
JUN 2001 WORKING DRAFT J3/01-007R2
Section 16: Scope, association, and definition
Entities are identified by lexical tokens within a scope that is a program, a scoping unit, a

construct, a single statement, or part of a statement. If the scope is a program, the entity is called

a global entity. If the scope is a scoping unit (2.2), the entity is called a local entity. If the scope is

a construct, the entity is called a construct entity. If the scope is a statement or part of a statement,

the entity is called a statement entity.

An entity may be identified by

(1) A name (16.1),

(2) A label (16.2),

(3) An external input/output unit number (16.3),

(4) An operator symbol (16.4),

(5) An assignment symbol (16.5), or

(6) A binding label (12.5.2.7, 15.2.7.1).

By means of association, an entity may be referred to by the same identifier or a different identifier

in a different scoping unit, or by a different identifier in the same scoping unit.

16.1 Scope of names
Named entities are global, local, construct, or statement entities.

16.1.1 Global entities

Program units, common blocks, external procedures, and variables that have the BIND attribute

are global entities of a program. A name that identifies a program unit, common block or external

procedure shall not be used to identify any other such global entity in the same program. A

binding label that identifies a global entity of the program shall not be used to identify any other

global entity of the program; nor shall it be the same as a name used to identify any other global

entity of the program, ignoring differences in case.

J3 internal note
Unresolved issue 319

This list is known to be seriously incomplete. At a minimum, it is known to be missing dtio
generic identifiers and data transfer operation identifiers (9.5.1.8). This also means that the
scope of these new items must be properly stated in the subsequent subsections of 14 and that
they should be in the glossary.

NOTE 16.1
The name of a global entity may be the same as a binding label that identifies the same global
entity.
JUN 2001 WORKING DRAFT 365

J3/01-007R2 WORKING DRAFT JUN 2001
16.1.2 Local entities

Within a scoping unit, entities in the following classes:

(1) Named variables that are not statement or construct entities (16.1.3), named constants,
named constructs, statement functions, internal procedures, module procedures, dummy
procedures, intrinsic procedures, abstract interfaces, generic identifiers, derived types,
type aliases, enumerations, and namelist group names,

(2) Type parameters, components, and binding names, in a separate class for each type,
and

(3) Argument keywords, in a separate class for each procedure with an explicit interface

are local entities of that scoping unit.

Except for a common block name (16.1.2.1), an external procedure name that is also a generic name

(12.3.2.1), or an external function name within its defining subprogram (16.1.2.2), a name that

identifies a global entity in a scoping unit shall not be used to identify a local entity of class (1) in

that scoping unit.

Within a scoping unit, a name that identifies a local entity of one class shall not be used to identify

another local entity of the same class, except in the case of generic names. A generic name may be

the same as the name of a procedure as explained in 12.3.2.1 or the same as the name of a derived

type (4.5.8). A name that identifies a local entity of one class may be used to identify a local entity

of another class.

The name of a local entity identifies that entity in a scoping unit and may be used to identify any

local or global entity in another scoping unit except in the following cases:

(1) The name that appears as a subroutine-name in a subroutine-stmt has limited use within
the scope established by the subroutine-stmt. It can be used to identify recursive

NOTE 16.2
Of the various types of procedures, only external procedures have global names. An
implementation may wish to assign global names to other entities in the Fortran program
such as internal procedures, intrinsic procedures, procedures implementing intrinsic
operators, procedures implementing input/output operations, etc. If this is done, it is the
responsibility of the processor to ensure that none of these names conflicts with any of the
names of the external procedures, with other globally named entities in a standard-
conforming program, or with each other. For example, this might be done by including in
each such added name a character that is not allowed in a standard-conforming name or by
using such a character to combine a local designation with the global name of the program
unit in which it appears.

NOTE 16.3
An intrinsic procedure is inaccessible in a scoping unit containing another local entity of the
same class and having the same name. For example, in the program fragment

SUBROUTINE SUB
...
A = SIN (K)
...

CONTAINS
FUNCTION SIN (X)

...
END FUNCTION SIN

END SUBROUTINE SUB

any reference to function SIN in subroutine SUB refers to the internal function SIN, not to the
intrinsic function of the same name.
366 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
references of the subroutine or to identify the name of a common block (the latter is
possible only for internal and module subroutines).

(2) The name that appears as a function-name in a function-stmt has limited use within the
scope established by that function-stmt. It can be used to identify the result variable, to
identify recursive references of the function, or to identify the name of a common block
(the latter is possible only for internal and module functions).

(3) The name that appears as an entry-name in an entry-stmt has limited use within the
scope of the subprogram in which the entry-stmt appears. It can be used to identify the
result variable if the subprogram is a function, to identify recursive references, or to
identify the name of a common block (the latter is possible only if the entry-stmt is in a
module subprogram).

16.1.2.1 Common blocks

A name that identifies a common block in a scoping unit shall not be used to identify a constant

or an intrinsic procedure in that scoping unit. If a name is used for both a common block and a

local entity, the appearance of that name in any context other than as a common block name in a

COMMON or SAVE statement identifies only the local entity.

16.1.2.2 Function results

For each FUNCTION statement or ENTRY statement in a function subprogram, there is a result

variable. If there is no RESULT clause, the result variable has the same name as the function being

defined; otherwise, the result variable has the name specified in the RESULT clause.

16.1.2.3 Determining unambiguous generic procedure references

This subsection contains the rules that shall be satisfied by every pair of specific procedures that

have the same generic name, have the same generic operator, have the same dtio-generic-spec, or

both define assignment. They ensure that a generic reference is unambiguous. If an intrinsic

operator or assignment is extended, the rules apply as if the intrinsic consisted of a collection of

specific procedures, one for each allowed combination of type, kind type parameters, and rank for

each operand. If a generic procedure is accessed from a module, the rules apply to all the specific

versions even if some of them are inaccessible by their specific names. If two or more generic

interfaces that are accessible in a scoping unit have the same local name, have the same operator,

have the same dtio-generic-spec, or are both assignment, they are interpreted as a single generic

interface. These rules also apply betwen generic interface blocks accessible in a scope and type-

bound generic bindings other than names, for all types that are acessible or have accessible objects

in the scope.

Within a scoping unit, if two procedures have the same generic operator and the same number of

arguments or both define assignment, one shall have a dummy argument that corresponds by

position in the argument list to a dummy argument of the other that has a different type, different

kind type parameters, or different rank.

Within a scoping unit, if two procedures have the same dtio-generic-spec (12.3.2.1), their dtv

arguments shall be type-incompatible or have different kind type parameters.

Within a scoping unit, two procedures that have the same generic name shall both be subroutines

or both be functions, and

(1) one of them shall have more nonoptional dummy arguments of a particular data type,
kind type parameters, and rank than the other has dummy arguments (including
optional dummy arguments) of that data type, kind type parameters, and rank; or

NOTE 16.4
An intrinsic procedure name may be a common block name in a scoping unit that does not
reference the intrinsic procedure.
JUN 2001 WORKING DRAFT 367

J3/01-007R2 WORKING DRAFT JUN 2001
(2) at least one of them shall have both

(a) A nonoptional dummy argument at a position such that either the other
procedure has no dummy argument at that position or the dummy argument at
that position is type-incompatible, has different kind type parameters, or has
different rank; and

(b) A nonoptional dummy argument whose name is such that either the other
procedure has no dummy argument with that name or the dummy argument
with that name is type-incompatible, has different kind type parameters, or has
different rank.

Further, the dummy argument that disambiguates by position shall either be the same

as or occur earlier in the argument list than the one that disambiguates by name.

Two dummy arguments are type-incompatible if neither is type-compatible with the other.

If a generic name is the same as the name of a generic intrinsic procedure, the generic intrinsic

procedure is not accessible if the procedures in the interface and the intrinsic procedure are not all

functions or not all subroutines. If a generic invocation applies to both a specific procedure from

an interface and an accessible generic intrinsic procedure, it is the specific procedure from the

interface that is referenced.

16.1.2.4 Resolving procedure references

The rules for interpreting a procedure reference depend on whether the procedure name in the

reference is established by the available declarations and specifications to be generic in the scoping

unit containing the reference, is established to be only specific in the scoping unit containing the

reference, or is not established.

(1) A procedure name is established to be generic in a scoping unit

(a) if that scoping unit contains an interface block with that name;

(b) if that scoping unit contains an INTRINSIC attribute specification for that name
and it is the name of a generic intrinsic procedure;

(c) if that scoping unit contains a USE statement that makes that procedure name
accessible and the corresponding name in the module is established to be
generic; or

NOTE 16.5
The procedures with interface bodies given by the interface block

INTERFACE A
SUBROUTINE AR (X)

REAL X
END SUBROUTINE AR

SUBROUTINE AI (J)
INTEGER J

END SUBROUTINE AI
END INTERFACE A

satisfy rules (2)(a) and (2)(b). However, if J were declared REAL, rule (2)(a) would not be
satisfied while rule (2)(b) remains satisfied; in this case, the reference to A in the statement

CALL A (0.0)

would be ambiguous.

NOTE 16.6
If a reference to the intrinsic function NULL appears as an actual argument in a reference to a
generic procedure, the argument MOLD may be required to resolve the reference (7.1.4.1).
368 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
(d) if that scoping unit contains no declarations of that name, that scoping unit has a
host scoping unit, and that name is established to be generic in the host scoping
unit.

(2) A procedure name is established to be only specific in a scoping unit if it is established
to be specific and not established to be generic. It is established to be specific

(a) if that scoping unit contains a module subprogram, internal subprogram, or

statement function that defines a procedure with that name;

(b) if that scoping unit contains an INTRINSIC attribute specification for that name
and if it is the name of a specific intrinsic procedure;

(c) if that scoping unit contains an explicit EXTERNAL attribute specification
(5.1.2.6) for that name;

(d) if that scoping unit contains a USE statement that makes that procedure name
accessible and the corresponding name in the module is established to be
specific; or

(e) if that scoping unit contains no declarations of that name, that scoping unit has a
host scoping unit, and that name is established to be specific in the host scoping
unit.

(3) A procedure is not established in a scoping unit if it is neither established to be generic
nor established to be specific.

16.1.2.4.1 Resolving procedure references to names established to be generic

(1) If the reference is consistent with one of the specific interfaces of a generic interface
that has that name and either is in the scoping unit in which the reference appears or is
made accessible by a USE statement in the scoping unit, the reference is to the specific
procedure in the interface block that provides that interface. The rules in 16.1.2.3
ensure that there can be at most one such specific procedure.

(2) If (1) does not apply, if the reference is consistent with an elemental reference to one of
the specific interfaces of a generic interface that has that name and either is in the
scoping unit in which the reference appears or is made accessible by a USE statement
in the scoping unit, the reference is to the specific elemental procedure in the interface
block that provides that interface. The rules in 16.1.2.3 ensure that there can be at most
one such specific elemental procedure.
JUN 2001 WORKING DRAFT 369

J3/01-007R2 WORKING DRAFT JUN 2001
(3) If (1) and (2) do not apply, if the scoping unit contains either an INTRINSIC attribute
specification for that name or a USE statement that makes that name accessible from a
module in which the corresponding name is specified to have the INTRINSIC attribute,
and if the reference is consistent with the interface of that intrinsic procedure, the
reference is to that intrinsic procedure.

(4) If (1), (2), and (3) do not apply, if the scoping unit has a host scoping unit, if the name
is established to be generic in that host scoping unit, and if there is agreement between
the scoping unit and the host scoping unit as to whether the name is a function name
or a subroutine name, the name is resolved by applying the rules in this section to the
host scoping unit.

16.1.2.4.2 Resolving procedure references to names established to be only specific

(1) If the scoping unit contains an interface body or EXTERNAL attribute specification for
the name, if the scoping unit is a subprogram, and if the name is the name of a dummy
argument of that subprogram, the dummy argument is a dummy procedure and the
reference is to that dummy procedure. That is, the procedure invoked by executing
that reference is the procedure supplied as the actual argument corresponding to that
dummy procedure.

(2) If the scoping unit contains an interface body or EXTERNAL attribute specification for
the name and if (1) does not apply, the reference is to an external procedure with that
name.

(3) If the scoping unit contains a module subprogram, internal subprogram, or statement

function that defines a procedure with the name, the reference is to the procedure so
defined.

(4) If the scoping unit contains an INTRINSIC attribute specification for the name, the
reference is to the intrinsic with that name.

NOTE 16.7
These rules allow specific instances of a generic function to be used for specific array ranks
and a general elemental version to be used for other ranks. Given an interface block such as:

INTERFACE RANF
ELEMENTAL FUNCTION SCALAR_RANF(X)
REAL X
END FUNCTION SCALAR_RANF

FUNCTION VECTOR_RANDOM(X)
REAL X(:)
REAL VECTOR_RANDOM(SIZE(X))
END FUNCTION VECTOR_RANDOM

END INTERFACE RANF

and a declaration such as:

REAL A(10,10), AA(10,10)

then the statement

A = RANF(AA)

is an elemental reference to SCALAR_RANF. The statement

A = RANF(AA(6:10,2))

is a nonelemental reference to VECTOR_RANDOM.

NOTE 16.8
In the USE statement case, it is possible, because of the renaming facility, for the name in the
reference to be different from the name of the intrinsic procedure.
370 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
(5) If the scoping unit contains a USE statement that makes a procedure accessible by the
name, the reference is to that procedure.

(6) If none of the above apply, the scoping unit shall have a host scoping unit, and the
reference is resolved by applying the rules in this section to the host scoping unit.

16.1.2.4.3 Resolving procedure references to names not established

(1) If the scoping unit is a subprogram and if the name is the name of a dummy argument
of that subprogram, the dummy argument is a dummy procedure and the reference is
to that dummy procedure. That is, the procedure invoked by executing that reference
is the procedure supplied as the actual argument corresponding to that dummy
procedure.

(2) If (1) does not apply, if the name is the name of an intrinsic procedure, and if there is
agreement between the reference and the status of the intrinsic procedure as being a
function or subroutine, the reference is to that intrinsic procedure.

(3) If (1) and (2) do not apply, the reference is to an external procedure with that name.

16.1.2.4.4 Resolving derived-type input/output procedure references

A suitable generic interface for user-defined derived-type input/output of an effective item has a

dtio-generic-spec that is appropriate to the direction (read or write) and form (formatted or

unformatted) of the data transfer as specified in 9.5.4.4.3, and has a specific interface whose dtv

argument is compatible with the effective item according to the rules for argument association in

12.4.1.2.

When an effective item (9.5.2) that is of derived-type is encountered during a data transfer, user-

defined derived-type input/output occurs if both of the following conditions are true:

(1) The circumstances of the input/output are such that user-defined derived-type
input/output is permitted; that is, either

(a) the transfer was initiated by a list-directed, namelist, or unformatted
input/output statement, or

(b) a format specification is supplied for the input/output statement, and the edit
descriptor corresponding to the effective item is a DT edit descriptor.

(2) A suitable user-defined derived-type input/output procedure is available; that is,
either

(a) the declared type of the effective item has a suitable type-bound generic binding,
or

(b) a suitable generic interface is accessible.

If (2)(a) is true, the procedure referenced is determined as for explicit type-bound procedure

references; that is, the binding with the appropriate specific interface is located in the declared type

of the effective item, and the corresponding binding in the dynamic type of the effective item is

selected. This binding shall not be deferred.

If (2)(a) is false and (2)(b) is true, the reference is to the procedure identified by the appropriate

specific interface in the interface block.

NOTE 16.9
Because of the renaming facility of the USE statement, the name in the reference may be
different from the original name of the procedure.

NOTE 16.10
The reference shall not be to a deferred binding, a dummy procedure or dummy procedure
pointer that is not present, or a disassociated procedure pointer.
JUN 2001 WORKING DRAFT 371

J3/01-007R2 WORKING DRAFT JUN 2001
16.1.2.5 Components, type parameters, and bindings

A component name has the scope of a type definition. Outside the type definition, it may appear

only within a designator of a component of a structure of that type or as a component keyword in

a structure constructor for that type.

A type parameter name has the scope of a derived type definition. Outside the type definition, it

may appear only as a type parameter keyword in a derived-type-spec for the type or as the type-
param-name of a type-param-inquiry.

A binding name has the scope of a derived type definition. Outside of the type definition, it may

appear only as the binding-name in a procedure reference.

A component name or binding name may appear only in scoping units in which it is accessible.

The accessibility of components, and bindings is specified in 4.5.1.7.

16.1.2.6 Argument keywords

A dummy argument name in an internal procedure, module procedure, or an interface body has a

scope as an argument keyword of the scoping unit of the host of the procedure or interface body.

As an argument keyword, it may appear only in a procedure reference for the procedure of which

it is a dummy argument. If the procedure or interface body is accessible in another scoping unit by

use association or host association (16.7.1.2, 16.7.1.3), the argument keyword is accessible for

procedure references for that procedure in that scoping unit.

A dummy argument name in an intrinsic procedure has a scope as an argument keyword of the

scoping unit making reference to the procedure. As an argument keyword, it may appear only in

a procedure reference for the procedure of which it is a dummy argument.

16.1.3 Statement and construct entities

The name of a variable that appears as the DO variable of an implied-DO in a DATA statement or

an array constructor has a scope of the implied-DO list. It is a scalar variable that has the type and

type parameters that it would have if it were the name of a variable in the scoping unit that

includes the DATA statement or array constructor, and this type shall be integer type; it has no

other attributes.

The name of a variable that appears as an index-name in a FORALL statement or FORALL

construct has a scope of the statement or construct. It is a scalar variable that has the type and type

parameters that it would have if it were the name of a variable in the scoping unit that includes the

FORALL, and this type shall be integer type; it has no other attributes.

The name of a variable that appears as a dummy argument in a statement function statement has a scope of the statement

in which it appears. It has the type and type parameters that it would have if it were the name of a variable in the scoping

unit that includes the statement function.

Except for a common block name or a scalar variable name, a name that identifies a global entity

or local entity of class 1 (16.1.2) accessible in the scoping unit that contains a statement shall not be

the name of a statement entity of that statement. Within the scope of a statement entity, another

statement entity shall not have the same name.

If the name of a global or local entity accessible in the scoping unit of a statement is the same as the

name of a statement entity in that statement, the name is interpreted within the scope of the

statement entity as that of the statement entity. Elsewhere in the scoping unit, including parts of

the statement outside the scope of the statement entity, the name is interpreted as that of the global

or local entity.

Except for a common block name or a scalar variable name, a name that identifies a global entity

or a local entity of class 1 (16.1.2) accessible in the scoping unit of a FORALL statement or FORALL
372 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
construct shall not be the same as the index-name. Within the scope of a FORALL construct, a

nested FORALL statement or FORALL construct shall not have the same index-name.

If the name of a global or local entity accessible in the scoping unit of a FORALL statement or

FORALL construct is the same as the index-name, the name is interpreted within the scope of the

FORALL statement or FORALL construct as that of the index-name. Elsewhere in the scoping unit,

the name is interpreted as that of the global or local entity.

The associate name of a SELECT TYPE construct has a separate scope for each block of the

construct. Within each block, it has the declared type, dynamic type, type parameters, rank, and

bounds specified in 8.1.4.2.

The associate name of an ASSOCIATE construct has the scope of the construct. It has the declared

type, dynamic type, type parameters, rank, and bounds specified in 8.1.4.4.

If the name of a global or local entity accessible in the scoping unit of a SELECT TYPE or

ASSOCIATE construct is the same as the associate name, the name is interpreted within the scope

of the SELECT TYPE or ASSOCIATE construct as that of the associate name. Elsewhere in the

scoping unit, the name is interpreted as that of the global or local entity.

16.2 Scope of labels
A label is a local entity. No two statements in the same scoping unit may have the same label.

16.3 Scope of external input/output units
An external input/output unit is a global entity.

16.4 Scope of operators
An operator is a local entity.

16.5 Scope of the assignment symbol
The assignment symbol is a local entity.

16.6 Scope of derived-type input/output generic specifiers
A derived-type input/output generic specifier is a local entity.

J3 internal note
Unresolved issue 336

Since the term "derived-type input/output generic specifier" (for any spelling of
"input/output") appears nowhere in the standard, the utility of defining the scope of such a
thing seems limited. The closest thing I can find is the bnf term dtio-generic-spec. Since the
spelled out version never appears anywhere near the bnf term, the connection seems awfully
weak. I've done nothing about this, but I don't think it acceptable as is. Although it may be
reasonable to use dtio as an abbreviation for derived-type input/output, we owe the reader at
least a clue of this; the average non-j3 member is unlikely to think this obvious. I consider
I/O obvious (to the kind of people who have any chance of understanding the standard), but
not dtio. To my knowledge nobody outside of J3 has ever used the term dtio.
JUN 2001 WORKING DRAFT 373

J3/01-007R2 WORKING DRAFT JUN 2001
16.7 Association
Two entities may become associated by name association, pointer association, storage association,

or inheritance association.

16.7.1 Name association

There are five forms of name association : argument association, use association, host association,

linkage association, and construct association. Argument, use, and host association provide

mechanisms by which entities known in one scoping unit may be accessed in another scoping unit.

16.7.1.1 Argument association

The rules governing argument association are given in Section 12. As explained in 12.4, execution

of a procedure reference establishes an association between an actual argument and its

corresponding dummy argument. Argument association may be sequence association (12.4.1.5).

The name of the dummy argument may be different from the name, if any, of its associated actual

argument. The dummy argument name is the name by which the associated actual argument is

known, and by which it may be accessed, in the referenced procedure.

Upon termination of execution of a procedure reference, all argument associations established by

that reference are terminated. A dummy argument of that procedure may be associated with an

entirely different actual argument in a subsequent invocation of the procedure.

16.7.1.2 Use association

Use association is the association of names in different scoping units specified by a USE statement.

The rules for use association are given in 11.3.2. They allow for the renaming of the entities being

accessed. Use association allows access in one scoping unit to entities defined in another scoping

unit and remains in effect throughout the execution of the program.

16.7.1.3 Host association

An internal subprogram, a module subprogram, or a derived-type definition has access to the

named entities from its host via host association. An interface body has access via host association

to the named entities from its host that are listed in IMPORT statements in the interface body. The

accessed entities are known by the same name and have the same attributes as in the host and are

named data objects, derived types, interface blocks, procedures, abstract interfaces, generic

identifiers (12.3.2.1), and namelist groups.

If an entity that is accessed by use association has the same nongeneric name as a host entity, the

host entity is inaccessible by that name. A name that is declared to be an external procedure name

by an external-stmt or an interface-body, or that appears as a module-name in a use-stmt is a global

name and any entity of the host that has this as its nongeneric name is inaccessible by that name.

A name that appears in the scoping unit as

(1) A function-name in a stmt-function-stmt or in an entity-decl in a type-declaration-stmt;

(2) An object-name in an entity-decl in a type-declaration-stmt, in a pointer-stmt, in a save-stmt,
in an allocatable-stmt, or in a target-stmt;

(3) A type-param-name in a derived-type-stmt;

(4) A named-constant in a named-constant-def in a parameter-stmt;

(5) An array-name in a dimension-stmt;

NOTE 16.11
An actual argument may be a nameless data entity, such as an expression that is not simply a
variable or constant.
374 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
(6) A variable-name in a common-block-object in a common-stmt;

(7) A proc-pointer-name in a common-block-object in a common-stmt;

(8) The name of a variable that is wholly or partially initialized in a data-stmt;

(9) The name of an object that is wholly or partially equivalenced in an equivalence-stmt;

(10) A dummy-arg-name in a function-stmt, in a subroutine-stmt, in an entry-stmt, or in a

stmt-function-stmt;

(11) A result-name in a function-stmt or in an entry-stmt;

(12) The name of an abstract interface in an abstract interface block;

(13) An intrinsic-procedure-name in an intrinsic-stmt;

(14) A namelist-group-name in a namelist-stmt;

(15) A type-alias-name in a type-alias-stmt;

(16) A generic-name in a generic-spec in an interface-stmt; or

(17) The name of a named construct

is the name of a local entity and any entity of the host that has this as its nongeneric name is

inaccessible by that name by host association. If a scoping unit contains a subprogram or a derived

type definition, the name of the subprogram or derived type is the name of a local entity and any

entity of the host that has this as its nongeneric name is inaccessible by that name. Entities that are

local (16.1.2) to a subprogram are not accessible to its host.

If a host entity is inaccessible only because a local entity with the same name is wholly or partially

initialized in a DATA statement, the local entity shall not be referenced or defined prior to the DATA

statement.

If a derived type name of a host is inaccessible, data entities of that type or subobjects of such data

entities still can be accessible.

NOTE 16.12
A name that appears in an ASYNCRONOUS or VOLATILE statement is not necessarily the
name of a local variable. If a variable that is accessible via host association other than by an
IMPORT statement is specified in an ASYNCHRONOUS or VOLATILE statement, that host
variable is given the ASYNCHRONOUS or VOLATILE attribute in the scope of the current
internal or module procedure.

NOTE 16.13
An interface body accesses by host association only those entities named in IMPORT
statements.
JUN 2001 WORKING DRAFT 375

J3/01-007R2 WORKING DRAFT JUN 2001
16.7.1.4 Linkage association

Linkage association occurs between a module variable that has the BIND attribute and the C

variable with which it interoperates, or between a Fortran common block and the C variable with

which it interoperates (15.2.7). Such association remains in effect throughout the execution of the

program.

NOTE 16.14
A host subprogram and an internal subprogram may contain the same and differing use-
associated entities, as illustrated in the following example.

MODULE B; REAL BX, Q; INTEGER IX, JX; END MODULE B
MODULE C; REAL CX; END MODULE C
MODULE D; REAL DX, DY, DZ; END MODULE D
MODULE E; REAL EX, EY, EZ; END MODULE E
MODULE F; REAL FX; END MODULE F
MODULE G; USE F; REAL GX; END MODULE G

PROGRAM A
USE B; USE C; USE D

...
CONTAINS

SUBROUTINE INNER_PROC (Q)
USE C ! Not needed
USE B, ONLY: BX ! Entities accessible are BX, IX, and JX

! if no other IX or JX
 ! is accessible to INNER_PROC

! Q is local to INNER_PROC,
! since Q is a dummy argument

USE D, X => DX ! Entities accessible are DX, DY, and DZ
! X is local name for DX in INNER_PROC
! X and DX denote same entity if no other
! entity DX is local to INNER_PROC

USE E, ONLY: EX ! EX is accessible in INNER_PROC, not in program A
! EY and EZ are not accessible in INNER_PROC
! or in program A

USE G ! FX and GX are accessible in INNER_PROC
...

END SUBROUTINE INNER_PROC
END PROGRAM A

Because program A contains the statement

USE B

all of the entities in module B, except for Q, are accessible in INNER_PROC, even though
INNER_PROC contains the statement

USE B, ONLY: BX

The USE statement with the ONLY keyword means that this particular statement brings in
only the entity named, not that this is the only variable from the module accessible in this
scoping unit.

NOTE 16.15
For more examples of host association, see section C.10.1.
376 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
16.7.1.5 Construct association

Execution of a SELECT TYPE statement establishes an association between the selector and the

associate name of the construct. Execution of an ASSOCIATE statement establishes an association

between each selector and the corresponding associate name of the construct.

If the selector is allocatable, it shall be currently allocated; the associate name is associated to the

data object and does not have the ALLOCATABLE attribute.

If the selector has the POINTER attribute, it shall be associated; the associate name is associated

with the target of the pointer and does not have the POINTER attribute.

If the selector is a variable other than an array section having a vector subscript, the association is

to the data object specified by the selector; otherwise, the association is to the value of the selector

expression, which is evaluated prior to execution of the block.

Each associate name remains associated to the corresponding selector throughout the execution of

the construct. Within the construct, each selector is known by and may be accessed by the

corresponding associate name. Upon termination of the construct, the association is terminated.

16.7.2 Pointer association

Pointer association between a pointer and a target allows the target to be referenced by a reference

to the pointer. At different times during the execution of a program, a pointer may be undefined,

associated with different targets, or be disassociated. If a pointer is associated with a target, the

definition status of the pointer is either defined or undefined, depending on the definition status of

the target.

16.7.2.1 Pointer association status

A pointer may have a pointer association status of associated, disassociated, or undefined. Its

association status may change during execution of a program. Unless a pointer is initialized

(explicitly or by default), it has an initial association status of undefined. A pointer may be

initialized to have an association status of disassociated.

16.7.2.1.1 Events that cause pointers to become associated

A pointer becomes associated when

(1) The pointer is allocated (6.3.1) as the result of the successful execution of an
ALLOCATE statement referencing the pointer, or

(2) The pointer is pointer-assigned to a target (7.5.2) that is associated or is specified with
the TARGET attribute and, if allocatable, is currently allocated.

NOTE 16.16
The association between the associate name and a data object is established prior to execution
of the block and is not affected by subsequent changes to variables that were used in
subscripts or substring ranges in the selector.

NOTE 16.17
A pointer from a module program unit may be accessible in a subprogram via use association.
Such pointers have a lifetime that is greater than targets that are declared in the subprogram,
unless such targets are saved. Therefore, if such a pointer is associated with a local target,
there is the possibility that when a procedure defined by the subprogram completes
execution, the target will cease to exist, leaving the pointer "dangling". This standard
considers such pointers to be in an undefined state. They are neither associated nor
disassociated. They shall not be used again in the program until their status has been
reestablished. There is no requirement on a processor to be able to detect when a pointer
target ceases to exist.
JUN 2001 WORKING DRAFT 377

J3/01-007R2 WORKING DRAFT JUN 2001
16.7.2.1.2 Events that cause pointers to become disassociated

A pointer becomes disassociated when

(1) The pointer is nullified (6.3.2),

(2) The pointer is deallocated (6.3.3),

(3) The pointer is pointer-assigned to a disassociated pointer (7.5.2), or

(4) The pointer is an ultimate component of an object of a type for which default
initialization is specified for the component and

(a) a function with this object as its result is invoked,

(b) a procedure with this object as an INTENT (OUT) dummy argument is invoked,

(c) a procedure with this object as an automatic data object is invoked,

(d) a procedure with this object as a local object that is not accessed by use or host
association is invoked, or

(e) this object is allocated.

16.7.2.1.3 Events that cause the association status of pointers to become undefined

The association status of a pointer becomes undefined when

(1) The pointer is pointer-assigned to a target that has an undefined association status,

(2) The target of the pointer is deallocated other than through the pointer,

(3) Execution of a RETURN or END statement causes the pointer’s target to become
undefined (item (3) of 16.8.6),

(4) A RETURN or END statement is executed in a subprogram where the pointer was
either declared or, with the exceptions described in 6.3.3.2, accessed,

(5) The pointer is an ultimate component of an object and a procedure is invoked with this
object as an actual argument corresponding to a dummy argument with
INTENT(OUT), or

(6) A procedure is invoked with the pointer as an actual argument corresponding to a
pointer dummy argument with INTENT(OUT).

16.7.2.1.4 Other events that change the association status of pointers

When a pointer becomes associated with another pointer by argument association, construct

association, or host association, the effects on its association status are specified in 16.7.5.

While two pointers are name associated, storage associated, or inheritance associated, if the

association status of one pointer changes, the association status of the other changes accordingly.

16.7.2.2 Pointer definition status

The definition status of a pointer is that of its target. If a pointer is associated with a definable

target, the definition status of the pointer may be defined or undefined according to the rules for a

variable (16.8).

16.7.2.3 Relationship between association status and definition status

If the association status of a pointer is disassociated or undefined, the pointer shall not be

referenced or deallocated. Whatever its association status, a pointer always may be nullified,

allocated, or pointer assigned. A nullified pointer is disassociated. When a pointer is allocated, it

becomes associated but undefined. When a pointer is pointer assigned, its association and

definition status are determined by its target.
378 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
16.7.3 Storage association

Storage sequences are used to describe relationships that exist among variables, common blocks,

and result variables. Storage association is the association of two or more data objects that occurs

when two or more storage sequences share or are aligned with one or more storage units.

16.7.3.1 Storage sequence

A storage sequence is a sequence of storage units. The size of a storage sequence is the number

of storage units in the storage sequence. A storage unit is a character storage unit, a numeric

storage unit, a file storage unit(9.2.4), or an unspecified storage unit.

In a storage association context

(1) A nonpointer scalar object of type default integer, default real, or default logical
occupies a single numeric storage unit;

(2) A nonpointer scalar object of type double precision real or default complex occupies
two contiguous numeric storage units;

(3) A nonpointer scalar object of type default character and character length len occupies
len contiguous character storage units;

(4) A nonpointer scalar object of type character with the C character kind (15.1) and
character length len occupies len contiguous unspecified storage units.

(5) A nonpointer scalar object of sequence type with no type parameters occupies a
sequence of storage sequences corresponding to the sequence of its ultimate
components;

(6) A nonpointer scalar object of any type not specified in items (1)-(5) occupies a single
unspecified storage unit that is different for each case and each set of type parameter
values, and that is different from the unspecified storage units of item (4);

(7) A nonpointer array occupies a sequence of contiguous storage sequences, one for each
array element, in array element order (6.2.2.2); and

(8) A pointer occupies a single unspecified storage unit that is different from that of any
nonpointer object and is different for each combination of type, type parameters, and
rank.

A sequence of storage sequences forms a storage sequence. The order of the storage units in such

a composite storage sequence is that of the individual storage units in each of the constituent

storage sequences taken in succession, ignoring any zero-sized constituent sequences.

Each common block has a storage sequence (5.5.2.1).

16.7.3.2 Association of storage sequences

Two nonzero-sized storage sequences and are storage associated if the th storage unit of

is the same as the th storage unit of . This causes the ()th storage unit of to be the same

as the ()th storage unit of , for each integer such that of and

of .

Storage association also is defined between two zero-sized storage sequences, and between a zero-

sized storage sequence and a storage unit. A zero-sized storage sequence in a sequence of storage

sequences is storage associated with its successor, if any. If the successor is another zero-sized

storage sequence, the two sequences are storage associated. If the successor is a nonzero-sized

storage sequence, the zero-sized sequence is storage associated with the first storage unit of the

s1 s2 i s1
j s2 i k+ s1

j k+ s2 k 1 i k size≤+≤ s1
1 j k size≤+≤ s2
JUN 2001 WORKING DRAFT 379

J3/01-007R2 WORKING DRAFT JUN 2001
successor. Two storage units that are each storage associated with the same zero-sized storage

sequence are the same storage unit.

16.7.3.3 Association of scalar data objects

Two scalar data objects are storage associated if their storage sequences are storage associated.

Two scalar entities are totally associated if they have the same storage sequence. Two scalar

entities are partially associated if they are associated without being totally associated.

The definition status and value of a data object affects the definition status and value of any

storage associated entity. An EQUIVALENCE statement, a COMMON statement, or an ENTRY

statement may cause storage association of storage sequences.

An EQUIVALENCE statement causes storage association of data objects only within one scoping

unit, unless one of the equivalenced entities is also in a common block (5.5.1.1 and 5.5.2.1).

COMMON statements cause data objects in one scoping unit to become storage associated with

data objects in another scoping unit.

A named common block is permitted to contain a sequence of differing storage units provided

each scoping unit that accesses the common block specifies an identical sequence of storage units.

The same rule applies to blank common blocks. If the sizes of the two blank common blocks differ,

the sequence of storage units of the shorter block shall be identical to the initial sequence of the

storage units of the longer block.

An ENTRY statement in a function subprogram causes storage association of the result variables.

Partial association may exist only between

(1) An object of default character or character sequence type and an object of default
character or character sequence type or

(2) An object of default complex, double precision real, or numeric sequence type and an
object of default integer, default real, default logical, double precision real, default
complex, or numeric sequence type.

For noncharacter entities, partial association may occur only through the use of COMMON,

EQUIVALENCE, or ENTRY statements. For character entities, partial association may occur only

through argument association or the use of COMMON or EQUIVALENCE statements.

NOTE 16.18
Zero-sized objects may occur in a storage association context as the result of changing a
parameter. For example, a program might contain the following declarations:

INTEGER, PARAMETER :: PROBSIZE = 10
INTEGER, PARAMETER :: ARRAYSIZE = PROBSIZE * 100
REAL, DIMENSION (ARRAYSIZE) :: X
INTEGER, DIMENSION (ARRAYSIZE) :: IX

...
COMMON / EXAMPLE / A, B, C, X, Y, Z
EQUIVALENCE (X, IX)

...

If the first statement is subsequently changed to assign zero to PROBSIZE, the program still
will conform to the standard.
380 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
Partial association of character entities occurs when some, but not all, of the storage units of the

entities are the same.

A storage unit shall not be explicitly initialized more than once in a program. Explicit initialization

overrides default initialization, and default initialization for an object of derived type overrides

default initialization for a component of the object (4.5.1). Default initialization may be specified

for a storage unit that is storage associated provided the objects supplying the default initialization

are of the same type and type parameters, and supply the same value for the storage unit.

16.7.4 Inheritance association

Inheritance association occurs between components of the parent component and components

inherited by type extension into an extended type (4.5.3.1). This association is persistent and is not

affected by the accessibility of the parent component or the inherited components.

16.7.5 Establishing associations

When an association is established between two entities, either by argument association, host

association, or construct association, certain characteristics of the associating entity become that of

the pre-existing entity.

For argument association, the associating entity is the dummy argument and the pre-existing entity

is the actual argument. For host association, the associating entity is the entity in the host scoping

unit and the pre-existing entity is the entity in the contained scoping unit. If the host scoping unit

is a recursive procedure, the pre-existing entity that participates in the association is the one from

the innermost procedure instance that invoked, directly or indirectly, the contained procedure. For

construct association, the associating entity is identified by the associate name and the pre-existing

entity is the selector.

NOTE 16.19
In the example:

REAL A (4), B
COMPLEX C (2)
DOUBLE PRECISION D
EQUIVALENCE (C (2), A (2), B), (A, D)

the third storage unit of C, the second storage unit of A, the storage unit of B, and the second
storage unit of D are specified as the same. The storage sequences may be illustrated as:

Storage unit 1 2 3 4 5
 ----C(1)----|---C(2)----

A(1) A(2) A(3) A(4)
--B--

------D------

A (2) and B are totally associated. The following are partially associated: A (1) and C (1), A (2)
and C (2), A (3) and C (2), B and C (2), A (1) and D, A (2) and D, B and D, C (1) and D, and
C (2) and D. Although C (1) and C (2) are each storage associated with D, C (1) and C (2) are
not storage associated with each other.

NOTE 16.20
In the example:

CHARACTER A*4, B*4, C*3
EQUIVALENCE (A (2:3), B, C)

A, B, and C are partially associated.
JUN 2001 WORKING DRAFT 381

J3/01-007R2 WORKING DRAFT JUN 2001
When an association is established by argument association, host association, or construct

association, the following applies:

(1) If the associating entity has the pointer attribute, its pointer association status becomes
the same as that of the pre-existing entity. If the pre-existing entity has a pointer
association status of associated, the associating entity becomes pointer associated with
the same target and, if they are arrays, the bounds of the associating entity become the
same as those of the pre-existing entity.

(2) If the associating entity has the allocatable attribute, its allocation status becomes the
same as that of the pre-existing entity. If the pre-existing entity is allocated, the bounds
(if it is an array), values of deferred type parameters, definition status, and value (if it
is defined) become the same as those of the pre-existing entity. If the associating entity
is polymorphic and the pre-existing entity is allocated, the dynamic type of the
associating entity becomes the same as that of the pre-existing entity.

If the associating entity is neither a pointer nor allocatable, its definition status and value (if it is

defined) become the same as those of the pre-existing entity. If the entities are arrays and the

association is not argument association, the bounds of the associating entity become the same as

those of the pre-existing entity.

16.8 Definition and undefinition of variables
A variable may be defined or may be undefined and its definition status may change during

execution of a program. An action that causes a variable to become undefined does not imply that

the variable was previously defined. An action that causes a variable to become defined does not

imply that the variable was previously undefined.

16.8.1 Definition of objects and subobjects

Arrays, including sections, and variables of derived, character, or complex type are objects that

consist of zero or more subobjects. Associations may be established between variables and

subobjects and between subobjects of different variables. These subobjects may become defined or

undefined.

(1) An object is defined if and only if all of its subobjects are defined.

(2) If an object is undefined, at least one (but not necessarily all) of its subobjects are
undefined.

16.8.2 Variables that are always defined

Zero-sized arrays and zero-length strings are always defined.

16.8.3 Variables that are initially defined

The following variables are initially defined:

(1) Variables specified to have initial values by DATA statements,

(2) Variables specified to have initial values by type declaration statements,

(3) Nonpointer default-initialized subcomponents of variables that do not have the
ALLOCATABLE or POINTER attribute, and are either saved or are declared in a main
program, MODULE, or BLOCK DATA scoping unit,

(4) Variables that are always defined, and

(5) Variables with the BIND attribute that are initialized by means other than Fortran.
382 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
16.8.4 Variables that are initially undefined

All other variables are initially undefined.

16.8.5 Events that cause variables to become defined

Variables become defined as follows:

(1) Execution of an intrinsic assignment statement other than a masked array assignment
or FORALL assignment statement causes the variable that precedes the equals to
become defined. Execution of a defined assignment statement may cause all or part of
the variable that precedes the equals to become defined.

(2) Execution of a masked array assignment or FORALL assignment statement may cause
some or all of the array elements in the assignment statement to become defined
(7.5.3).

(3) As execution of an input statement proceeds, each variable that is assigned a value
from the input file becomes defined at the time that data is transferred to it. (See (4) in
16.8.6.) Execution of a WRITE statement whose unit specifier identifies an internal file
causes each record that is written to become defined.

(4) Execution of a DO statement causes the DO variable, if any, to become defined.

(5) Beginning of execution of the action specified by an implied-DO list in a synchronous
input/output statement causes the implied-DO variable to become defined.

(6) A reference to a procedure causes the entire dummy argument data object to become
defined if the dummy argument does not have INTENT(OUT) and the entire
corresponding actual argument is defined with a value that is not a statement label.

A reference to a procedure causes a subobject of a dummy argument to become defined

if the dummy argument does not have INTENT(OUT) and the corresponding subobject

of the corresponding actual argument is defined.

(7) Execution of an input/output statement containing an IOSTAT= specifier causes the
specified integer variable to become defined.

(8) Execution of a synchronous READ statement containing a SIZE= specifier causes the
specified integer variable to become defined.

(9) Execution of a wait operation corresponding to an asynchronous input statement
containing a SIZE= specifier causes the specified integer variable to become defined.

(10) Execution of an INQUIRE statement causes any variable that is assigned a value
during the execution of the statement to become defined if no error condition exists.

(11) If an error, end-of-file, or end-of-record condition occurs during execution of an
input/output statement that has an IOMSG= specifier, the iomsg-variable becomes
defined.

(12) If an error condition occurs during execution of an ALLOCATE or DEALLOCATE
statement that has an ERRMSG= specifier, the errmsg-variable becomes defined.

NOTE 16.21
Fortran code:

module mod
 integer, bind(c,name="blivet") :: foo
end module mod

C code:

int blivet = 123;

In the above example, the Fortran variable foo is initially defined to the value 123 by means
other than Fortran.
JUN 2001 WORKING DRAFT 383

J3/01-007R2 WORKING DRAFT JUN 2001
(13) When a character storage unit becomes defined, all associated character storage units
become defined.

When a numeric storage unit becomes defined, all associated numeric storage units of

the same type become defined. When an entity of double precision real type becomes

defined, all totally associated entities of double precision real type become defined.

When an unspecified storage unit becomes defined, all associated unspecified storage

units become defined.

(14) When a default complex entity becomes defined, all partially associated default real
entities become defined.

(15) When both parts of a default complex entity become defined as a result of partially
associated default real or default complex entities becoming defined, the default
complex entity becomes defined.

(16) When all components of a structure of a numeric sequence type or character sequence
type become defined as a result of partially associated objects becoming defined, the
structure becomes defined.

(17) Execution of an ALLOCATE or DEALLOCATE statement with a STAT= specifier
causes the variable specified by the STAT= specifier to become defined.

(18) Allocation of a zero-sized array causes the array to become defined.

(19) Allocation of an object that has a nonpointer default-initialized subcomponent causes
that subcomponent to become defined.

(20) Invocation of a procedure causes any automatic object of zero size in that procedure to
become defined.

(21) Execution of a pointer assignment statement that associates a pointer with a target that
is defined causes the pointer to become defined.

(22) Invocation of a procedure that contains an unsaved nonpointer nonallocatable local
variable causes all nonpointer default-initialized subcomponents of the object to
become defined.

(23) Invocation of a procedure that has an INTENT (OUT) dummy argument causes all
nonpointer default-initialized subcomponents of the dummy argument to become
defined.

(24) Invocation of a nonpointer function of a derived type causes all nonpointer default-
initialized subcomponents of the function result to become defined.

(25) In a FORALL construct, the index-name becomes defined when the index-name value set
is evaluated.

(26) An object with the VOLATILE attribute that is changed by a means listed in 5.1.2.15
becomes defined.

16.8.6 Events that cause variables to become undefined

Variables become undefined as follows:

(1) When a variable of a given type becomes defined, all associated variables of different
type become undefined. However, when a variable of type default real is partially
associated with a variable of type default complex, the complex variable does not
become undefined when the real variable becomes defined and the real variable does
not become undefined when the complex variable becomes defined. When a variable
of type default complex is partially associated with another variable of type default
complex, definition of one does not cause the other to become undefined.

(2) If the evaluation of a function may cause an argument of the function or a variable in a
module or in a common block to become defined and if a reference to the function
appears in an expression in which the value of the function is not needed to determine
384 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
the value of the expression, the argument or variable becomes undefined when the
expression is evaluated.

(3) When execution of an instance of a subprogram completes,

(a) its unsaved local variables become undefined,

(b) unsaved variables in a named common block that appears in the subprogram
become undefined if they have been defined or redefined, unless another active
scoping unit is referencing the common block,

(c) unsaved nonfinalizable variables in a module become undefined unless another
active scoping unit is referencing the module, and

(d) unsaved finalizable variables in a module may be finalized if no other active
scoping unit is referencing the module - following which they become undefined.

(4) When an error condition or end-of-file condition occurs during execution of an input
statement, all of the variables specified by the input list or namelist-group of the
statement become undefined.

(5) When an error condition, end-of-file condition, or end-of-record condition occurs
during execution of an input/output statement and the statement contains any
implied-DOs, all of the implied-DO variables in the statement become undefined
(9.5.3).

(6) Execution of a defined assignment statement may leave all or part of the variable that
precedes the equals undefined.

(7) Execution of a direct access input statement that specifies a record that has not been
written previously causes all of the variables specified by the input list of the statement
to become undefined.

(8) Execution of an INQUIRE statement may cause the NAME=, RECL=, and NEXTREC=
variables to become undefined (9.8).

(9) When a character storage unit becomes undefined, all associated character storage
units become undefined.

When a numeric storage unit becomes undefined, all associated numeric storage units

become undefined unless the undefinition is a result of defining an associated numeric

storage unit of different type (see (1) above).

When an entity of double precision real type becomes undefined, all totally associated

entities of double precision real type become undefined.

When an unspecified storage unit becomes undefined, all associated unspecified

storage units become undefined.

(10) When an allocatable entity is deallocated, it becomes undefined.

(11) Successful execution of an ALLOCATE statement for a nonzero-sized object for which
default initialization has not been specified causes the object to become undefined.

(12) Execution of an INQUIRE statement causes all inquiry specifier variables to become
undefined if an error condition exists, except for the variable in the IOSTAT= specifier,
if any.

(13) When a procedure is invoked

(a) An optional dummy argument that is not associated with an actual argument is
undefined;

NOTE 16.22
A module subprogram inherently references the module that is its host. Therefore, for
processors that keep track of when modules are in use, a module is in use whenever any
procedure in the module is active, even if no other active scoping units reference the module;
this situation can arise if a module procedure is invoked via a procedure pointer or a
companion processor.
JUN 2001 WORKING DRAFT 385

J3/01-007R2 WORKING DRAFT JUN 2001
(b) A dummy argument with INTENT (OUT) is undefined except for any nonpointer
default-initialized subcomponents the argument;

(c) An actual argument associated with a dummy argument with INTENT (OUT)
becomes undefined;

(d) A subobject of a dummy argument that does not have INTENT (OUT) is
undefined if the corresponding subobject of the actual argument is undefined;
and

(e) The result variable of a function is undefined except for any nonpointer default-
initialized subcomponents of the result.

(14) When the association status of a pointer becomes undefined or disassociated
(16.7.2.1.2-16.7.2.1.3), the pointer becomes undefined.

(15) When the execution of a FORALL construct has completed, the index-name becomes
undefined.

(16) Execution of an asynchronous READ statement causes all of the variables specified by
the input list or SIZE= specifier to become undefined. Execution of an asynchronous
namelist READ statement causes any variable in the namelist group to become
undefined if that variable will subsequently be defined during the execution of the
READ statement or the corresponding WAIT operation.

(17) When execution of a RETURN or END statement causes a variable to become
undefined, all variables of type C_PTR associated with that variable become
undefined.

(18) When a variable with the TARGET attribute is deallocated, all variables of type C_PTR
associated with that veriable become undefined.

16.8.7 Variable definition context

Some variables are prohibited from appearing in a syntactic context that would imply definition or

undefinition of the variable (5.1.2.7, 12.6). The following are the contexts in which the appearance

of a variable name implies such definition or undefinition of the variable:

(1) The variable of an assignment-stmt,

(2) A pointer-object in a pointer-assignment-stmt or nullify-stmt,

(3) A DO variable or io-implied-DO variable,

(4) An input-item in a read-stmt,

(5) A variable-name in a namelist-stmt if the namelist-group-name appears in a NML=
specifier in a read-stmt,

(6) An internal-file-unit in a write-stmt,

(7) An IOSTAT=, SIZE=, or IOMSG= specifier in an input/output statement,

(8) A definable variable in an INQUIRE statement,

(9) A stat-variable, allocate-object, or errmsg-variable in an allocate-stmt or a deallocate-stmt,

(10) An actual argument in a reference to a procedure with an explicit interface if the
associated dummy argument has the INTENT(OUT) or INTENT(INOUT) attribute, or

(11) A variable that is the selector in a SELECT TYPE or ASSOCIATE construct if the
associate name of that construct appears in a variable definition context.
386 WORKING DRAFT JUN 2001

	Section 16: Scope, association, and definition
	(1) A name (16.1),
	(2) A label (16.2),
	(3) An external input/output unit number (16.3),
	(4) An operator symbol (16.4),
	(5) An assignment symbol (16.5), or
	(6) A binding label (12.5.2.7, 15.2.7.1).
	16.1�� Scope of names
	16.1.1�� Global entities
	NOTE 16.1
	NOTE 16.2

	16.1.2�� Local entities
	(1) Named variables that are not statement or construct entities (16.1.3), named constants, named...
	(2) Type parameters, components, and binding names, in a separate class for each type, and
	(3) Argument keywords, in a separate class for each procedure with an explicit interface
	NOTE 16.3
	(1) The name that appears as a subroutine�name in a subroutine�stmt has limited use within the sc...
	(2) The name that appears as a function�name in a function�stmt has limited use within the scope ...
	(3) The name that appears as an entry�name in an entry�stmt has limited use within the scope of t...

	16.1.2.1�� Common blocks
	NOTE 16.4

	16.1.2.2�� Function results
	16.1.2.3�� Determining unambiguous generic procedure references
	(1) one of them shall have more nonoptional dummy arguments of a particular data type, kind type ...
	(2) at least one of them shall have both
	(a) A nonoptional dummy argument at a position such that either the other procedure has no dummy ...
	(b) A nonoptional dummy argument whose name is such that either the other procedure has no dummy ...

	NOTE 16.5 �
	NOTE 16.6

	16.1.2.4�� Resolving procedure references
	(1) A procedure name is established to be generic in a scoping unit
	(a) if that scoping unit contains an interface block with that name;
	(b) if that scoping unit contains an INTRINSIC attribute specification for that name and it is th...
	(c) if that scoping unit contains a USE statement that makes that procedure name accessible and t...
	(d) if that scoping unit contains no declarations of that name, that scoping unit has a host scop...

	(2) A procedure name is established to be only specific in a scoping unit if it is established to...
	(a) if that scoping unit contains a module subprogram, internal subprogram, or statement function...
	(b) if that scoping unit contains an INTRINSIC attribute specification for that name and if it is...
	(c) if that scoping unit contains an explicit EXTERNAL attribute specification (5.1.2.6) for that...
	(d) if that scoping unit contains a USE statement that makes that procedure name accessible and t...
	(e) if that scoping unit contains no declarations of that name, that scoping unit has a host scop...

	(3) A procedure is not established in a scoping unit if it is neither established to be generic n...

	16.1.2.4.1�� Resolving procedure references to names established to be generic
	(1) If the reference is consistent with one of the specific interfaces of a generic interface tha...
	(2) If (1) does not apply, if the reference is consistent with an elemental reference to one of t...
	NOTE 16.7
	(3) If (1) and (2) do not apply, if the scoping unit contains either an INTRINSIC attribute speci...

	NOTE 16.8
	(4) If (1), (2), and (3) do not apply, if the scoping unit has a host scoping unit, if the name i...

	16.1.2.4.2�� Resolving procedure references to names established to be only specific
	(1) If the scoping unit contains an interface body or EXTERNAL attribute specification for the na...
	(2) If the scoping unit contains an interface body or EXTERNAL attribute specification for the na...
	(3) If the scoping unit contains a module subprogram, internal subprogram, or statement function ...
	(4) If the scoping unit contains an INTRINSIC attribute specification for the name, the reference...
	(5) If the scoping unit contains a USE statement that makes a procedure accessible by the name, t...
	NOTE 16.9
	(6) If none of the above apply, the scoping unit shall have a host scoping unit, and the referenc...

	16.1.2.4.3�� Resolving procedure references to names not established
	(1) If the scoping unit is a subprogram and if the name is the name of a dummy argument of that s...
	(2) If (1) does not apply, if the name is the name of an intrinsic procedure, and if there is agr...
	(3) If (1) and (2) do not apply, the reference is to an external procedure with that name.

	16.1.2.4.4�� Resolving derived-type input/output procedure references
	(1) The circumstances of the input/output are such that user-defined derived-type input/output is...
	(a) the transfer was initiated by a list-directed, namelist, or unformatted input/output statemen...
	(b) a format specification is supplied for the input/output statement, and the edit descriptor co...

	(2) A suitable user-defined derived-type input/output procedure is available; that is, either
	(a) the declared type of the effective item has a suitable type-bound generic binding, or
	(b) a suitable generic interface is accessible.

	NOTE 16.10

	16.1.2.5�� Components, type parameters, and bindings
	16.1.2.6�� Argument keywords

	16.1.3�� Statement and construct entities

	16.2�� Scope of labels
	16.3�� Scope of external input/output units
	16.4�� Scope of operators
	16.5�� Scope of the assignment symbol
	16.6�� Scope of derived-type input/output generic specifiers
	16.7�� Association
	16.7.1�� Name association
	16.7.1.1�� Argument association
	NOTE 16.11

	16.7.1.2�� Use association
	16.7.1.3�� Host association
	(1) A function�name in a stmt�function�stmt or in an entity�decl in a type�declaration�stmt;
	(2) An object�name in an entity�decl in a type�declaration�stmt, in a pointer�stmt, in a save�stm...
	(3) A type-param-name in a derived-type-stmt;
	(4) A named�constant in a named�constant�def in a parameter�stmt;
	(5) An array�name in a dimension�stmt;
	(6) A variable�name in a common�block�object in a common�stmt;
	(7) A proc-pointer�name in a common�block�object in a common�stmt;
	(8) The name of a variable that is wholly or partially initialized in a data�stmt;
	(9) The name of an object that is wholly or partially equivalenced in an equivalence�stmt;
	(10) A dummy�arg�name in a function�stmt, in a subroutine�stmt, in an entry�stmt, or in a stmt�fu...
	(11) A result�name in a function�stmt or in an entry�stmt;
	(12) The name of an abstract interface in an abstract interface block;
	(13) An intrinsic�procedure�name in an intrinsic�stmt;
	(14) A namelist�group�name in a namelist�stmt;
	(15) A type-alias-name in a type-alias-stmt;
	(16) A generic�name in a generic�spec in an interface�stmt; or
	(17) The name of a named construct
	NOTE 16.12
	NOTE 16.13
	NOTE 16.14 �
	NOTE 16.15

	16.7.1.4�� Linkage association
	16.7.1.5�� Construct association
	NOTE 16.16

	16.7.2�� Pointer association
	NOTE 16.17
	16.7.2.1�� Pointer association status
	16.7.2.1.1�� Events that cause pointers to become associated
	(1) The pointer is allocated (6.3.1) as the result of the successful execution of an ALLOCATE sta...
	(2) The pointer is pointer-assigned to a target (7.5.2) that is associated or is specified with t...

	16.7.2.1.2�� Events that cause pointers to become disassociated
	(1) The pointer is nullified (6.3.2),
	(2) The pointer is deallocated (6.3.3),
	(3) The pointer is pointer-assigned to a disassociated pointer (7.5.2), or
	(4) The pointer is an ultimate component of an object of a type for which default initialization ...
	(a) a function with this object as its result is invoked,
	(b) a procedure with this object as an INTENT�(OUT) dummy argument is invoked,
	(c) a procedure with this object as an automatic data object is invoked,
	(d) a procedure with this object as a local object that is not accessed by use or host associatio...
	(e) this object is allocated.

	16.7.2.1.3�� Events that cause the association status of pointers to become undefined
	(1) The pointer is pointer-assigned to a target that has an undefined association status,
	(2) The target of the pointer is deallocated other than through the pointer,
	(3) Execution of a RETURN or END statement causes the pointer’s target to become undefined (item ...
	(4) A RETURN or END statement is executed in a subprogram where the pointer was either declared o...
	(5) The pointer is an ultimate component of an object and a procedure is invoked with this object...
	(6) A procedure is invoked with the pointer as an actual argument corresponding to a pointer dumm...

	16.7.2.1.4�� Other events that change the association status of pointers
	16.7.2.2�� Pointer definition status
	16.7.2.3�� Relationship between association status and definition status

	16.7.3�� Storage association
	16.7.3.1�� Storage sequence
	(1) A nonpointer scalar object of type default integer, default real, or default logical occupies...
	(2) A nonpointer scalar object of type double precision real or default complex occupies two cont...
	(3) A nonpointer scalar object of type default character and character length len occupies len co...
	(4) A nonpointer scalar object of type character with the C character kind (15.1) and character l...
	(5) A nonpointer scalar object of sequence type with no type parameters occupies a sequence of st...
	(6) A nonpointer scalar object of any type not specified in items (1)-(5) occupies a single unspe...
	(7) A nonpointer array occupies a sequence of contiguous storage sequences, one for each array el...
	(8) A pointer occupies a single unspecified storage unit that is different from that of any nonpo...

	16.7.3.2�� Association of storage sequences
	NOTE 16.18

	16.7.3.3�� Association of scalar data objects
	(1) An object of default character or character sequence type and an object of default character ...
	(2) An object of default complex, double precision real, or numeric sequence type and an object o...
	NOTE 16.19
	NOTE 16.20

	16.7.4�� Inheritance association
	16.7.5�� Establishing associations
	(1) If the associating entity has the pointer attribute, its pointer association status becomes t...
	(2) If the associating entity has the allocatable attribute, its allocation status becomes the sa...

	16.8�� Definition and undefinition of variables
	16.8.1�� Definition of objects and subobjects
	(1) An object is defined if and only if all of its subobjects are defined.
	(2) If an object is undefined, at least one (but not necessarily all) of its subobjects are undef...

	16.8.2�� Variables that are always defined
	16.8.3�� Variables that are initially defined
	(1) Variables specified to have initial values by DATA statements,
	(2) Variables specified to have initial values by type declaration statements,
	(3) Nonpointer default-initialized subcomponents of variables that do not have the ALLOCATABLE or...
	(4) Variables that are always defined, and
	(5) Variables with the BIND attribute that are initialized by means other than Fortran.
	NOTE 16.21

	16.8.4�� Variables that are initially undefined
	16.8.5�� Events that cause variables to become defined
	(1) Execution of an intrinsic assignment statement other than a masked array assignment or FORALL...
	(2) Execution of a masked array assignment or FORALL assignment statement may cause some or all o...
	(3) As execution of an input statement proceeds, each variable that is assigned a value from the ...
	(4) Execution of a DO statement causes the DO variable, if any, to become defined.
	(5) Beginning of execution of the action specified by an implied-DO list in a synchronous input/o...
	(6) A reference to a procedure causes the entire dummy argument data object to become defined if ...
	(7) Execution of an input/output statement containing an IOSTAT= specifier causes the specified i...
	(8) Execution of a synchronous READ statement containing a SIZE= specifier causes the specified i...
	(9) Execution of a wait operation corresponding to an asynchronous input statement containing a S...
	(10) Execution of an INQUIRE statement causes any variable that is assigned a value during the ex...
	(11) If an error, end-of-file, or end-of-record condition occurs during execution of an input/out...
	(12) If an error condition occurs during execution of an ALLOCATE or DEALLOCATE statement that ha...
	(13) When a character storage unit becomes defined, all associated character storage units become...
	(14) When a default complex entity becomes defined, all partially associated default real entitie...
	(15) When both parts of a default complex entity become defined as a result of partially associat...
	(16) When all components of a structure of a numeric sequence type or character sequence type bec...
	(17) Execution of an ALLOCATE or DEALLOCATE statement with a STAT= specifier causes the variable ...
	(18) Allocation of a zero-sized array causes the array to become defined.
	(19) Allocation of an object that has a nonpointer default-initialized subcomponent causes that s...
	(20) Invocation of a procedure causes any automatic object of zero size in that procedure to beco...
	(21) Execution of a pointer assignment statement that associates a pointer with a target that is ...
	(22) Invocation of a procedure that contains an unsaved nonpointer nonallocatable local variable ...
	(23) Invocation of a procedure that has an INTENT�(OUT) dummy argument causes all nonpointer defa...
	(24) Invocation of a nonpointer function of a derived type causes all nonpointer default- initial...
	(25) In a FORALL construct, the index-name becomes defined when the index-name value set is evalu...
	(26) An object with the VOLATILE attribute that is changed by a means listed in 5.1.2.15 becomes ...

	16.8.6�� Events that cause variables to become undefined
	(1) When a variable of a given type becomes defined, all associated variables of different type b...
	(2) If the evaluation of a function may cause an argument of the function or a variable in a modu...
	(3) When execution of an instance of a subprogram completes,
	(a) its unsaved local variables become undefined,
	(b) unsaved variables in a named common block that appears in the subprogram become undefined if ...
	(c) unsaved nonfinalizable variables in a module become undefined unless another active scoping u...

	NOTE 16.22
	(d) unsaved finalizable variables in a module may be finalized if no other active scoping unit is...
	(4) When an error condition or end-of-file condition occurs during execution of an input statemen...
	(5) When an error condition, end-of-file condition, or end-of-record condition occurs during exec...
	(6) Execution of a defined assignment statement may leave all or part of the variable that preced...
	(7) Execution of a direct access input statement that specifies a record that has not been writte...
	(8) Execution of an INQUIRE statement may cause the NAME=, RECL=, and NEXTREC= variables to becom...
	(9) When a character storage unit becomes undefined, all associated character storage units becom...
	(10) When an allocatable entity is deallocated, it becomes undefined.
	(11) Successful execution of an ALLOCATE statement for a nonzero-sized object for which default i...
	(12) Execution of an INQUIRE statement causes all inquiry specifier variables to become undefined...
	(13) When a procedure is invoked
	(a) An optional dummy argument that is not associated with an actual argument is undefined;
	(b) A dummy argument with INTENT�(OUT) is undefined except for any nonpointer default-initialized...
	(c) An actual argument associated with a dummy argument with INTENT�(OUT) becomes undefined;
	(d) A subobject of a dummy argument that does not have INTENT�(OUT) is undefined if the correspon...
	(e) The result variable of a function is undefined except for any nonpointer default- initialized...

	(14) When the association status of a pointer becomes undefined or disassociated (16.7.2.1.2-16.7...
	(15) When the execution of a FORALL construct has completed, the index-name becomes undefined.
	(16) Execution of an asynchronous READ statement causes all of the variables specified by the inp...
	(17) When execution of a RETURN or END statement causes a variable to become undefined, all varia...
	(18) When a variable with the TARGET attribute is deallocated, all variables of type C_PTR associ...

	16.8.7�� Variable definition context
	(1) The variable of an assignment�stmt,
	(2) A pointer-object in a pointer-assignment-stmt or nullify-stmt,
	(3) A DO variable or io-implied�DO variable,
	(4) An input�item in a read�stmt,
	(5) A variable�name in a namelist�stmt if the namelist�group�name appears in a NML= specifier in ...
	(6) An internal�file�unit in a write�stmt,
	(7) An IOSTAT=, SIZE=, or IOMSG= specifier in an input/output statement,
	(8) A definable variable in an INQUIRE statement,
	(9) A stat�variable, allocate-object, or errmsg-variable in an allocate�stmt or a deallocate�stmt,
	(10) An actual argument in a reference to a procedure with an explicit interface if the associate...
	(11) A variable that is the selector in a SELECT TYPE or ASSOCIATE construct if the associate nam...

