
JUN 2001 WORKING DRAFT J3/01-007R2
Section 2: Fortran terms and concepts

2.1 High level syntax
This section introduces the terms associated with program units and other Fortran concepts above

the construct, statement, and expression levels and illustrates their relationships. The notation

used in this standard is described in 1.6.

R201 program is program-unit
[program-unit] ...

A program shall contain exactly one main-program program-unit or a main program defined by

means other than Fortran, but not both.

R202 program-unit is main-program
or external-subprogram
or module
or block-data

R1101 main-program is [program-stmt]

[specification-part]

[execution-part]

[internal-subprogram-part]

end-program-stmt

R203 external-subprogram is function-subprogram
or subroutine-subprogram

R1223 function-subprogram is function-stmt
[specification-part]

[execution-part]

[internal-subprogram-part]

end-function-stmt

R1230 subroutine-subprogram is subroutine-stmt
[specification-part]

[execution-part]

[internal-subprogram-part]

end-subroutine-stmt

R1104 module is module-stmt
[specification-part]

[module-subprogram-part]

end-module-stmt

R1114 block-data is block-data-stmt
[specification-part]

end-block-data-stmt

R204 specification-part is [use-stmt] ...

[import-stmt] ...

[implicit-part]

NOTE 2.1
Some of the syntax rules in this section are subject to constraints that are given only at the
appropriate places in later sections.
JUN 2001 WORKING DRAFT 9

J3/01-007R2 WORKING DRAFT JUN 2001
[declaration-construct] ...

R205 implicit-part is [implicit-part-stmt] ...

implicit-stmt

R206 implicit-part-stmt is implicit-stmt
or parameter-stmt
or format-stmt
or entry-stmt

R207 declaration-construct is derived-type-def
or entry-stmt
or enum-alias-def
or format-stmt
or interface-block
or parameter-stmt
or procedure-declaration-stmt
or specification-stmt
or type-alias-stmt
or type-declaration-stmt
or stmt-function-stmt

R208 execution-part is executable-construct
[execution-part-construct] ...

R209 execution-part-construct is executable-construct
or format-stmt
or entry-stmt
or data-stmt

R210 internal-subprogram-part is contains-stmt
internal-subprogram
[internal-subprogram] ...

R211 internal-subprogram is function-subprogram
or subroutine-subprogram

R212 module-subprogram-part is contains-stmt
module-subprogram
[module-subprogram] ...

R213 module-subprogram is function-subprogram
or subroutine-subprogram

R214 specification-stmt is access-stmt
or allocatable-stmt
or asynchronous-stmt
or bind-stmt
or common-stmt
or data-stmt
or dimension-stmt
or equivalence-stmt
or external-stmt
or intent-stmt
or intrinsic-stmt
or namelist-stmt
or optional-stmt
or pointer-stmt
or save-stmt
10 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
or target-stmt
or volatile-stmt
or value-stmt

R215 executable-construct is action-stmt
or associate-construct
or case-construct
or do-construct
or forall-construct
or if-construct
or select-type-construct
or where-construct

R216 action-stmt is allocate-stmt
or assignment-stmt
or backspace-stmt
or call-stmt
or close-stmt
or continue-stmt
or cycle-stmt
or deallocate-stmt
or endfile-stmt
or end-function-stmt
or end-program-stmt
or end-subroutine-stmt
or exit-stmt
or forall-stmt
or goto-stmt
or if-stmt
or inquire-stmt
or nullify-stmt
or open-stmt
or pointer-assignment-stmt
or print-stmt
or read-stmt
or return-stmt
or rewind-stmt
or stop-stmt
or wait-stmt
or where-stmt
or write-stmt
or arithmetic-if-stmt
or computed-goto-stmt

C201 (R208) An execution-part shall not contain an end-function-stmt, end-program-stmt, or
end-subroutine-stmt.

2.2 Program unit concepts
Program units are the fundamental components of a Fortran program. A program unit may be a

main program, an external subprogram, a module, or a block data program unit. A subprogram

may be a function subprogram or a subroutine subprogram. A module contains definitions that

are to be made accessible to other program units. A block data program unit is used to specify

initial values for data objects in named common blocks. Each type of program unit is described in

Sections 11 or 12. An external subprogram is a subprogram that is not in a main program, a

module, or another subprogram. An internal subprogram is a subprogram that is in a main
JUN 2001 WORKING DRAFT 11

J3/01-007R2 WORKING DRAFT JUN 2001
program or another subprogram. A module subprogram is a subprogram that is in a module but

is not an internal subprogram.

A program unit consists of a set of nonoverlapping scoping units. A scoping unit is

(1) A program unit or subprogram, excluding any scoping units in it,

(2) A derived-type definition (4.5.1), or

(3) An interface body, excluding any scoping units in it.

A scoping unit that immediately surrounds another scoping unit is called the host scoping unit
(often abbreviated to host).

2.2.1 Program

A program consists of exactly one main program unit and any number (including zero) of other

kinds of program units. The set of program units may include any combination of the different

kinds of program units in any order as long as there is only one main program unit.

2.2.2 Main program

The main program is described in 11.1.

2.2.3 Procedure

A procedure encapsulates an arbitrary sequence of computations that may be invoked directly

during program execution. Procedures are either functions or subroutines. A function is a

procedure that is invoked in an expression; its invocation causes a value to be computed which is

then used in evaluating the expression. The variable that returns the value of a function is called

the result variable. A subroutine is a procedure that is invoked in a CALL statement, by a defined

assignment statement, or by some operations on derived-type entities (9.5.4.4.3). Unless it is a pure

procedure, a subroutine may be used to change the program state by changing the values of any of

the data objects accessible to the subroutine; unless it is a pure procedure, a function may do this

in addition to computing the function value.

Procedures are described further in Section 12.

2.2.3.1 External procedure

An external procedure is a procedure that is defined by an external subprogram or by means other

than Fortran. An external procedure may be invoked by the main program or by any procedure of

a program.

2.2.3.2 Module procedure

A module procedure is a procedure that is defined by a module subprogram (R213). A module

procedure may be invoked by another module subprogram in the module or by any scoping unit

that accesses the module procedure by use association (11.3.2). The module containing the

subprogram is the host scoping unit of the module procedure.

NOTE 2.2
There is a restriction that there shall be no more than one unnamed block data program unit
(11.4).

Since the public portions of a module are required to be available by the time a module
reference (11.3.1) is processed, a processor may require a specific order of processing of the
program units.
12 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
2.2.3.3 Internal procedure

An internal procedure is a procedure that is defined by an internal subprogram (R211). The

containing main program or subprogram is the host scoping unit of the internal procedure. An

internal procedure is local to its host in the sense that the internal procedure is accessible within

the host scoping unit and all its other internal procedures but is not accessible elsewhere.

2.2.3.4 Interface block

The purpose of an interface block is to describe the interfaces (12.3) to a set of procedures, and the

forms of reference by which the procedures may be invoked (12.4). It may be used to specify the

interfaces of external or dummy procedures, or that procedures may be invoked

(1) By using a generic name,

(2) By using a defined operator,

(3) By using a defined assignment, or

(4) For derived-type input/output.

2.2.4 Module

A module contains (or accesses from other modules) definitions that are to be made accessible to

other program units. These definitions include data object declarations, type definitions,

procedure definitions, and interface blocks. The purpose of a module is to make the definitions it

contains accessible to all other program units that request access. A scoping unit in another

program unit may request access to the definitions in a module. Modules are further described in

Section 11.

2.3 Execution concepts
Each Fortran statement is classified as either an executable statement or a nonexecutable statement.

There are restrictions on the order in which statements may appear in a program unit, and certain

executable statements may appear only in certain executable constructs.

2.3.1 Executable/nonexecutable statements

Program execution is a sequence, in time, of computational actions. An executable statement is an

instruction to perform or control one or more of these actions. Thus, the executable statements of

a program unit determine the computational behavior of the program unit. The executable

statements are all of those that make up the syntactic class of executable-construct.

Nonexecutable statements do not specify actions; they are used to configure the program

environment in which computational actions take place. The nonexecutable statements are all

those not classified as executable.

2.3.2 Statement order

The syntax rules of subclause 2.1 specify the statement order within program units and

subprograms. These rules are illustrated in Table 2.1 and Table 2.2. Table 2.1 shows the ordering

rules for statements and applies to all program units and subprograms. Vertical lines delineate

varieties of statements that may be interspersed and horizontal lines delineate varieties of

statements that shall not be interspersed. Internal or module subprograms shall follow a

CONTAINS statement. Between USE and CONTAINS statements in a subprogram, nonexecutable

statements generally precede executable statements, although the ENTRY statement, FORMAT

statement, and DATA statement may appear among the executable statements. Table 2.2 shows which

statements are allowed in a scoping unit.
JUN 2001 WORKING DRAFT 13

J3/01-007R2 WORKING DRAFT JUN 2001
2.3.3 The END statement

An end-program-stmt, end-function-stmt, end-subroutine-stmt, end-module-stmt, or end-block-data-stmt is

an END statement. Each program unit, module subprogram, and internal subprogram shall have

exactly one END statement. The end-program-stmt, end-function-stmt, and end-subroutine-stmt
statements are executable, and may be branch target statements. Executing an end-program-stmt

Table 2.1 Requirements on statement ordering

PROGRAM, FUNCTION, SUBROUTINE,
MODULE, or BLOCK DATA statement

USE statements

IMPORT statements

FORMAT
and

ENTRY
statements

IMPLICIT NONE

PARAMETER
statements

IMPLICIT
statements

PARAMETER
and DATA
statements

Derived-type definitions,
interface blocks,

type declaration statements,
type alias definitions,

enumeration declarations,
procedure declarations,
specification statements,

and statement function statements

DATA
statements

Executable
constructs

CONTAINS statement

Internal subprograms
or module subprograms

END statement

Table 2.2 Statements allowed in scoping units

Kind of scoping unit:
Main

program
Module

Block
data

External
subprog

Module
subprog

Internal
subprog

Interface
body

USE statement Yes Yes Yes Yes Yes Yes Yes

IMPORT statement No No No No No No Yes

ENTRY statement No No No Yes Yes No No

FORMAT statement Yes No No Yes Yes Yes No

Misc. declarations (see note) Yes Yes Yes Yes Yes Yes Yes

DATA statement Yes Yes Yes Yes Yes Yes No

Derived-type definition Yes Yes Yes Yes Yes Yes Yes

Interface block Yes Yes No Yes Yes Yes Yes

Executable statement Yes No No Yes Yes Yes No

CONTAINS statement Yes Yes No Yes Yes No No

Statement function statement Yes No No Yes Yes Yes No

Notes for Table 2.2:
1) Misc. declarations are PARAMETER statements, IMPLICIT statements, type declaration
statements, type alias statements, enum statements, procedure declaration statements, and
specification statements.
2) Derived type definitions are also scoping units, but they do not contain any of the above
statements, and so have not been listed in the table.
3) The scoping unit of a module does not include any module subprograms that the module contains.
14 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
causes normal termination of execution of the program. Executing an end-function-stmt or

end-subroutine-stmt is equivalent to executing a return-stmt.

The end-module-stmt and end-block-data-stmt statements are nonexecutable.

2.3.4 Execution sequence

Execution of a program begins with the first executable construct of the main program. The

execution of a main program or subprogram involves execution of the executable constructs within

its scoping unit. When a procedure is invoked, execution begins with the first executable construct

appearing after the invoked entry point. With the following exceptions, the effect of execution is

as if the executable constructs are executed in the order in which they appear in the main program

or subprogram until a STOP, RETURN, or END statement is executed. The exceptions are the

following:

(1) Execution of a branching statement (8.2) changes the execution sequence. These
statements explicitly specify a new starting place for the execution sequence.

(2) CASE constructs, DO constructs, and IF constructs contain an internal statement
structure and execution of these constructs involves implicit internal branching. See
Section 8 for the detailed semantics of each of these constructs.

(3) END=, ERR=, and EOR= specifiers may result in a branch.

(4) Alternate returns may result in a branch.

Internal subprograms may precede the END statement of a main program or a subprogram. The

execution sequence excludes all such definitions.

Normal termination of execution of the program occurs if a STOP statement or end-program-stmt is

executed. Normal termination of execution of a program also may occur during execution of a

procedure defined by a companion processor (C standard 5.1.2.2.3 and 7.20.4.3). If normal

termination of execution occurs within a Fortran program unit and the program incorporates

procedures defined by a companion processor, the process of execution termination shall include

the effect of executing the C exit() function (C standard 7.20.4.3).

2.4 Data concepts
Nonexecutable statements are used to define the characteristics of the data environment. This

includes typing variables, declaring arrays, and defining new data types.

2.4.1 Data type

A data type is a named category of data that is characterized by a set of values, together with a

syntax for denoting these values and a set of operations that interpret and manipulate the values.

This central concept is described in 4.1.

A type may be parameterized, in which case the set of data values, the syntax for denoting them,

and the set of operations depend on the values of one or more parameters. Such a parameter is

called a type parameter (4.2).

There are two categories of data types: intrinsic types and derived types.

2.4.1.1 Intrinsic type

An intrinsic type is a type that is defined by the language, along with operations, and is always

accessible. The intrinsic types are integer, real, complex, character, and logical. The properties of

intrinsic types are described in 4.4. The intrinsic type parameters are KIND and LEN.

The kind type parameter indicates the decimal exponent range for the integer type (4.4.1), the

decimal precision and exponent range for the real and complex types (4.4.2, 4.4.3), and the
JUN 2001 WORKING DRAFT 15

J3/01-007R2 WORKING DRAFT JUN 2001
representation methods for the character and logical types (4.4.4, 4.4.5). The character length
parameter specifies the number of characters for the character type.

2.4.1.2 Derived type

A derived type is a type that is not defined by the language but requires a type definition to

declare components of intrinsic or of other derived types. A scalar object of such a derived type is

called a structure (5.1.1.7). Derived types may be parameterized. The only intrinsic operation for

derived types is assignment with agreement of type and type parameters (7.5.1.5). For each

derived type, structure constructors are available to provide values (4.5.8). In addition, data

objects of derived type may be used as procedure arguments and function results, and may appear

in input/output lists. If additional operations are needed for a derived type, they shall be

supplied as procedure definitions.

Derived types are described further in 4.5.

2.4.2 Data value

Each intrinsic type has associated with it a set of values that a datum of that type may take,

depending on the values of the type parameters. The values for each intrinsic type are described

in 4.4. Because derived types are ultimately specified in terms of components of intrinsic types, the

values that objects of a derived type may assume are determined by the type definition, type

parameter values, and the sets of values of the intrinsic types.

2.4.3 Data entity

A data entity is a data object, the result of the evaluation of an expression, or the result of the

execution of a function reference (called the function result). A data entity has a data type and

type parameters; it may have a data value (a exnception is an undefined variable). Every data

entity has a rank and is thus either a scalar or an array.

2.4.3.1 Data object

A data object (often abbreviated to object) is a constant (4.1.2), a variable (6), or a subobject of a

constant. The type and type parameters of a named data object may be specified explicitly (5) or

implicitly (5.3).

Subobjects are portions of certain objects that may be referenced and defined (variables only)

independently of the other portions. These include portions of arrays (array elements and array

sections), portions of character strings (substrings), portions of complex objects (real and

imaginary parts), and portions of structures (components). Subobjects are themselves data objects,

but subobjects are referenced only by object designators or intrinsic functions. A subobject of a

variable is a variable. Subobjects are described in Section 6.

Objects referenced by a name are:

a named scalar (a scalar object)

a named array (an array object)

Subobjects referenced by an object designator are:

an array element (a scalar subobject)

an array section (an array subobject)

a structure component (a scalar or an array subobject)

a substring (a scalar subobject)

Subobjects of complex objects may be referenced by intrinsic functions.
16 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
2.4.3.1.1 Variable

A variable may have a value and may be defined and redefined during execution of a program.

A named local variable of the scoping unit of a module, main program, or subprogram, is a

variable that is a local entity of the scoping unit, is not a dummy argument, is not in COMMON,

and is not accessed by use or host association. a subobject of a named local variable is also a local

variable.

2.4.3.1.2 Constant

A constant has a value and cannot become defined, redefined, or undefined during execution of a

program. A constant with a name is called a named constant and has the PARAMETER attribute

(5.1.2.10). A constant without a name is called a literal constant (4.4).

2.4.3.1.3 Subobject of a constant

A subobject of a constant is a portion of a constant. The portion referenced may depend on the

value of a variable.

2.4.3.2 Expression

An expression (7.1) produces a data entity when evaluated. An expression represents either a data

reference or a computation, and is formed from operands, operators, and parentheses. The type,

type parameters, value, and rank of an expression result are determined by the rules in Section 7.

2.4.3.3 Function reference

A function reference (12.4.2) produces a data entity when the function is executed during

expression evaluation. The type, type parameters, and rank of a function result are determined by

the interface of the function (12.2.2). The value of a function result is determined by execution of

the function.

2.4.4 Scalar

A scalar is a datum that is not an array. Scalars may be of any intrinsic type or derived type.

The rank of a scalar is zero. The shape of a scalar is represented by a rank-one array of size zero.

2.4.5 Array

An array is a set of scalar data, all of the same type and type parameters, whose individual

elements are arranged in a rectangular pattern. An array element is one of the individual elements

in the array and is a scalar. An array section is a subset of the elements of an array and is itself an

array.

NOTE 2.3
For example, given:

CHARACTER (LEN = 10), PARAMETER :: DIGITS = '0123456789'
CHARACTER (LEN = 1) :: DIGIT
INTEGER :: I

...
DIGIT = DIGITS (I:I)

DIGITS is a named constant and DIGITS (I:I) designates a subobject of the constant DIGITS.

NOTE 2.4
A structure is scalar even if it has arrays as components.
JUN 2001 WORKING DRAFT 17

J3/01-007R2 WORKING DRAFT JUN 2001
An array may have up to seven dimensions, and any extent (number of elements) in any

dimension. The rank of the array is the number of dimensions, and its size is the total number of

elements, which is equal to the product of the extents. An array may have zero size. The shape of

an array is determined by its rank and its extent in each dimension, and may be represented as a

rank-one array whose elements are the extents. All named arrays shall be declared, and the rank

of a named array is specified in its declaration. The rank of a named array, once declared, is

constant; the extents may be constant or may vary during execution.

Two arrays are conformable if they have the same shape. A scalar is conformable with any array.

Any intrinsic operation defined for scalar objects may be applied to conformable objects. Such

operations are performed element-by-element to produce a resultant array conformable with the

array operands. Element-by-element operation means corresponding elements of the operand

arrays are involved in a "scalar-like" operation to produce the corresponding element in the result

array, and all such element operations may be performed in any order or simultaneously. Such an

operation is described as elemental.

A rank-one array may be constructed from scalars and other arrays and may be reshaped into any

allowable array shape (4.8).

Arrays may be of any intrinsic type or derived type and are described further in 6.2.

2.4.6 Pointer

A data pointer is a data entity that has the POINTER attribute. A procedure pointer is a

procedure entity that has the POINTER attribute. A pointer is either a data pointer or a procedure

pointer.

A pointer is associated with a target by pointer assignment (7.5.2). A data pointer may also be

associated with a target by allocation (6.3.1). A pointer is disassociated following execution of a

NULLIFY statement, following pointer assignment with a disassociated pointer, by default

initialization, or by explicit initialization. A data pointer may also be disassociated by execution of

a DEALLOCATE statement. A disassociated pointer is not currently associated with a target

(16.7.2).

A pointer that is not currently associated shall not be referenced or defined.

If a data pointer is an array, the rank is declared, but the extents are determined when the pointer

is associated with a target.

2.4.7 Storage

Many of the facilities of this standard make no assumptions about the physical storage

characteristics of data objects. However, program units that include storage association dependent

features shall observe certain storage constraints (16.7.3).

2.5 Fundamental terms
The following terms are defined here and used throughout this standard.

2.5.1 Name and designator

A name is used to identify a program constituent, such as a program unit, named variable, named

constant, dummy argument, or derived type. The rules governing the construction of names are

given in 3.2.1. An object designator is a name followed by zero or more subobject selectors, which

are component selectors, array section selectors, array element selectors, and substring selectors.

NOTE 2.5
An object name is a special case of an object designator.
18 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
2.5.2 Keyword

The term keyword is used in two ways in this standard.

(1) It is used to describe a word that is part of the syntax of a statement. These keywords
are not reserved words; that is, names with the same spellings are allowed. In the
syntax rules, such keywords appear literally. In descriptive text, this meaning is
denoted by the term "keyword" without any modifier. Examples of statement
keywords are: IF, READ, UNIT, KIND, and INTEGER.

(2) It is used to denote names that identify items in a list. IN argument lists, type
parameter lists, and structure constructors, items may be identied by a preceding
keyword= rather than their position within the list. An argument keyword is the name
of a dummy argument in the interface for the procedure being referenced, a type
parameter keyword is the name of a type parameter in the type being specified, and a
component keyword is the name of a component in a structure constructor.

R217 keyword is name

2.5.3 Declaration

The term declaration refers to the specification of attributes for various program entities. Often

this involves specifying the data type of a named data object or specifying the shape of a named

array object.

2.5.4 Definition

The term definition is used in two ways. First, when a data object is given a valid value during

program execution, it is said to become defined. This is often accomplished by execution of an

assignment statement or input statement. Under certain circumstances, a variable does not have a

predictable value and is said to be undefined. Section 16 describes the ways in which variables

may become defined and undefined. The second use of the term definition refers to the

declaration of derived types and procedures.

2.5.5 Reference

A data object reference is the appearance of the data object designator in a context requiring its

value at that point during execution.

A procedure reference is the appearance of the procedure designator, operator symbol, or

assignment symbol in a context requiring execution of the procedure at that point.

The appearance of a data object designator or procedure name in an actual argument list does not

constitute a reference to that data object or procedure unless such a reference is necessary to

complete the specification of the actual argument.

A module reference is the appearance of a module name in a USE statement (11.3.1).

2.5.6 Association

Association may be name association (16.7.1), pointer association (16.7.2), or storage association

(16.7.3). Name association may be argument association, host association, use association, or

construct association.

NOTE 2.6
Use of keywords rather than position to identify items in a list can make such lists more
readable and allows them to be reordered. This facilitates specification of a list in cases where
optional items are omitted.
JUN 2001 WORKING DRAFT 19

J3/01-007R2 WORKING DRAFT JUN 2001
Storage association causes different entities to use the same storage. Any association permits an

entity to be identified by different names in the same scoping unit or by the same name or different

names in different scoping units.

2.5.7 Intrinsic

The qualifier intrinsic has two meanings. The first signifies that the term to which it is applied is

defined in this standard. Intrinsic applies to data types, procedures, modules, assignment

statements, and operators. All intrinsic data types, procedures, and operators may be used in any

scoping unit without further definition or specification. Intrinsic modules may be accessed by use

association. Intrinsic procedures and modules defined in this standard are called standard

intrinsic procedures and standard intrinsic modules, respectively.

The second use of the qualifier applies to procedures or modules that are provided by a processor

but are not defined in this standard (13, 14, 15.1). Such procedures and modules are called

nonstandard intrinsic procedures and nonstandard intrinsic modules, respectively.

2.5.8 Operator

An operator specifies a computation involving one (unary operator) or two (binary operator) data

values (operands). This standard specifies a number of intrinsic operators (e.g., the arithmetic

operators +, –, ∗, /, and ∗∗ with numeric operands and the logical operators .AND., .OR., etc.

with logical operands). Additional operators may be defined within a program (7.1.3).

2.5.9 Sequence

A sequence is a set ordered by a one-to-one correspondence with the numbers 1, 2, through n. The

number of elements in the sequence is n. A sequence may be empty, in which case it contains no

elements.

The elements of a nonempty sequence are referred to as the first element, second element, etc. The

nth element, where n is the number of elements in the sequence, is called the last element. An

empty sequence has no first or last element.

2.5.10 Companion processors

A processor has one or more companion processors. A companion processor is a processor-

dependent mechanism by which global data and procedures may be referenced or defined. A

companion processor may be a mechanism that references and defines such entities by a means

other than Fortran (12.5.3), it may be the Fortran processor itself, or it may be another Fortran

processor. If there is more than one companion processor, the means by which the Fortran

processor selects among them are processor dependent.

If a procedure is defined by means of a companion processor that is not the Fortran processor

itself, this standard refers to the C function that defines the procedure, although the procedure

need not be defined by means of the C programming language.

NOTE 2.7
A companion processor might or might not be a mechanism that conforms to the
requirements of the C standard.

For example, a processor may allow a procedure defined by some language other than Fortran
or C to be linked (12.5.3) with a Fortran procedure if it can be described by a C prototype as
defined in 6.5.5.3 of the C standard.
20 WORKING DRAFT JUN 2001

	Section 2: Fortran terms and concepts
	2.1�� High level syntax
	NOTE 2.1
	R202 program�unit is main�program
	R203 external�subprogram is function�subprogram
	R204 specification�part is [use�stmt] ...
	R205 implicit�part is [implicit�part�stmt] ...
	R206 implicit�part�stmt is implicit�stmt
	R207 declaration�construct is derived�type�def
	R208 execution�part is executable�construct
	R209 execution�part�construct is executable�construct
	R210 internal�subprogram�part is contains�stmt
	R211 internal�subprogram is function�subprogram
	R212 module�subprogram�part is contains�stmt
	R213 module�subprogram is function�subprogram
	R214 specification�stmt is access�stmt
	R215 executable�construct is action�stmt
	R216 action�stmt is allocate�stmt
	C201 (R208) An execution�part shall not contain an end�function�stmt, end�program�stmt, or end�su...

	2.2�� Program unit concepts
	(1) A program unit or subprogram, excluding any scoping units in it,
	(2) A derived-type definition (4.5.1), or
	(3) An interface body, excluding any scoping units in it.
	2.2.1�� Program
	NOTE 2.2

	2.2.2�� Main program
	2.2.3�� Procedure
	2.2.3.1�� External procedure
	2.2.3.2�� Module procedure
	2.2.3.3�� Internal procedure
	2.2.3.4�� Interface block
	(1) By using a generic name,
	(2) By using a defined operator,
	(3) By using a defined assignment, or
	(4) For derived-type input/output.

	2.2.4�� Module

	2.3�� Execution concepts
	2.3.1�� Executable/nonexecutable statements
	2.3.2�� Statement order
	Table 2.1 Requirements on statement ordering
	Table 2.2 Statements allowed in scoping units

	2.3.3�� The END statement
	2.3.4�� Execution sequence
	(1) Execution of a branching statement (8.2) changes the execution sequence. These statements exp...
	(2) CASE constructs, DO constructs, and IF constructs contain an internal statement structure and...
	(3) END=, ERR=, and EOR= specifiers may result in a branch.
	(4) Alternate returns may result in a branch.

	2.4�� Data concepts
	2.4.1�� Data type
	2.4.1.1�� Intrinsic type
	2.4.1.2�� Derived type

	2.4.2�� Data value
	2.4.3�� Data entity
	2.4.3.1�� Data object
	2.4.3.1.1�� Variable
	2.4.3.1.2�� Constant
	2.4.3.1.3�� Subobject of a constant
	NOTE 2.3

	2.4.3.2�� Expression
	2.4.3.3�� Function reference

	2.4.4�� Scalar
	NOTE 2.4

	2.4.5�� Array
	2.4.6�� Pointer
	2.4.7�� Storage

	2.5�� Fundamental terms
	2.5.1�� Name and designator
	NOTE 2.5

	2.5.2�� Keyword
	(1) It is used to describe a word that is part of the syntax of a statement. These keywords are n...
	(2) It is used to denote names that identify items in a list. IN argument lists, type parameter l...
	R217 keyword is name
	NOTE 2.6

	2.5.3�� Declaration
	2.5.4�� Definition
	2.5.5�� Reference
	2.5.6�� Association
	2.5.7�� Intrinsic
	2.5.8�� Operator
	2.5.9�� Sequence
	2.5.10�� Companion processors
	NOTE 2.7

