
JUN 2001 WORKING DRAFT J3/01-007R2
Section 4: Data types
Fortran provides an abstract means whereby data may be categorized without relying on a

particular physical representation. This abstract means is the concept of data type.

An intrinsic type is one that is defined by the language. The intrinsic types are integer, real,

complex, character, and logical.

A derived type is one that is derived by composition of other types. Objects of derived type have

components. Each component is of an intrinsic type or of a derived type. A type definition (4.5.1)

is required to supply the name of the type and the names and types of its components.

A derived type may be used only where its definition is accessible (4.5.1). An intrinsic type is

always accessible.

4.1 The concept of data type
A data type has a name, a set of valid values, a means to denote such values (constants), and a set

of operations to manipulate the values.

4.1.1 Set of values

For each data type, there is a set of valid values. The set of valid values may be completely

determined, as is the case for logical, or may be determined by a processor-dependent method, as

is the case for integer and real. For complex or derived types, the set of valid values consists of the

set of all the combinations of the values of the individual components.

4.1.2 Constants

For each of the intrinsic data types, the syntax for literal constants of that type is specified in this

standard. These literal constants are described in 4.4 for each intrinsic type.

The syntax for denoting a value indicates both the type and the particular value.

A constant value may be given a name (5.1.2.10, 5.2.9).

A structure constructor (4.5.8) may be used to construct a constant value of derived type from an

appropriate sequence of initialization expressions (7.1.7). Such a constant value is considered to be

a scalar even though the value may have components that are arrays.

NOTE 4.1
For example, if the complex type were not intrinsic but had to be derived, a type definition
would be required to supply the name "complex" and declare two components, each of type
real. In addition, arithmetic operators would have to be defined.

NOTE 4.2
For example, the logical data type has a set of two values, denoted by the lexical tokens
.TRUE. and .FALSE., which are manipulated by logical operations.

An example of a less restricted data type is the integer data type. This data type has a
processor-dependent set of integer numeric values, each of which is denoted by an optional
sign followed by a string of digits, and which may be manipulated by integer arithmetic
operations and relational operations.
JUN 2001 WORKING DRAFT 29

J3/01-007R2 WORKING DRAFT JUN 2001
4.1.3 Operations

For each of the intrinsic data types, a set of operations and corresponding operators are defined

intrinsically. These are described in Section 7. The intrinsic set may be augmented with operations

and operators defined by functions with the OPERATOR interface (12.3.2.1). Operator definitions

are described in Sections 7 and 12.

For derived types, the only intrinsic operation is assignment with agreement of type and type

parameters. All other operations shall be defined by the program (4.5.9).

4.2 Type parameters
A data type may be parameterized. In this case, the set of values, the syntax for denoting the

values, and the set of operations on the values of the type depend on the values of the parameters.

The intrinsic data types are all parameterized. Derived types may be defined to be parameterized.

A type parameter is either a kind type parameter or a nonkind type parameter.

A kind type parameter may be used in initialization and specification expressions within the

derived type definition (4.5.1) for the type; it participates in generic resolution (16.1.2.3). Each of

the intrinsic types has a kind type parameter named KIND, which is used to distinguish multiple

representations of the intrinsic type.

A nonkind type parameter may be used in specification expressions within the derived type

definition for the type, but it may not be used in initialization expressions. The intrinsic character

type has a nonkind type parameter named LEN, which is the length of the string.

A type parameter value may be specified with a type specification (5.1, 4.5.7).

R401 type-param-value is scalar-int-expr
or *

or :

C401 (R401) The type-param-value for a kind type parameter shall be an initialization expression.

C402 (R401) A colon may be used as a type-param-value only in the declaration of an entity or
component that has the POINTER or ALLOCATABLE attribute.

A deferred type parameter is a nonkind type parameter whose value can change during execution

of the program. A colon as a type-param-value specifies a deferred type parameter.

NOTE 4.3
By design, the value of a kind type parameter is known at compile time. Some
parameterizations that involve multiple representation forms need to be distinguished at
compile time for practical implementation and performance. Examples include the multiple
precisions of the intrinsic real type and the possible multiple character sets of the intrinsic
character type.

A type parameter of a derived type may be specified to be a kind type parameter in order to
allow generic resolution based on the parameter; that is to allow a single generic to include
two specific procedures that have interfaces distinguished only by the value of a kind type
parameter of a dummy argument. Generics are designed to be resolvable at compile time.

NOTE 4.4
A typical use of a nonkind type parameter is to specify a size. An example is the length of an
entity of intrinsic character type.
30 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
The values of the deferred type parameters of an object are determined by sucessful execution of

an ALLOCATE statement (6.3.1), execution of a derived-type intrinsic assignment statement

(7.5.1.2), execution of a pointer assignment statement (7.5.2), or by argument association (12.4.1.2).

An assumed type parameter is a nonkind type parameter for a dummy argument that assumes the

type parameter value from the corresponding actual argument. An asterisk as a type-param-value
specifies an assumed type parameter.

4.3 Relationship of types and values to objects
The name of a data type serves as a type specifier and may be used to declare objects of that type.

A declaration specifies the type of a named object. A data object may be declared explicitly or

implicitly. Data objects may have attributes in addition to their types. Section 5 describes the way

in which a data object is declared and how its type and other attributes are specified.

Scalar data of any intrinsic or derived type may be shaped in a rectangular pattern to compose an

array of the same type and type parameters. An array object has a type and type parameters just

as a scalar object does.

A scalar object of derived type is referred to as a structure.

Variables may be objects or subobjects. The data type and type parameters of a variable determine

which values that variable may take. Assignment provides one means of defining or redefining

the value of a variable of any type. Assignment is defined intrinsically for all types when the type,

type parameters, and shape of both the variable and the value to be assigned to it are identical.

Assignment between objects of certain differing intrinsic types, type parameters, and shapes is

described in Section 7. A subroutine and a generic interface (4.5.1.5, 12.3.2.1) whose generic

specifier is ASSIGNMENT (=) define an assignment that is not defined intrinsically or redefine an

intrinsic derived-type assignment (7.5.1.3).

The data type of a variable determines the operations that may be used to manipulate the variable.

4.4 Intrinsic data types
The intrinsic data types are:

numeric types: integer, real, and complex

nonnumeric types: character and logical

The numeric types are provided for numerical computation. The normal operations of arithmetic,

addition (+), subtraction (–), multiplication (∗), division (/), exponentiation (∗∗), negation (unary –

), and identity (unary +), are defined intrinsically for this set of types.

NOTE 4.5
Any entity with a deferred type parameter is required to have the ALLOCATABLE or
POINTER attribute.

NOTE 4.6
Deferred type parameters of functions, including function procedure pointers, have no values.
Instead, they indicate that those type parameters of the function result will be determined by
execution of the function, if it returns an allocated allocatable result or an associated pointer
result.

NOTE 4.7
For example, assignment of a real value to an integer variable is defined intrinsically.
JUN 2001 WORKING DRAFT 31

J3/01-007R2 WORKING DRAFT JUN 2001
4.4.1 Integer type

The set of values for the integer type is a subset of the mathematical integers. A processor shall

provide one or more representation methods that define sets of values for data of type integer.

Each such method is characterized by a value for a type parameter called the kind type parameter.

The kind type parameter of a representation method is returned by the intrinsic inquiry function

KIND (13.11.57). The decimal exponent range of a representation method is returned by the

intrinsic function RANGE (13.11.92). The intrinsic function SELECTED_INT_KIND (13.11.101)

returns a kind value based on a specified decimal range requirement. The integer type includes a

zero value, which is considered neither negative nor positive. The value of a signed integer zero is

the same as the value of an unsigned integer zero.

The type specifier for the integer type uses the keyword INTEGER (R503).

If the kind type parameter is not specified, the default kind value is KIND (0) and the data entity

is of type default integer.

Any integer value may be represented as a signed-int-literal-constant.

R402 signed-digit-string is [sign] digit-string

R403 digit-string is digit [digit] ...

R404 signed-int-literal-constant is [sign] int-literal-constant

R405 int-literal-constant is digit-string [_ kind-param]

R406 kind-param is digit-string
or scalar-int-constant-name

C403 (R406) A scalar-int-constant-name shall be a named constant of type integer.

R407 sign is +

or –

C404 (R406) The value of kind-param shall be nonnegative.

C405 (R405) The value of kind-param shall specify a representation method that exists on the
processor.

The optional kind type parameter following digit-string specifies the kind type parameter of the

integer constant; if it is not present, the constant is of type default integer.

An integer constant is interpreted as a decimal value.

R408 boz-literal-constant is binary-constant
or octal-constant
or hex-constant

R409 binary-constant is B ' digit [digit] ... '

or B " digit [digit] ... "

C406 (R409) digit shall have one of the values 0 or 1.

NOTE 4.8
Examples of signed integer literal constants are:

473
+56
-101
21_2
21_SHORT
1976354279568241_8

where SHORT is a scalar integer named constant.
32 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
R410 octal-constant is O ' digit [digit] ... '

or O " digit [digit] ... "

C407 (R410) digit shall have one of the values 0 through 7.

R411 hex-constant is Z ' hex-digit [hex-digit] ... '

or Z " hex-digit [hex-digit] ... "

R412 hex-digit is digit
or A

or B

or C

or D

or E

or F

In these constants, the binary, octal, and hexadecimal digits are interpreted according to their

respective number systems. The hex-digits A through F may be represented by their lower-case

equivalents.

A boz-literal-constant is treated as if the constant were an int-literal-constant with a kind-param that

specifies the representation method with the largest decimal exponent range supported by the

processor.

4.4.2 Real type

The real type has values that approximate the mathematical real numbers. A processor shall

provide two or more approximation methods that define sets of values for data of type real. Each

such method has a representation method and is characterized by a value for a type parameter

called the kind type parameter. The kind type parameter of an approximation method is returned

by the intrinsic inquiry function KIND (13.11.57). The decimal precision and decimal exponent

range of an approximation method are returned by the intrinsic functions PRECISION (13.11.86)

and RANGE (13.11.92). The intrinsic function SELECTED_REAL_KIND (13.11.102) returns a kind

value based on specified precision and decimal range requirements.

The real type includes a zero value. Processors that distinguish between positive and negative

zeros shall treat them as equivalent

(1) in all relational operations,

(2) as actual arguments to intrinsic procedures other than SIGN, and

(3) as the scalar-numeric-expr in an arithmetic IF.

NOTE 4.9
See C.1.2 for remarks concerning selection of approximation methods.

NOTE 4.10
On a processor that can distinguish between 0.0 and -0.0,

(X .GE. 0.0)

evaluates to true if X = 0.0 or if X = -0.0,

(X .LT. 0.0)

evaluates to false for X = -0.0, and

IF (X) 1,2,3

causes a transfer of control to the branch target statement with the statement label "2" for both X = 0.0 and X = -0.0.

In order to distinguish between 0.0 and -0.0, a program should use the SIGN function.
SIGN(1.0,X) will return -1.0 if X < 0.0 or if the processor distinguishes between 0.0 and -0.0
and X has the value -0.0.
JUN 2001 WORKING DRAFT 33

J3/01-007R2 WORKING DRAFT JUN 2001
The type specifier for the real type uses the keyword REAL and the type specifier for the double

precision real type uses the keyword DOUBLE PRECISION (R503).

If the type keyword REAL is specified and the kind type parameter is not specified, the default

kind value is KIND (0.0) and the data entity is of type default real. If the type keyword DOUBLE

PRECISION is specified, a kind type parameter shall not be specified and the data entity is of type

double precision real. The kind type parameter of such an entity has the value KIND (0.0D0).

The decimal precision of the double precision real approximation method shall be greater than that

of the default real method.

R413 signed-real-literal-constant is [sign] real-literal-constant

R414 real-literal-constant is significand [exponent-letter exponent] [_ kind-param]

or digit-string exponent-letter exponent [_ kind-param]

R415 significand is digit-string . [digit-string]

or . digit-string

R416 exponent-letter is E

or D

R417 exponent is signed-digit-string

C408 (R414) If both kind-param and exponent-letter are present, exponent-letter shall be E.

C409 (R414) The value of kind-param shall specify an approximation method that exists on the
processor.

A real literal constant without a kind type parameter is a default real constant if it is without an

exponent part or has exponent letter E, and is a double precision real constant if it has exponent

letter D. A real literal constant written with a kind type parameter is a real constant with the

specified kind type parameter.

The exponent represents the power of ten scaling to be applied to the significand or digit string.

The meaning of these constants is as in decimal scientific notation.

The significand may be written with more digits than a processor will use to approximate the

value of the constant.

NOTE 4.11
Historically some systems had a distinct negative zero value that presented some difficulties.
Fortran standards were specified such that these difficulties had to be handled by the
processor and not the user. The IEEE standard introduced a negative zero with specific
properties. For example when the exact result of an operation is negative but rounding
produces a zero, the value specified by the IEEE standard is -0.0. This standard includes
adjustments intended to permit IEEE-compliant processors to behave in accordance with that
standard without violating this standard.

NOTE 4.12
Examples of signed real literal constants are:

-12.78
+1.6E3
2.1
-16.E4_8
0.45E-4
10.93E7_QUAD
.123
3E4

where QUAD is a scalar integer named constant.
34 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
4.4.3 Complex type

The complex type has values that approximate the mathematical complex numbers. The values of

a complex type are ordered pairs of real values. The first real value is called the real part, and the

second real value is called the imaginary part.

Each approximation method used to represent data entities of type real shall be available for both

the real and imaginary parts of a data entity of type complex. A kind type parameter may be

specified for a complex entity and selects for both parts the real approximation method

characterized by this kind type parameter value. The kind type parameter of an approximation

method is returned by the intrinsic inquiry function KIND (13.11.57).

The type specifier for the complex type uses the keyword COMPLEX (R503). There is no keyword

for double precision complex. If the type keyword COMPLEX is specified and the kind type

parameter is not specified, the default kind value is the same as that for default real, the type of

both parts is default real, and the data entity is of type default complex.

R418 complex-literal-constant is (real-part , imag-part)

R419 real-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

R420 imag-part is signed-int-literal-constant
or signed-real-literal-constant
or named-constant

C410 (R418) Each named constant in a complex literal constant shall be of type integer or real.

If the real part and the imaginary part of a complex literal constant are both real, the kind type

parameter value of the complex literal constant is the kind type parameter value of the part with

the greater decimal precision; if the precisions are the same, it is the kind type parameter value of

one of the parts as determined by the processor. If a part has a kind type parameter value different

from that of the complex literal constant, the part is converted to the approximation method of the

complex literal constant.

If both the real and imaginary parts are integer, they are converted to the default real

approximation method and the constant is of type default complex. If only one of the parts is an

integer, it is converted to the approximation method selected for the part that is real and the kind

type parameter value of the complex literal constant is that of the part that is real.

4.4.4 Character type

The character type has a set of values composed of character strings. A character string is a

sequence of characters, numbered from left to right 1, 2, 3, ... up to the number of characters in the

string. The number of characters in the string is called the length of the string. The length is a

type parameter; its value is greater than or equal to zero. Strings of different lengths are all of type

character.

A processor shall provide one or more representation methods that define sets of values for data

of type character. Each such method is characterized by a value for a type parameter called the

NOTE 4.13
Examples of complex literal constants are:

(1.0, -1.0)
(3, 3.1E6)
(4.0_4, 3.6E7_8)
(0., PI)

where PI is a previously declared named real constant.
JUN 2001 WORKING DRAFT 35

J3/01-007R2 WORKING DRAFT JUN 2001
kind type parameter. The kind type parameter of a representation method is returned by the

intrinsic inquiry function KIND (13.11.57). The intrinsic function SELECTED_CHAR_KIND

(13.11.100) returns a kind value based on the name of a character type. Any character of a

particular representation method representable in the processor may occur in a character string of

that representation method.

The character set defined by ISO/IEC 646:1991 is referred to as the ASCII character set or the

ASCII character data type. The character set defined by ISO/IEC 10646-1:1993 UCS-4 is referred

to as the ISO 10646 character set of the ISO 10646 character data type.

The type specifier for the character type uses the keyword CHARACTER (R503).

If the kind type parameter is not specified, the default kind value is KIND ('A') and the data entity

is of type default character.

A character literal constant is written as a sequence of characters, delimited by either apostrophes

or quotation marks.

R421 char-literal-constant is [kind-param _] ' [rep-char] ... '

or [kind-param _] " [rep-char] ... "

C411 (R421) The value of kind-param shall specify a representation method that exists on the
processor.

The optional kind type parameter preceding the leading delimiter specifies the kind type

parameter of the character constant; if it is not present, the constant is of type default character.

For the type character with kind kind-param, if present, and for type default character otherwise, a

representable character, rep-char, is one of the following:

(1) Any character in the processor-dependent character set in fixed source form. A processor may restrict the

occurrence of some or all of the control characters.

(2) Any graphic character in the processor-dependent character set in free source form.

The delimiting apostrophes or quotation marks are not part of the value of the character literal

constant.

An apostrophe character within a character constant delimited by apostrophes is represented by

two consecutive apostrophes (without intervening blanks); in this case, the two apostrophes are

counted as one character. Similarly, a quotation mark character within a character constant

delimited by quotation marks is represented by two consecutive quotation marks (without

intervening blanks) and the two quotation marks are counted as one character.

A zero-length character literal constant is represented by two consecutive apostrophes (without

intervening blanks) or two consecutive quotation marks (without intervening blanks) outside of a

character context.

The intrinsic operation concatenation (//) is defined between two data entities of type character

(7.2.2) with the same kind type parameter.

NOTE 4.14
FORTRAN 77 allowed any character to occur in a character context. This standard allows a
source program to contain characters of more than one kind. Some processors may identify
characters of nondefault kinds by control characters (called "escape" or "shift" characters). It is
difficult, if not impossible, to process, edit, and print files where some instances of control
characters have their intended meaning and some instances may not. Almost all control
characters have uses or effects that effectively preclude their use in character contexts and this
is why free source form allows only graphic characters as representable characters.
Nevertheless, for compatibility with FORTRAN 77, control characters remain permitted in principle in fixed source

form.
36 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
4.4.4.1 Collating sequence

Each implementation defines a collating sequence for the character set of each kind of character. A

collating sequence is a one-to-one mapping of the characters into the nonnegative integers such

that each character corresponds to a different nonnegative integer. The intrinsic functions CHAR

(13.11.19) and ICHAR (13.11.50) provide conversions between the characters and the integers

according to this mapping.

For the default character type, the only constraints on the collating sequence are the following:

(1) ICHAR ('A') < ICHAR ('B') < ... < ICHAR ('Z') for the twenty-six letters.

(2) ICHAR ('0') < ICHAR ('1') < ... < ICHAR ('9') for the ten digits.

(3) ICHAR (' ') < ICHAR ('0') < ICHAR ('9') < ICHAR ('A') or
ICHAR (' ') < ICHAR ('A') < ICHAR ('Z') < ICHAR ('0').

(4) ICHAR ('a') < ICHAR ('b') < ... < ICHAR ('z').

(5) ICHAR (' ') < ICHAR ('0') < ICHAR ('9') < ICHAR ('a') or
ICHAR (' ') < ICHAR ('a') < ICHAR ('z') < ICHAR ('0').

Except for blank, there are no constraints on the location of the special characters and underscore

in the collating sequence, nor is there any specified collating sequence relationship between the

upper-case and lower-case letters.

The sequence of numerical codes defined by the ASCII standard is called the ASCII collating
sequence in this standard.

NOTE 4.15
Examples of character literal constants are:

"DON'T"
'DON''T'

both of which have the value DON'T and

''

which has the zero-length character string as its value.

NOTE 4.16
Examples of nondefault character literal constants, where the processor supports the
corresponding character sets, are:

BOLD_FACE_'This is in bold face '
ITALICS_' This is in italics '

where BOLD_FACE and ITALICS are named constants whose values are the kind type
parameters for bold face and italic characters, respectively.

NOTE 4.17
For example:

 ICHAR ('X')

returns the integer value of the character ’X’ according to the collating sequence of the
processor.

NOTE 4.18
The intrinsic functions ACHAR (13.11.2) and IACHAR (13.11.45) provide conversions between
these characters and the integers of the ASCII collating sequence.
JUN 2001 WORKING DRAFT 37

J3/01-007R2 WORKING DRAFT JUN 2001
The intrinsic functions LGT, LGE, LLE, and LLT (13.11.61-13.11.64) provide comparisons between

strings based on the ASCII collating sequence. International portability is guaranteed if the set of

characters used is limited to the letters, digits, underscore, and special characters.

4.4.5 Logical type

The logical type has two values which represent true and false.

A processor shall provide one or more representation methods for data of type logical. Each such

method is characterized by a value for a type parameter called the kind type parameter. The kind

type parameter of a representation method is returned by the intrinsic inquiry function KIND

(13.11.57).

The type specifier for the logical type uses the keyword LOGICAL (R503).

If the kind type parameter is not specified, the default kind value is KIND (.FALSE.) and the data

entity is of type default logical.

R422 logical-literal-constant is .TRUE. [_ kind-param]

or .FALSE. [_ kind-param]

C412 (R422) The value of kind-param shall specify a representation method that exists on the
processor.

The optional kind type parameter following the trailing delimiter specifies the kind type parameter

of the logical constant; if it is not present, the constant is of type default logical.

The intrinsic operations defined for data entities of logical type are: negation (.NOT.), conjunction

(.AND.), inclusive disjunction (.OR.), logical equivalence (.EQV.), and logical nonequivalence

(.NEQV.) as described in 7.2.4. There is also a set of intrinsically defined relational operators that

compare the values of data entities of other types and yield a value of type default logical. These

operations are described in 7.2.3.

4.5 Derived types
Additional data types may be derived from the intrinsic data types. A type definition is required

to define the name of the type and the names and attributes of its components.

The type specifier for a derived type uses the keyword TYPE followed by the name of the type in

parentheses (R503).

A derived type may be parameterized by multiple type parameters, each of which is defined to be

either a kind or nonkind type parameter. There is no concept of a default value for a type

parameter of a derived type; it is required to explicitly specify, assume, or defer the values of all

type parameters of a derived-type entity.

Ultimately, a derived type is resolved into ultimate components that are either of intrinsic type or

are allocatable or pointers.

By default, no storage sequence is implied by the order of the component definitions. However, if

the definition of a derived type contains a SEQUENCE statement, the type is a sequence type. The

order of the component definitions in a sequence type specifies a storage sequence for objects of

that type. If the definition of a derived type specifies BIND(C), the storage sequence is that

required by the companion processor (2.5.10) for an entity of a C struct type with which an entity

of the derived type is interoperable (15.2.4).

NOTE 4.19
See C.1.1 for an example
38 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
4.5.1 Derived-type definition

R423 derived-type-def is derived-type-stmt
[type-param-def-stmt] ...

[data-component-part]

[type-bound-procedure-part]

end-type-stmt

R424 derived-type-stmt is TYPE [[, type-attr-spec-list] ::] type-name ■
■ [(type-param-name-list)]

R425 type-attr-spec is access-spec
or EXTENSIBLE

or EXTENDS ([access-spec ::] parent-type-name ■
■ [= initialization-expr])

or BIND (C)

C413 (R424) A derived type type-name shall not be the same as the name of any intrinsic type
defined in this standard.

C414 (R424) The same type-attr-spec shall not appear more than once in a given derived-type-stmt.

C415 (R424) EXTENSIBLE and EXTENDS shall not both appear.

C416 (R425) A parent-type-name shall be the name of an accessible extensible type (4.5.3) or of an
accessible type alias (4.6) for an extensible type.

C417 (R424) If EXTENDS or EXTENSIBLE appears, neither BIND(C) nor SEQUENCE shall
appear.

C418 (R423) If BIND(C) appears, SEQUENCE, a type-bound-procedure-part, or a type-param-name-
list shall not appear.

C419 (R423) If BIND(C) appears, any derived type specified in a component definition shall be
defined with the BIND(C) type-attr-spec.

C420 (R423) If BIND(C) appears, neither POINTER nor ALLOCATABLE shall appear in any
component definition in the type.

R426 type-param-def-stmt is INTEGER [kind-selector] [[, type-param-attr-spec] ::] ■
■ type-param-name-list

C421 (R426) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the
type-param-names in the derived-type-stmt of that derived-type-def.

R427 type-param-attr-spec is KIND

or NONKIND

R428 data-component-part is [private-sequence-stmt] ...

[component-def-stmt] ...

R429 private-sequence-stmt is PRIVATE

or SEQUENCE

C422 (R429) A PRIVATE statement is permitted only if the type definition is within the
specification part of a module.

C423 (R428) The same private-sequence-stmt shall not appear more than once in a given
derived-type-def.

C424 (R428) If SEQUENCE appears, all derived types specified in component definitions shall be
sequence types.

C425 (R423) If SEQUENCE appears, a type-bound-procedure-part shall not appear.

R430 component-def-stmt is data-component-def-stmt
or proc-component-def-stmt

R431 data-component-def-stmt is declaration-type-spec [[, component-attr-spec-list] ::] ■
JUN 2001 WORKING DRAFT 39

J3/01-007R2 WORKING DRAFT JUN 2001
■ component-decl-list

R432 component-attr-spec is POINTER

or DIMENSION (component-array-spec)

or ALLOCATABLE

or access-spec

R433 component-decl is component-name [(component-array-spec)] ■
■ [∗ char-length] [component-initialization]

R434 component-array-spec is explicit-shape-spec-list
or deferred-shape-spec-list

R435 component-initialization is = initialization-expr
or => NULL ()

C426 (R431) No component-attr-spec shall appear more than once in a given component-def-stmt.

C427 (R431) A component declared with the CLASS keyword (5.1.1.8) shall have the
ALLOCATABLE or POINTER attribute.

C428 (R431) If the POINTER attribute is not specified for a component, the declaration-type-spec
in the component-def-stmt shall specify an intrinsic type or a previously defined derived
type.

C429 (R431) If the POINTER attribute is specified for a component, the declaration-type-spec in the
component-def-stmt shall specify an intrinsic type or any accessible derived type including
the type being defined.

C430 (R431) If the POINTER or ALLOCATABLE attribute is specified, each component-array-spec
shall be a deferred-shape-spec-list.

C431 (R431) If neither the POINTER attribute nor the ALLOCATABLE attribute is specified, each
component-array-spec shall be an explicit-shape-spec-list.

C432 (R434) Each bound in the explicit-shape-spec shall not contain references to specification
functions or any object designators other than named constants or subobjects thereof.

C433 (R431) A component shall not have both the ALLOCATABLE and the POINTER attribute.

C434 (R433) The ∗ char-length option is permitted only if the type specified is character.

C435 (R430) Each type-param-value within a component-def-stmt shall either be a colon or a
specification expression that does not contain references to specification functions or any
object designators other than named constants or subobjects thereof.

C436 (R431) If component-initialization appears, a double-colon separator shall appear before the
component-decl-list.

C437 (R431) If => appears in component-initialization, POINTER shall appear in the
component-attr-spec-list. If = appears in component-initialization, POINTER or
ALLOCATABLE shall not appear in the component-attr-spec-list.

R436 proc-component-def-stmt is PROCEDURE ([proc-interface]) , ■
■ proc-component-attr-spec-list :: proc-decl-list

R437 proc-component-attr-spec is POINTER

or PASS_OBJ

or access-spec

C438 (R436) The same proc-component-attr-spec shall not appear more than once in a given proc-
component-def-stmt.

C439 (R436) POINTER shall appear in each proc-component-attr-spec-list.

NOTE 4.20
See 12.3.2.3 for definitions of proc-interface and proc-decl.
40 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C440 (R436) If PASS_OBJ appears, the procedure component shall have an explicit interface that
has a scalar, nonpointer, nonallocatable dummy variable of type type-name. The first such
dummy argument shall be polymorphic if and only if type-name is extensible.

C441 (R436) All of the nonkind type parameters of a passed-object dummy argument shall be
assumed.

R438 type-bound-procedure-part is contains-stmt
[binding-private-stmt]

proc-binding-stmt
[proc-binding-stmt] ...

R439 binding-private-stmt is PRIVATE

C442 (R438) A binding-private-stmt is permitted only if the type definition is within the
specification part of a module.

R440 proc-binding-stmt is specific-binding
or generic-binding
or final-binding

C443 (R440) No proc-binding-stmt shall specify a binding that overrides (4.5.3.2) one that is
inherited (4.5.3.1) from the parent type and has the NON_OVERRIDABLE binding
attribute.

R441 specific-binding is PROCEDURE [(abstract-interface-name)] ■
■ [[, binding-attr-list] ::] binding-name [=> binding]

C444 (R441) If => binding appears, the double-colon separator shall appear.

C445 (R441) The abstract-interface-name shall appear if and only if the binding is to NULL() and is
not overriding an inherited binding.

If => binding does not appear, it is as though it had appeared with a procedure name the same as

the binding name.

R442 generic-binding is GENERIC [(abstract-interface-name)] ■
■ [, binding-attr-list] :: generic-spec => binding-list

C446 (R442) The abstract-interface-name shall appear if and only if binding-list is a single binding
that is NULL().

C447 (R442) If generic-spec is generic-name, generic-name shall not be the name of a specific binding
of the type.

C448 (R442) If generic-spec is OPERATOR (defined-operator), the interface of each binding shall be
as specified in 12.3.2.1.1.

C449 (R442) If generic-spec is ASSIGNMENT (=), the interface of each binding shall be as
specified in 12.3.2.1.2.

C450 (R442) If generic-spec is dtio-generic-spec, the interface of each binding shall be as specified in
9.5.4.4.3. The type of the dtv argument shall be type-name.

R443 final-binding is FINAL [::] final-subroutine-name-list

C451 (R443) A final-subroutine-name shall be the name of a module procedure with exactly one
dummy argument. That argument shall be nonoptional and shall be a nonpointer,
nonallocatable, nonpolymorphic variable of the derived type being defined. All nonkind
type parameters of the dummy argument shall be assumed. The dummy argument shall
not be INTENT(OUT).

C452 (R443) A final-subroutine-name shall not be one previously specified as a final subroutine for
that type.

C453 (R443) A final subroutine shall not have a dummy argument with the same kind type
parameters and rank as the dummy argument of another final subroutine of that type.

R444 binding-attr is PASS_OBJ
JUN 2001 WORKING DRAFT 41

J3/01-007R2 WORKING DRAFT JUN 2001
or NON_OVERRIDABLE

or access-spec

C454 (R444) The same binding-attr shall not appear more than once in a given binding-attr-list.

C455 (R440) If PASS_OBJ appears, the interface specified by abstract-interface-name or the
procedure specified by binding shall have a scalar, nonpointer, nonallocatable dummy
argument of type type-name. The first such dummy variable shall be polymorphic if and
only if type-name is extensible.

C456 (R442) PASS_OBJ shall not appear in a generic-binding that has a dtio-generic-spec.

C457 (R442) PASS_OBJ shall appear in a generic-binding that has OPERATOR (defined-operator)
or ASSIGNMENT (=).

C458 (R442) The PASS_OBJ attribute shall be specified for an overriding binding if and only if it
is specified for all generic bindings, both inherited and declared within the type definition,
with the same generic-spec.

C459 (R442) Within the specification-part of a module, each generic-binding shall specify, either
implicitly or explicitly, the same accessibility as every other generic-binding in the same
type-definition that has the same generic-spec.

R445 binding is procedure-name
or NULL()

C460 (R445) The procedure-name shall be the name of an accessible module procedure or external
procedure that has an explicit interface. If PASS_OBJ appears, the procedure shall have a
scalar, nonpointer, nonallocatable dummy argument of type type-name. The first such
dummy argument shall be polymorphic if and only if type-name is extensible.

C461 (R445) All of the nonkind type parameters of a passed-object dummy argument shall be
assumed.

R446 end-type-stmt is END TYPE [type-name]

C462 (R446) If END TYPE is followed by a type-name, the type-name shall be the same as that in
the corresponding derived-type-stmt.

4.5.1.1 Derived-type parameters

The derived type is parameterized if the derived-type-stmt has any type-param-names.

Each type parameter is itself of type integer. This may be confirmed by a type-param-def-stmt. A

type parameter is default integer unless its kind is explicitly specified in a type-param-def-stmt.

A type parameter is either a kind type parameter or a nonkind type parameter (4.2). If it is a kind

parameter it is said to have the KIND attribute. A type-param-attr-spec explicitly specifies whether

a type parameter is kind or nonkind. The KIND attribute may also be implicitly conferred as

described below. If a type parameter is not given the KIND attribute, either explicitly or implicitly,

it is a nonkind type parameter. It is not required to explicitly specify a type parameter to be a

nonkind parameter, but such specification is allowed.

NOTE 4.21
An example of a derived-type definition is:

TYPE PERSON
 INTEGER AGE

CHARACTER (LEN = 50) NAME
END TYPE PERSON

An example of declaring a variable CHAIRMAN of type PERSON is:

TYPE (PERSON) :: CHAIRMAN
42 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
A type parameter may be used as a primary in a specification expression (7.1.6) in the derived-type-
def. A kind type parameter may also be used as a primary in an initialization expression (7.1.7) in

the derived-type-def.

With the exception stated below, a type parameter is implicitly given the KIND attribute if it

appears in the derived-type-def as a primary in an expression that is required to be an initialization

expression.

If a derived type has a component that is a pointer of a (possibly different) derived type, the

appearance of a type parameter of the containing type in an expression for a kind type parameter

of the component implicitly declares it to be a kind type parameter of the containing type only if

the type definition for the component preceded that of the containing type.

NOTE 4.22
In most cases, it is not necessary to explicitly declare anything about a type parameter; it is
implicitly of type default integer and will implicitly get the KIND attribute if needed. For
example, consider

TYPE matrix(k, d)
 REAL(k) :: element(d,d)
END TYPE

Both k and d are default integer. The parameter k implicitly has the KIND attribute because
it is used in a context that requires it to.

The following example uses explicit type parameter declarations.

TYPE humongous_matrix(k, d)
 INTEGER, KIND :: k
 INTEGER(selected_int_kind(12)), NONKIND :: d
 !-- Specify a nondefault kind for d.
 REAL(k) :: element(d,d)
END TYPE

In the following example, dim is explicitly declared to be a kind parameter, even though it is
not required by anything shown here. This would allow generic overloading of procedures
distinguished only by dim.

TYPE general_point(dim)
 INTEGER, KIND :: dim
 REAL :: coordinates(dim)
END TYPE

NOTE 4.23
This rule is to avoid indeterminacy caused by mutually recursive derived type definitions.
For example

TYPE type_1(a)
INTEGER, KIND :: a !-- required because we don’t yet know whether

 !-- type_2 has a kind type parameter.
 TYPE(type_2(a)), POINTER :: comp
END TYPE

TYPE type_2(b)
 !-- No explicit declaration of b needed here.
 TYPE(type_1(b)), POINTER :: comp
END TYPE

This is not at issue except with pointer components because a nonpointer component is
required to be of a previously defined type.
JUN 2001 WORKING DRAFT 43

J3/01-007R2 WORKING DRAFT JUN 2001
4.5.1.2 Default initialization for components

If initialization-expr appears for a nonpointer component, that component in any object of the type

is initially defined (16.8.3) or becomes defined as specified in 16.8.5 with the value determined

from initialization-expr. An initialization-expr in the EXTENDS type-attr-spec is for the parent

component. If necessary, the value is converted according to the rules of intrinsic assignment

(7.5.1.5) to a value that agrees in type, type parameters, and shape with the component. If the

component is of a type for which default initialization is specified for a component, the default

initialization specified by initialization-expr overrides the default initialization specified for that

component. When one initialization overrides another it is as if only the overriding initialization

were specified (see Note 4.25). Explicit initialization in a type declaration statement (5.1) overrides

default initialization (see Note 4.24). Unlike explicit initialization, default initialization does not

imply that the object has the SAVE attribute.

A subcomponent (6.1.2) is default-initialized if the type of the object of which it is a component

specifies default initialization for that component. If a subcomponent of an object is default-

initialized, no subcomponent of that component is default-initialized (any default initialization of

such subcomponents has been overridden by the default initialization of the higher

subcomponent).

NOTE 4.24
It is not required that initialization be specified for each component of a derived type. For
example:

TYPE DATE
 INTEGER DAY
 CHARACTER (LEN = 5) MONTH
 INTEGER :: YEAR = 1994 ! Partial default initialization
END TYPE DATE

In the following example, the default initial value for the YEAR component of TODAY is
overridden by explicit initialization in the type declaration statement:

TYPE (DATE), PARAMETER :: TODAY = DATE (21, "Feb.", 1995)

NOTE 4.25
The default initial value of a component of derived type may be overridden by default
initialization specified in the definition of the type.

TYPE SINGLE_SCORE
 TYPE(DATE) :: PLAY_DAY = TODAY
 INTEGER SCORE
 TYPE(SINGLE_SCORE), POINTER :: NEXT => NULL ()
END TYPE SINGLE_SCORE

TYPE(SINGLE_SCORE) SETUP

The PLAY_DAY component of SETUP receives its initial value from TODAY, overriding the
initialization for the YEAR component.
44 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
4.5.1.3 Array components

A component is an array if its component-decl contains a component-array-spec or its

component-def-stmt contains the DIMENSION attribute. If the component-decl contains a

component-array-spec, it specifies the array rank, and if the array is explicit shape, the array bounds;

otherwise, the component-array-spec in the DIMENSION attribute specifies the array rank, and if the

array is explicit shape, the array bounds.

NOTE 4.26
Arrays of structures may be declared with elements that are partially or totally initialized by
default. For example:

TYPE MEMBER (NAME_LEN)
 CHARACTER (LEN = NAME_LEN) NAME = ’’
 INTEGER :: TEAM_NO, HANDICAP = 0
 TYPE (SINGLE_SCORE), POINTER :: HISTORY => NULL ()
END TYPE MEMBER
TYPE (MEMBER) LEAGUE (36) ! Array of partially initialized elements
TYPE (MEMBER) :: ORGANIZER=MEMBER ("I. Manage",1,5,NULL ())

ORGANIZER is explicitly initialized, overriding the default initialization for an object of type
MEMBER.

Allocated objects may also be initialized partially or totally. For example:

ALLOCATE (ORGANIZER % HISTORY) ! A partially initialized object of type
 ! SINGLE_SCORE is created.

NOTE 4.27
A type definition may have a component that is an array. For example:

TYPE LINE
REAL, DIMENSION (2, 2) :: COORD !

! COORD(:,1) has the value of (/X1, Y1/)
! COORD(:,2) has the value of (/X2, Y2/)

REAL :: WIDTH ! Line width in centimeters
INTEGER :: PATTERN ! 1 for solid, 2 for dash, 3 for dot

END TYPE LINE

An example of declaring a variable LINE_SEGMENT to be of the type LINE is:

TYPE (LINE) :: LINE_SEGMENT

The scalar variable LINE_SEGMENT has a component that is an array. In this case, the array
is a subobject of a scalar. The double colon in the definition for COORD is required; the
double colon in the definition for WIDTH and PATTERN is optional.

NOTE 4.28
A derived type may have a component that is allocatable. For example:

TYPE STACK
 INTEGER :: INDEX
 INTEGER, ALLOCATABLE :: CONTENTS (:)
END TYPE STACK

For each scalar variable of type STACK, the shape of the component CONTENTS is
determined by execution of an ALLOCATE statement or assignment statement, or by
argument association.
JUN 2001 WORKING DRAFT 45

J3/01-007R2 WORKING DRAFT JUN 2001
4.5.1.4 Pointer components

A component is a pointer if its component-attr-spec-list contains the POINTER attribute. Pointers

have an association status of associated, disassociated, or undefined. If no default initialization is

specified, the initial association status is undefined. To specify that the default initial status of a

pointer component is to be disassociated, the pointer assignment symbol (=>) shall be followed by

a reference to the intrinsic function NULL () with no argument. No mechanism is provided to

specify a default initial status of associated.

4.5.1.5 Type-bound procedures

Each binding in a proc-binding-stmt specifies a type-bound procedure. A generic-binding specifies a

type-bound generic interface.

The interface of a binding is that of the procedure specified by procedure-name or that specified by

abstract-interface-name.

NOTE 4.29
Default initialization of an array component may be specified by an initialization expression
consisting of an array constructor (4.8), or of a single scalar that becomes the value of each
array element.

NOTE 4.30
A derived type may have a component that is a pointer. For example:

TYPE REFERENCE
INTEGER :: VOLUME, YEAR, PAGE
CHARACTER (LEN = 50) :: TITLE
CHARACTER, DIMENSION (:), POINTER :: ABSTRACT

END TYPE REFERENCE

Any object of type REFERENCE will have the four components VOLUME, YEAR, PAGE, and
TITLE, plus a pointer to an array of characters holding ABSTRACT. The size of this target
array will be determined by the length of the abstract. The space for the target may be
allocated (6.3.1) or the pointer component may be associated with a target by a pointer
assignment statement (7.5.2).

NOTE 4.31
A pointer component of a derived type may have as its target an object of that derived type.
The type definition may specify that in objects declared to be of this type, such a pointer is
default initialized to disassociated. For example:

TYPE NODE
INTEGER :: VALUE
TYPE (NODE), POINTER :: NEXT_NODE => NULL ()

END TYPE

A type such as this may be used to construct linked lists of objects of type NODE. See C.1.4
for an example.
46 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
The same generic-spec may be used in several generic-bindings within a single derived-type

definition.

A binding that specifies the NULL intrinsic instead of a procedure name is said to be deferred.

If a type has a deferred procedure binding then any extension of the type shall specify a procedure

binding for each inherited deferred binding. This new binding may supply a specific procedure or

may confirm that the binding is still deferred.

It is permissible to override (4.5.3.2) an inherited binding with a deferred binding.

4.5.1.6 The passed-object dummy argument

If PASS_OBJ is specified for a procedure pointer component or a type-bound procedure, the first

dummy argument that has the same declared type as the derived type being defined is called the

passed-object dummy argument. It affects type-bound procedure overriding (4.5.3.2) and

argument association (12.4.1.1).

4.5.1.7 Accessibility

By default, the names of derived types defined in the specification part of a module are accessible

(5.1.2.1, 5.2.1) in any scoping unit that accesses the module. This default may be changed to

restrict the accessibility of such type names to the host module itself. The name of a particular

derived type may be declared to be public or private regardless of the default accessibility declared

for the module. In addition, a type name may be accessible while some or all of its components are

private.

The accessibility of a derived type name may be declared explicitly by an access-spec in its

derived-type-stmt or in an access-stmt (5.2.1). The accessibility is the default if it is not declared

explicitly. If a type definition is private, then the type name, and thus the structure constructor

(4.5.8) for the type, is accessible only within the module containing the definition.

The default accessibility for the components of a type is private if the data-component-part contains

a PRIVATE statement, and public otherwise. The default acessibility for the procedure bindings of

NOTE 4.32
An example of a type and a type-bound procedure is:

TYPE, EXTENSIBLE :: POINT
 REAL :: X, Y
CONTAINS
 PROCEDURE, PASS_OBJ :: LENGTH => POINT_LENGTH
END TYPE POINT
...

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_LENGTH (A, B)
 CLASS (POINT), INTENT (IN) :: A, B
 POINT_LENGTH = SQRT ((A%X - B%X)**2 + (A%Y - B%Y)**2)
END FUNCTION POINT_LENGTH

NOTE 4.33
A binding may be to a procedure or may be deferred. A deferred binding that is not a dtio-
generic-spec shall not be referenced. If a deferred binding is selected for use during data
transfer (16.1.2.4.4), an error condition occurs.

NOTE 4.34
If a module procedure is bound to several types as a type-bound procedure, different dummy
arguments might be the passed-object dummy argument in different contexts.
JUN 2001 WORKING DRAFT 47

J3/01-007R2 WORKING DRAFT JUN 2001
a type is private if the type-bound-procedure-part contains a PRIVATE statement, and public

otherwise. The accessibility of a component or procedure binding may be explicitly declared by an

access-spec; otherwise its accessibility is the default for the type definition in which it is declared.

If a component is private, that component name is accessible only within the module containing

the definition.

A public type-bound procedure is accessible via any accessible object of the type. A private type-

bound procedure is accessible only within the module containing the type definition.

NOTE 4.35
Type parameters are not components. They are effectively always public.

NOTE 4.36
The accessibility of a type-bound procedure is not affected by a PRIVATE statement in the
data-component-part; the accessibility of a data component is not affected by a PRIVATE
statement in the type-bound-procedure-part.

NOTE 4.37
The accessibility of the components of a type is independent of the accessibility of the type
name. It is possible to have all four combinations: a public type name with a public
component, a private type name with a private component, a public type name with a private
component, and a private type name with a public component.

NOTE 4.38
An example of a type with private components is:

MODULE DEFINITIONS
TYPE POINT

PRIVATE
REAL :: X, Y

END TYPE POINT
END MODULE DEFINITIONS

Such a type definition is accessible in any scoping unit accessing the module via a USE
statement; however, the components, X and Y, are accessible only within the module.

A derived-type definition may have a component that is of a derived type. For example:

TYPE TRIANGLE
TYPE (POINT) :: A, B, C

END TYPE TRIANGLE

An example of declaring a variable T to be of type TRIANGLE is:

TYPE (TRIANGLE) :: T

NOTE 4.39
An example of a type with a private name is:

TYPE, PRIVATE :: AUXILIARY
LOGICAL :: DIAGNOSTIC
CHARACTER (LEN = 20) :: MESSAGE

END TYPE AUXILIARY

Such a type would be accessible only within the module in which it is defined.
48 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
4.5.1.8 Sequence type

If the SEQUENCE statement is present, the type is a sequence type. If there are no type

parameters and all of the ultimate components are of type default integer, default real, double

precision real, default complex, or default logical and are not pointers or allocatable, the type is a

numeric sequence type. If there are no type parameters and all of the ultimate components are of

type default character and are not pointers or allocatable, the type is a character sequence type.

4.5.1.9 Final subroutines

The FINAL keyword specifies a list of final subroutines. A final subroutine might be executed

when a data entity of that type is finalized (4.5.10).

A derived type is finalizable if it has any final subroutines or if it has any nonpointer,

nonallocatable component whose type is finalizable. An entity is finalizable if its type is

finalizable.

NOTE 4.40
The following example illustrates the use of an individual component access-spec to override
the default accessibity:

TYPE MIXED
 PRIVATE
 INTEGER :: I
 INTEGER, PUBLIC :: J
END TYPE MIXED

TYPE (MIXED) :: M

The component M%J is accessible in any scoping unit where M is accessible; M%I is only
accessible within the module containing the TYPE MIXED definition.

NOTE 4.41
An example of a numeric sequence type is:

TYPE NUMERIC_SEQ
SEQUENCE
INTEGER :: INT_VAL
REAL :: REAL_VAL
LOGICAL :: LOG_VAL

END TYPE NUMERIC_SEQ

NOTE 4.42
A structure resolves into a sequence of components. Unless the structure includes a
SEQUENCE statement, the use of this terminology in no way implies that these components
are stored in this, or any other, order. Nor is there any requirement that contiguous storage be
used. The sequence merely refers to the fact that in writing the definitions there will
necessarily be an order in which the components appear, and this will define a sequence of
components. This order is of limited significance since a component of an object of derived
type will always be accessed by a component name except in the following contexts: the
sequence of expressions in a derived-type value constructor, the data values in namelist input
data, and the inclusion of the structure in an input/output list of a formatted data transfer,
where it is expanded to this sequence of components. Provided the processor adheres to the
defined order in these cases, it is otherwise free to organize the storage of the components for
any nonsequence structure in memory as best suited to the particular architecture.
JUN 2001 WORKING DRAFT 49

J3/01-007R2 WORKING DRAFT JUN 2001
4.5.2 Determination of derived types

A particular type name shall be defined at most once in a scoping unit. Derived-type definitions

with the same type name may appear in different scoping units, in which case they may be

independent and describe different derived types or they may describe the same type.

Two data entities have the same type if they are declared with reference to the same derived-type

definition. The definition may be accessed from a module or from a host scoping unit. Data

entities in different scoping units also have the same type if they are declared with reference to

different derived-type definitions that specify the same type name, all have the SEQUENCE

property or all have the BIND(C) attribute, have no components with PRIVATE accessibility, and

have type parameters and components that agree in order, name, and attributes. Otherwise, they

are of different derived types. A data entity declared using a type with the SEQUENCE property

or with the BIND(C) attribute is not of the same type as an entity of a type declared to be PRIVATE

or which has any components that are PRIVATE.

NOTE 4.43
Final subroutines are effectively always "accessible". They are called for entity finalization
regardless of the accessibility of the type, its other type-bound procedure bindings, or the
subroutine name itself.

NOTE 4.44
Final subroutines are not inherited through type extension and cannot be overridden. The
final subroutines of the parent type are called after calling any additional final subroutines of
an extended type.

NOTE 4.45
An example of declaring two entities with reference to the same derived-type definition is:

TYPE POINT
REAL X, Y

END TYPE POINT
TYPE (POINT) :: X1
CALL SUB (X1)

...
CONTAINS

SUBROUTINE SUB (A)
TYPE (POINT) :: A

...
END SUBROUTINE SUB

The definition of derived type POINT is known in subroutine SUB by host association.
Because the declarations of X1 and A both reference the same derived-type definition, X1 and
A have the same type. X1 and A also would have the same type if the derived-type definition
were in a module and both SUB and its containing program unit accessed the module.
50 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
4.5.3 Extensible types

A derived type that has the EXTENSIBLE or EXTENDS attribute is an extensible type.

A type that has the EXTENSIBLE attribute is a base type. A type that has the EXTENDS attribute

is an extended type. The parent type of an extended type is the type named in the EXTENDS

attribute specification.

A base type is an extension type of itself only. An extended type is an extension of itself and of all

types for which its parent type is an extension.

4.5.3.1 Inheritance

An extended type includes all of the type parameters, components, and nonfinal procedure

bindings of its parent type. These are said to be inherited by the extended type from the parent

type. They retain all of the attributes that they had in the parent type. Additional type

parameters, components, and procedure bindings may be declared in the derived type definition of

the extended type.

NOTE 4.46
An example of data entities in different scoping units having the same type is:

PROGRAM PGM
TYPE EMPLOYEE

SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE
TYPE (EMPLOYEE) PROGRAMMER
CALL SUB (PROGRAMMER)

...
END PROGRAM PGM
SUBROUTINE SUB (POSITION)

TYPE EMPLOYEE
SEQUENCE
INTEGER ID_NUMBER
CHARACTER (50) NAME

END TYPE EMPLOYEE
TYPE (EMPLOYEE) POSITION
...

END SUBROUTINE SUB

The actual argument PROGRAMMER and the dummy argument POSITION have the same
type because they are declared with reference to a derived-type definition with the same
name, the SEQUENCE property, and components that agree in order, name, and attributes.

Suppose the component name ID_NUMBER was ID_NUM in the subroutine. Because all the
component names are not identical to the component names in derived type EMPLOYEE in
the main program, the actual argument PROGRAMMER would not be of the same type as the
dummy argument POSITION. Thus, the program would not be standard conforming.

NOTE 4.47
The requirement that the two types have the same name applies to the type-names of the
respective derived-type-stmts, not to type-alias names or to local names introduced via renaming
in USE statements.

NOTE 4.48
The name of the parent type is the name that appears in the EXTENDS attribute specification.
This might be a type-alias name or a local name introduced via renaming in a USE statement.
JUN 2001 WORKING DRAFT 51

J3/01-007R2 WORKING DRAFT JUN 2001
An object of extended type has a scalar, nonpointer, nonallocatable, parent component with the

type and type parameters of the parent type. The name of this component is the parent type

name. Components of the parent component are inheritance associated (16.7.4) with the

corresponding components inherited from the parent type.

4.5.3.2 Type-bound procedure overriding

If a nongeneric binding specified in a type definition has the same binding name as a binding

inherited from the parent type then the binding specified in the type definition overrides the one

inherited from the parent type.

The overriding binding and the inherited binding shall satisfy the following conditions:

(1) Either both shall specify PASS_OBJ or neither shall.

(2) If the procedure of the inherited binding is pure then that of the overriding binding
shall also be pure.

(3) Either both shall be elemental or neither shall.

(4) They shall have the same number of dummy arguments.

(5) The corresponding dummy arguments shall have the same names and characteristics,
except for the type of the passed-object dummy arguments.

(6) Either both shall be subroutines or both shall be functions having the same result
characteristics (12.2.2).

(7) If the inherited binding is PUBLIC then the overriding binding shall not be PRIVATE.

If a binding is deferred and does not specify an abstract interface then it inherits the interface from

the binding in the parent type.

NOTE 4.49
Inaccessible components and bindings of the parent type are also inherited, but they remain
inaccessible in the extended type. Inaccessible entities occur if the type being extended is
accessed via USE association and has a private entity.

NOTE 4.50
A base type is not required to have any components, and an extended type is not required to
have more components than its parent type.

NOTE 4.51
A component or type parameter declared in an extended type shall not have the same name
as any accessible component or type parameter of its parent type.

NOTE 4.52
Examples:

TYPE, EXTENSIBLE :: POINT ! A base type
 REAL :: X, Y
END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
 ! Components X and Y, and component name POINT, inherited from parent
 INTEGER :: COLOR
END TYPE COLOR_POINT
52 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
A generic binding overrides an inherited binding if they both have the same generic-spec and

satisfy the above conditions for overriding. A generic binding with the same generic-spec that does

not satisfy the conditions extends the generic interface, and shall satisfy the requirements specified

in 16.1.2.3.

If a generic binding in a type definition has the same dtio-generic-spec as one inherited from the

parent, and the dtv argument of the procedure or abstract interface it specifies has the same kind

type parameters as the dtv argument of one inherited from the parent type, then the binding

specified in the type overrides the one inherited from the parent type. Otherwise, it extends the

type-bound generic interface for the dtio-generic-spec.

A binding of a type and a binding of an extension of that type correspond if the latter binding is

the same binding as the former, overrides a corresponding binding, or is an inherited

corresponding binding.

A binding that has the NON_OVERRIDABLE attribute in the parent type shall not be overridden.

4.5.4 Component order

Component order is an ordering of the components of a derived type; it is used for intrinsic

formatted input/output and structure constructors (when component keywords are not used).

The component order of a nonextended type is the order of the declarations of the components in

the derived-type definition. The component order of an extended type consists of the component

order of its parent type followed by any additional components in the order of their declarations in

the extended derived-type definition.

4.5.5 Type parameter order

Type parameter order is an ordering of the type parameters of a derived type; it is used for

derived type specifiers.

The type parameter order of a nonextended type is the order of the type parameter list in the

derived-type definition. The type parameter order of an extended type consists of the type

parameter order of its parent type followed by any additional type parameters in the order of the

type parameter list in the derived-type definition.

NOTE 4.53
The following is an example of procedure overriding expanding on the example in Note 4.32.

TYPE, EXTENDS (POINT) :: POINT_3D
 REAL :: Z
CONTAINS
 PROCEDURE, PASS_OBJ :: LENGTH => POINT_3D_LENGTH
END TYPE POINT_3D
...

and in the module-subprogram-part of the same module:

REAL FUNCTION POINT_3D_LENGTH (A, B)
 CLASS (POINT_3D), INTENT (IN) :: A
 CLASS (POINT), INTENT (IN) :: B
 IF (EXTENDS_TYPE_OF(B, A)) THEN
 POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2 + (A%Z-B%Z)**2)
 RETURN
 END IF
 PRINT *, ’In POINT_3D_LENGTH, dynamic type of argument is incorrect.’
 STOP
END FUNCTION POINT_3D
JUN 2001 WORKING DRAFT 53

J3/01-007R2 WORKING DRAFT JUN 2001
4.5.6 Derived-type values

The set of values of a specific derived type consists of all possible sequences of component values

consistent with the definition of that derived type and the type parameters.

4.5.7 Derived-type specifier

A derived-type specifier is used in several contexts to specify a particular derived type and type

parameters.

R447 derived-type-spec is type-name [(type-param-spec-list)]

or type-alias-name

R448 type-param-spec is [keyword =] type-param-value

C463 (R447) type-name shall be the name of an accessible derived type.

C464 (R447) type-alias-name shall be the name of an accessible type alias that is an alias for a
derived type.

C465 (R447) type-param-spec-list shall appear if and only if the type is parameterized.

C466 (R447) There shall be exactly one type-param-spec corresponding to each parameter of the
type.

C467 (R448) The keyword = may be omitted from a type-param-spec only if the keyword = has been
omitted from each preceding type-param-spec in the type-param-spec-list.

C468 (R448) Each keyword shall be the name of a parameter of the type.

C469 (R448) An asterisk may be used as a type-param-value in a type-param-spec only in the
declaration or allocation of a dummy argument.

Type parameter values that do not have type parameter keywords specified correspond to type

parameters in type parameter order (4.5.5). If a type parameter keyword is present, the value is

assigned to the type parameter named by the keyword. If necessary, the value is converted

acording to the rules of intrinsic assignment (7.5.1.4) to a value that agrees with the type

parameters of the type parameter.

4.5.8 Construction of derived-type values

A derived-type definition implicitly defines a corresponding structure constructor that allows

construction of values of that derived type. The type and type parameters of a constructed value

are specified by a derived type specifier.

R449 structure-constructor is derived-type-spec ([component-spec-list])

R450 component-spec is [keyword =] expr

C470 (R449) There shall be at most one component-spec corresponding to each component of the
type.

C471 (R449) There shall be exactly one component-spec corresponding to each component that
does not have a default initialization.

C472 (R450) The keyword = may be omitted from a component-spec only if the keyword = has been
omitted from each preceding component-spec in the constructor.

C473 (R450) Each keyword shall be the name of a component of the type.

C474 (R449) The type name and all components of the type for which a component-spec appears
shall be accessible in the scoping unit containing the structure constructor.

C475 (R449) If derived-type-spec is a type name that is the same as a generic name, the component-
spec-list shall not be a valid actual-arg-spec-list for a function reference that is resolvable as
a generic reference (16.1.2.4.1).
54 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
In the absence of a component keyword, each expr is assigned to the corresponding component in

component order (4.5.4). If a component keyword is present, the expr is assigned to the component

named by the keyword. If necessary, each value is converted according to the rules of intrinsic

assignment (7.5.1.4) to a value that agrees in type and type parameters with the corresponding

component of the derived type. For nonpointer components, the shape of the expression shall

conform with the shape of the component.

If a component with default initialization has no corresponding expr, then the default initialization

is applied to that component.

If a structure constructor for an extended type specifies a value for a parent component, it shall not

specify a value for any component that is associated with the parent component (4.5.3.1).

A structure constructor shall not appear before the referenced type is defined.

A derived-type definition may have a component that is an array. Also, an object may be an array

of derived type. Such arrays may be constructed using an array constructor (4.8).

Where a component in the derived type is a pointer, the corresponding constructor expression shall

evaluate to an object that would be an allowable target for such a pointer in a pointer assignment

statement (7.5.2).

NOTE 4.54
The form ’name(...)’ is interpreted as a generic function-reference if possible; it is interpreted as
a structure-constructor only if it cannot be interpreted as a generic function-reference.

NOTE 4.55
Because no parent components appear in the defined component ordering, a value for a
parent component may only be specified with a component keyword. Examples of equivalent
values using types defined in Note 4.52:

! Create values with components x = 1.0, y = 2.0, color = 3.
TYPE(POINT) :: PV = POINT(1.0, 2.0) ! Assume components of TYPE(POINT)
 ! are accessible here.
...
COLOR_POINT(point=point(1,2), color=3) ! Value for parent component
COLOR_POINT(point=PV, color=3) ! Available even if TYPE(point)
 ! has private components
COLOR_POINT(1, 2, 3) ! All components of TYPE(point)
 ! need to be accessible.

NOTE 4.56
This example illustrates a derived-type constant expression using a derived type defined in
Note 4.21:

PERSON (21, 'JOHN SMITH')

This could also be written as

PERSON (NAME = 'JOHN SMITH', AGE = 21)

NOTE 4.57
An example constructor using the derived type GENERAL_POINT defined in Note 4.22 is

point(dim=3) ((/ 1., 2., 3. /))
JUN 2001 WORKING DRAFT 55

J3/01-007R2 WORKING DRAFT JUN 2001
If a component of a derived type is allocatable, the corresponding constructor expression shall

either be a reference to the intrinsic function NULL() with no arguments, an allocatable entity, or

shall evaluate to an entity of the same rank. If the expression is a reference to the intrinsic function

NULL(), the corresponding component of the constructor has a status of not currently allocated. If

the expression is an allocatable entity, the corresponding component of the constructor has the

same allocation status as that allocatable entity and, if it is allocated, the same bounds (if any) and

value. Otherwise the corresponding component of the constructor has an allocation status of

currently allocated and has the same bounds (if any) and value as the expression.

4.5.9 Derived-type operations and assignment

Any operation on derived-type entities or nonintrinsic assignment for derived-type entities shall

be defined explicitly by a function or a subroutine and a generic interface (4.5.1.5, 12.3.2.1).

4.5.10 The finalization process

When a finalizable entity is finalized, the following steps are carried out in sequence:

(1) If the dynamic type of the entity has a final subroutine whose dummy argument has
the same kind type parameters and rank as the entity being finalized, it is called with
the entity as an actual argument. If there is no such subroutine, but there is an
elemental final subroutine whose dummy argument has the same kind type
parameters as the entity being finalized, it is called with the entity as an actual
argument. If no final subroutine fulfills these requirements, no subroutine is called at
this point.

(2) Each finalizable component that appears in the type definition is finalized. If the entity
is an array, the components of each element are finalized separately.

(3) If the entity is of extended type and the parent type is finalizable, the parent
component is finalized.

If several entities are to be finalized at the same time, the order in which they are finalized is

processor-dependent. A final subroutine shall not reference or define an object that has already

been finalized.

4.5.11 When finalization occurs

A pointer or allocatable entity is finalized when it is deallocated.

NOTE 4.58
For example, if the variable TEXT were declared (5.1) to be

CHARACTER, DIMENSION (1:400), TARGET :: TEXT

and BIBLIO were declared using the derived-type definition REFERENCE in Note 4.30

TYPE (REFERENCE) :: BIBLIO

the statement

BIBLIO = REFERENCE (1, 1987, 1, "This is the title of the referenced &
&paper", TEXT)

is valid and associates the pointer component ABSTRACT of the object BIBLIO with the target
object TEXT.

NOTE 4.59
When the constructor is an actual argument, the allocation status of the allocatable component
is available through the associated dummy argument.
56 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
A nonpointer, nonallocatable object that is not a dummy argument or function result is finalized

immediately before it would become undefined due to execution of a RETURN or END statement

(16.8.6, item (3)). If the object is defined in a module and there are no longer any active procedures

referencing the module, it is processor-dependent whether it is finalized. If the object is not

finalized, it retains its definition status and does not become undefined.

If an executable construct references a function whose result is finalizable, the result is finalized

after execution of the innermost executable construct containing the reference.

If an executable construct references a structure constructor for a finalizable type, the entity created

by the structure constructor is finalized after execution of the innermost executable construct

containing the reference.

If a specification expression in a scoping unit references a function whose result is finalizable, the

result is finalized before execution of the first executable statement in the scoping unit.

When a procedure is invoked, a nonpointer, nonallocatable object that is an actual argument

associated with an INTENT(OUT) dummy argument is finalized.

When an intrinsic assignment statement is executed, variable is finalized after evaluation of expr
and before the definition of variable.

If an object is allocated via pointer allocation and later becomes unreachable due to all pointers to

that object having their pointer association status changed, it is processor dependent whether it is

finalized. If it is finalized, it is processor dependent as to when the final subroutines are called.

4.5.12 Entities that are not finalized

If program execution is terminated, either by an error (e.g. an allocation failure) or by execution of

a STOP or END PROGRAM statement, entities existing immediately prior to termination are not

finalized.

4.6 Type aliases
Type aliasing provides a method of data abstraction. A type alias is an entity that may be used to

declare entities of an existing data type; it is not a new data type. The name of a type alias for a

derived type may also be used in the derived-type-spec of a structure-constructor.

R451 type-alias-stmt is TYPEALIAS :: type-alias-list

R452 type-alias is type-alias-name => declaration-type-spec

C476 (R452) A type-alias-name shall not be the same as the name of any intrinsic type defined in
this standard.

C477 (R452) A declaration-type-spec in a type-alias shall not use the CLASS keyword.

C478 (R452) A declaration-type-spec shall specify an intrinsic type or a previously defined derivd
type.

NOTE 4.60
If finalization is used for storage management, it often needs to be combined with defined
assignment.

NOTE 4.61
A nonpointer, nonallocatable object that has the SAVE attribute or which occurs in the main
program is never finalized as a direct consequence of the execution of a RETURN or END
statement.

A variable in a module is not finalized if it retains its definition status and value, even when
there is no active procedure referencing the module.
JUN 2001 WORKING DRAFT 57

J3/01-007R2 WORKING DRAFT JUN 2001
Explicit or implicit declaration of an entity or component using a type alias name has the same

effect as using the declaration-type-spec for which it is an alias.

4.7 Enumerations and enumerators
An enumeration is a type alias for an integer type. An enumerator is a named integer constant.

An enumeration definition specifies the enumeration and a set of enumerators of the

corresponding integer kind.

R453 enum-alias-def is enum-def-stmt
enumerator-def-stmt
[enumerator-def-stmt] ...

end-enum-stmt

R454 enum-def-stmt is ENUM, BIND(C) :: type-alias-name
or ENUM [kind-selector] [::] type-alias-name

R455 enumerator-def-stmt is ENUMERATOR [::] enumerator-list

R456 enumerator is named-constant [= scalar-int-initialization-expr]

R457 end-enum-stmt is END ENUM [type-alias-name]

C479 (R455) If = appears for an enumerator in an ENUMERATOR statement, a double-colon
separator shall appear before the enumerator-list.

C480 (R457) If END ENUM is followed by a type-alias-name, the type-alias-name shall be the same
as that in the corresponding enum-def-stmt.

The type-alias-name of an enumeration is treated as if it were explicitly declared in a type alias

statement as a type alias for an integer whose kind parameter is determined as follows:

(1) If BIND(C) is specified, the kind is selected such that an entity of type integer with that
kind is interoperable (15.2) with an entity of the corresponding C enumeration type.
The corresponding C enumeration type is the type that would be declared by a C
enumeration specifier (6.7.2.2 of the C standard) that specified C enumeration
constants with the same values as those specified by the enum-alias-def, in the same
order as specified by the enum-alias-def.

The companion processor (2.5.10) shall be one that uses the same representation for the

types declared by all C enumeration specifiers that specify the same values in the same

order.

NOTE 4.62
The declarations for X, Y, and S

TYPEALIAS :: DOUBLECOMPLEX => COMPLEX(KIND(1.0D0)), &
 NEWTYPE => TYPE(DERIVED), &
 ANOTHERTYPE => TYPE(NEWTYPE)
TYPE(DOUBLECOMPLEX) :: X, Y
TYPE(NEWTYPE) :: S
TYPE(ANOTHERTYPE) :: T

are equivalent to the declarations

COMPLEX(KIND(1.0D0)) :: X, Y
TYPE(DERIVED) :: S, T
58 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
(2) If kind-selector is specified, the kind is that specified by the kind-selector.

(3) If neither BIND(C) nor kind-selector is specified, the kind is that of default integer.

An enumerator is treated as if it were explicitly declared with type type-alias-name and with the

PARAMETER attribute. The enumerator is defined in accordance with the rules of intrinsic

assignment (7.5) with the value determined as follows:

(1) If scalar-int-initialization-expr is specified, the value of the enumerator is the result of
scalar-int-initialization-expr.

(2) If scalar-int-initialization-expr is not specified and the enumerator is the first enumerator
in enum-alias-def, the enumerator has the value 0.

(3) If scalar-int-initialization-expr is not present and the enumerator is not the first
enumerator in enum-alias-def, its value is the result of adding 1 to the value of the
enumerator that immediately precedes it in the enum-alias-def.

NOTE 4.63
If a companion processor uses an unsigned type to represent a given enumeration type, the
Fortran processor will use the signed integer type of the same width for the enumeration,
even though some of the values of the enumerators cannot be represented in this signed
integer type. The values of any such enumerators will be interoperable with the values
declared in the C enumeration.

NOTE 4.64
C guarantees the enumeration constants fit in a C int (6.7.2.2 of the C standard). Therefore,
the Fortran processor can evaluate all enumerator values using the integer type with kind
parameter C_INT, and then determine the kind parameter of the integer type that is
interoperable with the corresponding C enumerated type.

NOTE 4.65
The C standard specifies that two enumeration types are compatible only if they specify
enumeration constants with the same names and same values in the same order. This
standard further requires that a C processor that is to be a companion processor of a Fortran
processor use the same representation for two enumeration types if they both specify
enumeration constants with the same values in the same order, even if names are different.
JUN 2001 WORKING DRAFT 59

J3/01-007R2 WORKING DRAFT JUN 2001
4.8 Construction of array values
An array constructor is defined as a sequence of scalar values and is interpreted as a rank-one

array where the element values are those specified in the sequence.

R458 array-constructor is (/ ac-spec /)

or left-square-bracket ac-spec right-square-bracket

R459 ac-spec is type-spec ::

or [type-spec ::] ac-value-list

R460 left-square-bracket is [

R461 right-square-bracket is]

R462 ac-value is expr
or ac-implied-do

R463 ac-implied-do is (ac-value-list , ac-implied-do-control)

R464 ac-implied-do-control is ac-do-variable = scalar-int-expr , scalar-int-expr ■
■ [, scalar-int-expr]

R465 ac-do-variable is scalar-int-variable

C481 (R465) ac-do-variable shall be a named variable.

C482 (R459) If type-spec is omitted, each ac-value expression in the array-constructor shall have the
same type and kind type parameters.

NOTE 4.66
The declarations

ENUM (SELECTED_INT_KIND (1)) :: DIGITS
 ENUMERATOR :: ZERO, ONE, TWO
END ENUM DIGITS

ENUM :: PRIMARY_COLORS
 ENUMERATOR :: RED = 4, BLUE = 9
 ENUMERATOR YELLOW
END ENUM

TYPE (DIGITS) :: X

are equivalent to the declarations

TYPEALIAS :: DIGITS => INTEGER (SELECTED_INT_KIND(1))
TYPE (DIGITS), PARAMETER :: ZERO = 0, ONE = 1, TWO = 2
TYPE (DIGITS) :: X

! The kind type parameter for PRIMARY_COLORS is processor dependent, but the
! processor is required to select a kind sufficient to represent the values
! 4, 9, and 10, which are the values of its enumerators.
! The following declaration is one possibility for PRIMARY_COLORS.
TYPEALIAS :: PRIMARY_COLORS => INTEGER (SELECTED_INT_KIND (2))
TYPE (PRIMARY_COLORS), PARAMETER :: RED = 4, BLUE = 9, YELLOW = 10

NOTE 4.67
There is no difference in the effect of declaring the enumerators in multiple ENUMERATOR
statements or in a single ENUMERATOR statement. The order in which the enumerators in
an enumeration definition are declared is significant, but the number of ENUMERATOR
statements is not.
60 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C483 (R459) If type-spec specifies an intrinsic type, each ac-value expression in the array-
constructor shall be of an intrinsic type that is compatible with intrinsic assignment to a
variable of type type-spec as specified in Table 7.8.

C484 (R459) If type-spec specifies a derived type, all ac-value expressions in the array-constructor
shall be of that derived type and shall have the same kind type parameter values as
specified by type-spec.

If type-spec is omitted, each ac-value expression in the array-constructor shall have the same type and

type parameters. The type and type parameters of the array constructor are those of the ac-value
expressions.

If type-spec appears, it specifies the type and type parameters of the array constructor. Each ac-
value expression in the array-constructor shall be compatible with intrinsic assignment to a variable

of this type and type parameters. Each value is converted to the type parameters of the array-
constructor in accordance with the rules of intrinsic assignment (7.5.1.5).

If an ac-value is a scalar expression, its value specifies an element of the array constructor. If an

ac-value is an array expression, the values of the elements of the expression, in array element order

(6.2.2.2), specify the corresponding sequence of elements of the array constructor. If an ac-value is

an ac-implied-do, it is expanded to form an ac-value sequence under the control of the ac-do-variable,

as in the DO construct (8.1.5.4).

For an ac-implied-do, the loop initialization and execution is the same as for a DO construct. The

ac-do-variable of an ac-implied-do that is in another ac-implied-do shall not appear as the ac-do-variable
of the containing ac-implied-do.

An empty sequence forms a zero-sized rank-one array.

NOTE 4.68
A one-dimensional array may be reshaped into any allowable array shape using the
RESHAPE intrinsic function (13.11.95). An example is:

X = (/ 3.2, 4.01, 6.5 /)
Y = RESHAPE (SOURCE = [2.0, [4.5, 4.5], X], SHAP E = [3, 2])

This results in Y having the 3 × 2 array of values:

2.0 3.2

4.5 4.01

4.5 6.5

NOTE 4.69
Examples of array constructors containing an implied-DO are:

(/ (I, I = 1, 1075) /)

and

[3.6, (3.6 / I , I = 1, N)]

NOTE 4.70
Using the type definition for PERSON in Note 4.21, an example of the construction of a
derived-type array value is:

(/ PERSON (40, 'SMITH'), PERSON (20, 'JONES') /)
JUN 2001 WORKING DRAFT 61

J3/01-007R2 WORKING DRAFT JUN 2001
NOTE 4.71
Using the type definition for LINE in Note 4.27, an example of the construction of a derived-
type scalar value with a rank-2 array component is:

LINE (RESHAPE ((/ 0.0, 0.0, 1.0, 2.0 /), (/ 2, 2 /)), 0.1, 1)

The RESHAPE intrinsic function is used to construct a value that represents a solid line from
(0, 0) to (1, 2) of width 0.1 centimeters.
62 WORKING DRAFT JUN 2001

	Section 4: Data types
	NOTE 4.1
	4.1�� The concept of data type
	NOTE 4.2
	4.1.1�� Set of values
	4.1.2�� Constants
	4.1.3�� Operations

	4.2�� Type parameters
	NOTE 4.3
	NOTE 4.4
	C401 (R401) The type-param-value for a kind type parameter shall be an initialization expression.
	C402 (R401) A colon may be used as a type-param-value only in the declaration of an entity or com...

	NOTE 4.5
	NOTE 4.6

	4.3�� Relationship of types and values to objects
	NOTE 4.7

	4.4�� Intrinsic data types
	4.4.1�� Integer type
	R402 signed�digit�string is [sign] digit�string
	R403 digit�string is digit [digit] ...
	R404 signed�int�literal�constant is [sign] int�literal�constant
	R405 int�literal�constant is digit�string [_ kind�param]
	R406 kind�param is digit�string
	C403 (R406) A scalar-int-constant-name shall be a named constant of type integer.

	R407 sign is +
	C404 (R406) The value of kind�param shall be nonnegative.
	C405 (R405) The value of kind�param shall specify a representation method that exists on the proc...
	NOTE 4.8

	R408 boz�literal�constant is binary�constant
	R409 binary�constant is B ' digit [digit] ... '
	C406 (R409) digit shall have one of the values 0 or 1.

	R410 octal�constant is O ' digit [digit] ... '
	C407 (R410) digit shall have one of the values 0 through 7.

	R411 hex�constant is Z ' hex�digit [hex�digit] ... '
	R412 hex�digit is digit

	4.4.2�� Real type
	NOTE 4.9
	(1) in all relational operations,
	(2) as actual arguments to intrinsic procedures other than SIGN, and
	(3) as the scalar�numeric�expr in an arithmetic IF.

	NOTE 4.10
	NOTE 4.11
	R413 signed�real�literal�constant is [sign] real�literal�constant
	R414 real�literal�constant is significand [exponent�letter exponent] [_ kind�param]
	R415 significand is digit�string . [digit�string]
	R416 exponent�letter is E
	R417 exponent is signed�digit�string
	C408 (R414) If both kind�param and exponent�letter are present, exponent�letter shall be E.
	C409 (R414) The value of kind�param shall specify an approximation method that exists on the proc...
	NOTE 4.12

	4.4.3�� Complex type
	R418 complex�literal�constant is (real�part , imag�part)
	R419 real�part is signed�int�literal�constant
	R420 imag�part is signed�int�literal�constant
	C410 (R418) Each named constant in a complex literal constant shall be of type integer or real.
	NOTE 4.13

	4.4.4�� Character type
	R421 char�literal�constant is [kind�param _] ' [rep�char] ... '
	C411 (R421) The value of kind�param shall specify a representation method that exists on the proc...
	(1) Any character in the processor-dependent character set in fixed source form. A processor may ...
	(2) Any graphic character in the processor-dependent character set in free source form.

	NOTE 4.14
	NOTE 4.15
	NOTE 4.16

	4.4.4.1�� Collating sequence
	NOTE 4.17
	(1) ICHAR�('A')�<�ICHAR�('B')�<�...�<�ICHAR�('Z') for the twenty-six letters.
	(2) ICHAR�('0')�<�ICHAR�('1')�<�...�<�ICHAR�('9') for the ten digits.
	(3) ICHAR�('�')�<�ICHAR�('0')�<�ICHAR�('9')�<�ICHAR�('A') or ICHAR�('�')�<�ICHAR�('A')�<�ICHAR�('...
	(4) ICHAR�('a')�<�ICHAR�('b')�<�...�<�ICHAR�('z').
	(5) ICHAR�('�')�<�ICHAR�('0')�<�ICHAR�('9')�<�ICHAR�('a') or ICHAR�('�')�<�ICHAR�('a')�<�ICHAR�('...

	NOTE 4.18

	4.4.5�� Logical type
	R422 logical�literal�constant is .TRUE. [_ kind�param]
	C412 (R422) The value of kind�param shall specify a representation method that exists on the proc...

	4.5�� Derived types
	NOTE 4.19
	4.5.1�� Derived-type definition
	R423 derived�type�def is derived�type�stmt
	R424 derived�type�stmt is TYPE [[, type-attr�spec-list] ::] type�name n
	R425 type-attr-spec is access-spec
	C413 (R424) A derived type type�name shall not be the same as the name of any intrinsic type defi...
	C414 (R424) The same type-attr-spec shall not appear more than once in a given derived-type-stmt.
	C415 (R424) EXTENSIBLE and EXTENDS shall not both appear.
	C416 (R425) A parent-type-name shall be the name of an accessible extensible type (4.5.3) or of a...
	C417 (R424) If EXTENDS or EXTENSIBLE appears, neither BIND(C) nor SEQUENCE shall appear.
	C418 (R423) If BIND(C) appears, SEQUENCE, a type-bound-procedure-part, or a type-param-name- list...
	C419 (R423) If BIND(C) appears, any derived type specified in a component definition shall be def...
	C420 (R423) If BIND(C) appears, neither POINTER nor ALLOCATABLE shall appear in any component def...

	R426 type-param-def-stmt is INTEGER [kind-selector] [[, type-param-attr-spec] ::] n
	C421 (R426) A type-param-name in a type-param-def-stmt in a derived-type-def shall be one of the ...

	R427 type-param-attr-spec is KIND
	R428 data-component-part is [private-sequence-stmt] ...
	R429 private�sequence�stmt is PRIVATE
	C422 (R429) A PRIVATE statement is permitted only if the type definition is within the specificat...
	C423 (R428) The same private�sequence�stmt shall not appear more than once in a given derived�typ...
	C424 (R428) If SEQUENCE appears, all derived types specified in component definitions shall be se...
	C425 (R423) If SEQUENCE appears, a type-bound-procedure-part shall not appear.

	R430 component�def�stmt is data-component-def-stmt
	R431 data-component-def-stmt is declaration-type-spec [[, component�attr�spec�list] ::] n
	R432 component�attr�spec is POINTER
	R433 component�decl is component�name [(component�array�spec)] n
	R434 component�array�spec is explicit�shape�spec�list
	R435 component�initialization is =� initialization�expr
	C426 (R431) No component�attr�spec shall appear more than once in a given component�def�stmt.
	C427 (R431) A component declared with the CLASS keyword (5.1.1.8) shall have the ALLOCATABLE or P...
	C428 (R431) If the POINTER attribute is not specified for a component, the declaration-type-spec ...
	C429 (R431) If the POINTER attribute is specified for a component, the declaration-type-spec in t...
	C430 (R431) If the POINTER or ALLOCATABLE attribute is specified, each component�array�spec shall...
	C431 (R431) If neither the POINTER attribute nor the ALLOCATABLE attribute is specified, each com...
	C432 (R434) Each bound in the explicit�shape�spec shall not contain references to specification f...
	C433 (R431) A component shall not have both the ALLOCATABLE and the POINTER attribute.
	C434 (R433) The * char�length option is permitted only if the type specified is character.
	C435 (R430) Each type-param-value within a component-def-stmt shall either be a colon or a specif...
	C436 (R431) If component�initialization appears, a double-colon separator shall appear before the...
	C437 (R431) If => appears in component�initialization, POINTER shall appear in the component�attr...

	R436 proc-component-def-stmt is PROCEDURE ([proc-interface]) , n
	NOTE 4.20

	R437 proc-component-attr-spec is POINTER
	C438 (R436) The same proc-component-attr-spec shall not appear more than once in a given proc- co...
	C439 (R436) POINTER shall appear in each proc-component-attr-spec-list.
	C440 (R436) If PASS_OBJ appears, the procedure component shall have an explicit interface that ha...
	C441 (R436) All of the nonkind type parameters of a passed-object dummy argument shall be assumed.

	R438 type-bound-procedure-part is contains-stmt
	R439 binding-private-stmt is PRIVATE
	C442 (R438) A binding-private-stmt is permitted only if the type definition is within the specifi...

	R440 proc-binding-stmt is specific-binding
	C443 (R440) No proc-binding-stmt shall specify a binding that overrides (4.5.3.2) one that is inh...

	R441 specific-binding is PROCEDURE [(abstract-interface-name)] n
	C444 (R441) If => binding appears, the double-colon separator shall appear.
	C445 (R441) The abstract-interface-name shall appear if and only if the binding is to NULL() and ...

	R442 generic-binding is GENERIC [(abstract-interface-name)] n
	C446 (R442) The abstract-interface-name shall appear if and only if binding-list is a single bind...
	C447 (R442) If generic-spec is generic-name, generic-name shall not be the name of a specific bin...
	C448 (R442) If generic-spec is OPERATOR (defined-operator), the interface of each binding shall...
	C449 (R442) If generic-spec is ASSIGNMENT (=), the interface of each binding shall be as specif...
	C450 (R442) If generic-spec is dtio-generic-spec, the interface of each binding shall be as speci...

	R443 final-binding is FINAL [::] final-subroutine-name-list
	C451 (R443) A final-subroutine-name shall be the name of a module procedure with exactly one dumm...
	C452 (R443) A final-subroutine-name shall not be one previously specified as a final subroutine f...
	C453 (R443) A final subroutine shall not have a dummy argument with the same kind type parameters...

	R444 binding-attr is PASS_OBJ
	C454 (R444) The same binding-attr shall not appear more than once in a given binding-attr-list.
	C455 (R440) If PASS_OBJ appears, the interface specified by abstract-interface-name or the proced...
	C456 (R442) PASS_OBJ shall not appear in a generic-binding that has a dtio-generic-spec.
	C457 (R442) PASS_OBJ shall appear in a generic-binding that has OPERATOR (defined-operator) or ...
	C458 (R442) The PASS_OBJ attribute shall be specified for an overriding binding if and only if it...
	C459 (R442) Within the specification-part of a module, each generic-binding shall specify, either...

	R445 binding is procedure-name
	C460 (R445) The procedure-name shall be the name of an accessible module procedure or external pr...
	C461 (R445) All of the nonkind type parameters of a passed-object dummy argument shall be assumed.

	R446 end�type�stmt is END TYPE [type�name]
	C462 (R446) If END TYPE is followed by a type�name, the type�name shall be the same as that in th...
	NOTE 4.21

	4.5.1.1�� Derived-type parameters
	NOTE 4.22 �
	NOTE 4.23

	4.5.1.2�� Default initialization for components
	NOTE 4.24
	NOTE 4.25
	NOTE 4.26 �

	4.5.1.3�� Array components
	NOTE 4.27
	NOTE 4.28
	NOTE 4.29

	4.5.1.4�� Pointer components
	NOTE 4.30
	NOTE 4.31

	4.5.1.5�� Type-bound procedures
	NOTE 4.32
	NOTE 4.33

	4.5.1.6�� The passed-object dummy argument
	NOTE 4.34

	4.5.1.7�� Accessibility
	NOTE 4.35
	NOTE 4.36
	NOTE 4.37
	NOTE 4.38
	NOTE 4.39
	NOTE 4.40

	4.5.1.8�� Sequence type
	NOTE 4.41
	NOTE 4.42

	4.5.1.9�� Final subroutines
	NOTE 4.43
	NOTE 4.44

	4.5.2�� Determination of derived types
	NOTE 4.45 �
	NOTE 4.46
	NOTE 4.47

	4.5.3�� Extensible types
	NOTE 4.48
	4.5.3.1�� Inheritance
	NOTE 4.49
	NOTE 4.50
	NOTE 4.51
	NOTE 4.52

	4.5.3.2�� Type-bound procedure overriding
	(1) Either both shall specify PASS_OBJ or neither shall.
	(2) If the procedure of the inherited binding is pure then that of the overriding binding shall a...
	(3) Either both shall be elemental or neither shall.
	(4) They shall have the same number of dummy arguments.
	(5) The corresponding dummy arguments shall have the same names and characteristics, except for t...
	(6) Either both shall be subroutines or both shall be functions having the same result characteri...
	(7) If the inherited binding is PUBLIC then the overriding binding shall not be PRIVATE.
	NOTE 4.53

	4.5.4�� Component order
	4.5.5�� Type parameter order
	4.5.6�� Derived-type values
	4.5.7�� Derived-type specifier
	R447 derived-type-spec is type-name [(type-param-spec-list)]
	R448 type-param-spec is [keyword =] type-param-value
	C463 (R447) type-name shall be the name of an accessible derived type.
	C464 (R447) type-alias-name shall be the name of an accessible type alias that is an alias for a ...
	C465 (R447) type-param-spec-list shall appear if and only if the type is parameterized.
	C466 (R447) There shall be exactly one type-param-spec corresponding to each parameter of the type.
	C467 (R448) The keyword = may be omitted from a type-param-spec only if the keyword = has been om...
	C468 (R448) Each keyword shall be the name of a parameter of the type.
	C469 (R448) An asterisk may be used as a type-param-value in a type-param-spec only in the declar...

	4.5.8�� Construction of derived-type values
	R449 structure-constructor is derived-type-spec ([component-spec�list])
	R450 component-spec is [keyword =] expr
	C470 (R449) There shall be at most one component-spec corresponding to each component of the type.
	C471 (R449) There shall be exactly one component-spec corresponding to each component that does n...
	C472 (R450) The keyword = may be omitted from a component-spec only if the keyword = has been omi...
	C473 (R450) Each keyword shall be the name of a component of the type.
	C474 (R449) The type name and all components of the type for which a component-spec appears shall...
	C475 (R449) If derived-type-spec is a type name that is the same as a generic name, the component...
	NOTE 4.54
	NOTE 4.55
	NOTE 4.56
	NOTE 4.57
	NOTE 4.58
	NOTE 4.59

	4.5.9�� Derived-type operations and assignment
	4.5.10�� The finalization process
	(1) If the dynamic type of the entity has a final subroutine whose dummy argument has the same ki...
	(2) Each finalizable component that appears in the type definition is finalized. If the entity is...
	(3) If the entity is of extended type and the parent type is finalizable, the parent component is...

	4.5.11�� When finalization occurs
	NOTE 4.60

	4.5.12�� Entities that are not finalized
	NOTE 4.61

	4.6�� Type aliases
	R451 type-alias-stmt is TYPEALIAS :: type-alias-list
	R452 type-alias is type-alias-name => declaration-type-spec
	C476 (R452) A type-alias-name shall not be the same as the name of any intrinsic type defined in ...
	C477 (R452) A declaration-type-spec in a type-alias shall not use the CLASS keyword.
	C478 (R452) A declaration-type-spec shall specify an intrinsic type or a previously defined deriv...
	NOTE 4.62

	4.7�� Enumerations and enumerators
	R453 enum-alias-def is enum-def-stmt
	R454 enum-def-stmt is ENUM, BIND(C) :: type-alias-name
	R455 enumerator-def-stmt is ENUMERATOR [::] enumerator-list
	R456 enumerator is named-constant [= scalar-int-initialization-expr]
	R457 end-enum-stmt is END ENUM [type-alias-name]
	C479 (R455) If = appears for an enumerator in an ENUMERATOR statement, a double-colon separator s...
	C480 (R457) If END ENUM is followed by a type-alias-name, the type-alias-name shall be the same a...
	(1) If BIND(C) is specified, the kind is selected such that an entity of type integer with that k...

	NOTE 4.63
	NOTE 4.64
	(2) If kind-selector is specified, the kind is that specified by the kind-selector.
	(3) If neither BIND(C) nor kind-selector is specified, the kind is that of default integer.

	NOTE 4.65
	(1) If scalar-int-initialization-expr is specified, the value of the enumerator is the result of ...
	(2) If scalar-int-initialization-expr is not specified and the enumerator is the first enumerator...
	(3) If scalar-int-initialization-expr is not present and the enumerator is not the first enumerat...

	NOTE 4.66
	NOTE 4.67

	4.8�� Construction of array values
	R458 array�constructor is (/ ac�spec /)
	R459 ac-spec is type-spec ::
	R460 left-square-bracket is [
	R461 right-square-bracket is]
	R462 ac�value is expr
	R463 ac�implied�do is (ac�value�list , ac�implied�do�control)
	R464 ac�implied�do�control is ac�do�variable = scalar�int�expr , scalar�int�expr n
	R465 ac�do�variable is scalar�int�variable
	C481 (R465) ac�do�variable shall be a named variable.
	C482 (R459) If type-spec is omitted, each ac�value expression in the array�constructor shall have...
	C483 (R459) If type-spec specifies an intrinsic type, each ac-value expression in the array- cons...
	C484 (R459) If type-spec specifies a derived type, all ac-value expressions in the array-construc...
	NOTE 4.68
	NOTE 4.69
	NOTE 4.70
	NOTE 4.71

