
expr (R722).

(3) The suffix "-spec” is used consistently for specifiers, such as input/output statement
specifiers. It also is used for type declaration attribute specifications (for example,
"array-spec" in R515), and in a few other cases.

(4) When reference is made to a type parameter, including the surrounding parentheses,
the suffix "-selector” is used. See, for example, "kind-selector” (R508) and "length-selector"
(R510).

(5) The term "subscript" (for example, R618, R619, and R620) is used consistently in array
definitions.

1.6.6 Text conventions

In the descriptive text, an English word equivalent of a BNF syntactic term is usually used.
Specific statements and attributes are identified in the text by an upper-case keyword, e.g., "END
statement”. Boldface words are used in the text where they are first defined with a specialized
meaning. Obsolescent features (1.7) are shown in a distinguishing type size.

NOTE 1.3

‘This sentence is an example of the size used for obsolescent features.

1.7 Deleted and obsolescent features

This standard protects the users' investment in existing software by including all but five of the
language elements of Fortran 90 that are not processor dependent. This standard identifies two
categories of outmoded features. There are five in the first category, deleted features, which
consists of features considered to have been redundant in FORTRAN 77 and largely unused in
Fortran 90. Those in the second category, obsolescent features, are considered to have been
redundant in Fortran 90 and Fortran 95, but are still frequently used.

6 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2

1.7.1 Nature of deleted features

(1) Better methods existed in FORTRAN 77.
(2) These features are not included in Fortran 95 or this revision of Fortran.

1.7.2 Nature of obsolescent features

(1) Better methods existed in Fortran 90 and Fortran 95.

(2) It is recommended that programmers should use these better methods in new
programs and convert existing code to these methods.

(3) These features are identified in the text of this document by a distinguishing type font
(1.6.6).

(4) If the use of these features has become insignificant in Fortran programs, future
Fortran standards committees should consider deleting them from the next revision.

(5) The next Fortran standards committee should consider for deletion only those
language features that appear in the list of obsolescent features.

(6) Processors supporting the Fortran language should support these features as long as
they continue to be used widely in Fortran programs.

1.8 Normative references

The following standards contain provisions which, through reference in this standard, constitute
provisions of this standard. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on this standard are encouraged
to investigate the possibility of applying the most recent editions of the standards indicated below.
Members of IEC and I1SO maintain registers of currently valid International Standards.

ISO/IEC 646:1991, Information technology—ISO 7-bit coded character set for information interchange.
ISO/IEC 646:1991 (International Reference Version) is the international equivalent of ANSI X3.4-
1986, commonly known as ASCII. This standard refers to it as the ASCII standard.

ISO 8601:1988, Data elements and interchange formats—Information interchange—
Representation of dates and times.

ISO/IEC 9989:1999, Information technology—Programming languages—C.
This standard refers to ISO/IEC 9899:1999 as the C standard.

ISO/IEC 10646-1:2000, Information technology—Universal multiple-octet coded character set
(UCS)—Part 1: Architecture and basic multilingual plane.

IEC 60559 (1989-01), Binary floating-point arithmetic for microprocessor systems.

Since IEC 60559 (1989-01) was originally IEEE 754-1985, Standard for binary floating-point
arithmetic, and is widely known by this name, this standard refers to it as the IEEE standard.

JUN 2001 WORKING DRAFT 7

| J3/01-007R2 WORKING DRAFT JUN 2001

| 8 WORKING DRAFT JUN 2001

	Section 1: Overview
	1.1�� Scope
	1.2�� Processor
	1.3�� Inclusions
	(1) The forms that a program written in the Fortran language may take,
	(2) The rules for interpreting the meaning of a program and its data,
	(3) The form of the input data to be processed by such a program, and
	(4) The form of the output data resulting from the use of such a program.

	1.4�� Exclusions
	(1) The mechanism by which programs are transformed for use on computing systems,
	(2) The operations required for setup and control of the use of programs on computing systems,
	(3) The method of transcription of programs or their input or output data to or from a storage me...
	(4) The program and processor behavior when this standard fails to establish an interpretation ex...
	(5) The size or complexity of a program and its data that will exceed the capacity of any specifi...
	(6) The physical properties of the representation of quantities and the method of rounding, appro...
	(7) The physical properties of input/output records, files, and units, or
	(8) The physical properties and implementation of storage.

	1.5�� Conformance
	(1) It executes any standard-conforming program in a manner that fulfills the interpretations her...
	(2) It contains the capability to detect and report the use within a submitted program unit of a ...
	(3) It contains the capability to detect and report the use within a submitted program unit of an...
	(4) It contains the capability to detect and report the use within a submitted program unit of ki...
	(5) It contains the capability to detect and report the use within a submitted program unit of so...
	(6) It contains the capability to detect and report the use within a submitted program of name us...
	(7) It contains the capability to detect and report the use within a submitted program unit of in...
	(8) It contains the capability to detect and report the reason for rejecting a submitted program.
	NOTE 1.1
	1.5.1�� Fortran 95 compatibility
	1.5.2�� Fortran 90 compatibility
	1.5.3�� FORTRAN 77 compatibility
	(1) FORTRAN 77 permitted a processor to supply more precision derived from a real constant than c...
	(2) If a named variable that was not in a common block was initialized in a DATA statement and di...
	(3) FORTRAN 77 required that the number of characters required by the input list was to be less t...
	(4) This standard has more intrinsic functions than did FORTRAN 77 and adds a few intrinsic subro...
	(5) A value of 0 for a list item in a formatted output statement will be formatted in a different...
	(6) If the processor can distinguish between positive and negative real zero, the behavior of the...

	1.6�� Notation used in this standard
	1.6.1�� Informative notes
	1.6.2�� Syntax rules
	(1) Characters from the Fortran character set (3.1) are interpreted literally as shown, except wh...
	(2) Lower-case italicized letters and words (often hyphenated and abbreviated) represent general ...
	(3) The syntactic metasymbols used are:
	(4) Each syntax rule is given a unique identifying number of the form Rsnn, where s is a one- or ...
	(5) The syntax rules are not a complete and accurate syntax description of Fortran, and cannot be...
	NOTE 1.2

	1.6.3�� Constraints
	1.6.4�� Assumed syntax rules
	R102 xyz�name is name
	R103 scalar�xyz is xyz
	C101 (R103) scalar�xyz shall be scalar.

	1.6.5�� Syntax conventions and characteristics
	(1) Any syntactic class name ending in "�stmt" follows the source form statement rules: it shall ...
	(2) The rules on statement ordering are described rigorously in the definition of program�unit (R...
	(3) The suffix "�spec" is used consistently for specifiers, such as input/output statement specif...
	(4) When reference is made to a type parameter, including the surrounding parentheses, the suffix...
	(5) The term "subscript" (for example, R618, R619, and R620) is used consistently in array defini...

	1.6.6�� Text conventions
	NOTE 1.3

	1.7�� Deleted and obsolescent features
	1.7.1�� Nature of deleted features
	(1) Better methods existed in FORTRAN 77.
	(2) These features are not included in Fortran 95 or this revision of Fortran.

	1.7.2�� Nature of obsolescent features
	(1) Better methods existed in Fortran 90 and Fortran 95.
	(2) It is recommended that programmers should use these better methods in new programs and conver...
	(3) These features are identified in the text of this document by a distinguishing type font (1.6...
	(4) If the use of these features has become insignificant in Fortran programs, future Fortran sta...
	(5) The next Fortran standards committee should consider for deletion only those language feature...
	(6) Processors supporting the Fortran language should support these features as long as they cont...

	1.8�� Normative references

