
JUN 2001 WORKING DRAFT J3/01-007R2
Section 8: Execution control
The execution sequence may be controlled by constructs containing blocks and by certain

executable statements that are used to alter the execution sequence.

8.1 Executable constructs containing blocks
The following are executable constructs that contain blocks and may be used to control the

execution sequence:

(1) IF Construct

(2) CASE Construct

(3) DO Construct

There is also a nonblock form of the DO construct.

A block is a sequence of executable constructs that is treated as a unit.

R801 block is [execution-part-construct] ...

Executable constructs may be used to control which blocks of a program are executed or how

many times a block is executed. Blocks are always bounded by statements that are particular to

the construct in which they are embedded; however, in some forms of the DO construct, a sequence of executable

constructs without a terminating boundary statement shall obey all other rules governing blocks (8.1.1).

Any of these constructs may be named. If a construct is named, the name shall be the first lexical

token of the first statement of the construct and the last lexical token of the construct. In fixed source

form, the name preceding the construct shall be placed after character position 6.

A statement belongs to the innermost construct in which it appears unless it contains a construct

name, in which case it belongs to the named construct.

8.1.1 Rules governing blocks

8.1.1.1 Executable constructs in blocks

If a block contains an executable construct, the executable construct shall be entirely within the

block.

8.1.1.2 Control flow in blocks

Transfer of control to the interior of a block from outside the block is prohibited. Transfers within

a block and transfers from the interior of a block to outside the block may occur.

NOTE 8.1
A block need not contain any executable constructs. Execution of such a block has no effect.

NOTE 8.2
An example of a construct containing a block is:

IF (A > 0.0) THEN
B = SQRT (A) ! These two statements
C = LOG (A) ! form a block.

END IF
JUN 2001 WORKING DRAFT 145

J3/01-007R2 WORKING DRAFT JUN 2001
Subroutine and function references (12.4.2, 12.4.3) may appear in a block.

8.1.1.3 Execution of a block

Execution of a block begins with the execution of the first executable construct in the block. Unless

there is a transfer of control out of the block, the execution of the block is completed when the last

executable construct in the sequence is executed.

8.1.2 IF construct

The IF construct selects for execution at most one of its constituent blocks. The selection is based

on a sequence of logical expressions. The IF statement controls the execution of a single statement

(8.1.2.4) based on a single logical expression.

8.1.2.1 Form of the IF construct

R802 if-construct is if-then-stmt
block

[else-if-stmt
block] ...

[else-stmt
block]

end-if-stmt

R803 if-then-stmt is [if-construct-name :] IF (scalar-logical-expr) THEN

R804 else-if-stmt is ELSE IF (scalar-logical-expr) THEN [if-construct-name]

R805 else-stmt is ELSE [if-construct-name]

R806 end-if-stmt is END IF [if-construct-name]

C801 (R802) If the if-then-stmt of an if-construct specifies an if-construct-name, the corresponding
end-if-stmt shall specify the same if-construct-name. If the if-then-stmt of an if-construct does
not specify an if-construct-name, the corresponding end-if-stmt shall not specify an
if-construct-name. If an else-if-stmt or else-stmt specifies an if-construct-name, the
corresponding if-then-stmt shall specify the same if-construct-name.

8.1.2.2 Execution of an IF construct

At most one of the blocks in the IF construct is executed. If there is an ELSE statement in the

construct, exactly one of the blocks in the construct will be executed. The scalar logical expressions

are evaluated in the order of their appearance in the construct until a true value is found or an

ELSE statement or END IF statement is encountered. If a true value or an ELSE statement is found,

the block immediately following is executed and this completes the execution of the construct. The

scalar logical expressions in any remaining ELSE IF statements of the IF construct are not

evaluated. If none of the evaluated expressions is true and there is no ELSE statement, the

execution of the construct is completed without the execution of any block within the construct.

NOTE 8.3
For example, if a statement inside the block has a statement label, a GO TO statement using
that label is only allowed to appear in the same block.

NOTE 8.4
The action that takes place at the terminal boundary depends on the particular construct and
on the block within that construct. It is usually a transfer of control.
146 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
An ELSE IF statement or an ELSE statement shall not be a branch target statement. It is

permissible to branch to an END IF statement only from within the IF construct. Execution of an

END IF statement has no effect.

8.1.2.3 Examples of IF constructs

8.1.2.4 IF statement

The IF statement controls a single action statement (R216).

R807 if-stmt is IF (scalar-logical-expr) action-stmt

C802 (R807) The action-stmt in the if-stmt shall not be an if-stmt, end-program-stmt,
end-function-stmt, or end-subroutine-stmt.

Execution of an IF statement causes evaluation of the scalar logical expression. If the value of the

expression is true, the action statement is executed. If the value is false, the action statement is not

executed and execution continues as though a CONTINUE statement (8.3) were executed.

The execution of a function reference in the scalar logical expression may affect entities in the

action statement.

8.1.3 CASE construct

The CASE construct selects for execution at most one of its constituent blocks. The selection is

based on the value of an expression.

8.1.3.1 Form of the CASE construct

R808 case-construct is select-case-stmt
[case-stmt

block] ...

NOTE 8.5
IF (CVAR .EQ. 'RESET') THEN

I = 0; J = 0; K = 0
END IF

PROOF_DONE: IF (PROP) THEN
WRITE (3, '("QED")')
STOP

ELSE
PROP = NEXTPROP

END IF PROOF_DONE

IF (A .GT. 0) THEN
B = C/A
IF (B .GT. 0) THEN

D = 1.0
END IF

ELSE IF (C .GT. 0) THEN
B = A/C
D = -1.0

ELSE
B = ABS (MAX (A, C))
D = 0

END IF

NOTE 8.6
An example of an IF statement is:

IF (A > 0.0) A = LOG (A)
JUN 2001 WORKING DRAFT 147

J3/01-007R2 WORKING DRAFT JUN 2001
end-select-stmt

R809 select-case-stmt is [case-construct-name :] SELECT CASE (case-expr)

R810 case-stmt is CASE case-selector [case-construct-name]

R811 end-select-stmt is END SELECT [case-construct-name]

C803 (R808) If the select-case-stmt of a case-construct specifies a case-construct-name, the
corresponding end-select-stmt shall specify the same case-construct-name. If the
select-case-stmt of a case-construct does not specify a case-construct-name, the corresponding
end-select-stmt shall not specify a case-construct-name. If a case-stmt specifies a
case-construct-name, the corresponding select-case-stmt shall specify the same
case-construct-name.

R812 case-expr is scalar-int-expr
or scalar-char-expr
or scalar-logical-expr

R813 case-selector is (case-value-range-list)

or DEFAULT

C804 (R808) No more than one of the selectors of one of the CASE statements shall be DEFAULT.

R814 case-value-range is case-value
or case-value :

or : case-value
or case-value : case-value

R815 case-value is scalar-int-initialization-expr
or scalar-char-initialization-expr
or scalar-logical-initialization-expr

C805 (R808) For a given case-construct, each case-value shall be of the same type as case-expr. For
character type, length differences are allowed, but the kind type parameters shall be the
same.

C806 (R808) A case-value-range using a colon shall not be used if case-expr is of type logical.

C807 (R808) For a given case-construct, the case-value-ranges shall not overlap; that is, there shall
be no possible value of the case-expr that matches more than one case-value-range.

8.1.3.2 Execution of a CASE construct

The execution of the SELECT CASE statement causes the case expression to be evaluated. The

resulting value is called the case index. For a case value range list, a match occurs if the case index

matches any of the case value ranges in the list. For a case index with a value of c, a match is

determined as follows:

(1) If the case value range contains a single value v without a colon, a match occurs for
data type logical if the expression c .EQV. v is true, and a match occurs for data type
integer or character if the expression c .EQ. v is true.

(2) If the case value range is of the form low : high, a match occurs if the expression
low.LE. c .AND. c .LE. high is true.

(3) If the case value range is of the form low :, a match occurs if the expression low.LE. c
is true.

(4) If the case value range is of the form : high, a match occurs if the expression c .LE. high
is true.

(5) If no other selector matches and a DEFAULT selector is present, it matches the case
index.

(6) If no other selector matches and the DEFAULT selector is absent, there is no match.
148 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
The block following the CASE statement containing the matching selector, if any, is executed. This

completes execution of the construct.

At most one of the blocks of a CASE construct is executed.

A CASE statement shall not be a branch target statement. It is permissible to branch to an END

SELECT statement only from within the CASE construct.

8.1.3.3 Examples of CASE constructs

NOTE 8.7
An integer signum function:

INTEGER FUNCTION SIGNUM (N)
SELECT CASE (N)
CASE (:-1)

SIGNUM = -1
CASE (0)

SIGNUM = 0
CASE (1:)

SIGNUM = 1
END SELECT
END

NOTE 8.8
A code fragment to check for balanced parentheses:

CHARACTER (80) :: LINE
...

LEVEL=0
DO I = 1, 80

CHECK_PARENS: SELECT CASE (LINE (I:I))
CASE ('(')

LEVEL = LEVEL + 1
CASE (')')

LEVEL = LEVEL - 1
IF (LEVEL .LT. 0) THEN

PRINT *, 'UNEXPECTED RIGHT PARENTHESIS'
EXIT

END IF
CASE DEFAULT

! Ignore all other characters
END SELECT CHECK_PARENS

END DO
IF (LEVEL .GT. 0) THEN

PRINT *, 'MISSING RIGHT PARENTHESIS'
END IF
JUN 2001 WORKING DRAFT 149

J3/01-007R2 WORKING DRAFT JUN 2001
8.1.4 SELECT TYPE and ASSOCIATE constructs

The SELECT TYPE construct selects for execution at most one of its constituent blocks. The

selection is based on the dynamic type of an expression. The ASSOCIATE construct associates an

entity identified by a name with an expression or variable during the execution of its block. The

entity identified by the name is an associating entity.

8.1.4.1 Form of the SELECT TYPE construct

R816 select-type-construct is select-type-stmt
[type-guard-stmt

block] ...

end-select-type-stmt

R817 select-type-stmt is [select-construct-name :] SELECT TYPE ■
■ ([associate-name =>] selector)

R818 selector is expr
or variable

C808 (R817) The associate-name shall be specified if selector does not consist only of a name.

C809 (R817) If selector is not a variable or is a variable that has a vector subscript, associate-name
shall not appear in a variable definition context (16.8.7).

C810 (R817) The selector in a select-type-stmt shall be polymorphic.

R819 type-guard-stmt is TYPE IS (extensible-type-name) [select-construct-name]

or TYPE IN (extensible-type-name) [select-construct-name]

or TYPE DEFAULT [select-construct-name]

NOTE 8.9
The following three fragments are equivalent:

IF (SILLY .EQ. 1) THEN
CALL THIS

ELSE
CALL THAT

END IF

SELECT CASE (SILLY .EQ. 1)
CASE (.TRUE.)

CALL THIS
CASE (.FALSE.)

CALL THAT
END SELECT

SELECT CASE (SILLY)
CASE DEFAULT

CALL THAT
CASE (1)

CALL THIS
END SELECT

NOTE 8.10
A code fragment showing several selections of one block:

SELECT CASE (N)
CASE (1, 3:5, 8) ! Selects 1, 3, 4, 5, 8

CALL SUB
CASE DEFAULT

CALL OTHER
END SELECT
150 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C811 (R819) The extensible-type-name shall be the name of an extensible type or a type alias name
for an extensible type.

C812 (R819) For a given select-type-construct, the same extensible-type-name shall not be specified
in more than one TYPE IS type-guard-stmt and shall not be specified in more than one TYPE
IN type-guard-stmt.

C813 (R819) For a given select-type-construct, there shall be at most one TYPE DEFAULT type-
guard-stmt.

R820 end-select-type-stmt is END SELECT [select-construct-name]

C814 (R816) If the select-type-stmt of a select-type-construct specifies a select-construct-name, the
corresponding end-select-type-stmt shall specify the same select-construct-name. If the select-
type-stmt of a select-type-construct does not specify a select-construct-name, the corresponding
end-select-type-stmt shall not specify a select-construct-name. If a type-guard-stmt specifies a
select-construct-name, the corresponding select-type-stmt shall specify the same select-
construct-name.

The associate name of a SELECT TYPE construct is the associate-name if specified; otherwise it is

the name that constitutes the selector.

8.1.4.2 Execution of the SELECT TYPE construct

Execution of a SELECT TYPE construct whose selector is not a variable causes the selector

expression to be evaluated.

A SELECT TYPE construct selects at most one block to be executed. During execution of that

block, the associate name identifies an entity, which is associated (16.7.1.5) with the selector.

The block to be executed is selected as follows:

(1) If the dynamic type of the selector is the same as the type named in a TYPE IS type
guard statement, the block following that statement is executed.

(2) Otherwise, if the dynamic type of the selector is an extension of exactly one type
named in a TYPE IN type guard statement, the block following that statement is
executed.

(3) Otherwise, if the dynamic type of the selector is an extension of several types named in
TYPE IN type guard statements, one of these statements must specify a type that is an
extension of all the types specified in the others; the block following that statement is
executed.

(4) Otherwise, if there is a TYPE DEFAULT type guard statement, the block following that
statement is executed.

Within the block following a TYPE IS type guard statement, the associating entity is not

polymorphic, has the type named in the type guard statement, and has the type parameters of the

selector.

Within the block following a TYPE IN type guard statement, the associating entity is polymorphic

(5.1.1.8) and has the declared type named in the type guard statement. The type parameters of the

associating entity are the those of the type specified in the TYPE IN type guard statement.

Within the block following a TYPE DEFAULT type guard statement, the associating entity is

polymorphic and has the same declared type as the selector. The type parameters of the

associating entity are the those of the declared type of the selector.

NOTE 8.11
This algorithm selects the most specific type guard when there are several potential matches.
JUN 2001 WORKING DRAFT 151

J3/01-007R2 WORKING DRAFT JUN 2001
The other attributes of the associating entity are described in 8.1.4.5.

A type guard statement shall not be a branch target statement. It is permissible to branch to an

END SELECT statement only from within the SELECT TYPE construct.

8.1.4.3 Form of the ASSOCIATE construct

R821 associate-construct is associate-stmt
block
end-associate-stmt

R822 associate-stmt is [associate-construct-name :] ASSOCIATE (association-list)

R823 association is associate-name => selector

C815 (R823) If selector is not a variable or is a variable that has a vector subscript, associate-name
shall not appear in a variable definition context (16.8.7).

R824 end-associate-stmt is END ASSOCIATE [associate-construct-name]

C816 (R824) If the associate-stmt of an associate-construct specifies an associate-construct-name, the
corresponding end-associate-stmt shall specify the same associate-construct-name. If the
associate-stmt of an associate-construct does not specify an associate-construct-name, the
corresponding end-associate-stmt shall not specify an associate-construct-name.

8.1.4.4 Execution of the ASSOCIATE construct

Execution of an ASSOCIATE construct causes execution of its block. During execution of that

block each associate name identifies an entity, which is associated (16.7.1.5) with the corresponding

selector. The associating entity assumes the declared type and type parameters of the selector. If

and only if the selector is polymorphic, the associating entity is polymorphic and assumes the

dynamic type and type parameters of the selector.

The other attributes of the associating entity are described in 8.1.4.5.

It is permissible to branch to an END ASSOCIATE statement only from within the ASSOCIATE

construct.

8.1.4.5 Attributes of associate names

Within a SELECT TYPE or ASSOCIATE construct, each associating entity has the same rank and

bounds as its associated selector; it has the ASYNCHRONOUS, INTENT, TARGET, or VOLATILE

attribute if and only if the selector has the attribute.

NOTE 8.12
If the declared type of the selector is T, specifying TYPE DEFAULT has the same effect as
specifying TYPE IN (T).

NOTE 8.13
If the selector (8.1.4.1) may not appear in a variable definition context (16.8.7), the associate
name shall not appear in a variable definition context.
152 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
8.1.4.6 Examples of the SELECT TYPE construct

NOTE 8.14
TYPE, EXTENSIBLE :: POINT
 REAL :: X, Y
END TYPE POINT
TYPE, EXTENDS(POINT) :: POINT_3D
 REAL :: Z
END TYPE POINT_3D
TYPE, EXTENDS(POINT) :: COLOR_POINT
 INTEGER :: COLOR
END TYPE COLOR_POINT

TYPE(POINT), TARGET :: P
TYPE(POINT_3D), TARGET :: P3
TYPE(COLOR_POINT), TARGET :: C
CLASS(POINT), POINTER :: P_OR_C
P_OR_C => C
SELECT TYPE (A => P_OR_C)
TYPE IN (POINT)
 ! "CLASS (POINT) :: A" implied here
 PRINT *, A%X, A%Y ! This block gets executed
TYPE IS (POINT_3D)
 ! "TYPE (POINT_3D) :: A" implied here
 PRINT *, A%X, A%Y, A%Z
END SELECT

NOTE 8.15
The following example illustrates the omission of associate-name. It uses the declarations from
Note 8.14.

P_OR_C => P3
SELECT TYPE (P_OR_C)
TYPE IN (POINT)
 ! "CLASS (POINT) :: P_OR_C" implied here
 PRINT *, P_OR_C%X, P_OR_C%Y
TYPE IS (POINT_3D)
 ! "TYPE (POINT_3D) :: P_OR_C" assumed here
 PRINT *, P_OR_C%X, P_OR_C%Y, P_OR_C%Z ! This block gets executed
END SELECT
JUN 2001 WORKING DRAFT 153

J3/01-007R2 WORKING DRAFT JUN 2001
8.1.4.7 Examples of the ASSOCIATE construct

8.1.5 DO construct

The DO construct specifies the repeated execution of a sequence of executable constructs. Such a

repeated sequence is called a loop. The EXIT and CYCLE statements may be used to modify the

execution of a loop.

The number of iterations of a loop may be determined at the beginning of execution of the DO

construct, or may be left indefinite ("DO forever" or DO WHILE). In either case, an EXIT statement

(8.1.5.4.4) anywhere in the DO construct may be executed to terminate the loop immediately. A

particular iteration of the loop may be curtailed by executing a CYCLE statement (8.1.5.4.3).

8.1.5.1 Forms of the DO construct

The DO construct may be written in either a block form or a nonblock form.

R825 do-construct is block-do-construct
or nonblock-do-construct

8.1.5.1.1 Form of the block DO construct

R826 block-do-construct is do-stmt
do-block
end-do

R827 do-stmt is label-do-stmt
or nonlabel-do-stmt

R828 label-do-stmt is [do-construct-name :] DO label [loop-control]

R829 nonlabel-do-stmt is [do-construct-name :] DO [loop-control]

R830 loop-control is [,] do-variable = scalar-int-expr, scalar-int-expr ■
■ [, scalar-int-expr]

or [,] WHILE (scalar-logical-expr)

R831 do-variable is scalar-int-variable

NOTE 8.16
The following example illustrates an association with an expression.

ASSOCIATE (Z => EXP(-(X**2+Y**2)) * COS(THETA))
 PRINT *, A+Z, A-Z
END ASSOCIATE

The following example illustrates an association with a derived-type variable.

ASSOCIATE (XC => AX%B(I,J)%C)
 XC%DV = XC%DV + PRODUCT(XC%EV(1:N))
END ASSOCIATE

The following example illustrates association with an array section.

ASSOCIATE (ARRAY => AX%B(I,:)%C)
 ARRAY(N)%EV = ARRAY(N-1)%EV
END ASSOCIATE

The following example illustrates multiple associations.

ASSOCIATE (W => RESULT(I,J)%W, ZX => AX%B(I,J)%D, ZY => AY%B(I,J)%D)
 W = ZX*X + ZY*Y
END ASSOCIATE
154 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
C817 (R831) The do-variable shall be a named scalar variable of type integer.

R832 do-block is block

R833 end-do is end-do-stmt
or continue-stmt

R834 end-do-stmt is END DO [do-construct-name]

C818 (R826) If the do-stmt of a block-do-construct specifies a do-construct-name, the corresponding
end-do shall be an end-do-stmt specifying the same do-construct-name. If the do-stmt of a
block-do-construct does not specify a do-construct-name, the corresponding end-do shall not
specify a do-construct-name.

C819 (R826) If the do-stmt is a nonlabel-do-stmt, the corresponding end-do shall be an end-do-stmt.

C820 (R826) If the do-stmt is a label-do-stmt, the corresponding end-do shall be identified with the
same label.

8.1.5.1.2 Form of the nonblock DO construct
R835 nonblock-do-construct is action-term-do-construct

or outer-shared-do-construct

R836 action-term-do-construct is label-do-stmt
do-body
do-term-action-stmt

R837 do-body is [execution-part-construct] ...

R838 do-term-action-stmt is action-stmt

C821 (R838) A do-term-action-stmt shall not be a continue-stmt, a goto-stmt, a return-stmt, a stop-stmt, an exit-stmt, a
cycle-stmt, an end-function-stmt, an end-subroutine-stmt, an end-program-stmt, or an arithmetic-if-stmt.

C822 (R835) The do-term-action-stmt shall be identified with a label and the corresponding label-do-stmt shall refer to the
same label.

R839 outer-shared-do-construct is label-do-stmt
do-body
shared-term-do-construct

R840 shared-term-do-construct is outer-shared-do-construct
or inner-shared-do-construct

R841 inner-shared-do-construct is label-do-stmt
do-body
do-term-shared-stmt

R842 do-term-shared-stmt is action-stmt

C823 (R842) A do-term-shared-stmt shall not be a goto-stmt, a return-stmt, a stop-stmt, an exit-stmt, a cycle-stmt, an
end-function-stmt, an end-subroutine-stmt, an end-program-stmt, or an arithmetic-if-stmt.

C824 (R840) The do-term-shared-stmt shall be identified with a label and all of the label-do-stmts of the
shared-term-do-construct shall refer to the same label.

The do-term-action-stmt, do-term-shared-stmt, or shared-term-do-construct following the do-body of a nonblock DO construct is

called the DO termination of that construct.

Within a scoping unit, all DO constructs whose DO statements refer to the same label are nonblock DO constructs, and are

said to share the statement identified by that label.

8.1.5.2 Range of the DO construct

The range of a block DO construct is the do-block, which shall satisfy the rules for blocks (8.1.1). In

particular, transfer of control to the interior of such a block from outside the block is prohibited. It

is permitted to branch to the end-do of a block DO construct only from within the range of that DO

construct.

The range of a nonblock DO construct consists of the do-body and the following DO termination. The end of such a range is

not bounded by a particular statement as for the other executable constructs (e.g., END IF); nevertheless, the range satisfies

the rules for blocks (8.1.1). Transfer of control into the do-body or to the DO termination from outside the range is
JUN 2001 WORKING DRAFT 155

J3/01-007R2 WORKING DRAFT JUN 2001
prohibited; in particular, it is permitted to branch to a do-term-shared-stmt only from within the range of the corresponding

inner-shared-do-construct.

8.1.5.3 Active and inactive DO constructs

A DO construct is either active or inactive. Initially inactive, a DO construct becomes active only

when its DO statement is executed.

Once active, the DO construct becomes inactive only when the construct it specifies is terminated

(8.1.5.4.4). When an active DO construct becomes inactive, the do-variable, if any, retains its last

defined value.

8.1.5.4 Execution of a DO construct

A DO construct specifies a loop, that is, a sequence of executable constructs that is executed

repeatedly. There are three phases in the execution of a DO construct: initiation of the loop,

execution of the loop range, and termination of the loop.

8.1.5.4.1 Loop initiation

When the DO statement is executed, the DO construct becomes active. If loop-control is

[,] do-variable = scalar-int-expr
1

, scalar-int-expr
2

[, scalar-int-expr
3

]

the following steps are performed in sequence:

(1) The initial parameter m
1
, the terminal parameter m

2
, and the incrementation parameter

m
3

are of type integer with the same kind type parameter as the do-variable. Their
values are established by evaluating scalar-int-expr

1
, scalar-int-expr

2
, and scalar-int-expr

3
,

respectively, including, if necessary, conversion to the kind type parameter of the
do-variable according to the rules for numeric conversion (Table 7.9). If scalar-int-expr

3
does not appear, m

3
has the value 1. The value m

3
shall not be zero.

(2) The DO variable becomes defined with the value of the initial parameter m
1
.

(3) The iteration count is established and is the value of the expression
, unless that value is negative, in which case the iteration count is 0.

If loop-control is omitted, no iteration count is calculated. The effect is as if a large positive iteration

count, impossible to decrement to zero, were established. If loop-control is

[,] WHILE (scalar-logical-expr), the effect is as if loop-control were omitted and the following

statement inserted as the first statement of the do-block:

IF (.NOT. (scalar-logical-expr)) EXIT

At the completion of the execution of the DO statement, the execution cycle begins.

8.1.5.4.2 The execution cycle

The execution cycle of a DO construct consists of the following steps performed in sequence

repeatedly until termination:

(1) The iteration count, if any, is tested. If it is zero, the loop terminates and the DO
construct becomes inactive. If loop-control is [,] WHILE (scalar-logical-expr), the
scalar-logical-expr is evaluated; if the value of this expression is false, the loop
terminates and the DO construct becomes inactive. If, as a result, all of the DO constructs

sharing the do-term-shared-stmt are inactive, the execution of all of these constructs is complete. However, if

NOTE 8.17
The iteration count is zero whenever:

m
1

> m
2

and m
3

> 0, or
m

1
< m

2
and m

3
< 0.

m2 m1– m3+() m3⁄
156 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
some of the DO constructs sharing the do-term-shared-stmt are active, execution continues with step (3) of the

execution cycle of the active DO construct whose DO statement was most recently executed.

(2) If the iteration count is nonzero, the range of the loop is executed.

(3) The iteration count, if any, is decremented by one. The DO variable, if any, is
incremented by the value of the incrementation parameter .

Except for the incrementation of the DO variable that occurs in step (3), the DO variable shall

neither be redefined nor become undefined while the DO construct is active.

8.1.5.4.3 CYCLE statement

Step (2) in the above execution cycle may be curtailed by executing a CYCLE statement from

within the range of the loop.

R843 cycle-stmt is CYCLE [do-construct-name]

C825 (R843) If a cycle-stmt refers to a do-construct-name, it shall be within the range of that
do-construct; otherwise, it shall be within the range of at least one do-construct.

A CYCLE statement belongs to a particular DO construct. If the CYCLE statement refers to a DO

construct name, it belongs to that DO construct; otherwise, it belongs to the innermost DO

construct in which it appears.

Execution of a CYCLE statement causes immediate progression to step (3) of the current execution

cycle of the DO construct to which it belongs. If this construct is a nonblock DO construct, the

do-term-action-stmt or do-term-shared-stmt is not executed.

In a block DO construct, a transfer of control to the end-do has the same effect as execution of a

CYCLE statement belonging to that construct. In a nonblock DO construct, transfer of control to the

do-term-action-stmt or do-term-shared-stmt causes that statement or construct itself to be executed. Unless a further transfer of

control results, step (3) of the current execution cycle of the DO construct is then executed.

8.1.5.4.4 Loop termination

The EXIT statement provides one way of terminating a loop.

R844 exit-stmt is EXIT [do-construct-name]

C826 (R844) If an exit-stmt refers to a do-construct-name, it shall be within the range of that
do-construct; otherwise, it shall be within the range of at least one do-construct.

An EXIT statement belongs to a particular DO construct. If the EXIT statement refers to a DO

construct name, it belongs to that DO construct; otherwise, it belongs to the innermost DO

construct in which it appears.

The loop terminates, and the DO construct becomes inactive, when any of the following occurs:

(1) Determination that the iteration count is zero or the scalar-logical-expr is false, when
tested during step (1) of the above execution cycle

(2) Execution of an EXIT statement belonging to the DO construct

(3) Execution of an EXIT statement or a CYCLE statement that is within the range of the
DO construct, but that belongs to an outer DO construct

(4) Transfer of control from a statement within the range of a DO construct to a statement
that is neither the end-do nor within the range of the same DO construct

(5) Execution of a RETURN statement within the range of the DO construct

(6) Execution of a STOP statement anywhere in the program; or termination of the
program for any other reason.

When a DO construct becomes inactive, the DO variable, if any, of the DO construct retains its last

defined value.

m3
JUN 2001 WORKING DRAFT 157

J3/01-007R2 WORKING DRAFT JUN 2001
8.1.5.5 Examples of DO constructs

8.2 Branching
Branching is used to alter the normal execution sequence. A branch causes a transfer of control

from one statement in a scoping unit to a labeled branch target statement in the same scoping unit.

A branch target statement is an action-stmt, an if-then-stmt, an end-if-stmt, a select-case-stmt, an

end-select-stmt, a do-stmt, an end-do-stmt, a forall-construct-stmt, a do-term-action-stmt, a do-term-shared-stmt, or

a where-construct-stmt.

It is permissible to branch to an END SELECT statement only from within its CASE construct.

It is permissible to branch to an END IF statement only from within its IF construct.

NOTE 8.18
The following program fragment computes a tensor product of two arrays:

DO I = 1, M
DO J = 1, N

C (I, J) = SUM (A (I, J, :) * B (:, I, J))
END DO

END DO

NOTE 8.19
The following program fragment contains a DO construct that uses the WHILE form of
loop-control. The loop will continue to execute until an end-of-file or input/output error is
encountered, at which point the DO statement terminates the loop. When a negative value of
X is read, the program skips immediately to the next READ statement, bypassing most of the
range of the loop.

READ (IUN, '(1X, G14.7)', IOSTAT = IOS) X
DO WHILE (IOS .EQ. 0)

IF (X .GE. 0.) THEN
CALL SUBA (X)
CALL SUBB (X)

...
CALL SUBZ (X)

ENDIF
READ (IUN, '(1X, G14.7)', IOSTAT = IOS) X

END DO

NOTE 8.20
The following example behaves exactly the same as the one in Note 8.19. However, the READ
statement has been moved to the interior of the range, so that only one READ statement is
needed. Also, a CYCLE statement has been used to avoid an extra level of IF nesting.

DO ! A "DO WHILE + 1/2" loop
 READ (IUN, ’(1X, G14.7)’, IOSTAT = IOS) X
 IF (IOS .NE. 0) EXIT
 IF (X < 0.) CYCLE
 CALL SUBA (X)
 CALL SUBB (X)
 . . .
 CALL SUBZ (X)
END DO

NOTE 8.21
Additional examples of DO constructs are in C.5.3.
158 WORKING DRAFT JUN 2001

JUN 2001 WORKING DRAFT J3/01-007R2
It is permissible to branch to an end-do-stmt or a do-term-action-stmt only from within its DO construct.

It is permissible to branch to a do-term-shared-stmt only from within its inner-shared-do-construct.

8.2.1 Statement labels

A statement label provides a means of referring to an individual statement. Only branch target

statements (8.2), FORMAT statements, and DO terminations shall be referred to by the use of

statement labels (3.2.4).

8.2.2 GO TO statement

R845 goto-stmt is GO TO label

C827 (R845) The label shall be the statement label of a branch target statement that appears in the
same scoping unit as the goto-stmt.

Execution of a GO TO statement causes a transfer of control so that the branch target statement

identified by the label is executed next.

8.2.3 Computed GO TO statement
R846 computed-goto-stmt is GO TO (label-list) [,] scalar-int-expr

C828 (R846 Each label in label-list shall be the statement label of a branch target statement that appears in the same
scoping unit as the computed-goto-stmt.

The same statement label may appear more than once in a label list.

Execution of a computed GO TO statement causes evaluation of the scalar integer expression. If this value is i such that

1<=i<=n where n is the number of labels in label-list, a transfer of control occurs so that the next statement executed is the

one identified by the ith label in the list of labels. If i is less than 1 or greater than n, the execution sequence continues as

though a CONTINUE statement were executed.

8.2.4 Arithmetic IF statement
R847 arithmetic-if-stmt is IF (scalar-numeric-expr) label , label , label

C829 (R847) Each label shall be the label of a branch target statement that appears in the same scoping unit as the
arithmetic-if-stmt.

C830 (R847) The scalar-numeric-expr shall not be of type complex.

The same label may appear more than once in one arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of the numeric expression followed by a transfer of control. The

branch target statement identified by the first label, the second label, or the third label is executed next depending on

whether the value of the numeric expression is less than zero, equal to zero, or greater than zero, respectively.

8.3 CONTINUE statement
Execution of a CONTINUE statement has no effect.

R848 continue-stmt is CONTINUE

8.4 STOP statement
R849 stop-stmt is STOP [stop-code]

R850 stop-code is scalar-char-constant
or digit [digit [digit [digit [digit]]]]

C831 (R850) scalar-char-constant shall be of type default character.

Execution of a STOP statement causes normal termination of execution of the program. At the

time of termination, the stop code, if any, is available in a processor-dependent manner. Leading

zero digits in the stop code are not significant. If any exception(14) is signaling, the processor shall
JUN 2001 WORKING DRAFT 159

J3/01-007R2 WORKING DRAFT JUN 2001
issue a warning indicating which exceptions are signaling; this warning shall be on the unit

identified by the named constant ERROR_UNIT from the ISO_FORTRAN_ENV intrinsic module

(13.12.1.3).
160 WORKING DRAFT JUN 2001

	Section 8: Execution control
	8.1�� Executable constructs containing blocks
	(1) IF Construct
	(2) CASE Construct
	(3) DO Construct
	NOTE 8.1
	NOTE 8.2
	8.1.1�� Rules governing blocks
	8.1.1.1�� Executable constructs in blocks
	8.1.1.2�� Control flow in blocks
	NOTE 8.3

	8.1.1.3�� Execution of a block
	NOTE 8.4

	8.1.2�� IF construct
	8.1.2.1�� Form of the IF construct
	R802 if�construct is if�then�stmt
	R803 if�then�stmt is [if�construct�name :] IF (scalar�logical�expr) THEN
	R804 else�if�stmt is ELSE IF (scalar�logical�expr) THEN [if�construct�name]
	R805 else�stmt is ELSE [if�construct�name]
	R806 end�if�stmt is END IF [if�construct�name]
	C801 (R802) If the if�then�stmt of an if�construct specifies an if�construct�name, the correspond...

	8.1.2.2�� Execution of an IF construct
	8.1.2.3�� Examples of IF constructs
	NOTE 8.5

	8.1.2.4�� IF statement
	R807 if�stmt is IF (scalar�logical�expr) action�stmt
	C802 (R807) The action�stmt in the if�stmt shall not be an if�stmt, end�program�stmt, end�functio...
	NOTE 8.6

	8.1.3�� CASE construct
	8.1.3.1�� Form of the CASE construct
	R808 case�construct is select�case�stmt
	R809 select�case�stmt is [case�construct�name :] SELECT CASE (case�expr)
	R810 case�stmt is CASE case�selector [case�construct�name]
	R811 end�select�stmt is END SELECT [case�construct�name]
	C803 (R808) If the select�case�stmt of a case�construct specifies a case�construct�name, the corr...

	R812 case�expr is scalar�int�expr
	R813 case�selector is (case�value�range�list)
	C804 (R808) No more than one of the selectors of one of the CASE statements shall be DEFAULT.

	R814 case�value�range is case�value
	R815 case�value is scalar�int�initialization�expr
	C805 (R808) For a given case�construct, each case�value shall be of the same type as case�expr. F...
	C806 (R808) A case�value�range using a colon shall not be used if case�expr is of type logical.
	C807 (R808) For a given case�construct, the case�value�ranges shall not overlap; that is, there s...

	8.1.3.2�� Execution of a CASE construct
	(1) If the case value range contains a single value v without a colon, a match occurs for data ty...
	(2) If the case value range is of the form low�:�high, a match occurs if the expression low�.LE.�...
	(3) If the case value range is of the form low�:, a match occurs if the expression low�.LE.�c is ...
	(4) If the case value range is of the form :�high, a match occurs if the expression c�.LE.�high i...
	(5) If no other selector matches and a DEFAULT selector is present, it matches the case index.
	(6) If no other selector matches and the DEFAULT selector is absent, there is no match.

	8.1.3.3�� Examples of CASE constructs
	NOTE 8.7
	NOTE 8.8
	NOTE 8.9 �
	NOTE 8.10

	8.1.4�� SELECT TYPE and ASSOCIATE constructs
	8.1.4.1�� Form of the SELECT TYPE construct
	R816 select-type-construct is select-type-stmt
	R817 select-type-stmt is [select-construct-name :] SELECT TYPE n
	R818 selector is expr
	C808 (R817) The associate-name shall be specified if selector does not consist only of a name.
	C809 (R817) If selector is not a variable or is a variable that has a vector subscript, associate...
	C810 (R817) The selector in a select-type-stmt shall be polymorphic.

	R819 type-guard-stmt is TYPE IS (extensible-type-name) [select-construct-name]
	C811 (R819) The extensible-type-name shall be the name of an extensible type or a type alias name...
	C812 (R819) For a given select-type-construct, the same extensible-type-name shall not be specifi...
	C813 (R819) For a given select-type-construct, there shall be at most one TYPE DEFAULT type- guar...

	R820 end-select-type-stmt is END SELECT [select-construct-name]
	C814 (R816) If the select-type-stmt of a select-type-construct specifies a select-construct-name,...

	8.1.4.2�� Execution of the SELECT TYPE construct
	(1) If the dynamic type of the selector is the same as the type named in a TYPE IS type guard sta...
	(2) Otherwise, if the dynamic type of the selector is an extension of exactly one type named in a...
	(3) Otherwise, if the dynamic type of the selector is an extension of several types named in TYPE...
	(4) Otherwise, if there is a TYPE DEFAULT type guard statement, the block following that statemen...
	NOTE 8.11
	NOTE 8.12

	8.1.4.3�� Form of the ASSOCIATE construct
	R821 associate-construct is associate-stmt
	R822 associate-stmt is [associate-construct-name :] ASSOCIATE (association-list)
	R823 association is associate-name => selector
	C815 (R823) If selector is not a variable or is a variable that has a vector subscript, associate...

	R824 end-associate-stmt is END ASSOCIATE [associate-construct-name]
	C816 (R824) If the associate-stmt of an associate-construct specifies an associate-construct-name...

	8.1.4.4�� Execution of the ASSOCIATE construct
	8.1.4.5�� Attributes of associate names
	NOTE 8.13

	8.1.4.6�� Examples of the SELECT TYPE construct
	NOTE 8.14 �
	NOTE 8.15

	8.1.4.7�� Examples of the ASSOCIATE construct
	NOTE 8.16

	8.1.5�� DO construct
	8.1.5.1�� Forms of the DO construct
	R825 do�construct is block�do�construct

	8.1.5.1.1�� Form of the block DO construct
	R826 block�do�construct is do�stmt
	R827 do�stmt is label�do�stmt
	R828 label�do�stmt is [do�construct�name :] DO label [loop�control]
	R829 nonlabel�do�stmt is [do�construct�name :] DO [loop�control]
	R830 loop�control is [,] do�variable = scalar�int�expr, scalar�int�expr n
	R831 do�variable is scalar�int�variable
	C817 (R831) The do�variable shall be a named scalar variable of type integer.

	R832 do�block is block
	R833 end�do is end�do�stmt
	R834 end�do�stmt is END DO [do�construct�name]
	C818 (R826) If the do�stmt of a block�do�construct specifies a do�construct�name, the correspondi...
	C819 (R826) If the do�stmt is a nonlabel�do�stmt, the corresponding end�do shall be an end�do�stmt.
	C820 (R826) If the do�stmt is a label�do�stmt, the corresponding end�do shall be identified with ...

	8.1.5.1.2�� Form of the nonblock DO construct
	R835 nonblock�do�construct is action�term�do�construct
	R836 action�term�do�construct is label�do�stmt
	R837 do�body is [execution�part�construct] ...
	R838 do�term�action�stmt is action�stmt
	C821 (R838) A do�term�action�stmt shall not be a continue�stmt, a goto�stmt, a return�stmt, a sto...
	C822 (R835) The do�term�action�stmt shall be identified with a label and the corresponding label�...

	R839 outer�shared�do�construct is label�do�stmt
	R840 shared�term�do�construct is outer�shared�do�construct
	R841 inner�shared�do�construct is label�do�stmt
	R842 do�term�shared�stmt is action�stmt
	C823 (R842) A do�term�shared�stmt shall not be a goto�stmt, a return�stmt, a stop�stmt, an exit�s...
	C824 (R840) The do�term�shared�stmt shall be identified with a label and all of the label�do�stmt...

	8.1.5.2�� Range of the DO construct
	8.1.5.3�� Active and inactive DO constructs
	8.1.5.4�� Execution of a DO construct
	8.1.5.4.1�� Loop initiation
	(1) The initial parameter m1, the terminal parameter m2, and the incrementation parameter m3 are ...
	(2) The DO variable becomes defined with the value of the initial parameter m1.
	(3) The iteration count is established and is the value of the expression , unless that value is ...
	NOTE 8.17

	8.1.5.4.2�� The execution cycle
	(1) The iteration count, if any, is tested. If it is zero, the loop terminates and the DO constru...
	(2) If the iteration count is nonzero, the range of the loop is executed.
	(3) The iteration count, if any, is decremented by one. The DO variable, if any, is incremented b...

	8.1.5.4.3�� CYCLE statement
	R843 cycle�stmt is CYCLE [do�construct�name]
	C825 (R843) If a cycle�stmt refers to a do�construct�name, it shall be within the range of that d...

	8.1.5.4.4�� Loop termination
	R844 exit�stmt is EXIT [do�construct�name]
	C826 (R844) If an exit�stmt refers to a do�construct�name, it shall be within the range of that d...
	(1) Determination that the iteration count is zero or the scalar�logical�expr is false, when test...
	(2) Execution of an EXIT statement belonging to the DO construct
	(3) Execution of an EXIT statement or a CYCLE statement that is within the range of the DO constr...
	(4) Transfer of control from a statement within the range of a DO construct to a statement that i...
	(5) Execution of a RETURN statement within the range of the DO construct
	(6) Execution of a STOP statement anywhere in the program; or termination of the program for any ...

	8.1.5.5�� Examples of DO constructs
	NOTE 8.18
	NOTE 8.19
	NOTE 8.20
	NOTE 8.21

	8.2�� Branching
	8.2.1�� Statement labels
	8.2.2�� GO TO statement
	R845 goto�stmt is GO TO label
	C827 (R845) The label shall be the statement label of a branch target statement that appears in t...

	8.2.3�� Computed GO TO statement
	R846 computed�goto�stmt is GO TO (label�list) [,] scalar�int�expr
	C828 (R846 Each label in label�list shall be the statement label of a branch target statement tha...

	8.2.4�� Arithmetic IF statement
	R847 arithmetic�if�stmt is IF (scalar�numeric�expr) label , label , label
	C829 (R847) Each label shall be the label of a branch target statement that appears in the same s...
	C830 (R847) The scalar�numeric�expr shall not be of type complex.

	8.3�� CONTINUE statement
	R848 continue�stmt is CONTINUE

	8.4�� STOP statement
	R849 stop�stmt is STOP [stop�code]
	R850 stop�code is scalar�char�constant
	C831 (R850) scalar�char�constant shall be of type default character.

