
overview 

This document describes porting concerns of the HP-UX 64-bit data model and performance 
considerations when transitioning to 64-bit platforms.  

 

ILP32 and LP64 data models 

The ANSI/ISO C standard specifies that C must support four signed and four unsigned integer data 

types: char, short, int, and long. There are few requirements imposed by the ANSI standard 
on the sizes of these data types. According to the standard, int and short should be at least 16 
bits; and long should be at least as long as int, but not smaller than 32 bits.  

Traditionally, Kernighan and Ritchie (K&R) C assumes int is the most efficient or fastest integer 
data type on a machine. ANSI C, with its integral promotion rule, continues this assumption.  

The HP-UX 32-bit data model is called ILP32 because ints, longs, and pointers are 32 bits.  

The HP-UX 64-bit data model is called LP64 because longs and pointers are 64 bits. In this model, 
ints remain 32 bits.  

Note 
The LP64 data model is the emerging standard on 64-bit UNIX systems provided by leading system 
vendors. Applications that transition to the LP64 data model on HP-UX systems are highly portable 
to other LP64 vendor platforms.  
 
 

data type sizes 

The size of the base HP C data types under the HP-UX implementation of ILP32 and LP64 are 
shown in the following table:  

hp C/HP-UX 32-bit and 64-bit base data types 

data type ILP32 size (bits) LP64 size (bits)

char  8  8  

short  16  16  

int  32  32  

long  32  64  

long long (1)  64  64  



pointer  32  64  

float  32  32  

double  64  64  

long double  128  128  

enum (2)  32  32  

(1) The long long data type is an HP value-added extension.  
(2) Sized enums are available in 32-bit and 64-bit mode.  

huge data 

In general, huge data is any data that is larger than can be represented on a 32-bit system. Hence, 
huge data is only supported on 64-bit systems. 

More specifically, huge data is any data greater than a certain size placed into a huge data segment 
(hbss segment). Smaller objects are placed into a bss segment. 

In general, data objects on 32-bit systems can be as large as 228 bytes or 256 megabytes whereas 
on 64-bit systems data objects can be as large as 258 bytes or larger in some cases. 

HP C/HP-UX supports uninitialized arrays, structs, and unions to a maximum of 258 bytes. HP aC++ 
supports uninitialized arrays and C-style structs and unions to a maximum of 261 bytes. 

 

ILP32 to LP64 porting concerns 

Some fundamental changes occur when moving from the ILP32 data model to the LP64 data 
model:  

• longs and ints are no longer the same size.  
• pointers and ints are no longer the same size.  
• pointers and longs are 64 bits and are 64-bit aligned.  
• predefined types size_t and ptrdiff_t are 64-bit integral types.  

These differences can potentially impact porting in the following areas:  

 » data truncation
 » pointers
 » data type promotion
 » data alignment and data sharing
 » constants
 » bit shifts and bit masks



 » bit fields
 » enumerated types

data truncation 

Truncation problems can happen when assignments are made between 64-bit and 32-bit data 

items. Since ints, longs, and pointers are 32 bits in ILP32, mixed assignments between these 
data types do not present any special concerns. However, in the LP64 data model, longs and 
pointers are no longer the same size as ints. In LP64, truncation will occur when pointers or 
longs are assigned to ints.  

In LP64, truncation can occur during:  

• initialization  
• assignments  
• parameter passing  
• return statements  
• casts  

Pointers and longs are not the only data types whose size has changed. Some data types defined 
in header files that are 32 bits under ILP32--for example, off_t--are now 64 bits. Variables 
declared with off_t may be truncated when assigned to ints in LP64.  

pointers 

Avoiding pointer corruption is an important concern when migrating to LP64:  

• Assigning a 32-bit hexadecimal constant or an int to a pointer type will result in an invalid 
address and may cause errors when the pointer is dereferenced.  

• Casting a pointer to an int results in truncation.  
• Casting an int to a pointer may cause errors when the pointer is dereferenced.  
• Functions that return pointers, when declared improperly, may return truncated values.  

• Comparing an int to a pointer may cause unexpected results.  

Pointer arithmetic is a source of difficulty in migration.  

Standard C behavior increments a pointer by the size of the data type to which it points. This means 

if the variable p is a pointer to long, then the operation (p + 1) increments the value of p by 4 
bytes in ILP32 and by 8 bytes in LP64.  

Casts between long* to int* are problematic because the object of a long pointer is 64 bits in 
size, but the object of an int pointer is only 32 bits in size.  

data type promotion 

When comparisons and arithmetic operations are performed between variables and constants with 
different data types, ANSI C first converts these types to compatible types. For example, when a 



short is compared to a long, the short is first converted to a long. This conversion process is 
called data type promotion.  

Certain data type promotions result in signed numbers being treated as unsigned numbers. When 
this happens, you can occasionally get unexpected results. For example:  

long result; 

int i = -2; 

unsigned int j = 1; 

result = i + j; 

In ANSI C under the 32-bit data model, the results are: 

 

The intermediate result (an unsigned int) and the final result (a signed long) have the same 
internal representation because they are both 32 bits. Since the final result is signed, the answer is 

-1. In ANSI C under the 64-bit data model, the results are different: 

 



When the 32-bit intermediate result (an unsigned int) is converted to the 64-bit final result (a 
signed long), the left 32 bits are zero-filled. This results in a very large 64-bit positive number.  

data alignment and data sharing 

Data alignment rules determine where fields are located in memory. There are differences between 
the LP64 data alignment rules and the ILP32 data alignment rules.  

In ILP32, pointers and longs are 32 bits and are aligned on 32-bit boundaries. In LP64, pointers 
and longs are 64 bits and are aligned on 64-bit boundaries.  

Applications that do not consider alignment differences between ILP32 and LP64 can have trouble 
sharing binary data. Data exchanged between ILP32 and LP64 mode programs, whether via files, 
remote procedure calls, or other messaging protocols, may not be aligned as expected.  

This table shows the data alignment for C data types:  

ILP32 and LP64 data alignment 

data type 
ILP32 size 

(bytes) 
ILP32 

alignment 
LP64 size 

(bytes) 
LP64 

alignment 

char  1  1-byte  1  1-byte  

short 2  2-byte  2  2-byte 

int  4  4-byte  4  4-byte  

long  4  4-byte  8  8-byte  

long long  8  8-byte  8  8-byte 

pointer  4  4-byte 8  8-byte  

float  4  4-byte  4  4-byte 

double  8  8-byte  8  8-byte 

long 

double 

16  8-byte  16  8-byte 

struct depends on 

members (1)  

depends on 

members(1) 

depends on 

members(1) 

depends on 

members(1) 

enum  4  4-byte  4  4-byte 

(1) aligned on the same boundary as its most strictly aligned member.  



structure member alignment 

Data alignment of structures is affected by porting from ILP32 to LP64. Structure members may be 
padded differently in ILP32 and LP64 in order for the structure members to begin on specific 
alignment boundaries.  

Here is an example structure that is aligned differently for ILP32 and LP64:  

struct tnode { 

   long count; 

   char class; 

   struct tnode *left; 

   short id; 

   struct tnode *right; 

} 

The tnode structure is aligned according to the alignment shown in ILP32 and LP64 Data 
Alignment. The following diagram shows the alignment for tnode in ILP32:  

 

ILP32 Alignment of struct tnode 

In ILP32, this data structure contains 20 bytes.  

The following diagram shows the alignment for the tnode structure in LP64. 



 

LP64 Alignment of struct tnode  

In LP64, this data structure contains 40 bytes.  

In the example shown, the same structure definition has different sizes and the structure members 
have different offsets on different platforms.  

For information on how to create portable data structures, see Writing Portable Code.  

constants 

When a program with a hexadecimal constant is ported from ILP32 to LP64, the data type assigned 
to the constant may change. The following table illustrates some common hex constants and their 
types:  

constant ANSI C ILP32 ANSI C LP64 

0x7fffffff  int  int  

0x7fffffffL  long  long 

0x80000000 unsigned int unsigned int

0x80000000L  unsigned long long  

In LP64, 32-bit hexadecimal constants may no longer set pointers or masks to the correct value. In 
LP64, the first 32 bits of 64-bit pointers contain significant information.  

bit fields 

http://devrsrc1.external.hp.com/STK/portability.html


Unqualified bit fields are unsigned by default in LP64. In ILP32, unqualified bit fields are signed by 
default.  

Bit fields of enumerated types are signed if the enumeration base type is signed and unsigned if the 
enumeration base type is unsigned.  

Unnamed, non-zero length bit fields do not affect the alignment of a structure or union in LP64. In 
ILP32, unnamed, non-zero length bit fields affect the alignment of structures and unions.  

bit shifts and bit masks 

Bit shifts and bit masks are sometimes coded with the assumption that the operations are 
performed in variables that have the same data type as the result. In cases such as:  

a = b operation c  

the data type used for the intermediate results of the operation depends on the types of b and c. 
The intermediate result is then promoted to the type of a. If the result requires 64 bits, but b and c 
are 32-bit data types, then the intermediate result either overflows or is truncated before being 

assigned to a.  

In the following example, the left operand 1 is a small numeric constant which the compiler treats as 
a 32-bit value in both ILP32 and LP64:  

unsigned long y; 

/* Overflows under both data models. */ 

y = (1 << 32); 

This bit shift uses a 32-bit data type as the intermediate result. In 64-bit mode, the operation 
overflows and the final result is "undefined" as shown: 

 

You can use suffixes such as L and UL for long and unsigned long if you need long 
constants. For example, in 64-bit mode, the above code fragment can be changed to: 

/* 2^32 in LP64. Overflows in ILP32. */ 



y = (1L << 32); 

enumerated types 

In LP64, enumerated types are signed only if one or more of the enumeration constants defined for 
that type are negative. If all enumeration constants are non-negative, the type is unsigned. In ILP32, 
enumerated types are always signed. 

 

architecture-specific changes 

There is a class of porting issues that is not strictly caused by the 64-bit architecture, but is a side 
effect of the 64-bit architecture. 

assembly language 

Assembly language code may need changes due to the 64-bit PA 2.0 calling conventions You may 
also want to take advantage of the new instructions for improved performance. If you are 
transitioning to IPF platforms, of course, the assembly language is different and will need to be 
rewritten. You can find more information on IPF assembly language at IA-64 Instruction Set 
Architecture Guide. 

The following summarizes items that may need adjustments for 64-bit PA: 

• In 64-bit mode, the assembler ignores the .CALL directive. This means the linker does not 
ensure that the caller and called procedure agree on argument locations. If you do not 
know the prototype of the called procedure, you must pass floating point parameters in 
both the corresponding general registers and corresponding floating-point.  

• Procedure calling conventions are different. For example, the number of items passed on 
the stack may be different.  

• Instead of ldw and stw, use ldd and std when loading and storing 64-bit values.  
• Addresses are capable of holding 64-bit values.  
• The 64-bit ELF object file format is more restrictive than the 32-bit object file format. 

Therefore, the set of legal instructions is more restrictive.  

• Instead of .word, use the .dword pseudo-op when allocating storage for a pointer.  
• Alignment of data items may be changed. 

object file format 

HP PA 1.0 and 1.1-based systems use the System Object Module (SOM) object file format. This is 
a proprietary format, and is the common representation of code and data for all compilers which 
generate code for PA 1.x-based systems.  

HP PA 2.0-based systems (64-bit systems) use the SOM object file format in 32-bit mode and the 
industry standard Executable and Linking Format (ELF) in 64-bit mode. Applications that are 
knowledgeable about the object file format need to support ELF for 64 bits and SOM for 32 bits.  

http://devresource.hp.com/devresource/Docs/Refs/IA64ISA/index.html
http://devresource.hp.com/devresource/Docs/Refs/IA64ISA/index.html


Scripts can identify the ELF format by using the HP-UX file command. Programs can identify the 
ELF format by using the nlist64 APIs in libelf.sl.  

procedure calling conventions 

The procedure calling conventions are changing for the 64-bit PA 2.0 architecture. Code that deals 
with stack unwinds, assembly language, and passing data in and out of the kernel may be 
impacted.  

See 64-Bit Run-time Architecture for PA-RISC 2.0 (.pdf) for details.  

 

HP-UX 64-bit performance considerations 

Most applications can remain in 32-bit mode on HP-UX 64-bit systems. However, some 
applications, which manipulate very large data sets, are constrained by the 4GB address space 
limit in 32-bit mode. These applications can take advantage of the larger address space and larger 
physical memory of 64-bit systems.  

Some I/O bound applications can trade off memory for disk I/O. By restructuring I/O bound 
applications to map larger portions of data into memory on large physical memory machines, disk 
I/O can be reduced. This reduction in disk I/O can improve performance because disk I/O's are 
more time-consuming than memory access.  

Memory-constrained applications, such as large digital circuit simulations, may also benefit by 
transitioning to 64-bit mode. Some of these simulations have grown to the point where they cannot 
run without major code modifications in a 32-bit address space.  

what impacts performance in 64-bit mode 

Typical applications do not require more virtual memory than what is available in 32-bit mode. 
When compiled in 32-bit mode on HP-UX 64-bit platforms, these applications usually perform better 
than when recompiled in 64-bit mode on the same 64-bit platform. Some of the reasons for this 
include: 

• 64-bit programs are larger. Depending on the application, the increase in the program size 
can increase cache and TLB misses and place greater demand on physical memory.  

• 64-bit long division is more time-consuming than 32-bit integer division.  
• 64-bit programs that use 32-bit signed integers as array indexes require additional 

instructions to perform sign extension each time an array is referenced.  

• By default, 64-bit object modules can be placed into shared and archive libraries and used 
in main programs. 32-bit code must be compiled with the +z or +Z option if it is used in 
shared libraries.  

tuning your 64-bit application  

http://devrsrc1.external.hp.com/STK/partner/pa64rt.pdf


Here are some ways to improve the performance of your 64-bit application: 

• Avoid performing mixed 32-bit and 64-bit operations, such as adding a 32-bit data type to a 
64-bit type. This operation requires the 32-bit type to be sign-extended to clear the upper 
32 bits of the register.  

• Avoid 64-bit long division whenever possible.  
• Eliminate sign extension during array references. Change unsigned int, int and signed int 

variables used as array indexes to long variables.  

• Consider compiling with the +Onoextern option if your 64-bit object modules are not 
used in a shared library.  

• Consider compiling with the +ESfic and the +Onoextern options if your application is a 
binary executable (a.out, not .o, .a or .sl).  

see also 
For additional information on C or C++, see:  
 » HP aC++ Online Programmer's Guide
 » HP C/HP-UX Release Notes
 » HP aC++ Release Notes
    
For additional information on Fortran, see: 
 » HP Fortran 90 Release Notes
    
For additional information on assembly language changes, see: 
 » Assembler Reference Manual
 » IA-64 Instruction Set Architecture Guide
 » 64-Bit Run-time Architecture for PA-RISC 2.0 (.pdf)
    
For additional information on linkers and libraries, see: 
 » HP-UX Linker and Libraries User's Guide
    
For addition information on writing portable code, see: 

 » Writing Portable Code
 » IPF Software Developer's Portability Checklist
 » IPF Software Developer's Performance Checklist

 

http://docs.hp.com/hpux/onlinedocs/dev/aCC/guide43/index.htm
http://docs.hp.com/hpux/onlinedocs/5967-0041/5967-0041.html
http://docs.hp.com/hpux/onlinedocs/5967-0037/5967-0037.html
http://docs.hp.com/hpux/onlinedocs/5969-7883/5969-7883.html
http://docs.hp.com/hpux/onlinedocs/92432-90012/92432-90012.html
http://devresource.hp.com/devresource/Docs/Refs/IA64ISA/index.html
http://devrsrc1.external.hp.com/STK/partner/pa64rt.pdf
http://docs.hp.com/hpux/onlinedocs/B2355-90655/B2355-90655.html
http://devrsrc1.external.hp.com/STK/portability.html
http://devrsrc1.external.hp.com/STK/clean_checklist.html
http://devrsrc1.external.hp.com/STK/perf_checklist.html

