
PGI Fortran Reference Guide

Version 2016

PGI Compilers and Tools

PGI Fortran Reference Guide ii

TABLE OF CONTENTS

Preface... xxiv
Audience Description.. xxiv
Compatibility and Conformance to Standards..xxiv
Organization...xxv
Hardware and Software Constraints.. xxvi
Conventions.. xxvi
Related Publications.. xxvii

Chapter 1. Language Overview..1
1.1. Elements of a Fortran Program Unit...1

1.1.1. Fortran Statements.. 1
1.1.2. Free and Fixed Source..1
1.1.3. Statement Ordering..2

1.2. The Fortran Character Set.. 3
1.3. Free Form Formatting... 4
1.4. Fixed Formatting..4

1.4.1. Column Formatting.. 5
1.4.2. Fixed Format Label Field...5
1.4.3. Fixed Format Continuation Field... 5
1.4.4. Fixed Format Statement Field... 5
1.4.5. Fixed Format Debug Statements.. 6
1.4.6. Tab Formatting... 6
1.4.7. Fixed Input File Format Summary...6

1.5. Include Fortran Source Files...7
1.6. Components of Fortran Statements.. 7

1.6.1. Symbolic Names.. 7
1.7. Expressions..8

1.7.1. Forming Expressions... 8
1.7.2. Expression Precedence Rules...8
1.7.3. Arithmetic Expressions.. 9
1.7.4. Relational Expressions.. 11
1.7.5. Logical Expressions... 11
1.7.6. Character Expressions...12
1.7.7. Character Concatenation... 12

1.8. Symbolic Name Scope.. 12
1.9. Assignment Statements...13

1.9.1. Arithmetic Assignment... 13
1.9.2. Logical Assignment..13
1.9.3. Character Assignment... 14

1.10. Listing Controls..14
1.11. OpenMP Directives.. 15

PGI Fortran Reference Guide iii

Chapter 2. Fortran Data Types...16
2.1. Intrinsic Data Types...16

2.1.1. Kind Parameter.. 16
2.1.2. Number of Bytes Specification.. 17

2.2. Constants...19
2.2.1. Integer Constants...19
2.2.2. Binary, Octal and Hexadecimal Constants.. 19
2.2.3. Real Constants.. 20
2.2.4. Double Precision Constants.. 20
2.2.5. Complex Constants..21
2.2.6. Double Complex Constants...21
2.2.7. Logical Constants.. 21
2.2.8. Character Constants.. 22
2.2.9. Parameter Constants... 22

2.3. Structure Constructors...22
2.4. Derived Types..24
2.5. Deferred Type Parameters.. 25

2.5.1. Typed Allocation...25
2.6. Arrays...25

2.6.1. Array Declaration Element...26
2.6.2. Deferred Shape Arrays..26
2.6.3. Subscripts...26
2.6.4. Character Substring... 27
2.6.5. Array Constructor Syntax...27

2.7. Fortran Pointers and Targets.. 28
2.8. Fortran Binary, Octal and Hexadecimal Constants... 28

2.8.1. Octal and Hexadecimal Constants - Alternate Forms...28
2.9. Hollerith Constants.. 29
2.10. Structures...30

2.10.1. Records.. 31
2.10.2. UNION and MAP Declarations.. 32
2.10.3. Data Initialization..33

2.11. Pointer Variables..34
2.11.1. Restrictions...35
2.11.2. Pointer Assignment.. 35

Chapter 3. Fortran Statements...36
3.1. Statement Format Overview..36

3.1.1. Definition of Statement-related Terms... 36
3.1.2. Origin of Statement..36
3.1.3. List-related Notation...37

3.2. Fortran Statement Summary Table... 37
3.3. ACCEPT...42

F77 extension...42

PGI Fortran Reference Guide iv

Syntax...42
Examples.. 42
Non-character Format-specifier..42
See Also...42

3.4. ARRAY... 43
CMF.. 43
Syntax...43
Description..43
Example..43
See Also...44

3.5. BYTE..44
F77 extension...44
Syntax...44
Description..44
Example..44

3.6. DECODE..44
F77 extension...44
Syntax...44
Non-character Format-specifier..45
See Also...45

3.7. DOUBLE COMPLEX... 45
F77 extension...45
Syntax...46
Syntax Extension..46
Description..46
Examples.. 46
See Also...46

3.8. DOUBLE PRECISION... 46
F90..47
Syntax...47
Syntax Extension..47
Description..47
Example..47

3.9. ENCODE..47
F77 extension...47
Syntax...48
Non-character Format-specifier..48
See Also...48

3.10. END MAP.. 48
F77 extension...48
Syntax...49
Description..49
Example..49

PGI Fortran Reference Guide v

3.11. END STRUCTURE.. 49
F77 extension...49
Syntax...49
Description..49

3.12. END UNION...49
F77 extension...49
Syntax...49
Description..49

3.13. INCLUDE... 50
F77 extension...50
Syntax...50
Example..50

3.14. MAP... 51
F77 extension...51
Syntax...51
Description..51
Example..51

3.15. POINTER (Cray)..52
F77 extension...52
Syntax...52
Example..53
Restrictions... 53

3.16. PROTECTED... 53
F2003..53
Syntax...53
Description..54
Examples.. 54

3.17. RECORD..54
F77 extension...54
Syntax...54
Description..55
Example..55

3.18. REDIMENSION..55
F77 extension...55
Syntax...55
Example..56

3.19. RETURN.. 56
F77..56
Syntax...56
Alternate RETURN... 56
Example..56

3.20. STRUCTURE... 57
F77 VAX extension.. 57

PGI Fortran Reference Guide vi

Syntax...57
Description..57

3.21. UNION..58
F77 extension...58
Syntax...59
Description..59

3.22. VOLATILE.. 60
F77 extension (statement)... 60
F2003 (attribute)...60
Syntax...60
Volatile Attribute... 60
Volatile Statement.. 60
Description..60
Volatile Attribute Example.. 60
Volatile Statement Example... 61

3.23. WAIT.. 61
F2003..61
Syntax...61
Description..62
Examples.. 62

Chapter 4. Fortran Arrays...63
4.1. Array Types... 63

4.1.1. Explicit Shape Arrays.. 64
4.1.2. Assumed Shape Arrays...64
4.1.3. Deferred Shape Arrays..64
4.1.4. Assumed Size Arrays.. 64

4.2. Array Specification...64
4.2.1. Explicit Shape Arrays.. 64
4.2.2. Assumed Shape Arrays...65
4.2.3. Deferred Shape Arrays..65
4.2.4. Assumed Size Arrays.. 65

4.3. Array Subscripts and Access.. 65
4.3.1. Array Sections and Subscript Triplets... 65
4.3.2. Array Sections and Vector Subscripts...66

4.4. Array Constructors...66
Chapter 5. Input and Output.. 67

5.1. File Access Methods... 67
5.1.1. Standard Preconnected Units..68

5.2. Opening and Closing Files..68
5.2.1. Direct Access Files.. 68
5.2.2. Closing a File...69

5.3. Data Transfer Statements... 71
5.4. Unformatted Data Transfer..71

PGI Fortran Reference Guide vii

5.5. Formatted Data Transfer... 72
5.5.1. Implied DO List Input Output List..72
5.5.2. Format Specifications.. 72

5.5.2.1. A Format Control – Character Data.. 73
5.5.2.2. B Format Control – Binary Data..74
5.5.2.3. D Format Control – Real Double Precision Data with Exponent... 74
5.5.2.4. d Format Control – Decimal specifier..75
5.5.2.5. E Format Control – Real Single Precision Data with Exponent...75
5.5.2.6. EN Format Control...75
5.5.2.7. ES Format Control... 76
5.5.2.8. F Format Control - Real Single Precision Data...76
5.5.2.9. G Format Control... 76
5.5.2.10. I Format Control – Integer Data.. 76
5.5.2.11. L Format Control – Logical Data... 77
5.5.2.12. Quote Format Control.. 77
5.5.2.13. BN Format Control – Blank Control...77
5.5.2.14. H Format Control – Hollerith Control...77
5.5.2.15. O Format Control Octal Values..78
5.5.2.16. P Format Specifier – Scale Control...78
5.5.2.17. Q Format Control - Quantity.. 79
5.5.2.18. r Format Control - Rounding..79
5.5.2.19. S Format Control – Sign Control... 79
5.5.2.20. T, TL and X Format Controls – Spaces and Tab Controls...79
5.5.2.21. Z Format Control Hexadecimal Values..80
5.5.2.22. Slash Format Control / – End of Record...80
5.5.2.23. The : Format Specifier – Format Termination..81
5.5.2.24. $ Format Control..81

5.5.3. Variable Format Expressions...81
5.6. Non-advancing Input and Output.. 81
5.7. List-directed formatting.. 82

5.7.1. List-directed input...82
5.7.2. List-directed output.. 83
5.7.3. Commas in External Field... 84
5.7.4. Character Encoding Format...84

5.8. Namelist Groups..84
5.8.1. Namelist Input.. 84
5.8.2. Namelist Output... 85

5.9. Recursive Input/Output.. 85
5.10. Input and Output of IEEE Infinities and NaNs.. 85

5.10.1. Output Format..86
5.10.2. Input Format...86

Chapter 6. Fortran Intrinsics.. 87
6.1. Intrinsics Support...87

PGI Fortran Reference Guide viii

6.1.1. Fortran 90/95 Bit Manipulation Functions and Subroutines.. 88
6.1.2. Elemental Character and Logical Functions..89
6.1.3. Fortran 90/95 Vector/Matrix Functions.. 90
6.1.4. Fortran 90/95 Array Reduction Functions... 90
6.1.5. Fortran 90/95 String Construction Functions...91
6.1.6. Fortran 90/95 Array Construction/Manipulation Functions.. 91
6.1.7. Fortran 90/95 General Inquiry Functions...92
6.1.8. Fortran 90/95 Numeric Inquiry Functions..92
6.1.9. Fortran 90/95 Array Inquiry Functions...93
6.1.10. Fortran 90/95 Subroutines...93
6.1.11. Fortran 90/95 Transfer Functions.. 94
6.1.12. Arithmetic Functions.. 94
6.1.13. Fortran 2003 and 2008 Functions... 97
6.1.14. Miscellaneous Functions..98

6.2. ACOSD.. 98
F77..98
Synopsis... 98
Arguments.. 99
Return Value...99

6.3. AND... 99
F77 extension...99
Synopsis... 99
Arguments.. 99
Return Value...99

6.4. ASIND.. 99
F77..99
Synopsis... 99
Argument.. 99
Return Value...99

6.5. ASSOCIATED.. 100
F90..100
Synopsis... 100
Arguments.. 100
Return Value...100

6.6. ATAN2D... 100
F77..100
Synopsis... 100
Arguments.. 100
Return Value...101

6.7. ATAND... 101
F77..101
Synopsis... 101
Argument.. 101

PGI Fortran Reference Guide ix

Return Value...101
6.8. COMPL.. 101

F77 extension...101
Synopsis... 101
Arguments.. 101
Return Value...101

6.9. CONJG...102
F77..102
Synopsis... 102
Argument.. 102
Return Value...102

6.10. COSD...102
F77..102
Synopsis... 102
Argument.. 102
Return Value...102

6.11. DIM...102
F77..103
Synopsis... 103
Arguments.. 103
Return Value...103

6.12. ININT..103
F77 extension...103
Synopsis... 103
Arguments.. 103
Return Value...103

6.13. INT8... 103
F77 extension...103
Synopsis... 103
Arguments.. 104
Return Value...104

6.14. IZEXT...104
F77 extension...104
Synopsis... 104
Arguments.. 104
Return Value...104

6.15. JINT... 104
F77 extension...104
Synopsis... 104
Arguments.. 104
Return Value...104

6.16. JNINT...105
F77 extension...105

PGI Fortran Reference Guide x

Synopsis... 105
Arguments.. 105
Return Value...105

6.17. KNINT.. 105
F77 extension...105
Synopsis... 105
Arguments.. 105
Return Value...105

6.18. LEADZ..106
F2003..106
Synopsis... 106
Arguments.. 106
Return Value...106
Description..106
Examples.. 106

6.19. LSHIFT...106
F77 extension...106
Synopsis... 106
Arguments.. 107
Return Value...107

6.20. OR..107
F77 extension...107
Synopsis... 107
Arguments.. 107
Return Value...107

6.21. RSHIFT.. 107
F77 extension...107
Synopsis... 107
Arguments.. 107
Return Value...108

6.22. SHIFT...108
F77 extension...108
Synopsis... 108
Arguments.. 108
Return Value...108

6.23. SIND.. 108
F77..108
Synopsis... 108
Argument.. 108
Return Value...108

6.24. TAND..109
F77..109
Synopsis... 109

PGI Fortran Reference Guide xi

Argument.. 109
Return Value...109

6.25. XOR... 109
F77 extension...109
Synopsis... 109
Arguments.. 109
Return Value...109

6.26. ZEXT..109
F77 extension...109
Synopsis... 110
Arguments.. 110
Return Value...110

6.27. Intrinsic Modules..110
6.27.1. Module IEEE_ARITHMETIC.. 110
6.27.2. IEEE_ARITHMETIC Derived Types...110
6.27.3. IEEE_ARITHMETIC Inquiry Functions.. 111
6.27.4. IEEE_ARITHMETIC Elemental Functions... 112
6.27.5. IEEE_ARITHMETIC Non-Elemental Subroutines.. 114
6.27.6. IEEE_ARITHMETIC Transformational Function.. 114

6.28. Module IEEE_EXCEPTIONS...114
6.28.1. IEEE_EXCEPTIONS Derived Types..114
6.28.2. IEEE_EXCEPTIONS Inquiry Functions... 115
6.28.3. IEEE_EXCEPTIONS Subroutines Functions...115

6.29. IEEE_FEATURES.. 117
6.29.1. IEEE_FEATURES Derived Type..117
6.29.2. IEEE_FEATURES Named Constants.. 117

6.30. Module iso_c_binding.. 118
6.31. Module iso_fortran_env... 118

Chapter 7. Object Oriented Programming.. 119
7.1. Inheritance... 119
7.2. Polymorphic Entities.. 120

7.2.1. Unlimited Polymorphic Entities.. 121
7.2.2. Typed Allocation for Polymorphic Variables.. 122
7.2.3. Sourced Allocation for Polymorphic Variables...122
7.2.4. Procedure Polymorphism...122
7.2.5. Procedure Polymorphism with Type-Bound Procedures... 123
7.2.6. Inheritance and Type-Bound Procedures.. 127
7.2.7. Procedure Overriding...127
7.2.8. Functions as Type-Bound Procedures.. 129

7.3. Information Hiding..129
7.3.1. Type Overloading...131

7.4. Data Polymorphism... 132
7.4.1. Pointer Polymorphic Variables...132

PGI Fortran Reference Guide xii

7.4.2. Allocatable Polymorphic Variables...133
7.4.3. Sourced Allocation... 134
7.4.4. Unlimited Polymorphic Objects..135
7.4.5. Abstract Types and Deferred Bindings..140

7.5. IEEE Modules..143
7.6. Intrinsic Functions..143

Chapter 8. OpenMP Directives for Fortran... 144
8.1. OpenMP Overview...144

8.1.1. OpenMP Shared-Memory Parallel Programming Model... 144
8.1.2. Terminology.. 145
8.1.3. OpenMP Example..146

8.2. Task Overview... 147
8.3. Tasks..147

8.3.1. Task Characteristics and Activities.. 147
8.3.2. Task Scheduling Points... 148
8.3.3. Task Construct... 148

8.4. Parallelization Directives..149
8.5. Directive Recognition...150
8.6. Directive Clauses...150

8.6.1. COLLAPSE (n)...153
8.6.2. COPYIN (list)... 153
8.6.3. COPYPRIVATE(list)..154
8.6.4. DEFAULT... 154
8.6.5. FIRSTPRIVATE(list)... 154
8.6.6. IF()..154
8.6.7. LASTPRIVATE(list)...155
8.6.8. NOWAIT... 155
8.6.9. NUM_THREADS.. 155
8.6.10. ORDERED... 155
8.6.11. PRIVATE...155
8.6.12. REDUCTION.. 156
8.6.13. SCHEDULE..156
8.6.14. SHARED.. 157
8.6.15. UNTIED.. 157

8.7. Directive Summary Table.. 157
8.7.1. ATOMIC..158

Syntax.. 158
Usage...159

8.7.2. BARRIER... 159
Syntax.. 159
Usage...159

8.7.3. CRITICAL ... END CRITICAL.. 159
Syntax.. 159

PGI Fortran Reference Guide xiii

Usage...159
Example of Critical...End Critical directive.. 160

8.7.4. C\$DOACROSS... 160
Syntax.. 160
Clauses.. 161
Usage...161

8.7.5. DO...END DO...161
Clauses:... 162
Usage:..162
Examples:.. 162
Tips.. 162

8.7.6. FLUSH..163
Syntax.. 163
Usage...163

8.7.7. MASTER ... END MASTER...163
Syntax.. 164
Usage...164
Examples... 164

8.7.8. ORDERED... 164
Syntax.. 164
Usage...164

8.7.9. PARALLEL ... END PARALLEL... 165
Syntax.. 165
Clauses.. 165
Usage...165
Example... 166
Clause Usage.. 166

8.7.10. PARALLEL DO...166
Syntax.. 167
Clauses.. 167
Usage...167

8.7.11. PARALLEL SECTIONS.. 167
Syntax.. 167
Clauses.. 167
Usage...168

8.7.12. PARALLEL WORKSHARE...168
Syntax.. 168
Clauses.. 168
Usage...169

8.7.13. SECTIONS ... END SECTIONS.. 169
Syntax.. 169
Clauses.. 169
Usage...169

PGI Fortran Reference Guide xiv

8.7.14. SINGLE ... END SINGLE.. 169
Syntax.. 170
Clauses.. 170
Usage...170
Examples... 170

8.7.15. TASK.. 170
Syntax.. 170
Clauses.. 171
Usage...171
Restrictions.. 172

8.7.16. TASKWAIT... 172
Syntax.. 172
Clauses.. 172
Usage...172
Restrictions.. 172

8.7.17. THREADPRIVATE..172
Syntax.. 173
Usage...173
Restrictions.. 173

8.7.18. WORKSHARE ... END WORKSHARE..173
Syntax.. 173
Usage...173

8.8. Runtime Library Routines..174
8.9. OpenMP Environment Variables... 178

8.9.1. OMP_DYNAMIC...179
8.9.2. OMP_MAX_ACTIVE_LEVELS...179
8.9.3. OMP_NESTED...179
8.9.4. OMP_NUM_THREADS..179
8.9.5. OMP_PROC_BIND.. 179
8.9.6. OMP_SCHEDULE..179
8.9.7. OMP_STACKSIZE..180
8.9.8. OMP_THREAD_LIMIT... 180
8.9.9. OMP_WAIT_POLICY... 180

Chapter 9. 3F Functions and VAX Subroutines... 182
9.1. 3F Routines... 182

9.1.1. abort... 182
Synopsis.. 183
Description... 183

9.1.2. access.. 183
Synopsis.. 183
Description... 183

9.1.3. alarm.. 183
Synopsis.. 183

PGI Fortran Reference Guide xv

Description... 184
9.1.4. Bessel functions...184

Synopsis.. 184
9.1.5. chdir..185

Synopsis.. 185
Description... 185

9.1.6. chmod...185
Synopsis.. 185
Description... 185

9.1.7. ctime...185
Synopsis.. 185
Description... 185

9.1.8. date.. 185
Synopsis.. 185
Description... 186

9.1.9. error functions.. 186
Synopsis.. 186

9.1.10. etime, dtime... 186
Synopsis.. 186
Description... 186

9.1.11. exit.. 186
Synopsis.. 186
Description... 186

9.1.12. fdate... 187
Synopsis.. 187
Description... 187

9.1.13. fgetc..187
Synopsis.. 187
Description... 187

9.1.14. flush..187
Synopsis.. 187
Description... 187

9.1.15. fork... 187
Synopsis.. 187
Description... 188

9.1.16. fputc..188
Synopsis.. 188
Description... 188

9.1.17. free... 188
Synopsis.. 188
Description... 188

9.1.18. fseek...188
Synopsis.. 188

PGI Fortran Reference Guide xvi

Description... 188
9.1.19. ftell..189

Synopsis.. 189
Description... 189

9.1.20. gerror..189
Synopsis.. 189
Description... 189

9.1.21. getarg... 189
Synopsis.. 189
Description... 189

9.1.22. iargc..190
9.1.23. getc...190

Synopsis.. 190
Description... 190

9.1.24. getcwd.. 190
Synopsis.. 190
Description... 190

9.1.25. getenv...190
Synopsis.. 190
Description... 190

9.1.26. getgid..191
Synopsis.. 191
Description... 191

9.1.27. getlog..191
Synopsis.. 191
Description... 191

9.1.28. getpid..191
Synopsis.. 191
Description... 191

9.1.29. getuid..191
Synopsis.. 191
Description... 191

9.1.30. gmtime..192
Synopsis.. 192
Description... 192

9.1.31. hostnm..192
Synopsis.. 192
Description... 192

9.1.32. idate..192
Synopsis.. 192
Description... 192

9.1.33. ierrno.. 192
Synopsis.. 192

PGI Fortran Reference Guide xvii

Description... 193
9.1.34. ioinit.. 193

Synopsis.. 193
Description... 193

9.1.35. isatty... 193
Synopsis.. 193
Description... 193

9.1.36. itime..193
Synopsis.. 193
Description... 193

9.1.37. kill... 193
Synopsis.. 194
Description... 194

9.1.38. link..194
Synopsis.. 194
Description... 194

9.1.39. lnblnk.. 194
Synopsis.. 194
Description... 194

9.1.40. loc...194
Synopsis.. 194
Description... 194

9.1.41. ltime..195
Synopsis.. 195
Description... 195

9.1.42. malloc... 195
Synopsis.. 195
Description... 195

9.1.43. mclock.. 195
Synopsis.. 195
Description... 195

9.1.44. mvbits... 195
Synopsis.. 195
Description... 196

9.1.45. outstr.. 196
Synopsis.. 196
Description... 196

9.1.46. perror..196
Synopsis.. 196
Description... 196

9.1.47. putc...196
Synopsis.. 196
Description... 196

PGI Fortran Reference Guide xviii

9.1.48. putenv...196
Synopsis.. 197
Description... 197

9.1.49. qsort... 197
Synopsis.. 197
Description... 197

9.1.50. rand, irand, srand.. 197
Synopsis.. 197
Description... 198

9.1.51. random, irandm, drandm... 198
Synopsis.. 198
Description... 198

9.1.52. range.. 198
Synopsis.. 198
Description... 198

9.1.53. rename... 199
Synopsis.. 199
Description... 199

9.1.54. rindex..199
Synopsis.. 199
Description... 199

9.1.55. secnds, dsecnds.. 199
Synopsis.. 199
Description... 200

9.1.56. setvbuf..200
Synopsis.. 200
Description... 200

9.1.57. setvbuf3f...201
Synopsis.. 201
Description... 201

9.1.58. signal.. 201
Synopsis.. 201
Description... 202

9.1.59. sleep...202
Synopsis.. 202
Description... 202

9.1.60. stat, lstat, fstat, fstat64.. 202
Synopsis.. 202
Description... 202

9.1.61. stime...203
Synopsis.. 203
Description... 203

9.1.62. symlnk.. 203

PGI Fortran Reference Guide xix

Synopsis.. 203
Description... 203

9.1.63. system.. 203
Synopsis.. 203
Description... 203

9.1.64. time...203
Synopsis.. 204
Description... 204

9.1.65. times...204
Synopsis.. 204
Description... 204

9.1.66. ttynam...204
Synopsis.. 204
Description... 204

9.1.67. unlink.. 204
Synopsis.. 204
Description... 204

9.1.68. wait... 205
Synopsis.. 205
Description... 205

9.2. VAX System Subroutines.. 205
9.2.1. Built-In Functions... 205

%LOC(arg)...205
%REF(a).. 205
%VAL(a)... 205

9.2.2. VAX/VMS System Subroutines..205
DATE..206
EXIT... 206
GETARG.. 206
IARGC..206
IDATE...206
MVBITS..207
RAN..207
SECNDS.. 208
TIME.. 208

Chapter 10. Interoperability with C..209
10.1. Enumerators...209
10.2. Interoperability with C Pointer Types.. 209

10.2.1. c_f_pointer..209
F2003...209
Syntax.. 210
Type... 210
Description... 210

PGI Fortran Reference Guide xx

Example... 210
10.2.2. c_f_procpointer...211

F2003...211
Syntax.. 211
Type... 211
Description... 211
Example... 212

10.2.3. c_associated.. 212
F2003...212
Syntax.. 212
Type... 212
Description... 212
Return Value..212
Example... 212

10.3. Interoperability of Derived Types...213
Chapter 11. Contact Information..214

PGI Fortran Reference Guide xxi

LIST OF FIGURES

Figure 1 Order of Statements ...2

PGI Fortran Reference Guide xxii

LIST OF TABLES

Table 1 Fortran Characters ...3

Table 2 C Language Character Escape Sequences ..3

Table 3 Fixed Format Record Positions and Fields ...5

Table 4 Fortran Operator Precedence ..8

Table 5 Arithmetic Operators .. 10

Table 6 Arithmetic Operator Precedence ... 10

Table 7 Relational Operators ..11

Table 8 Logical Expression Operators ... 11

Table 9 Fortran Intrinsic Data Types .. 16

Table 10 Data Types Kind Parameters .. 17

Table 11 Data Type Extensions ..17

Table 12 Data Type Ranks ...18

Table 13 Examples of Real Constants ...20

Table 14 Examples of Double Precision Constants ... 21

Table 15 Statement Summary Table .. 37

Table 16 OPEN Specifiers ..69

Table 17 Format Character Controls for a Printer ... 73

Table 18 Format Character Controls for Rounding Printer .. 79

Table 19 List Directed Input Values ..82

Table 20 Default List Directed Output Formatting ..83

Table 21 IEEE_ARITHMETIC Derived Types ...111

Table 22 IEEE_ARITHMETIC Inquiry Functions .. 112

Table 23 IEEE_ARITHMETIC Elemental Functions ... 112

Table 24 IEEE_ARITHMETIC Non-Elemental Subroutines ..114

PGI Fortran Reference Guide xxiii

Table 25 IEEE_EXCEPTIONS Derived Types ... 115

Table 26 IEEE_EXCEPTIONS Inquiry Functions ... 115

Table 27 IEEE_EXCEPTIONS Elemental Subroutines .. 116

Table 28 IEEE_EXCEPTIONS Elemental Subroutines .. 116

Table 29 IEEE_FEATURES Named Constants ..117

Table 30 iso_fortran_env Named Constants .. 118

Table 31 Fortran 2003 Functions and Procedures ...143

Table 32 Directive Clauses Summary Table .. 151

Table 33 Initialization of REDUCTION Variables ..156

Table 34 Directive Summary Table ...157

Table 35 Runtime Library Routines Summary ... 174

Table 36 OpenMP-related Environment Variable Summary Table ... 178

PGI Fortran Reference Guide xxiv

PREFACE

This manual describes the Portland Group's implementation of the FORTRAN 77, Fortran 90/95,
and Fortran 2003 languages. Collectively, The Portland Group compilers that implement these
languages are referred to as the PGI Fortran compilers. This manual is part of a set of documents
describing the Fortran language and the compilation tools available from The Portland Group. It
presents the Fortran language statements, intrinsics, and extension directives.

Two Compilers represent the PGI Fortran compiler products. Fortran 77 (pgf77) is one of them.
pgf90, pgf95, and pgfortran are the same compiler that has evolved from Fortran 90 to Fortran
2003 standards. The older names are supported so that makefiles that were written using pgf90/
pgf95, will still work. All three names refer to the same one compiler that supports the Fortran
2003 language standard.

The Portland Group’s Fortran compilation system includes a compilation driver, multiple Fortran
compilers, associated runtime support and mathematical libraries, and associated software
development tools for debugging and profiling the performance of Fortran programs. Depending
on the target system, The Portland Group’s Fortran software development tools may also include
an assembler or a linker. You can use these tools to create, debug, optimize and profile your
Fortran programs. Related Publications lists other manuals in the PGI documentation set.

Audience Description
This manual is intended for people who are porting or writing Fortran programs using the PGI
Fortran compilers. To use Fortran you should be aware of the role of Fortran and of source-
level programs in the software development process and you should have some knowledge of
a particular system or workstation cluster. To use the PGI Fortran compilers, you need to be
familiar with the Fortran language FORTRAN77, Fortran 90/95, or F2003 as well as the basic
commands available on your host system.

Compatibility and Conformance to Standards
The PGI Fortran compilers, PGF77 and PGFORTAN, run on a variety of x86 and OpenPOWER
processor-based host systems. The PGF77 compiler, supported on x86 only, accepts an enhanced
version of FORTRAN 77 that conforms to the ANSI standard for FORTRAN 77 and includes
various extensions from VAX/VMS Fortran, IBM/VS Fortran, and MIL-STD-1753. The

Preface

PGI Fortran Reference Guide xxv

PGFORTRAN compiler accepts a similarly enhanced version of the ANSI standard for Fortran
90/95/2003.

For further information on the Fortran language, you can also refer to the following:

‣ American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).
‣ ISO/IEC 1539 : 1991, Information technology – Programming Languages – Fortran, Geneva,

1991 (Fortran 90).
‣ ISO/IEC 1539 : 1997, Information technology – Programming Languages – Fortran, Geneva,

1997 (Fortran 95).
‣ ISO/IEC 1539-1 : 2004, Information technology – Programming Languages – Fortran,

Geneva, 2004 (Fortran 2003).
‣ Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,

Cambridge, Mass, 1997.
‣ Fortran 2003 Handbook, The Complete Syntax, Features and Procedures, Adams et al,

Springer; 1st Edition. 2008.
‣ OpenMP Fortran Application Program Interface, Version 3.1, July 2011, http://

www.openmp.org.
‣ Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,

1984).
‣ IBM VS Fortran, IBM Corporation, Rev. GC26-4119.
‣ Military Standard, Fortran, DOD Supplement to American National Standard Programming

Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization
This guide is divided into the following sections and appendices:

Language Overview, provides an introduction to the Fortran language.

Fortran Data Types, describes the data types supported by PGI Fortran compilers and provides
examples using various data types. It also contains information on memory allocation and
alignment issue.

Fortran Statements, briefly describes each Fortran statement that the PGI Fortran compilers
accept. Longer descriptions are available for PGI extensions.

Fortran Arrays, describes special characteristics of arrays in Fortran 90/95.

Input and Output, describes the input, output, and format statements that allow programs to
transfer data to or from files.

Fortran Intrinsics, lists the Fortran intrinsics and subroutines supported by the PGI Fortran
compilers.

Object Oriented Programming, provides a high-level overview of procedures, functions, and
attributes from Fortran 2003 that facilitate an object-oriented approach to programming.

OpenMP Directives for Fortran, lists the language extensions that the PGI Fortran compilers
support.

http://www.openmp.org.
http://www.openmp.org.

Preface

PGI Fortran Reference Guide xxvi

Functions and VAX Subroutines, describes the functions and subroutines in the Fortran runtime
library and discusses the VAX/VMS system subroutines and the built-in functions supported by
the PGI Fortran compilers.

Interoperability with C, describes the pointer types and enumerators available for Fortran
interoperability with C.

Hardware and Software Constraints
The PGI compilers operate on a variety of host systems and produce object code for a variety of
target systems. Details concerning environment-specific values and defaults and host-specific
features or limitations are presented in the PGI Compiler User’s Guide, the man pages for each
compiler in a given installation, and in the release notes and installation instructions included
with all PGI compilers and tools software products.

Conventions
This guide uses the following conventions:

italic
is used for emphasis.

Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.

Bold
is used for commands.

[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.

{ item2 | item 3 }
braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...
ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.

C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on wide variety of Linux, OS X and Windows
operating systems running on x86-compatible processors, and on Linux running on OpenPOWER

http://www.pgroup.com/resources/docs.htm

Preface

PGI Fortran Reference Guide xxvii

processors. (Currently, the PGDBG debugger is supported on x86 only.) See the Compatibility
and Installation section on the PGI website for a comprehensive listing of supported platforms.

Support for 32-bit development is deprecated in PGI 2016 and will no longer be available as of the PGI
2017 release. PGI 2017 will only be available for 64-bit operating systems and will not include the ability to
compile 32-bit applications for execution on either 32- or 64-bit operating systems.

Related Publications
The following documents contain additional information related to compilers and tools available
from The Portland Group, Inc.

‣ The PGI Compiler User's Guide and the PGI Visual Fortran User’s Guide describe the
general features and usage guidelines for all PGI compilers, and describes in detail various
available compiler options in a user's guide format.

‣ Fortran 95 Handbook, from McGraw-Hill, describes the Fortran 95 language and the
statements, data types, input/output format specifiers, and additional reference material that
defines ANSI/ISO Fortran 95.

‣ Fortran 2003 Handbook, from Springer, provides the complete syntax, features and
procedures for Fortran 2003.

‣ System V Application Binary Interface Processor Supplement by AT&T UNIX System
Laboratories, Inc, (available from Prentice Hall, Inc.)

‣ American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).
‣ Programming in VAX FORTRAN, Version 4.0, Digital Equipment Corporation (September,

1984).
‣ IBM VS FORTRAN, IBM Corporation, Rev. GC26-4119.

http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/install.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Preface

PGI Fortran Reference Guide xxviii

PGI Fortran Reference Guide 1

Chapter 1.
LANGUAGE OVERVIEW

This section describes the basic elements of the Fortran language, the format of Fortran
statements, and the types of expressions and assignments accepted by the PGI Fortran compilers.

The PGF77 compiler accepts as input FORTRAN 77 and produces as output assembly language
code, binary object code or binary executables in conjunction with the assembler, linker and
libraries on the target system. The input language must be extended FORTRAN 77 as specified in
this reference manual. The PGFORTRAN compiler functions similarly for Fortran 90/95/2003.

This section is not an introduction to the overall capabilities of Fortran. Rather, it is an overview
of the syntax requirements of programs used with the PGI Fortran compilers. The Fortran 2003
Handbook, provides the complete syntax, features and procedures for Fortran 2003.

1.1. Elements of a Fortran Program Unit
A Fortran program is composed of SUBROUTINE, FUNCTION, MODULE, BLOCK DATA, or
PROGRAM program units.

Fortran source code consists of a sequence of program units which are to be compiled. Every
program unit consists of statements and optionally comments beginning with a program unit
statement, either a SUBROUTINE, FUNCTION, or PROGRAM statement, and finishing with an
END statement (BLOCK DATA and MODULE program units are also allowed).

In the absence of one of these statements, the PGI Fortran compilers insert a PROGRAM
statement.

1.1.1. Fortran Statements
Statements are either executable statements or nonexecutable specification statements.
Each statement consists of a single line or source record, possibly followed by one or more
continuation lines. Multiple statements may appear on a single line if they are separated by a
semicolon (;). Comments may appear on any line following a comment character (!).

1.1.2. Free and Fixed Source
Fortran permits two types of source formatting, fixed source form and free source form.

Language Overview

PGI Fortran Reference Guide 2

‣ Fixed source form uses the traditional Fortran approach where specific column positions are
reserved for labels, continuation characters, and statements and blank characters are ignored.
The PGF77 compiler supports only fixed source form. The PGF77 compiler also supports a
less restrictive variety of fixed source form called tab source form.

‣ Use the compiler option –Mfixed.
‣ Use the suffix .f

‣ Free source form introduced with Fortran 90 places few restrictions on source formatting;
the context of an element, as well as the position of blanks, or tabs, separate logical tokens.
You can select free source form as an option to PGFORTRAN in one of these ways:

‣ Use the compiler option –Mfreeform.
‣ Use either the suffix .f90, the suffix .f95, or the suffix .f03.

1.1.3. Statement Ordering
Fortran statements and constructs must conform to ordering requirements imposed by the
language definition. Figure 1 illustrates these requirements. Vertical lines separate statements
and constructs that can be interspersed. Horizontal lines separate statements that must not be
interspersed.

These rules are less strict than those in the ANSI standard. The differences are as follows:

‣ DATA statements can be freely interspersed with PARAMETER statements and other
specification statements.

‣ NAMELIST statements are supported and have the same order requirements as FORMAT
and ENTRY statements.

‣ The IMPLICIT NONE statement can precede other IMPLICIT statements.

Figure 1 Order of Statements

OPTIONS Statement

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statements

USE Statements

IMPORT Statements

IMPLICIT NONE Statements

IMPLICIT Statements

Other Specifications
PARAMETER

Statement Function Definition

Comments

and

INCLUDE

Statements
NAMELIST,

FORMAT,

and ENTRY

Statements
Data Statements

EXECUTABLE Statements

CONTAINS Statement

Internal Subprograms or Module

END Statement

Language Overview

PGI Fortran Reference Guide 3

1.2. The Fortran Character Set
Table 1, Fortran Characters, hows the set of Fortran characters. Character variables and constants
can use any ASCII character. The value of the command-line option –Mupcase determines if
the compiler distinguishes between case (upper and lower) in identifiers. By default, without
the –Mupcase option selected, the compiler does not distinguish between upper and lower case
characters in identifiers (upper and lower case are always significant in character constants).

Table 1 Fortran Characters

Character Description Character Description

, Comma A-Z, a-z Alphabetic

: Colon <space> Space character

; Semicolon = Equals

_ Underscore character + Plus

< Less than - Minus

> Greater than * Asterisk

? Question mark / Slash

% Percent (Left parenthesis

" Quotation mark) Right parenthesis

$ Currency symbol [Left bracket

. Decimal point] Right bracket

! Exclamation mark <CR> Carriage return

0-9 Numeric <TAB> Tabulation character

Table 2, C Language Character Escape Sequences, shows C language character escape sequences
that the PGI Fortran compilers recognize in character string constants when –Mbackslash is on
the command line. These values depend on the command-line option –Mbackslash.

Table 2 C Language Character Escape Sequences

Character Description

\v vertical tab

\a alert (bell)

\n newline

\t tab

\b backspace

\f formfeed

\r carriage return

Language Overview

PGI Fortran Reference Guide 4

Character Description

\0 null

\' apostrophe (does not terminate a string)

\" double quotes (does not terminate a string)

\\ \

\x x, where x is any other character

\ddd character with the given octal representation.

1.3. Free Form Formatting
Using free form formatting, columns are not significant for the elements of a Fortran line, and a
blank or series of blanks or tabs and the context of a token specify the token type. The following
rules apply to free form formatting:

‣ Up to 132 characters are valid per line, and the compiler option –Mextend does not apply.
‣ A single Fortran line may contain multiple statements, with the ; (semicolon) separating

multiple statements on a single line.
‣ Free format labels are valid at the start of a line.

‣ The label must be separated from the remaining statements on the line by at least one
blank or a <TAB>.

‣ Labels consist of a numeric field drawn from digits 0 to 9.
‣ The label cannot be more than 5 characters.

‣ Either a blank line, or the ! character following a Fortran line indicates a comment. The
Fortran text does not contain any of the characters after the !.

‣ The & character at the end of a line means the following line represents a continuation line.

‣ If a continuation line starts with the & character, then the characters following the & are
the start of the continuation line.

‣ If the continuation line does not start with a &, then all characters on the line are part of
the continuation line, including any initial blanks or tabs.

A single Fortran line may contain multiple statements. The ; (semicolon) separates multiple
statements on a single line. Free format labels are valid at the start of a line, as long as the label
is separated from the remaining statements on the line by at least one blank or a <TAB>. Labels
consist of a numeric field drawn from digits 0 to 9. The label cannot be more than 5 characters.

1.4. Fixed Formatting
This section describes the two types of fixed formatting that PGI Fortran compilers support:
column formatting and tab formatting.

Language Overview

PGI Fortran Reference Guide 5

1.4.1. Column Formatting
When using column formatting a Fortran record consists of a sequence of up to 72 or 132 ASCII
characters, the last being <CR>. Table 3 shows the fixed layout.

For column formatting of 132 characters, you must specify –Mextend.

Table 3 Fixed Format Record Positions and Fields

Position Field

1-5 Label field

6 Continuation field

7-72 or 7-132 Statement field

Characters on a line beyond position 72, or position 132 if –Mextend is specified, are ignored. In
addition, any characters following an exclamation (!) character are considered comments and are
thus disregarded during compilation.

1.4.2. Fixed Format Label Field
The label field holds up to five characters. Further, each label must be unique in its program unit.

‣ The characters C , D, *, or ! in the first character position of a label field indicate a comment
line.

‣ When a numeric field drawn from digits 0 to 9 is placed in the label field, the field is a label.
‣ A line with no label, and with five space characters or a <TAB> in the label field, is an

unlabeled statement.
‣ Continuation lines must not be labeled.
‣ A program to only jump to labels that are on executable statements.

1.4.3. Fixed Format Continuation Field
The sixth character position, or the position after the tab, is the continuation field. This field
is ignored in comment lines. It is invalid if the label field is not five spaces. A value of 0,
<space> or <TAB> indicates the first line of a statement. Any other value indicates a subsequent,
continuation line to the preceding statement.

1.4.4. Fixed Format Statement Field
The statement field consists of valid identifiers and symbols, possibly separated by <space> or
<TAB> and terminated by <CR>.

Within the statement field, tabs, spaces, comments and any characters found beyond the 72nd
character, or position 132 if –Mextend is specified, are ignored. As stated earlier, any characters
following an exclamation (!) character are considered comments.

Language Overview

PGI Fortran Reference Guide 6

1.4.5. Fixed Format Debug Statements
The letter D in column 1 using fixed formatting designates the statement on the specified line
is a debugging statement. The compiler treats the debugging statement as a comment, ignoring
it, unless the command line option –Mdlines is set during compilation. If –Mdlines is set,
the compiler acts as if the line starting with D were a Fortran statement and compiles the line
according to the standard rules.

1.4.6. Tab Formatting
The PGI Fortran compilers support an alternate form of fixed source from called tab source form.
A tab formatted source file is made up of a label field, an optional continuation indicator and a
statement field. The label field is terminated by a tab character. The label cannot be more than 5
characters.

A continuation line is indicated by a tab character followed immediately by a non-zero digit. The
statement field starts after a continuation indicator, when one is present. Again, any characters
found beyond the 72nd character, or position 132 if –Mextend is specified, are ignored.

1.4.7. Fixed Input File Format Summary
For fixed input file format, the following is true:

‣ Tab-Format lines are supported.

‣ A tab in columns 1-6 ends the statement label field and begins an optional continuation
indicator field.

‣ If a non-zero digit follows the tab character, the continuation field exists and indicates a
continuation field.

‣ If anything other than a non-zero digit follows the tab character, the statement body
begins with that character and extends to the end of the source statement.

This does not override Fortran's free source form handling since no valid Fortran statement can
begin with a non-zero digit.

‣ The tab character is ignored if it occurs in a line except in Hollerith or character
constants.

‣ Input lines may be of varying lengths.

‣ If there are fewer than 72 characters, the line is padded with blanks.
‣ Characters after the 72nd are ignored unless the –Mextend option is used on the

command line.

The –Mextend option extends the statement field to position 132.

When the –Mextend option is used, the input line is padded with blanks if it is fewer
than 132 characters; characters after the 132nd are ignored.

‣ Blank lines are allowed at the end of a program unit.

Language Overview

PGI Fortran Reference Guide 7

‣ The number of continuation lines allowed is extended to 1000 lines.

1.5. Include Fortran Source Files
The sequence of consecutive compilation of source statements may be interrupted so that an extra
source file can be included. To do this, use the INCLUDE statement which takes the form:
INCLUDE "filename"

where filename is the name of the file to be included. Pairs of either single or double quotes are
acceptable enclosing filename.

The INCLUDE file is compiled to replace the INCLUDE statement, and on completion of that
source the file is closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same
COMMON block data mappings are used in several program units. For example the following
statement includes the file MYFILE.DEF.
INCLUDE "MYFILE.DEF"

Nested includes are allowed, up to a PGI Fortran defined limit of 20.

Recursive includes are not allowed. That is, if a file includes a file, that file may not also include
the same file.

1.6. Components of Fortran Statements
Fortran program units are made up of statements which consist of expressions and elements. An
expression can be broken down to simpler expressions and eventually to its elements combined
with operators. Hence the basic building block of a statement is an element.

An element takes one of the following forms:

‣ A constant represents a fixed value.
‣ A variable represents a value which may change during program execution.
‣ An array is a group of values that can be referred to as a whole, as a section, or separately.

The separate values are known as the elements of the array. The array has a symbolic name.
‣ A function reference or subroutine reference is the name of a function or subroutine followed

by an argument list. The reference causes the code specified at function/subroutine definition
to be executed and if a function, the result is substituted for the function reference.

1.6.1. Symbolic Names
Symbolic names identify different entities in Fortran source code. A symbolic name is a string
of letters and digits, which must start with a letter and be terminated by a character not in the
symbolic names set (for example a <space> or a <TAB> character). Underscore (_) characters
may appear within symbolic names. Only the first 63 characters identify the symbolic name.

Here several examples of symbolic names:
NUM
CRA9
numericabcdefghijklmnopqrstuvwxyz

Language Overview

PGI Fortran Reference Guide 8

The last example is identified by its first 63 characters and is equivalent to:
numericabcdefghijklmnopqrstuvwx

Some examples of invalid symbolic name include:
8Q Invalid because it begins with a number

FIVE.4 Invalid because it contains a period, an invalid
 character for a symbolic name.

1.7. Expressions
Each data item, such as a variable or a constant, represents a particular value at any point during
program execution. These elements may be combined together to form expressions, using binary
or unary operators, so that the expression itself yields a value. A Fortran expression may be any
of the following:

‣ A scalar expression
‣ An array expression
‣ A constant expression

‣ A specification expression
‣ An initialization expression
‣ Mixed array and scalar expressions

1.7.1. Forming Expressions
Expressions fall into one of four classes: arithmetic, relational, logical or character, each class
described later in this section.

An expression is formed like this:

expr binary-operator expr or unary-operator expr

where expr is formed as an expression or as an element.

For example, these are simple expressions whose components are elements. The first expression
involves a binary operator and the other two are unary operators.

A+B -C +D

1.7.2. Expression Precedence Rules
Arithmetic, relational and logical expressions may be identified to the compiler by the use of
parentheses, as described in Table 6. When no guidance is given to the compiler it imposes a set
of precedence rules to identify each expression uniquely. Table 4 shows the operator precedence
rules for expressions.

Table 4 Fortran Operator Precedence

Operator Evaluated

Unary defined Highest

** N/A

* or / N/A

Language Overview

PGI Fortran Reference Guide 9

Operator Evaluated

Unary + or - N/A

Binary + or – N/A

Relational operators: GT., .GE., .LE. N/A

Relational operators ==, /= Same precedence

Relational operators <, <=, >, >= Same precedence

Relational operators .EQ., .NE., .LT. Same precedence

.NOT. N/A

.AND. N/A

.OR. N/A

.NEQV. and .EQV. N/A

Binary defined Lowest

For example, the following two expressions are equivalent. If we set A to 16, B to 4, and C to 2,
both expressions equal 8.
A/B*C such as 16 / 4 * 2

(A/B)*C such as (16 /4) * 2

Another example of equivalent expressions are these:
 A*B+B**C .EQ. X+Y/Z .AND. .NOT. K-3.0 .GT. T

((((A*B)+(B**C)) .EQ. (X+(Y/Z))) .AND. (.NOT. ((K-3.0) .GT. T)))

1.7.3. Arithmetic Expressions
Arithmetic expressions are formed from arithmetic elements and arithmetic operators.

Arithmetic Elements

An arithmetic element may be:

‣ an arithmetic expression

‣ a variable

‣ a constant

‣ an array element

‣ a function reference

‣ a field of a structure

A value should be associated with a variable or array element before it is used in an expression.

Arithmetic Operators

The arithmetic operators specify a computation to be performed on the elements. The result is a
numeric result. Table 5 shows the arithmetic operators.

Language Overview

PGI Fortran Reference Guide 10

Table 5 Arithmetic Operators

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary minus

Arithmetic Operator Precedence

Arithmetic expressions are evaluated in an order determined by a precedence associated with
each operator. Table 6 shows the precedence of each arithmetic operator.

Table 6 Arithmetic Operator Precedence

Operator Precedence

** First

* and / Second

+ and - Third

This following example is resolved into the arithmetic expressions (A) + (B * C) rather than (A +
B) * (C).
 A + B * C

Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed
to be evaluated first. For example, in the following expression the computer firsts adds A and B,
and then multiplies that sum by C.
 (A + B) * C

Arithmetic Expression Types

The type of an arithmetic expression depends on the type of elements in the expression:

INTEGER
if it contains only integer elements.

REAL
if it contains only real and integer elements.

DOUBLE PRECISION
if it contains only double precision, real and integer elements.

Language Overview

PGI Fortran Reference Guide 11

COMPLEX
if any element is complex. Any element which needs conversion to complex will be converted
by taking the real part from the original value and setting the imaginary part to zero.

DOUBLE COMPLEX
if any element is double complex.

The Data Type Ranks table provides more information about these expressions.

1.7.4. Relational Expressions
A relational expression is composed of two arithmetic expressions separated by a relational
operator. The value of the expression is true or false (.TRUE. or .FALSE.) depending on the value
of the expressions and the nature of the operator. Table 7 shows the relational operators.

Table 7 Relational Operators

Operator Relationship

< Less than

<= Less than or equal to

== Equal to

/= Not equal to

> Greater than

>= Greater than or equal to

In relational expressions the arithmetic elements are evaluated to obtain their values. The
relationship is then evaluated to obtain the true or false result. Thus the relational expression:
 TIME + MEAN .LT. LAST

means if the sum of TIME and MEAN is less than the value of LAST, then the result is true,
otherwise it is false.

1.7.5. Logical Expressions
A logical expression is composed of two relational or logical expressions separated by a logical
operator. Each logical expression yields the value true or false (.TRUE. or .FALSE.). Table 8
shows the logical operators.

Table 8 Logical Expression Operators

Operator Relationship

.AND. True if both expressions are true.

.OR. True if either expression or both is true.

Language Overview

PGI Fortran Reference Guide 12

Operator Relationship

.NOT. This is a unary operator; it is true if the expression is false, otherwise it is false.

.NEQV. False if both expressions have the same logical value

.XOR. Same as .NEQV.

.EQV. True if both expressions have the same logical value

In the following example, TEST will be .TRUE. if A is greater than B or I is not equal to J+17.
 TEST = A .GT. B .OR. I .NE. J+17

1.7.6. Character Expressions
An expression of type CHARACTER can consist of one or more printable characters. Its length is
the number of characters in the string. Each character is numbered consecutively from left to right
beginning with 1. For example:
'ab_&'
'A@HJi2'
'var[1,12]'

1.7.7. Character Concatenation
A character expression can be formed by concatenating two (or more) valid character expressions
using the concatenation operator //. The following table shows several examples of concatenation.

Expression Value

'ABC'//'YZ' "ABCYZ"

'JOHN '//'SMITH' "JOHN SMITH"

'J '//'JAMES '//'JOY' "J JAMES JOY"

1.8. Symbolic Name Scope
Fortran 90/95/2003 scoping is expanded from the traditional FORTRAN 77 capabilities which
provide a scoping mechanism using subroutines, main programs, and COMMONs. Fortran
90/95/2003 adds the MODULE statement. Modules provide an expanded alternative to the use of
both COMMONs and INCLUDE statements. Modules allow data and functions to be packaged
and defined as a unit, incorporating data hiding and using a scope that is determined with the
USE statement.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONs are global to those modules that
reference them. They must refer to unique objects, not only during compilation, but also in the
link stage.

The scope of names other than these is local to the module in which they occur, and any reference
to the name in a different module will imply a new local declaration. This includes the arithmetic
function statement.

Language Overview

PGI Fortran Reference Guide 13

1.9. Assignment Statements
A Fortran assignment statement can be any of the following:

‣ An intrinsic assignment statement
‣ A statement label assignment
‣ An array assignment
‣ A masked array assignment
‣ A pointer assignment
‣ A defined assignment

1.9.1. Arithmetic Assignment
The arithmetic assignment statement has the following form:
object = arithmetic-expression

where object is one of the following:

‣ Variable
‣ Function name (within a function body)
‣ Subroutine argument
‣ Array element
‣ Field of a structure

The type of object determines the type of the assignment (INTEGER, REAL, DOUBLE
PRECISION or COMPLEX) and the arithmetic-expression is coerced into the correct type if
necessary.

In the case of:
complex = real expression

the implication is that the real part of the complex number becomes the result of the expression
and the imaginary part becomes zero. The same applies if the expression is double precision,
except that the expression will be coerced to real.

The following are examples of arithmetic assignment statements.
A=(P+Q)*(T/V)
B=R**T**2

1.9.2. Logical Assignment
The logical assignment statement has the following form:
object = logical-expression

where object is one of the following:

‣ Variable
‣ Function name (only within the body of the function)
‣ Subroutine argument
‣ Array element

Language Overview

PGI Fortran Reference Guide 14

‣ A field of a structure

The type of object must be logical.

In the following example, FLAG takes the logical value .TRUE. if P+Q is greater than R;
otherwise FLAG has the logical value .FALSE.
FLAG=(P+Q) .GT. R

1.9.3. Character Assignment
The form of a character assignment is:
object = character expression

where object must be of type character, and is one of the following:

‣ Variable
‣ Function name (only within the body of the function)
‣ Subroutine argument
‣ Array element
‣ Character substring
‣ A field of a structure

In addition, these rules apply:

‣ None of the character positions being defined in object can be referenced in the character
expression.

‣ Only such characters as are necessary for the assignment to object need to be defined in the
character expression.

‣ The character expression and object can have different lengths.

‣ When object is longer than the character expression, trailing blanks are added to the
object.

‣ If object is shorter than the character expression the right-hand characters of the
character expression are truncated as necessary.

In the following example, all the variables and arrays are assumed to be of type character.
FILE = 'BOOKS'
PLOT(3:8) = 'PLANTS'
TEXT(I,K+1)(2:B-1) = TITLE//X

1.10. Listing Controls
The PGI Fortran compilers recognize three compiler directives that affect the program listing
process:

%LIST
Turns on the listing process beginning at the following source code line.

%NOLIST
Turns off the listing process (including the %NOLIST line itself).

Language Overview

PGI Fortran Reference Guide 15

%EJECT
Causes a new listing page to be started.

These directives have an effect only when the –Mlist option is used. All of the directives must begin in
column one.

1.11. OpenMP Directives
OpenMP directives in a Fortran program provide information that allows the PGF77 and
PGFORTRAN compilers to generate executable programs that use multiple threads and
processors on a shared-memory parallel (SMP) computer system. An OpenMP directive may
have any of the following forms:
!$OMP directive
C$OMP directive
*$OMP directive

For a complete list and specifications of OpenMP directives supported by the PGF77 and
PGFORTRAN compilers, along with descriptions of the related OpenMP runtime library
routines, refer to OpenMP.

PGI Fortran Reference Guide 16

Chapter 2.
FORTRAN DATA TYPES

Every Fortran element and expression has a data type. The data type of an element may be
implicit in its definition or explicitly attached to the element in a declaration statement. This
section describes the Fortran data types and constants that are supported by the PGI Fortran
compilers.

Fortran provides two kinds of data types, intrinsic data types and derived data types. Types
provided by the language are intrinsic types. Types specified by the programmer and built from
the intrinsic data types are called derived types.

2.1. Intrinsic Data Types
Fortran provides six different intrinsic data types, listed in Table 9 and Table 11 show variations
and different KIND of intrinsic data types supported by the PGI Fortran compilers.

Table 9 Fortran Intrinsic Data Types

Data Type Value

INTEGER An integer number.

REAL A real number.

DOUBLE PRECISION A double precision floating point number, real number, taking up two numeric storage units
and whose precision is greater than REAL.

LOGICAL A value which can be either TRUE or FALSE.

COMPLEX A pair of real numbers used in complex arithmetic. Fortran provides two precisions for
COMPLEX numbers.

CHARACTER A string consisting of one or more printable characters.

2.1.1. Kind Parameter
The Fortran 95 KIND parameter specifies a precision for intrinsic data types. The KIND
parameter follows a data type specifier and specifies size or type of the supported data type. A
KIND specification overrides the length attribute that the statement implies and assigns a specific

Fortran Data Types

PGI Fortran Reference Guide 17

length to the item, regardless of the compiler's command-line options. A KIND is defined for a
data type by a PARAMETER statement, using sizes supported on the particular system.

The following are some examples using a KIND specification:
INTEGER (SHORT) :: L
REAL (HIGH) B
REAL (KIND=HIGH) XVAR, YVAR

These examples require that the programmer use a PARAMETER statement to define kinds:
INTEGER, PARAMETER :: SHORT=1
INTEGER HIGH
PARAMETER (HIGH=8)

The following table shows several examples of KINDs that a system could support.

Table 10 Data Types Kind Parameters

Type Kind Size

INTEGER SHORT 1 byte

INTEGER LONG 4 bytes

REAL HIGH 8 bytes

2.1.2. Number of Bytes Specification
The PGI Fortran compilers support a length specifier for some data types. The data type can be
followed by a data type length specifier of the form *s, where s is one of the supported lengths
for the data type. Such a specification overrides the length attribute that the statement implies and
assigns a specific length to the specified item, regardless of the compiler options. For example,
REAL*8 is equivalent to DOUBLE PRECISION. Table 11 shows the lengths of data types, their
meanings, and their sizes.

Table 11 Data Type Extensions

Type Meaning Size

LOGICAL*1 Small LOGICAL 1 byte

LOGICAL*2 Short LOGICAL 2 bytes

LOGICAL*4 LOGICAL 4 bytes

LOGICAL*8 LOGICAL 8 bytes

BYTE Small INTEGER 1 byte

INTEGER*1 Same as BYTE 1 byte

INTEGER*2 Short INTEGER 2 bytes

INTEGER*4 INTEGER 4 bytes

INTEGER*8 INTEGER 8 bytes

REAL*4 REAL 4 bytes

REAL*8 DOUBLE PRECISION 8 bytes

Fortran Data Types

PGI Fortran Reference Guide 18

Type Meaning Size

COMPLEX*8

COMPLEX (Kind=4)

COMPLEX 8 bytes

COMPLEX*16

COMPLEX (Kind=8)

DOUBLE COMPLEX 16 bytes

The BYTE type is treated as a signed one-byte integer and is equivalent to INTEGER*1.

Assigning a value too big for the data type to which it is assigned is an undefined operation.

A specifier is allowed after a CHARACTER function name even if the CHARACTER type
word has a specifier. In the following example, the function size specification C*8 overrides the
CHARACTER*4 specification.
CHARACTER*4 FUNCTION C*8 (VAR1)

Logical data items can be used with any operation where a similar sized integer data item is
permissible and vice versa. The logical data item is treated as an integer or the integer data item is
treated as a logical of the same size and no type conversion is performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array
subscripts, in computed GOTOs, in array bounds and in alternate returns. The floating point data
item is converted to an integer.

The data type of the result of an arithmetic expression corresponds to the type of its data. The
type of an expression is determined by the rank of its elements. Table 12 shows the ranks of the
various data types, from lowest to highest.

A variable of logical type may appear in an arithmetic context, and the logical type is then treated as an
integer of the same size.

Table 12 Data Type Ranks

Data Type Rank

LOGICAL 1 (lowest)

LOGICAL*8 2

INTEGER*2 3

INTEGER*4 4

INTEGER*8 5

REAL*4 6

REAL*8 (Double precision) 7

COMPLEX*8 (Complex) 8

COMPLEX*16 (Double complex) 9 (highest)

Fortran Data Types

PGI Fortran Reference Guide 19

The data type of a value produced by an operation on two arithmetic elements of different
data types is the data type of the highest-ranked element in the operation. The exception
to this rule is that an operation involving a COMPLEX*8 element and a REAL*8 element
produces a COMPLEX*16 result. In this operation, the COMPLEX*8 element is converted to
a COMPLEX*16 element, which consists of two REAL*8 elements, before the operation is
performed.

In most cases, a logical expression will have a LOGICAL*4 result. In cases where the hardware
supports LOGICAL*8 and if the expression is LOGICAL*8, the result may be LOGICAL*8.

2.2. Constants
A constant is an unchanging value that can be determined at compile time. It takes a form
corresponding to one of the data types. The PGI Fortran compilers support decimal (INTEGER
and REAL), unsigned binary, octal, hexadecimal, character and Hollerith constants.

The use of character constants in a numeric context, for example, in the right-hand side of an
arithmetic assignment statement, is supported. These constants assume a data type that conforms
to the context in which they appear.

2.2.1. Integer Constants
The form of a decimal integer constant is:
[s]d1d2...dn [_ kind-parameter]

where s is an optional sign and di is a digit in the range 0 to 9. The optional _kind@parameter
is a Fortran 90/95/2003 feature supported by PGFORTRAN, and specifies a supported kind. The
value of an integer constant must be within the range for the specified kind.

The value of an integer constant must be within the range -2147483648 (-231) to 2147483647
(231 - 1) inclusive. Integer constants assume a data type of INTEGER*4 and have a 32-bit storage
requirement.

The –i8 compilation option causes all data of type INTEGER to be promoted to an 8 byte
INTEGER. The –i8 option does not override an explicit data type extension size specifier, such
as INTEGER*4. The range, data type and storage requirement change if the –i8 flag is specified,
although this flag is not supported on all x86 targets. With the –i8 flag, the range for integer
constants is -263 to (263 - 1)), and in this case the value of an integer constant must be within
the range -9223372036854775808 to 9223372036854775807. If the constant does not fit in an
INTEGER*4 range, the data type is INTEGER*8 and the storage requirement is 64 bits.

Here are several examples of integer constants:
+2
-36
437
-36_SHORT
369_I2

2.2.2. Binary, Octal and Hexadecimal Constants
The PGI compilers and Fortran 90/95/2003 support various types of constants in addition to
decimal constants. Fortran allows unsigned binary, octal, or hexadecimal constants in DATA

Fortran Data Types

PGI Fortran Reference Guide 20

statements. PGI compilers support these constants in DATA statements, and additionally, support
some of these constants outside of DATA statements. For more information on support of these
constants, refer to Fortran Binary, Octal, and Hexadecimal Constants.

2.2.3. Real Constants
Real constants have two forms, scaled and unscaled. An unscaled real constant consists of a
signed or unsigned decimal number (a number with a decimal point). A scaled real constant takes
the same form as an unscaled constant, but is followed by an exponent scaling factor of the form:
E+digits [_ kind-parameter]
Edigit [_ kind-parameter]
E-digits [_ kind-parameter]

where digits is the scaling factor, the power of ten, to be applied to the unscaled constant. The
first two forms above are equivalent, that is, a scaling factor without a sign is assumed to be
positive. Table 13 shows several real constants.

Table 13 Examples of Real Constants

Constant Value

1.0 unscaled single precision constant

1. unscaled single precision constant

-.003 signed unscaled single precision constant

-.003_LOW signed unscaled constant with kind LOW

-1.0 signed unscaled single precision constant

6.1E2_LOW is equivalent to 610.0 with kind LOW

+2.3E3_HIGH is equivalent to 2300.0 with kind HIGH

6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-1 is equivalent to -0.35

2.2.4. Double Precision Constants
A double precision constant has the same form as a scaled REAL constant except that the E is
replaced by D and the kind parameter is not permitted. For example:
D+digits
Ddigit
D-digits

Table 14 shows several double precision constants.

Fortran Data Types

PGI Fortran Reference Guide 21

Table 14 Examples of Double Precision Constants

Constant Value

6.1D2 is equivalent to 610.0

+2.3D3 is equivalent to 2300.0

-3.5D-1 is equivalent to -0.35

+4D4 is equivalent to 40000

2.2.5. Complex Constants
A complex constant is held as two real or integer constants separated by a comma and surrounded
by parentheses. The first real number is the real part and the second real number is the imaginary
part. Together these values represent a complex number. Integer values supplied as parameters
for a COMPLEX constant are converted to REAL numbers. Here are several examples:
(18,-4)
(3.5,-3.5)
(6.1E2,+2.3E3)

2.2.6. Double Complex Constants
A complex constant is held as two double constants separated by a comma and surrounded by
parentheses. The first double is the real part and the second double is the imaginary part. Together
these values represent a complex number. Here is an example:
(6.1D2,+2.3D3)

2.2.7. Logical Constants
A logical constant is one of:
.TRUE. [_ kind-parameter]
.FALSE.[_ kind-parameter]

The logical constants .TRUE. and .FALSE. are by default defined to be the four-byte values -1
and 0 respectively. A logical expression is defined to be .TRUE. if its least significant bit is 1
and .FALSE. otherwise,

The option –Munixlogical defines a logical expression to be TRUE if its value is non-zero, and
FALSE otherwise; also, the internal value of .TRUE. is set to one. This option is not available on
all target systems.

Here are several examples:
.TRUE.
.FALSE.
.TRUE._BIT

The abbreviations .T. and .F. can be used in place of .TRUE. and .FALSE. in data initialization
statements and in NAMELIST input.

Fortran Data Types

PGI Fortran Reference Guide 22

2.2.8. Character Constants
A string in the Cor C++ languages is defined by a starting location in memory. The end of the
string is the character prior to the first occurence of a C NULL character, and the length of the
string can be derived from the location of the C NULL character. Fortran does not have a string
data type. Character constants are sequences of characters and are defined by the starting location
in memory, and a length.

Character constants may be delimited using either an apostrophe (') or a double quote ("). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use
double quotes or two apostrophes together to include an apostrophe as part of an expression. If
a character constant begins with one variety of quote mark, the other may be embedded within
it without using the repeated quote or backslash escape. Within character constants, blanks are
significant. For further information on the use of the backslash character, refer to –Mbackslash
information in the User’s Guide.

A character constant is one of:
[kind-parameter_] "[characters]"
[kind-parameter_] '[characters]'

Here are several examples of character constants.
'abc'
'abc '
'ab''c'
"Test Word"
GREEK_"µ"

A zero length character constant is written as '' or "".

If a character constant is used in a numeric context, for example as the expression on the right
side of an arithmetic assignment statement, it is treated as a Hollerith constant. The rules for
typing and sizing character constants used in a numeric context are described in Hollerith
Constants.

2.2.9. Parameter Constants
The PARAMETER statement permits named constants to be defined. For more details on
defining constants, refer to the description of the PARAMETER statement in Fortran Statements.

2.3. Structure Constructors
A structure constructor looks like a function call. It is a mechanism whose purpose is to specify a
value of a derived type or of a type alias that describes a derived type. The constructor specifies a
sequence of values for the components of the type.

‣ If a component is of derived type, an embedded structure constructor is required to specify
the value of that component.

‣ If a component is an array, an embedded array constructor is required to specify the values
for that component.

Fortran Data Types

PGI Fortran Reference Guide 23

Syntax

A structure constructor is the name of the type followed by a sequence of component values in
parentheses. The format for a structure_constructor is one of the following:
type_name (expr_list)

type_alias_name (expr_list)

Structure Constructor Enhancements

In Fortran 2003, there are three significant enhancements to structure constructors that make
structure constructors more like built-in generic functions that can be overridden when necessary.

‣ Component names can be used as keywords, the same way that dummy argument names can
be used as argument keywords

‣ Values can be omitted for components that have default initialization.

‣ Type names can be the same as generic function names; references are resolved by choosing
a suitable function (if the syntax matches the function's argument list) and treating as a
structure constructor only if no function matches the actual arguments

Structure Constructor Rules

The following rules apply to structure constructors:

‣ A structure constructor must not appear before that type is defined.

‣ There must be a value in the expression list for each component unless that component has
default initialization.

‣ The expressions must agree in number and order with the components of the derived type.
Values may be converted to agree in type, kind, length, and, in some cases, rank, with the
components.

‣ The structure constructor for a private type or a public type with private components is not
available outside the module in which the type is defined.

‣ If the values in a structure constructor are constants, you can use the structure constructor to
specify a named constant.

‣ If a component is an explicit-shape array, such as a nonpointer array or a nonallocatable
array, the array constructor for it in the expression list must be the same shape as the
component.

‣ If a component is a pointer, the value for it in the expression list must evaluate to an
allowable target for the pointer. A constant is not an allowable target.

‣ A constant expression cannot be constructed for a type with a pointer component because a
constant is not an allowable target in a pointer assignment statement.

‣ If a component has the ALLOCATABLE attribute, its value in the expression list must have
the same rank if it is an array or must be scalar if it is scalar. The value must be one of the
following:

‣ A call to the NULL() intrinsic command without any arguments. The allocatable
component receives a ‘not currently allocated’ status.

Fortran Data Types

PGI Fortran Reference Guide 24

‣ A variable that has the ALLOCATABLE attribute. The allocatable component receives
the variable's allocation status and, if allocated, shape and value.

‣ An expression. The allocatable component receives the ‘currently allocated’ status and
the same value and shape of the expression.

2.4. Derived Types
Unlike the intrinsic types that are defined by the language, you must define derived types. A
derived type is a type made up of components whose type is either intrinsic or another derived
type. These types have the same functionality as the intrinsic types; for example, variables of
these types can be declared, passed as procedure arguments, and returned as function results.

A derived-type definition specifies a name for the type; this name is used to declare objects of the
type. A derived-type definition also specifies components of the type, of which there must be at
least one. A component can be either an intrinsic or derived type.

The TYPE and END TYPE keywords define a derived type. The definition of a variable of the
new type is called a TYPE statement.

Syntax

For derived type definition:
derived_type_stmt
 [data_component_part]
end_type_stmt

For a derived type statement:
TYPE [[, type_attr_spec_list] ::] type_name

Example

The following derived type declaration defines the type PERSON and the array CUSTOMER of
type PERSON:
! Declare a structure to define a person derived type
TYPE PERSON
 INTEGER ID
 LOGICAL LIVING
 CHARACTER(LEN=20) FIRST, LAST, MIDDLE
 INTEGER AGE
END TYPE PERSON
TYPE (PERSON) CUSTOMER(10)

A derived type statement consists of the statements between the TYPE and END TYPE
statements. In the previous example, the derived-type statement for PERSON consists of all the
statements between TYPE PERSON and END TYPE PERSON.

Notice in this example that CUSTOMER is a variable of type PERSON. Use of parentheses in
the TYPE statement indicate a reference to the derived type PERSON rather than declaration of a
derived type.

Fortran Data Types

PGI Fortran Reference Guide 25

The % character accesses the components of a derived type. For example, to assign the value
12345 as the ID of the first customer, you might use the following statement:
CUSTOMER(1)%ID = 12345

2.5. Deferred Type Parameters
A deferred type parameter is a type parameter that has no defined value until it is given one.
In Fortran 2003, deferred type parameters are available both for CHARACTER length and for
parameterized derived types.

A variable with a deferred type parameter must have the ALLOCATABLE or POINTER
attribute. The value of a deferred type parameter depends on this attribute:

‣ For an allocatable variable, the value of a deferred type parameter is determined by
allocation - either by a typed allocation, or by an intrinsic assignment with automatic
reallocation.

‣ For a pointer, the value of a deferred type parameter is the value of the type parameter of its
target.

2.5.1. Typed Allocation
A length type parameter that is deferred has no defined value until it is given one by the
ALLOCATE statement or by pointer assignment. There are a couple rules that apply with typed
allocation and deferred type parameters:

‣ If the length parameters of an item being allocated is assumed, it must be specified as an
asterisk (*) in the type-spec of the ALLOCATE statement.

‣ Since there can only be one type-spec in an ALLOCATE statement, it must be suitable for all
the items being allocated. For example, if any of the allocatable items is a dummy argument,
then they must all be dummy arguments.

2.6. Arrays
Arrays in Fortran are not data types, but are data objects of intrinsic or derived type with special
characteristics. A dimension statement provides a data type with one or more dimensions. There
are several differences between Fortran 2003 and traditional FORTRAN 77 arrays.

Fortran 2003 supports all FORTRAN 77 array semantics.

An array is a group of consecutive, contiguous storage locations associated with a symbolic
name which is the array name. Each individual element of storage, called the array element,
is referenced by the array name modified by a list of subscripts. Arrays are declared with type
declaration statements, DIMENSION statements and COMMON statements; they are not defined
by implicit reference. These declarations will introduce an array name and establish the number
of dimensions and the bounds and size of each dimension. If a symbol, modified by a list of
subscripts is not defined as an array, then it will be assumed to be a FUNCTION reference with
an argument list.

Fortran Data Types

PGI Fortran Reference Guide 26

Fortran 2003 arrays are ‘objects’ and operations and expressions involving arrays may apply to
every element of the array in an unspecified order. For example, in the following code, where A
and B are arrays of the same shape (conformable arrays), the following expression adds six to
every element of B and assigns the results to the corresponding elements of A:
 A = B + 6

Fortran arrays may be passed with unspecified shapes to subroutines and functions, and sections
of arrays may be used and passed as well. Arrays of derived type are also valid. In addition,
allocatable arrays may be created with deferred shapes (number of dimensions is specified at
declaration, but the actual bounds and size of each dimension are determined when the array is
allocated while the program is running).

2.6.1. Array Declaration Element
An array declaration has the following form:
name([lb:]ub[,[lb:]ub]...)

where name is the symbolic name of the array, lb is the specification of the lower bound of the
dimension and ub is the specification of the upper bound. The upper bound, ub must be greater
than or equal to the lower bound lb. The values lb and ub may be negative. The bound lb is
taken to be 1 if it is not specified. The difference (ub-lb+1) specifies the number of elements in
that dimension. The number of lb,ub pairs specifies the rank of the array. Assuming the array is
of a data type that requires N bytes per element, the total amount of storage of the array is:
N*(ub-lb+1)*(ub-lb+1)*...

The dimension specifiers of an array subroutine argument may themselves be subroutine
arguments or members of COMMON.

2.6.2. Deferred Shape Arrays
Deferred-shape arrays are those arrays whose shape can be changed by an executable statement.
Deferred-shape arrays are declared with a rank, but with no bounds information. They
assume their shape when either an ALLOCATE statement or a REDIMENSION statement is
encountered.

For example, the following statement declares a deferred shape REAL array A of rank two:
REAL A(:, :)

2.6.3. Subscripts
A subscript is used to specify an array element for access. An array name qualified by a subscript
list has the following form:
name(sub[,sub]...)

where there must be one sub entry for each dimension in array name.

Each sub must be an integer expression yielding a value which is within the range of the lower
and upper bounds. Arrays are stored as a linear sequence of values in memory and are held such
that the first element is in the first store location and the last element is in the last store location.
In a multi-dimensional array the first subscript varies more rapidly than the second, the second
more rapidly than the third, and so on (column major order).

Fortran Data Types

PGI Fortran Reference Guide 27

2.6.4. Character Substring
A character substring is a contiguous portion of a character variable and is of type character.
A character substring can be referenced, assigned values and named. It can take either of the
following forms:
character_variable_name(x1:x2)
character_array_name(subscripts)(x1:x2)

where x1 and x2 are integers and x1 denotes the left-hand character position and x2 the right-
hand one. These are known as substring expressions. In substring expressions x1 must be both
greater than or equal to 1 and less than x2 and x2 must be less than or equal to the length of the
character variable or array element.

For example, the following expression indicates the characters in positions 2 to 4 of character
variable J.
J(2:4)

This next expression indicates characters in positions 1 to 4 of array element K(3,5).
K(3,5)(1:4)

A substring expression can be any valid integer expression and may contain array elements or
function references.

2.6.5. Array Constructor Syntax
In Fortran 2003, array constructors may be bracketed with [] instead of (/ /). In addition, array
constructors may contain a type specification that explicitedly specifies the type and type
parameters of the array. These constructors begin with a type specification followed by a double
colon (::), as illustrated in the examples later in this section. The general format for this type
specification is this:
(/ type-spec :: ac-value-list /)

If the type-spec is absent in the array specification, Fortran 95 rules apply; and all items must have the
same type and type parameters.

The type-spec syntax is useful for a number of reasons, such as these:

‣ It simplifies zero-sized constructors.
‣ It provides assignment conversions that eliminate the need for users to pad all characters in

an array to the same length.
‣ It makes some constructors easiers, such as allowing users to specify either real or integer

values in a complex array.

Examples
[character(len=12) : : ‘crimson’, ‘cream’, ‘purple’, ‘gold’]

[complex(kind(0d0) ;; 1, (0,1), 3.3333d0]

[matrix(kind=kind(0,0), n=5, m=7) :] !zero-sized array

[Logical ::] ! Zero-sized logical array

[Double Precision :: 17.5, 0, 0.1d0] ! Conversions

Fortran Data Types

PGI Fortran Reference Guide 28

2.7. Fortran Pointers and Targets
Fortran pointers are similar to allocatable arrays. Pointers are declared with a type and a rank;
they do not actually represent a value, however, but represent a value's address. Fortran 2003 has
a specific assignment operator, =>, for use in pointer assignments.

2.8. Fortran Binary, Octal and Hexadecimal Constants
The PGI Fortran compilers support two representations for binary, octal, and hexadecimal
numbers: the standard Fortran 2003 representation and the PGI extension representation. In
addition, PGI supports an alternate representation, described in the next section.

Fortran supports binary, octal and hexadecimal constants in DATA statements.

Binary Constants

The form of a binary constant is:
B'b1b2...bn'
 B"b1b2...bn"

where bi is either 0 or 1., such as B’01001001’

Octal Constants

The form of an octal constant is:
O'c1c2...cn'
O"c1c2...cn"

where ci is in the range 0 through 7. such as O’043672’

Hexadecimal Constants

The form of a hexadecimal constant is:
Z'a1a2...an'
Z"a1a2...an"

where ai is in the range 0 through 9 or a letter in the range A through F or a through f (case
mixing is allowed), such as Z’8473Abc58’ or "BF40289cd"X .

2.8.1. Octal and Hexadecimal Constants - Alternate Forms
The PGFORTRAN compiler supports additional extensions. This is an alternate form for octal
constants, outside of DATA statements. The form for an octal constant is:
'c1c2...cn'O

where ci is a digit in the range 0 to 7.

The form of a hexadecimal constant is:
'a1a2...an'X

Fortran Data Types

PGI Fortran Reference Guide 29

"a1a2...an"X

where ai is a digit in the range 0 to 9 or a letter in the range A to F or a to f (case mixing is
allowed). Up to 64 bits (22 octal digits or 16 hexadecimal digits) can be specified.

Octal and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded
on the left with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

‣ A constant is always either 32 or 64 bits in size and is typeless. Sign-extension and type-
conversion are never performed. All binary operations are performed on 32-bit or 64-bit
quantities. This implies that the rules to follow are only concerned with mixing 32-bit and
64-bit data.

‣ When a constant is used with an arithmetic binary operator (including the assignment
operator) and the other operand is typed, the constant assumes the type and size of the other
operand.

‣ When a constant is used in a relational expression such as .EQ., its size is chosen from the
operand having the largest size. This implies that 64-bit comparisons are possible.

‣ When a constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or
COMPL function, a 32-bit operation is performed if no argument is more than 32 bits in size;
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

‣ When a constant is used as an actual argument in any other context, no data type is assumed;
however, a length of four bytes is always used. If necessary, truncation on the left occurs.

‣ When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant.
Array subscripting is an example.

‣ When a constant is used in a context other than those mentioned above, an INTEGER*4 data
type is assumed. Logical expressions and binary arithmetic operations with other untyped
constants are examples.

‣ When the required data type for a constant implies that the length needed is more than the
number of digits specified, the leftmost digits have a value of zero. When the required data
type for a constant implies that the length needed is less than the number of digits specified,
the constant is truncated on the left. Truncation of nonzero digits is allowed.

In the following example, the constant I (of type INTEGER*4) and the constant J (of type
INTEGER*2) are assigned hex values 1234 and 4567, respectively. The variable D (of type
REAL*8) has the hex value x4000012345678954 after its second assignment:
I = '1234'X ! Leftmost Pad with zero
J = '1234567'X ! Truncate Leftmost 3 hex digits
D = dble('40000123456789ab'X)
D = NEQV(D,'ff'X) ! 64-bit Exclusive Or

2.9. Hollerith Constants
The form of a Hollerith constant is:
nHc1c2...cn

where n specifies the positive number of characters in the constant and cannot exceed 2000
characters.

Fortran Data Types

PGI Fortran Reference Guide 30

A Hollerith constant is stored as a byte string with four characters per 32-bit word. Hollerith
constants are untyped arrays of INTEGER*4. The last word of the array is padded on the right
with blanks if necessary. Hollerith constants cannot assume a character data type and cannot be
used where a character value is expected.

The data type of a Hollerith constant used in a numeric expression is determined by the following
rules:

‣ Sign-extension is never performed.
‣ The byte size of the Hollerith constant is determined by its context and is not strictly limited

to 32 or 64 bits like hexadecimal and octal constants.
‣ When the constant is used with a binary operator (including the assignment operator), the

data type of the constant assumes the data type of the other operand.
‣ When a specific data type is required, that type is assumed for the constant. When an integer

or logical is required, INTEGER*4 and LOGICAL*4 are assumed. When a float is required,
REAL*4 is assumed (array subscripting is an example of the use of a required data type).

‣ When a constant is used as an argument to certain generic functions (AND, OR, EQV,
NEQV, SHIFT, and COMPL), a 32-bit operation is performed if no argument is larger than
32 bits; otherwise, a 64-bit operation is performed. The size of the result corresponds to the
chosen operation.

‣ When a constant is used as an actual argument, no data type is assumed and the argument is
passed as an INTEGER*4 array. Character constants are passed by descriptor only.

‣ When a constant is used in any other context, a 32-bit INTEGER*4 array type is assumed.

When the length of the Hollerith constant is less than the length implied by the data type, spaces
are appended to the constant on the right. When the length of the constant is greater than the
length implied by the data type, the constant is truncated on the right.

2.10. Structures
A structure, a DEC extension to FORTRAN 77, is a user-defined aggregate data type having the
following form:
STRUCTURE [/structure_name/][field_namelist]
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END STRUCTURE

Where:

structure_name
is unique and is used both to identify the structure and to allow its use in subsequent RECORD
statements.

field_namelist
is a list of fields having the structure of the associated structure declaration. A field_namelist
is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations, union
declarations or unnamed field declarations.

Fortran Data Types

PGI Fortran Reference Guide 31

The following rules apply:

‣ Field names within the same declaration nesting level must be unique.
‣ An inner structure declaration can include field names used in an outer structure declaration

without conflict.
‣ Records use periods to separate fields, so it is not legal to use relational operators (for

example, .EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or logical expressions
(.AND., .NOT., .OR.) as field names in structure declarations.

‣ Fields within structures conform to machine-dependent alignment requirements, that is,
fields in a structure are aligned as required by hardware.

‣ A structure's storage requirements are machine-dependent.
‣ Alignment of fields provides a C-like "struct" building capability and allows convenient

inter-language communications.
‣ Because explicit padding of records is not necessary, the compiler recognizes the %FILL

intrinsic, but performs no action in response to it.
‣ Data initialization can occur for the individual fields.

2.10.1. Records
A record, a DEC extension to FORTRAN 77, is a user-defined aggregate data item having the
following form:
RECORD /structure_name/record_namelist
 [,/structure_name/record_namelist]
 ...
 [,/structure_name/record_namelist]

where:

structure_name
is the name of a previously declared structure.

record_namelist
is a list of one or more variable or array names separated by commas.

You create memory storage for a record by specifying a structure name in the RECORD
statement. You define the field values in a record either by defining them in the structure
declaration or by assigning them with executable code.

You can access individual fields in a record by combining the parent record name, a period (.),
and the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed data item (for example, INTEGER), while an
aggregate reference means a reference that resolves to a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with
the exception of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements.
Aggregate references may only appear in aggregate assignment statements, unformatted I/O
statements, and as parameters to subprograms.

The following example shows RECORD and STRUCTURE usage.
STRUCTURE /person/
! Declare a structure defining a person
! Person has id, names, age, and may or not be living
 INTEGER id
 LOGICAL living

Fortran Data Types

PGI Fortran Reference Guide 32

 CHARACTER*5 first, last, middle
 INTEGER age
END STRUCTURE

 ! Define population to be an array where each element is of
 ! type person. Also define a variable, me, of type person.
RECORD /person/ population(2), me
 ...
me.age = 34 ! Assign values for the variable me
me.living = .TRUE. ! to some of the fields.
me.first = 'Steve'
me.id = 542124822
 ...
population(1).last = 'Jones' ! Assign the "last" field of
 ! element 1 of array population.
population(2) = me ! Assign all values of record
 ! "me" to the record population(2)
...

2.10.2. UNION and MAP Declarations
A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement declaration
defining a data area that can be shared intermittently during program execution by one or more
fields or groups of fields. It declares groups of fields that share a common location within a
structure.

Declaring and Defining Fields

Each group of fields within a UNION declaration is declared by a MAP declaration, with one or
more fields per MAP declaration.

You use union declarations when you want to use the same area of memory to alternately contain
two or more groups of fields. Whenever one of the fields declared by a union declaration is
referenced in a program, that field and any other fields in its map declaration become defined.
Then, when a field in one of the other map declarations in the union declaration is referenced,
the fields in that map declaration become defined, superseding the fields that were previously
defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields
is defined by a separate map declaration.

Format

The format of a UNION statement is illustrated in the following example:
UNION
 map_declaration
 [map_declaration]
 ...
 [map_declaration]
END UNION

The format of the map_declaration is as follows:
MAP
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END MAP

Fortran Data Types

PGI Fortran Reference Guide 33

where field_declaration is a structure declaration or RECORD statement contained within a
union declaration, a union declaration contained within a union declaration, or the declaration of a
typed data field within a union.

With respect to UNION and MAP statements, the following is true:

‣ Data can be initialized in field declaration statements in union declarations.

It is illegal to initialize multiple map declarations in a single union.

‣ Field alignment within multiple map declarations is performed as previously defined in
structure declarations.

‣ The size of the shared area for a union declaration is the size of the largest map defined for
that union.

‣ The size of a map is the sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarations is similar to what happens using EQUIVALENCE
statements. However, union declarations are probably more similar to union declarations for the
language C. The main difference is that the C language requires one to associate a name with
each "map" (union). Fortran field names must be unique within the same declaration nesting level
of maps.

The following example shows RECORD, STRUCTURE, MAP and UNION usage. The size of
each element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest
MAP, in this case, the employee map (24 bytes).
STRUCTURE /account/
 INTEGER typetag ! Tag to determine defined map.
 UNION
 MAP ! Structure for an employee
 CHARACTER*12 ssn ! Social Security Number
 REAL*4 salary ! Salary
 CHARACTER*8 empdate ! Employment date
 END MAP

 MAP ! Structure for a customer
 INTEGER*4 acct_cust ! 4-digit account
 REAL*4 credit_amt ! credit amount
 CHARACTER*8 due_date ! due date
 END MAP

 MAP ! Structure for a supplier
 INTEGER*4 acct_supp ! supply account
 REAL*4 debit_amt ! debit amount
 BYTE num_items ! number of items
 BYTE items(12) ! items supplied
 END MAP

 END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

2.10.3. Data Initialization
Data initialization is allowed within data type declaration statements. This is an extension to the
Fortran language. Data is initialized by placing values bounded by slashes immediately following

Fortran Data Types

PGI Fortran Reference Guide 34

the symbolic name (variable or array) to be initialized. Initialization of fields within structure
declarations is allowed, but initialization of unnamed fields and records is not.

Hollerith, octal and hexadecimal constants can be used to initialize data in both data type
declarations and in DATA statements. Truncation and padding occur for constants that differ in
size from the declared data item (as specified in the discussion of constants).

2.11. Pointer Variables
The POINTER statement, a CRAY extension to FORTRAN 77 which is distinct from the Fortran
90/95 POINTER specification statement or attribute, declares a scalar variable to be a pointer
variable of data type INTEGER, and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:
POINTER (p1, v1) [, (p2, v2) ...]

v1 and v2
are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression may be
adjustable, where the rules for adjustable dummy arrays regarding any variables which appear
in the dimension declarators apply.

p1 and p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array.
The pointer is an integer variable containing the address of a pointer-based variable. The
storage located by the pointer variable is defined by the pointer-based variable (for example,
array, data type, etc.). A reference to a pointer-based variable appears in Fortran statements
like a normal variable reference (for example, a local variable, a COMMON block variable,
or a dummy variable). When the based variable is referenced, the address to which it refers is
always taken from its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.

The pointer is defined in one of the following ways:

‣ By assigning the value of the LOC function.
‣ By assigning a value defined in terms of another pointer variable.
‣ By dynamically allocating a memory area for the based variable. If a pointer-based variable

is dynamically allocated, it may also be freed.

The following code illustrates the use of pointers:
REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))
P = LOC(IC)
I = 0 ! IC gets 0
P = LOC(XC)
Q = P + 20 ! same as LOC(XC(6))
X(1) = 0 ! XC(6) gets 0
ALLOCATE (X) ! Q locates an allocated memory area

Fortran Data Types

PGI Fortran Reference Guide 35

2.11.1. Restrictions
The following restrictions apply to the POINTER statement:

‣ No storage is allocated when a pointer-based variable is declared.
‣ If a pointer-based variable is referenced, its pointer variable is assumed to be defined.
‣ A pointer-based variable may not appear in the argument list of a SUBROUTINE or

FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SAVE statements.

‣ A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION
subprogram.

If a pointer-based variable is an adjustable array, it is assumed that the variables in the
dimension declarators are defined with an integer value at the time the SUBROUTINE or
FUNCTION is called.

For a variable which appears in a pointer-based variable's adjustable declarator, modifying
its value during the execution of the SUBROUTINE or FUNCTION does not modify the
bounds of the dimensions of the pointer-based array.

‣ A pointer-based variable is assumed not to overlap with another pointer-based variable.

2.11.2. Pointer Assignment
Fortran 2003 extends pointer assignment for arrays allowing lower bounds and possibly upper
bounds to be specified.

Syntax:
p(0:,0:) => a

The lower bounds may be any scalar integer expressions when upper bounds are specified.
Further, remapping of the elements of a target array is permitted, as shown in this example:
p(1:m,1:2*m) => a(1:2*m)

Description

The following is true for pointer assignments involving arrays:

‣ The bounds may be any scalar integer expressions.

‣ The assignment is in array-element order and the target array must be large enough.

‣ When remapping occurs, the target must be rank-one; otherwise, the ranks of the pointer and
target must be the same.
a => b(1:10:2)

‣ Length type parameters of the pointer may be deferred, that is, declared with a colon.

‣ Pointer assignment gives these the values of the corresponding parameters of the target.

‣ All other type parameters of the pointer must have the same values as the corresponding type
parameters of the target.

PGI Fortran Reference Guide 36

Chapter 3.
FORTRAN STATEMENTS

This section describes each of the Fortran statements supported by the PGI Fortran compilers.
Each description includes a brief summary of the statement, a syntax description, a complete
description and an example. The statements are listed in alphabetical order. The first section lists
terms that are used throughout the section.

3.1. Statement Format Overview
This section lists terms that are used throughout the section and provides information on how
to interpret the information in the statement descriptions. This section only provides detailed
descriptions for statements that are extensions of the standard Fortran language definitions. For
details on the standard statements, refer to the Fortran language specifications readily available on
the internet. The Origin column in the tables in this section provides the Fortran language origin
of the statement; for example F95 indicates the statement is from Fortran 95.

3.1.1. Definition of Statement-related Terms
character scalar memory reference

is a character variable, a character array element, or a character member of a structure or
derived type.

integer scalar memory reference
is an integer variable, an integer array element, or an integer member of a structure or derived
type.

logical scalar memory reference
is a logical variable, a logical array element, or a logical member of a structure or derived
type.

obsolescent
The statement is unchanged from the FORTRAN 77 definition but has a better replacement in
Fortran 95.

3.1.2. Origin of Statement
At the top of each reference page is a brief description of the statement followed by a header
that indicates the origin of the statement. The following list describes the meaning of the origin
header.

Fortran Statements

PGI Fortran Reference Guide 37

F77
FORTRAN 77 statements that are essentially unchanged from the original FORTRAN 77
standard and are supported by the PGF77 compiler.

F77 extension
The statement is an extension to the Fortran language.

F90/F95
The statement is either new for Fortran 90/95 or significantly changed in Fortran 95 from its
original FORTRAN 77 definition and is supported by the PGF95 compiler.

F2003
The statement is new for Fortran 2003.

CMF
The statement is Connection Machine Fortran, a SIMD language that strongly influenced High
Performance Fortran.

3.1.3. List-related Notation
Several statements allow lists of a specific type of data. For example, the ALLOCATABLE
statement allows a list in which each element of a deferred-array-spec. The notation used in
statements is this:

‣ Within the statement, the notation is foo-list, such as deferred-array-spec-list.
‣ When the list elements have a specific format that is defined, the reference is just to that

element, such as deferred-array-spec.

As in Fortran, the list is a set of comma-separated values.

3.2. Fortran Statement Summary Table
This section contains an alphabetical listing with a brief one-line description of the Fortran
statements that PGI supports.Later in this section there is more detailed description of the
statements that are extensions to the standard Fortran definitions.

Table 15 Statement Summary Table

Statement Origin Description

ACCEPT F77 Causes formatted input to be read on standard input.

ALLOCATABLE F90 Specifies that an array with fixed rank but deferred shape is available for a future
ALLOCATE statement.

ALLOCATE F90 Allocates storage for each allocatable array, pointer object, or pointer-based variable that
appears in the statements; declares storage for deferred-shape arrays.

ARRAY CMF Defines the number of dimensions in an array that may be defined, and the number of
elements and bounds in each dimension. [Not in PVF]

ASSIGN F77 [Obsolescent]. Assigns a statement label to a variable.

ASSOCIATE F2003 Associates a name either with a variable or with the value of an expression for the
duration of a block.

ASYNCHRONOUS F77 Warns the compiler that incorrect results might occur for optimizations involving
movement of code across wait statements or statements that cause wait operations.

Fortran Statements

PGI Fortran Reference Guide 38

Statement Origin Description

BACKSPACE F77 Positions the file connected to the specified unit to before the preceding record.

BLOCK DATA F77 Introduces a number of non-executable statements that initialize data values in
COMMON tables

BYTE F77 ext Establishes the data type of a variable by explicitly attaching the name of a variable to a
1-byte integer, overriding implied data typing.

CALL F77 Transfers control to a subroutine.

CASE F90 Begins a case-statement-block portion of a SELECT CASE statement.

CHARACTER F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
character data type, overriding the implied data typing.

CLOSE F77 Terminates the connection of the specified file to a unit.

COMMON F77 Defines global blocks of storage that are either sequential or non-sequential; can be
either a static or dynamic form.

COMPLEX F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
complex data type, overriding implied data typing.

CONTAINS F90 Precedes a subprogram, a function or subroutine and indicates the presence of the
subroutine or function definition inside a main program, external subprogram, or module
subprogram.

F2003 In F2003 a contains statement can also appear in a derived type right before any
type bound procedure definitions.

CONTINUE F77 Passes control to the next statement.

CYCLE F90 Interrupts a DO construct execution and continues with the next iteration of the loop.

DATA F77 Assigns initial values to variables before execution.

DEALLOCATE F77 Causes the memory allocated for each pointer-based variable or allocatable array that
appears in the statement to be deallocated (freed); also deallocates storage for deferred-
shape arrays.

DECODE F77 ext Transfers data between variables or arrays in internal storage and translates that data
from character form to internal form, according to format specifiers.

DIMENSION F90 Defines the number of dimensions in an array and the number of elements in each
dimension.

DO (Iterative) F90 Introduces an iterative loop and specifies the loop control index and parameters.

DO WHILE F77 Introduces a logical do loop and specifies the loop control expression.

DOUBLE COMPLEX F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double complex data type, overriding implied data typing.

DOUBLE PRECISION F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double precision data type, overriding implied data typing.

ELSE F77 Begins an ELSE block of an IF block and encloses a series of statements that are
conditionally executed.

ELSE IF F77 Begins an ELSE IF block of an IF block series and encloses statements that are
conditionally executed.

ELSE WHERE F90 The portion of the WHERE ELSE WHERE construct that permits conditional masked
assignments to the elements of an array or to a scalar, zero-dimensional array.

Fortran Statements

PGI Fortran Reference Guide 39

Statement Origin Description

ENCODE F77 ext Transfers data between variables or arrays in internal storage and translates that data
from internal to character form, according to format specifiers.

END F77 Terminates a segment of a Fortran program.

END ASSOCIATE F2003 Terminates an Associate block.

END DO F77 Terminates a DO or DO WHILE loop.

END FILE F77 Writes an endfile record to the files.

END IF F77 Terminates an IF ELSE or ELSE IF block.

END MAP F77 ext Terminates a MAP declaration.

END SELECT F90 Terminates a SELECT declaration.

END STRUCTURE F77 ext Terminates a STRUCTURE declaration.

END UNION F77 ext Terminates a UNION declaration.

END WHERE F90 Terminates a WHERE ELSE WHERE construct.

ENTRY F77 Allows a subroutine or function to have more than one entry point.

EQUIVALENCE F77 Allows two or more named regions of data memory to share the same start address.

EXIT F90 Interrupts a DO construct execution and continues with the next statement after the loop.

EXTERNAL F77 Identifies a symbolic name as an external or dummy procedure which can then be used
as an actual argument.

FINAL F2003 Specifies a Final subroutine inside a derived type.

FORALL F95 Provides, as a statement or construct, a parallel mechanism to assign values to the
elements of an array.

FORMAT F77 Specifies format requirements for input or output.

FUNCTION F77 Introduces a program unit; all the statements that follow apply to the function itself.

GENERIC F2003 Specifies a generic type bound procedure inside a derived type.

GOTO (Assigned) F77 [Obsolescent]. Transfers control so that the statement identified by the statement label is
executed next.

GOTO (Computed) F77 Transfers control to one of a list of labels according to the value of an expression.

GOTO (Unconditional) F77 Unconditionally transfers control to the statement with the label label, which must be
declared within the code of the program unit containing the GOTO statement and must
be unique within that program unit.

IF (Arithmetic) F77 [Obsolescent]. Transfers control to one of three labeled statements, depending on the
value of the arithmetic expression.

IF (Block) F77 Consists of a series of statements that are conditionally executed.

IF (Logical) F77 Executes or does not execute a statement based on the value of a logical expression.

IMPLICIT F77 Redefines the implied data type of symbolic names from their initial letter, overriding
implied data types.

IMPORT F2003 Gives access to the named entities of the containing scope.

INCLUDE F77 ext Directs the compiler to start reading from another file.

Fortran Statements

PGI Fortran Reference Guide 40

Statement Origin Description

INQUIRE F77 Inquires about the current properties of a particular file or the current connections of a
particular unit.

INTEGER F77 Establishes the data type of a variable by explicitly attaching the name of a variable to an
integer data type, overriding implied data types.

INTENT F90 Specifies intended use of a dummy argument, but may not be used in a main program's
specification statement.

INTERFACE F90 Makes an implicit procedure an explicit procedure where the dummy parameters and
procedure type are known to the calling module; Also overloads a procedure name.

INTRINSIC F77 Identifies a symbolic name as an intrinsic function and allows it to be used as an actual
argument.

LOGICAL F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
logical data type, overriding implied data types.

MAP F77 ext Designates each unique field or group of fields within a UNION statement.

MODULE F90 Specifies the entry point for a Fortran 90/95 module program unit. A module defines a
host environment of scope of the module, and may contain subprograms that are in the
same scoping unit.

NAMELIST F90 Allows the definition of namelist groups for namelist-directed I/O.

NULLIFY F90 Disassociates a pointer from its target.

OPEN F77 Connects an existing file to a unit, creates and connects a file to a unit, creates a file that
is preconnected, or changes certain specifiers of a connection between a file and a unit.

OPTIONAL F90 Specifies dummy arguments that may be omitted or that are optional.

OPTIONS F77 ext Confirms or overrides certain compiler command-line options.

PARAMETER F77 Gives a symbolic name to a constant.

PAUSE F77 [Obsolescent]. Stops the program's execution.

POINTER F90 Provides a means for declaring pointers.

POINTER (Cray) F77 ext Declares a scalar variable to be a pointer variable (of type INTEGER), and another
variable to be its pointer-based variable.

PRINT F77 Transfers data to the standard output device from the items specified in the output list
and format specification.

PRIVATE F90 Specifies entities defined in a module are not accessible outside of the module.
Private can also appear inside a derived type to disallow access to its data
components outside the defining module.

F2003 In F2003, a Private statement may appear after the type’s contains statement to
disallow access to type bound procedures outside the defining module.

PROCEDURE F2003 Specifies a type bound procedure, procedure pointer, module procedure, dummy
procedure, intrinsic procedure, or an external procedure.

PROGRAM F77 Specifies the entry point for the linked Fortran program.

PROTECTED F2003 Protects a module variable against modification from outside the module in which it was
declared.

PUBLIC F90 Specifies entities defined in a module are accessible outside of the module.

PURE F95 Indicates that a function or subroutine has no side effects.

Fortran Statements

PGI Fortran Reference Guide 41

Statement Origin Description

READ F90 Transfers data from the standard input device to the items specified in the input and
format specifications.

REAL F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
data type, overriding implied data types.

RECORD F77 ext A VAX Fortran extension, defines a user-defined aggregate data item.

RECURSIVE F90 Indicates whether a function or subroutine may call itself recursively.

REDIMENSION F77 ext Dynamically defines the bounds of a deferred-shape array.

RETURN F77 Causes a return to the statement following a CALL when used in a subroutine, and
returns to the relevant arithmetic expression when used in a function.

REWIND F77 Positions the file at its beginning. The statement has no effect if the file is already
positioned at the start or if the file is connected but does not exist.

SAVE F77 Retains the definition status of an entity after a RETURN or END statement in a
subroutine or function has been executed.

SELECT CASE F90 Begins a CASE construct.

SELECT TYPE F2003 Provides the capability to execute alternative code depending on the dynamic type
of a polymorphic entity and to gain access to dynamic parts. The alternative code is
selected using the type is statement for a specific dynamic type, or the class
is statement for a specific type and all its type extensions. Use the optional class
default statement to specify all other dynamic types that don’t match a specified
type is or class is statement. Like the CASE construct, the code consists of a
number of blocks and at most one is selected for execution.

SEQUENCE F90 A derived type qualifier that specifies the ordering of the storage associated with
the derived type. This statement specifies storage for use with COMMON and
EQUIVALENCE statements.

STOP F77 Stops the program's execution and precludes any further execution of the program.

STRUCTURE F77 Vax
ext

A VAX extension to FORTRAN 77 that defines an aggregate data type.

SUBROUTINE F77 Introduces a subprogram unit.

TARGET F90 Specifies that a data type may be the object of a pointer variable (e.g., pointed to by a
pointer variable). Types that do not have the TARGET attribute cannot be the target of a
pointer variable.

THEN F77 Part of a block IF statement, surrounds a series of statements that are conditionally
executed.

TYPE F90 Begins a derived type data specification or declares variables of a specified user-defined
type.

F2003 Use the optional EXTENDS statement with TYPE to indicate a type extension in F2003.

UNION F77 Vax
ext

A multi-statement declaration defining a data area that can be shared intermittently
during program execution by one or more fields or groups of fields.

USE F90 Gives a program unit access to the public entities or to the named entities in the specified
module.

VOLATILE F77 ext Inhibits all optimizations on the variables, arrays and common blocks that it identifies.

wait F2003 Performs a wait operation for specified pending asynchronous data transfer operations.

Fortran Statements

PGI Fortran Reference Guide 42

Statement Origin Description

WHERE F90 Permits masked assignments to the elements of an array or to a scalar, zero dimensional
array.

WRITE F90 Transfers data to the standard output device from the items specified in the output list
and format specification.

3.3. ACCEPT
The ACCEPT statement has the same syntax as the PRINT statement and causes formatted input
to be read on standard input. ACCEPT is identical to the READ statement with a unit specifier of
asterisk (*).

F77 extension

Syntax
ACCEPT f [,iolist]
ACCEPT namelist

f
format-specifier, a * indicates list directed input.

iolist
is a list of variables to be input.

namelist
is the name of a namelist specified with the NAMELIST statement.

Examples
ACCEPT *, IA, ZA
 ACCEPT 99, I, J, K
 ACCEPT SUM
99 FORMAT(I2, I4, I3)

Non-character Format-specifier
If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER
variable, the compiler accepts it and treats it as if the contents were character. In the following
example, sum is treated as a format descriptor. The code in the first column is roughly equivalent
to that in the second column.

real sum
sum = 4h()
accept sum

character*4 ch
ch = '()'
accept ch

See Also
READ, PRINT

Fortran Statements

PGI Fortran Reference Guide 43

3.4. ARRAY
The ARRAY attribute defines the number of dimensions in an array that may be defined and the
number of elements and bounds in each dimension. [Not in PVF]

CMF

Syntax
ARRAY [::] array-name (array-spec) [, array-name (array-spec)] ...

array-name
is the symbolic name of an array.

array-spec
is a valid array specification, either explicit-shape, assumed-shape, deferred-shape, or assumed
size (refer to Fortran Arrays, for details on array specifications).

Description
ARRAY can be used in a subroutine as a synonym for DIMENSION to establish an argument as
an array, and in this case the declarator can use expressions formed from integer variables and
constants to establish the dimensions (adjustable arrays).

These integer variables must be either arguments or declared in COMMON; they cannot be local. Further,
in this case, the function of ARRAY statement is merely to supply a mapping of the argument to the
subroutine code, and not to allocate storage.

The typing of the array in an ARRAY statement is defined by the initial letter of the array name
in the same way as variable names, unless overridden by an IMPLICIT or type declaration
statement. Arrays may appear in type declaration and COMMON statements but the array name
can appear in only one array declaration.

Example
REAL, ARRAY(3:10):: ARRAY_ONE
INTEGER, ARRAY(3,-2:2):: ARRAY_TWO

This specifies ARRAY_ONE as a vector having eight elements with the lower bound of 3 and the
upper bound of 10.

ARRAY_TWO as a matrix of two dimensions having fifteen elements. The first dimension has
three elements and the second has five with bounds from -2 to 2.

Fortran Statements

PGI Fortran Reference Guide 44

See Also
ALLOCATE, DEALLOCATE

3.5. BYTE
The BYTE statement establishes the data type of a variable by explicitly attaching the name of a
variable to a 1-byte integer. This overrides data typing implied by the initial letter of a symbolic
name.

F77 extension

Syntax
BYTE name [/clist/], ...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description
Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. BYTE declaration statements must not be labeled.

Example
BYTE TB3, SEC, STORE (5,5)

3.6. DECODE
The DECODE statement transfers data between variables or arrays in internal storage and
translates that data from character form to internal form, according to format specifiers. Similar
results can be accomplished using internal files with formatted sequential READ statements.

F77 extension

Syntax
DECODE (c, f, b [,IOSTAT= ios] [,ERR= errs]) [list]

Fortran Statements

PGI Fortran Reference Guide 45

c
is an integer expression specifying the number of bytes involved in translation.

f
is the format-specifier.

b
is a scalar or array reference for the buffer area containing formatted data (characters).

ios
is an integer scalar memory reference which is the input/output status specifier: if this is
specified ios becomes defined with zero if no error condition exists or a positive integer when
there is an error condition.

errs
an error specifier which takes the form of a statement label of an executable statement in
the same program unit. If an error condition occurs execution continues with the statement
specified by errs.

list
is a list of input items.

Non-character Format-specifier
If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER
variable, the compiler accepts it and treats it as if the contents were character. In the following
example, sum is treated as a format descriptor:
real sum
sum = 4h()
accept sum

The preceding code segment is roughly equivalent to this:
character*4 ch
ch = '()'
accept ch

See Also
READ, PRINT,

3.7. DOUBLE COMPLEX
The DOUBLE COMPLEX statement establishes the data type of a variable by explicitly
attaching the name of a variable to a double complex data type. This overrides the data typing
implied by the initial letter of a symbolic name.

F77 extension

Fortran Statements

PGI Fortran Reference Guide 46

Syntax
The syntax for DOUBLE COMPLEX has two forms, a standard Fortran 90/95 entity based form,
and the PGI extended form. This section describes both syntax forms.
DOUBLE COMPLEX [, attribute-list ::] entity-list

attribute-list
is the list of attributes for the double complex variable.

entity-list
is the list of defined entities.

Syntax Extension
DOUBLE COMPLEX name [/clist/] [,name] [/clist/]...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description
Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type
of a symbol may be explicitly declared only once. It is established by type declaration statement,
IMPLICIT statement or by predefined typing rules. Explicit declaration of a type overrides any
implicit declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a DOUBLE COMPLEX variable is 16 bytes. With the -r8 option, the default
size of a DOUBLE COMPLEX variable is also 16 bytes.

Examples
DOUBLE COMPLEX CURRENT, NEXT

See Also
COMPLEX

3.8. DOUBLE PRECISION
The DOUBLE PRECISION statement establishes the data type of a variable by explicitly
attaching the name of a variable to a double precision data type. This overrides the data typing
implied by the initial letter of a symbolic name.

Fortran Statements

PGI Fortran Reference Guide 47

F90

Syntax
The syntax for DOUBLE PRECISION has two forms, a standard Fortran 90/95 entity based
form, and the PGI extended form. This section describes both syntax forms.
DOUBLE PRECISION [, attribute-list ::] entity-list

attribute-list
is the list of attributes for the double precision variable.

entity-list
is the list of defined entities.

Syntax Extension
DOUBLE PRECISION name [/clist/] [,name] [/clist/]...

name
is the symbolic name of a variable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
is a list of constants that initialize the data, as in a DATA statement.

Description
Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type
of a symbol may be explicitly declared only once. It is established by type declaration statement,
IMPLICIT statement or by predefined typing rules. Explicit declaration of a type overrides any
implicit declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of a DOUBLE PRECISION variable is 8 bytes, with or without the -r8 option.

Example
DOUBLE PRECISION PLONG

3.9. ENCODE
The ENCODE statement transfers data between variables or arrays in internal storage and
translates that data from internal to character form, according to format specifiers. Similar results
can be accomplished using internal files with formatted sequential WRITE statements.

F77 extension

Fortran Statements

PGI Fortran Reference Guide 48

Syntax
ENCODE (c,f,b[,IOSTAT=ios] [,ERR=errs])[list]

c
is an integer expression specifying the number of bytes involved in translation.

f
is the format-specifier.

b
is a scalar or array reference for the buffer area receiving formatted data (characters).

ios
is an integer scalar memory reference which is the input/output status specifier: if this is
included, ios becomes defined with zero if no error condition exists or a positive integer when
there is an error condition.

errs
an error specifier which takes the form of a statement label of an executable statement in the
same program. If an error condition occurs execution continues with the statement specified
by errs.

list
a list of output items.

Non-character Format-specifier
If a format-specifier is a variable which is neither CHARACTER nor a simple INTEGER
variable, the compiler accepts it and treats it as if the contents were character. For example, below
sum is treated as a format descriptor:
real sum
sum = 4h()
accept sum

and is roughly equivalent to
character*4 ch
ch = '()'
accept ch

See Also
READ, PRINT

3.10. END MAP
The END MAP statement terminates a MAP declaration.

F77 extension

Fortran Statements

PGI Fortran Reference Guide 49

Syntax
END MAP

Description
For more information, refer to the MAP statement.

Example
MAP ! Structure for a customer
 INTEGER*4 acct_cust
 REAL*4 credit_amt
 CHARACTER*8 due_date
END MAP

3.11. END STRUCTURE
The END STRUCTURE statement terminates a STRUCTURE declaration.

F77 extension

Syntax
END STRUCTURE

Description
For more information, refer to the STRUCTURE statement.

3.12. END UNION
The END UNION statement terminates a UNION declaration.

F77 extension

Syntax
END UNION

Description
For more information, refer to the UNION statement.

Fortran Statements

PGI Fortran Reference Guide 50

3.13. INCLUDE
The INCLUDE statement directs the compiler to start reading from another file.

The INCLUDE statement is used for FORTRAN 77. There is no support for VAX/VMS text libraries or the
module_name pathname qualifier that exists in the VAX/VMS version of the INCLUDE statement.

F77 extension

Syntax
INCLUDE 'filename [/[NO]LIST]'
INCLUDE "filename [/[NO]LIST]"

The following rules apply to the INCLUDE statement:

‣ The INCLUDE statement may be nested to a depth of 20 and can appear anywhere within a
program unit as long as Fortran's statement-ordering restrictions are not violated.

‣ You can use the qualifiers /LIST and /NOLIST to control whether the include file is
expanded in the listing file (if generated).

There is no support for VAX/VMS text libraries or the module_name pathname qualifier that exists in
the VAX/VMS version of the INCLUDE statement.

‣ Either single or double quotes may be used.

‣ If the final component of the file pathname is /LIST or /NOLIST, the compiler assumes it is a
qualifier, unless an additional qualifier is supplied.

‣ The filename and the /LIST or /NOLIST qualifier may be separated by blanks.

The compiler searches for the include file in the following directories:

‣ Each –I directory specified on the command-line.

‣ The directory containing the file that contains the INCLUDE statement (the current working
directory.)

‣ The standard include area.

Example
INCLUDE '/mypath/list /list'

This line includes a file named /mypath/list and expands it in the listing file, if a listing file is
used.

Fortran Statements

PGI Fortran Reference Guide 51

3.14. MAP
A union declaration is initiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of
fields is defined by a separate map declaration. For more information on field alignment, refer to
Structures.

F77 extension

Syntax
MAP
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END MAP

field_declaration
is a structure declaration or RECORD statement contained within a union declaration, a union
declaration contained within a union declaration, or the declaration of a typed data field within
a union.

Description
Data can be initialized in field declaration statements in union declarations. However, it is illegal
to initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined for that
union. The size of a map is the sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language
C. The main difference is that the language C requires one to associate a name with each map
(union). Fortran field names must be unique within the same declaration nesting level of maps.

Example
The following is an example of RECORD, STRUCTURE and UNION usage. The size of each
element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP
(the employee map at 24 bytes).
STRUCTURE /account/
 INTEGER typetag ! Tag to determine defined map
 UNION
 MAP ! Structure for an employee

Fortran Statements

PGI Fortran Reference Guide 52

 CHARACTER*12 ssn ! Social Security Number
 REAL*4 salary
 CHARACTER*8 empdate ! Employment date
 END MAP
 MAP ! Structure for a customer
 INTEGER*4 acct_cust
 REAL*4 credit_amt
 CHARACTER*8 due_date
 END MAP
 MAP ! Structure for a supplier
 INTEGER*4 acct_supp
 REAL*4 debit_amt
 BYTE num_items
 BYTE items(12) ! Items supplied
 END MAP
 END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

3.15. POINTER (Cray)
The POINTER statement is an extension to FORTRAN 77. It declares a scalar variable to be a
pointer variable (of type INTEGER), and another variable to be its pointer-based variable.

F77 extension

Syntax
POINTER (p1, v1) [, (p2, v2) ...]

v1 and v2
are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression may be
adjustable, where the rules for adjustable dummy arrays regarding any variables which appear
in the dimension declarators apply.

p1 and p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array.
The pointer is an integer variable containing the address of a pointer-based variable. The
storage located by the pointer variable is defined by the pointer-based variable (for example,
array, data type, etc.). A reference to a pointer-based variable appears in Fortran statements
like a normal variable reference (for example, a local variable, a COMMON block variable,
or a dummy variable). When the based variable is referenced, the address to which it refers is
always taken from its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.
The pointer is defined in one of the following ways:

‣ By assigning the value of the LOC function.

‣ By assigning a value defined in terms of another pointer variable.

Fortran Statements

PGI Fortran Reference Guide 53

‣ By dynamically allocating a memory area for the based variable. If a pointer-based variable
is dynamically allocated, it may also be freed.

Example
REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))
P = LOC(IC)
I = 0 ! IC gets 0
P = LOC(XC)
Q = P + 20 ! same as LOC(XC(6))
X(1) = 0 ! XC(6) gets 0
ALLOCATE (X) ! Q locates a dynamically
 ! allocated memory area

Restrictions
The following restrictions apply to the POINTER statement:

‣ No storage is allocated when a pointer-based variable is declared.

‣ If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

‣ A pointer-based variable may not appear in the argument list of a SUBROUTINE or
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SAVE statements.

‣ A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION
subprogram. If a pointer-based variable is an adjustable array, it is assumed that the
variables in the dimension declarator(s) are defined with an integer value at the time
the SUBROUTINE or FUNCTION is called. For a variable which appears in a pointer-
based variable's adjustable declarator, modifying its value during the execution of the
SUBROUTINE or FUNCTION does not modify the bounds of the dimensions of the pointer-
based array.

‣ A pointer-based variable is assumed not to overlap with another pointer-based variable.

3.16. PROTECTED
The PROTECTED statement protects a module variable against modification from outside the
module in which it was declared.

F2003

Syntax
PROTECTED [::], name [, name]

Fortran Statements

PGI Fortran Reference Guide 54

Description
Variables with the PROTECTED attribute may only be modified within the defining module.
Outside of that module they are not allowed to appear in any variable definition context, that is,
on the left-hand-side of an assignment statement.

This statement allows the values of variables of a module to be generally available without
relinquishing control over their modification.

Examples
In the following module, the cm_2_inch and in_2_cm variables are protected so that they
cannot be changed outside the CONVERT_FORMULA module. The PROTECTED attribute
allows users of this module to read the measurements in either centimeters or inches, but the
variables can only be changed via the provided subroutines which ensure that both values agree.
MODULE COVERT_FORMULA
 REAL,PROTECTED :: in_2_cm = 2.54, cm_2_in = 0.39
 CONTAINS
 SUBROUTINE set_metric(new_value_cm)
 ...
 END SUBROUTINE
 SUBROUTINE set_english(new_value_in)
 ...
 END SUBROUTINE
END MODULE

3.17. RECORD
The RECORD statement, a VAX Fortran extension, defines a user-defined aggregate data item.

F77 extension

Syntax
RECORD /structure_name/record_namelist [,/structure_name/record_namelist]
 ...
 [,/structure_name/record_namelist]
END RECORD

structure_name
is the name of a previously declared structure.

record_namelist
is a list of one or more variable or array names separated by commas.

Fortran Statements

PGI Fortran Reference Guide 55

Description
You create memory storage for a record by specifying a structure name in the RECORD
statement. You define the field values in a record either by defining them in the structure
declaration or by assigning them with executable code.

You can access individual fields in a record by combining the parent record name, a period (.),
and the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed data item (for example, INTEGER), while an
aggregate reference means a reference that resolves to a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with
the exception of the COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements.
Aggregate references may only appear in aggregate assignment statements, unformatted I/O
statements, and as parameters to subprograms.

Records are allowed in COMMON and DIMENSION statements.

Example
STRUCTURE /PERSON/ ! Declare a structure defining a person
 INTEGER ID
 LOGICAL LIVING
 CHARACTER*5 FIRST, LAST, MIDDLE
 INTEGER AGE
END STRUCTURE
! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /PERSON/ POPULATION(2), ME
...
ME.AGE = 34 ! Assign values for the variable me
ME.LIVING = .TRUE. ! to some of the fields.
ME.FIRST = 'Steve'
ME.ID = 542124822
...
POPULATION(1).LAST = 'Jones' ! Assign the "LAST" field of
 ! element 1 of array population.
POPULATION(2) = ME ! Assign all the values of record
 ! "ME" to the record population(2)

3.18. REDIMENSION
The REDIMENSION statement, a PGF77 extension to FORTRAN 77, dynamically defines the
bounds of a deferred-shape array. After a REDIMENSION statement, the bounds of the array
become those supplied in the statement, until another such statement is encountered.

F77 extension

Syntax
REDIMENSION name ([lb:]ub[,[lb:]ub]...) [,name([lb:]ub[,[lb:]ub]...)]...

Fortran Statements

PGI Fortran Reference Guide 56

Where:

name
is the symbolic name of an array.

[lb:]ub
is a dimension declarator specifying the bounds for a dimension (the lower bound lb and the
upper bound ub). lb and ub must be integers with ub greater than lb. The lower bound lb is
optional; if it is not specified, it is assumed to be 1. The number of dimension declarations
must be the same as the number of dimensions in the array.

Example
REAL A(:, :)
POINTER (P, A)
P = malloc(12 * 10 * 4)
REDIMENSION A(12, 10)
A(3, 4) = 33.

3.19. RETURN
The RETURN statement causes a return to the statement following a CALL when used in a
subroutine, and returns to the relevant arithmetic expression when used in a function.

F77

Syntax
RETURN

Alternate RETURN
(Obsolescent) The alternate RETURN statement is obsolescent for HPF and Fortran 90/95. Use
the CASE statement where possible in new or updated code. The alternate RETURN statement
takes the following form:
RETURN expression

expression
expression is converted to integer if necessary (expression may be of type integer or real). If
the value of expression is greater than or equal to 1 and less than or equal to the number of
asterisks in the SUBROUTINE or subroutine ENTRY statement then the value of expression
identifies the nth asterisk in the actual argument list and control is returned to that statement.

Example
 SUBROUTINE FIX (A,B,*,*,C)
40 IF (T) 50, 60, 70
50 RETURN
60 RETURN 1
70 RETURN 2

Fortran Statements

PGI Fortran Reference Guide 57

 END
 PROGRAM FIXIT
 CALL FIX(X, Y, *100, *200, S)
 WRITE(*,5) X, S ! Arrive here if (T) < 0
 STOP
100 WRITE(*, 10) X, Y ! Arrive here if (T) = 0
 STOP
200 WRITE(*,20) Y, S ! Arrive here if (T) > 0

3.20. STRUCTURE
The STRUCTURE statement, a VAX extension to FORTRAN 77, defines an aggregate data type.

F77 VAX extension

Syntax
STRUCTURE [/structure_name/][field_namelist]
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END STRUCTURE

structure_name
is unique and is used both to identify the structure and to allow its use in subsequent RECORD
statements.

field_namelist
is a list of fields having the structure of the associated structure declaration. A field_namelist
is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations, union
declarations or unnamed field declarations.

Description
Fields within structures conform to machine-dependent alignment requirements. Alignment of
fields also provides a C-like "struct" building capability and allows convenient inter-language
communications. Note that aligning of structure fields is not supported by VAX/VMS Fortran.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict.
Also, because records use periods to separate fields, it is not legal to use relational operators
(for example, .EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or logical expressions
(.AND., .NOT., .OR.) as field names in structure declarations.

Fields in a structure are aligned as required by hardware and a structure's storage requirements are
therefore machine-dependent. Note that VAX/VMS Fortran does no padding. Because explicit

Fortran Statements

PGI Fortran Reference Guide 58

padding of records is not necessary, the compiler recognizes the %FILL intrinsic, but performs no
action in response to it.

Data initialization can occur for the individual fields.

The UNION and MAP statements are supported.

The following is an example of record and structure usage.
STRUCTURE /account/
 INTEGER typetag ! Tag to determine defined map
 UNION
 MAP ! Structure for an employee
 CHARACTER*12 ssn ! Social Security Number
 REAL*4 salary
 CHARACTER*8 empdate ! Employment date
 END MAP
 MAP ! Structure for a customer
 INTEGER*4 acct_cust
 REAL*4 credit_amt
 CHARACTER*8 due_date
 END MAP
 MAP ! Structure for a supplier
 INTEGER*4 acct_supp
 REAL*4 debit_amt
 BYTE num_items
 BYTE items(12) ! Items supplied
 END MAP
 END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

3.21. UNION
A UNION declaration, a DEC extension to FORTRAN 77, is a multi-statement declaration
defining a data area that can be shared intermittently during program execution by one or more
fields or groups of fields. It declares groups of fields that share a common location within a
structure. Each group of fields within a union declaration is declared by a map declaration, with
one or more fields per map declaration.

Union declarations are used when one wants to use the same area of memory to alternately
contain two or more groups of fields. Whenever one of the fields declared by a union declaration
is referenced in a program, that field and any other fields in its map declaration become defined.
Then, when a field in one of the other map declarations in the union declaration is referenced,
the fields in that map declaration become defined, superseding the fields that were previously
defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields
is defined by a separate map declaration. The format of a UNION statement is as follows:

F77 extension

Fortran Statements

PGI Fortran Reference Guide 59

Syntax
UNION
 map_declaration
 [map_declaration]
 ...
 [map_declaration]
END UNION

The format of the map_declaration is as follows:
MAP
 field_declaration
 [field_declaration]
 ...
 [field_declaration]
END MAP

field_declaration
where field declaration is a structure declaration or RECORD statement contained within a
union declaration, a union declaration contained within a union declaration, or the declaration
of a typed data field within a union.

Description
Data can be initialized in field declaration statements in union declarations. Note, however, it is
illegal to initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined for that
union. The size of a map is the sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language
C. The main difference is that the language C requires one to associate a name with each map
(union). Fortran field names must be unique within the same declaration nesting level of maps.

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each
element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP
(the employee map at 24 bytes).
STRUCTURE /account/
 INTEGER typetag ! Tag to determine defined map.
 UNION
 MAP ! Structure for an employee
 CHARACTER*12 ssn ! Social Security Number
 REAL*4 salary
 CHARACTER*8 empdate ! Employment date
 END MAP
 MAP ! Structure for a customer
 INTEGER*4 acct_cust
 REAL*4 credit_amt
 CHARACTER*8 due_date
 END MAP
 MAP ! Structure for a supplier
 INTEGER*4 acct_supp
 REAL*4 debit_amt
 BYTE num_items

Fortran Statements

PGI Fortran Reference Guide 60

 BYTE items(12) ! Items supplied
 END MAP
 END UNION
END STRUCTURE
RECORD /account/ recarr(1000)

3.22. VOLATILE
The VOLATILE statement inhibits all optimizations on the variables, arrays and common blocks
that it identifies. The VOLATILE attribute, added in Fortran 2003, is used in a type declaration
statement.

F77 extension (statement)

F2003 (attribute)

Syntax

Volatile Attribute
datatype, volatile :: var_name
OR
datatype :: var_name
volatile :: var_name
var_name

Volatile Statement
VOLATILE nitem [, nitem ...]

nitem
is the name of a variable, an array, or a common block enclosed in slashes.

Description
Being volatile indicates to the compiler that, at any time, the variable might change or be
examined from outside the Fortran program. The impact on the programmer is that anytime
a volatile variable is referenced, the value must be loaded from memory. Furthermore, any
assignment to the volatile variable must be written to memory.

If nitem names a common block, all members of the block are volatile. The volatile attribute of a
variable is inherited by any direct or indirect equivalences, as shown in the example.

Volatile Attribute Example
The following example declares both the integer variable xyz and the real variable abc to be
volatile.

Fortran Statements

PGI Fortran Reference Guide 61

integer, volatile :: xyz
real :: abc
volatile :: abc

Volatile Statement Example
COMMON /COM/ C1, C2
VOLATILE /COM/, DIR ! /COM/ and DIR are volatile
EQUIVALENCE (DIR, X) ! X is volatile
EQUIVALENCE (X, Y) ! Y is volatile

3.23. WAIT
Performs a wait operation for specified pending asynchronous data transfer operations.

F2003

Syntax
WAIT (wait_specs_list)

wait_specs_list can include any of the following specifiers:

UNIT =] file-unit-number
A file-unit-number must be specified. If the optional characters UNIT= are omitted, the file-
unit-number is the first item in the wait-spec-list.

END = label
label must be the statement label of a branch target statement that appears in the same
scoping unit as the WAIT statement.

END= specifier has no effect if the pending data transfer operation is not a READ.

EOR = label
label must be the statement label of a branch target statement that appears in the same
scoping unit as the WAIT statement.

EOR= specifier has no effect if the pending data transfer operation is not a nonadvancing
READ.

ERR = label
label must be the statement label of a branch target statement that appears in the same
scoping unit as the WAIT statement.

ID = scalar_in_var
scalar_in_var is the identifier of a pending data transfer operation for the specified unit.

‣ If the ID= specifier appears, a wait operation for the specified data transfer operation is
performed.

‣ If the ID= specifier is omitted, wait operations for all pending data transfers for the
specified unit are performed.

Fortran Statements

PGI Fortran Reference Guide 62

IOMSG = iomsg-var
iomsg-var is an I/O message variable.

IOSTAT =scalar-int-var
scalar_in_var is the identifier of a pending data transfer operation for the specified unit.

For more information on IOSTAT, ERR=, EOR=, END=, and IOMSG=, refer to the READ and
WRITE statements.

Description
This statement performs a wait operation for specified pending asynchronous data transfer
operations.

The CLOSE, INQUIRE, and file positioning statements may also perform wait operations.

Execution of a WAIT statement specifying a unit that does not exist, has no file connected to
it, or that was not opened for asynchronous input/output is permitted, provided that the WAIT
statement has no ID= specifier. This type of WAIT statement does not cause an error or end-of-
file condition to occur.

No specifier shall appear more than once in a given wait-spec-list.

Examples
INTEGER SCORE(30)
CHARACTER GRADE(30)
WHERE (SCORE > 60)
 GRADE = 'P'
ELSE WHERE
 GRADE = 'F'
END WHERE

PGI Fortran Reference Guide 63

Chapter 4.
FORTRAN ARRAYS

Fortran arrays are any object with the dimension attribute. In Fortran 90/95, arrays may be very
different from arrays in older versions of Fortran. Arrays can have values assigned as a whole
without specifying operations on individual array elements, and array sections can be accessed.
Also, allocatable arrays that are created dynamically are available as part of the Fortran 90/95
standard. This section describes some of the features of Fortran 90/95 arrays.

The following example illustrates valid array operations.
REAL(10,10) A,B,C
A = 12 !Assign 12 to all elements of A
B = 3 !Assign 3 to all elements of B
C = A + B !Add each element of A to each of B

4.1. Array Types
Fortran supports four types of arrays: explicit-shape arrays, assumed-shape arrays, deferred-shape
arrays and assumed-size arrays. Both explicit-shape arrays and deferred shape arrays are valid
in a main program. Assumed shape arrays and assumed size arrays are only valid for arrays used
as dummy arguments. Deferred shape arrays, where the storage for the array is allocated during
execution, must be declared with either the ALLOCATABLE or POINTER attributes.

Every array has properties of type rank, shape and size. The extent of an array’s dimension is the
number of elements in the dimension. The array rank is the number of dimensions in the array, up
to a maximum of seven. The shape is the vector representing the extents for all dimensions. The
size is the product of the extents. For some types of arrays, all of these properties are determined
when the array is declared. For other types of arrays, some of these properties are determined
when the array is allocated or when a procedure using the array is entered. For arrays that are
dummy arguments, there are several special cases.

Allocatable arrays are arrays that are declared but for which no storage is allocated until an
allocate statement is executed when the program is running. Allocatable arrays provide Fortran
90/95 programs with dynamic storage. Allocatable arrays are declared with a rank specified
with the ":" character rather than with explicit extents, and they are given the ALLOCATABLE
attribute.

Fortran Arrays

PGI Fortran Reference Guide 64

4.1.1. Explicit Shape Arrays
Explicit shape arrays are those arrays familiar to FORTRAN 77 programmers. Each dimension
is declared with an explicit value. There are two special cases of explicit arrays. In a procedure,
an explicit array whose bounds are passed in from the calling program is called an automatic-
array. The second special case, also found in a procedure, is that of an adjustable-array which is a
dummy array where the bounds are passed from the calling program.

4.1.2. Assumed Shape Arrays
An assumed shape array is a dummy array whose bounds are determined from the actual
array. Intrinsics called from the called program can determine sizes of the extents in the called
program’s dummy array.

4.1.3. Deferred Shape Arrays
A deferred shape array is an array that is declared, but not with an explicit shape. Upon
declaration, the array's type, its kind, and its rank (number of dimensions) are determined.
Deferred shape arrays are of two varieties, allocatable arrays and array pointers.

4.1.4. Assumed Size Arrays
An assumed size array is a dummy array whose size is determined from the corresponding array
in the calling program. The array’s rank and extents may not be declared the same as the original
array, but its total size (number of elements) is the same as the actual array. This form of array
should not need to be used in new Fortran programs.

4.2. Array Specification
Arrays may be specified in either of two types of data type specification statements, attribute-
oriented specifications or entity-oriented specifications. Arrays may also optionally have
data assigned to them when they are declared. This section covers the basic form of entity-
based declarations for the various types of arrays. Note that all the details of array passing for
procedures are not covered here; refer to The Fortran 95 Handbook for complete details on the
use of arrays as dummy arguments.

4.2.1. Explicit Shape Arrays
Explicit shape arrays are defined with a specified rank, each dimension must have an upper
bound specified, and a lower bound may be specified. Each bound is explicitly defined with a
specification of the form:
[lower-bound:] upper-bound

An array has a maximum of seven dimensions. The following are valid explicit array
declarations:
INTEGER NUM1(1,2,3) ! Three dimensions
INTEGER NUM2(-12:6,100:1000) ! Two dimensions with lower & upper bounds
INTEGER NUM3(0,12,12,12) ! Array of size 0

Fortran Arrays

PGI Fortran Reference Guide 65

INTEGER NUM3(M:N,P:Q,L,99) ! Array with 4 dimensions

4.2.2. Assumed Shape Arrays
An assumed shape array is always a dummy argument. An assumed shape array has a
specification of the form:
[lower-bound] :

The number of colons (:) determines the array’s rank. An assumed shape array cannot be an
ALLOCATABLE or POINTER array.

4.2.3. Deferred Shape Arrays
An deferred shape array is an array pointer or an allocatable array. A deferred shape array has a
specification that determines the array's rank and has the following form for each dimension:

For example:
INTEGER, POINTER :: NUM1(:,:,:,:)
INTEGER, ALLOCATABLE :: NUM2(:)

4.2.4. Assumed Size Arrays
An assumed size array is a dummy argument with an assumed size. The array’s rank and bounds
are specified with a declaration that has the following form:
[explicit-shape-spec-list ,][lower-bound:]*

For example:
SUBROUTINE YSUM1(M,B,C)
INTEGER M
REAL, DIMENSION(M,4,5,*) :: B,C

4.3. Array Subscripts and Access
There are a variety of ways to access an array in whole or in part. Arrays can be accessed, used,
and assigned to as whole arrays, as elements, or as sections. Array elements are the basic access
method.

In the following example, the value of 5 is assigned to element 3,1 of NUMB.
INTEGER, DIMENSION(3,11) :: NUMB
NUMB(3,1) = 5

The following statement assigns the value 5 to all elements of NUMB.

The array NUMB may also be accessed as an entire array:
NUMB=5

4.3.1. Array Sections and Subscript Triplets
Another possibility for accessing array elements is the array section. An array section is an array
accessed by a subscript that represents a subset of the entire array's elements and is not an array
element. An array section resulting from applying a subscript list may have a different rank than

Fortran Arrays

PGI Fortran Reference Guide 66

the original array. An array section's subscript list consists of subscripts, subscript triplets, and/or
vector subscripts.

The following example uses a subscript triplet and a subscript, assigning the value 6 to
all elements of NUMB with the second dimension of value 3 (NUMB(1,3), NUMB(2,3),
NUMB(3,3)).
NUMB(:,3)=6

The following array section uses the array subscript triplet and a subscript to access three
elements of the original array. This array section could also be assigned to a rank one array with
three elements, as shown here:
INTEGER(3,11) NUMB
INTEGER(3) NUMC
NUMB(:,3) = 6
NUMC = NUMB(:,3)

In this example, NUMC is rank 1 and NUMB is rank 2. This assignment, using the subscript 3,
illustrates how NUMC, and the array section of NUMB, has a shape that is of a different rank
than the original array.

The general form for an array's dimension with a vector subscript triplet is:
[subscript] : [subscript] [:stride]

The first subscript is the lower bound for the array section, the second is the upper bound and the
third is the stride. The stride is by default one. If all values except the : are omitted, then all the
values for the specified dimensions are included in the array section.

In the following example, using the NUMB previously defined, the statement has a stride of 2,
and assigns the value 7 to the elements NUMB(1,3) and NUMB(3,3).
NUMB(1:3:2,3) = 7

4.3.2. Array Sections and Vector Subscripts
Vector-valued subscripts specify an array section by supplying a set of values defined in a one
dimensional array (vector) for a dimension or several dimensions of an array section.

In the following example, the array section uses the vectors I and J to assign the value 7 to each
of the elements: NUMB(2,1), NUMB(2,2), NUMB(3,1), and NUMB(3,2).
INTEGER J(2), I(2)
INTEGER NUMB(3,6)
I = (/1,2/)
J = (/2,3/)
NUMB(J,I) = 7

4.4. Array Constructors
An array constructor can be used to assign values to an array. Array constructors form one-
dimensional vectors to supply values to a one-dimensional array, or one dimensional vectors and
the RESHAPE function to supply values to arrays with more than one dimension.

Array constructors can use a form of implied DO similar to that in a DATA statement. For
example:
INTEGER DIMENSION(4) :: K = (/1,2,7,11/)
INTEGER DIMENSION(20) :: J = (/(I,I=1,40,2)/)

PGI Fortran Reference Guide 67

Chapter 5.
INPUT AND OUTPUT

Input, output, and format statements provide the means for transferring data to or from files. Data
is transferred as records to or from files. A record is a sequence of data which may be values or
characters and a file is a sequence of such records. A file may be internal, that is, held in memory,
or external such as those held on disk. To access an external file a formal connection must be
made between a unit, for example a disk file, and the required file. An external unit must be
identified either by a positive integer expression, the value of which indicates a unit, or by an
asterisk (*) which identifies a standard input or output device.

This section describes the types of input and output available and provides examples of input,
output and format statements. There are four types of input/output used to transfer data to or from
files: unformatted, formatted, list directed, and namelist.

‣ unformatted data is transferred between the item(s) in the input/output list (iolist) and the
current record in the file. Exactly one record may be read or written.

‣ formatted data is edited to conform to a format specification, and the edited data is
transferred between the item or items in the iolist, and the file. One or more records may be
read or written. Non-advancing formatted data transfers are a variety of formatted I/O where
a portion of a data record is transferred with each input/output statement.

‣ list directed input/output is an abbreviated form of formatted input/output that does not use
a format specification. Depending on the type of the data item or data items in the iolist,
data is transferred to or from the file, using a default, and not necessarily accurate format
specification.

‣ namelist input/output is a special type of formatted data transfer; data is transferred between
a named group (namelist group) of data items and one or more records in a file.

5.1. File Access Methods
You can access files using one of two methods, sequential access, or direct access (random
access). The access method is determined by the specifiers supplied when the file is opened using
the OPEN statement. Sequential access files are accessed one after the other, and are written in
the same manner. Direct access files are accessed by specifying a record number for input, and by
writing to the currently specified record on output.

Input and Output

PGI Fortran Reference Guide 68

Files may contain one of two types of records, fixed length records or variable length records.
To specify the size of the fixed length records in a file, use the RECL specifier with the OPEN
statement. RECL sets the record length in bytes.

The units depend on the value of the FORTRANOPT environment variable. If the value is vaxio,
then the record length is in units of 32-bit words. If FORTRANOPT is not defined, or its value is
something other than vaxio, then the record length is always in units of bytes.

RECL can only be used when access is direct.

A record in a variable length formatted file is terminated with \n. A record in a variable length
unformatted file is preceded and followed by a word indicating the length of the record.

5.1.1. Standard Preconnected Units
Certain input and output units are predefined, depending on the value of compiler options.
The PGI Fortran compilers –Mdefaultunit option tells the compiler to treat "*" as a
synonym for standard input for reading and standard output for writing. When the option is –
Mnodefaultunit, the compiler treats "*" as a synonym for unit 5 on input and unit 6 on output.

5.2. Opening and Closing Files
The OPEN statement establishes a connection to a file. OPEN allows you to do any of the
following

‣ Connect an existing file to a unit.
‣ Create and connect a file to a unit.
‣ Create a file that is preconnected.
‣ Establish the access method and record format for a connection.

OPEN has the form:
OPEN (list)

where list contains a unit specifier of the form:
[UNIT=] u

where u, an integer, is the external unit specifier.

In addition list may contain one of each of the specifiers shown in Table 16.

5.2.1. Direct Access Files
If a file is connected for direct access using OPEN with ACCESS='DIRECT', the record length
must be specified using RECL=. Further, one of each of the other specifiers may also be used.

Any file opened for direct access must be via fixed length records.

In the following example:

‣ A new file, book.dat, is created and connected to unit 12 for direct formatted input/output
with a record length of 98 characters.

‣ Blank values are ignored in numeric values.

Input and Output

PGI Fortran Reference Guide 69

‣ If an error condition exists when the OPEN statement is executed, the variable E1 is assigned
some positive value, and then execution continues with the statement labeled 20.

‣ If no error condition pertains, E1 is assigned the value 0 and execution continues with the
statement following the OPEN statement.

OPEN(12,IOSTAT=E1,ERR=20,FILE='book.dat',BLANK='NULL',
+ACCESS='DIRECT',RECL=98,FORM='FORMATTED',STATUS='NEW')

5.2.2. Closing a File
Close a unit by specifying the CLOSE statement from within any program unit. If the unit
specified does not exist or has no file connected to it, the CLOSE statement has no effect.

Provided the file is still in existence, it may be reconnected to the same or a different unit after the
execution of a CLOSE statement. An implicit CLOSE is executed when a program stops.

The CLOSE statement terminates the connection of the specified file to a unit.
CLOSE ([UNIT=] u [,IOSTAT=ios] [,ERR= errs]
[,STATUS= sta] [,DISPOSE= sta] [,DISP= sta])

CLOSE takes the status values IOSTAT, ERR, and STATUS, similar to those described in the
following table. In addition, CLOSE allows the DISPOSE or DISP specifier which can take
a status value sta which is a character string, where case is insignificant, specifying the file
status (the same keywords are used for the DISP and DISPOSE status). Status can be KEEP
or DELETE. KEEP cannot be specified for a file whose dispose status is SCRATCH. When
KEEP is specified (for a file that exists) the file continues to exist after the CLOSE statement,
conversely DELETE deletes the file after the CLOSE statement. The default value is KEEP
unless the file status is SCRATCH.

Table 16 OPEN Specifiers

Specifier Description

ACCESS=acc Where acc is a character string specifying the access method for file connection as
DIRECT (random access) or SEQUENTIAL. The default is SEQUENTIAL.

ACTION=act Where act is a character string specifying the allowed actions for the file and is one of
READ, WRITE, or READWRITE.

ASYNCHRONOUS=async Where async is a character expression specifying whether to allow asynchronous data
transfer on this file connection. One of ‘YES’ or ‘NO’ is allowed.

BLANK=blnk Where blnk is a character string which takes the value NULL or ZERO: NULL causes
all blank characters in numeric formatted input fields to be ignored with the exception of
an all-blank field which has a value of zero. ZERO causes all blanks other than leading
blanks to be treated as zeros. The default is NULL. This specifier must only be used when
a file is connected for formatted input/output.

CONVERT=char_expr Where char_expr is a character string that allows byte-swapping I/O to be performed on
specific logical units, and is one of following: BIG_ENDIAN, LITTLE_ENDIAN, or NATIVE.

Previously, byte-swappingI/O was only enabled by the command-line option, -
byteswapio, and was applied to all unformatted I/O operations which appeared in the
files compiled using -byteswapio.

Thevalue 'BIG_ENDIAN' is specifies to convert big-endian format data files produced by
most RISC workstations and high-end servers to the little-endian format used on Intel
Architecture systems on-the-fly during file reads/writes. This value assumes that the

Input and Output

PGI Fortran Reference Guide 70

Specifier Description
record layouts of unformatted sequential access and direct access files are the same on
the systems.

For the values 'LITTLE_ENDIAN'and 'NATIVE", byte-swapping is not performed during file
reads/writes since the little-endian format is used on Intel Architecture.

DECIMAL= scalar_char Specify the default decimal edit mode for the unit. When the edit mode is point, decimal
points appear in both input and output. The options are COMMA, where commas rather
than decimal points appear in both input and output, and POINT, where decimal points
appear in both input and output.

DELIM=del Specify the delimiter for character constants written by a list-directed or namelist-formatted
statement. The options are APOSTROPHE, QUOTE, and NONE.

ENCODING= specifier An encoding specifier which indicates the desired encoding of the file,
such as one of the following:
UTF-8 specifies the file is connected for UTF-8 I/O or that the
processor can detect this format in some way.
A processor-dependent value indicates the file is in another known
format, such as UTF-16LE.

ERR=errs An error specifier which takes the form of a statement label of an executable statement
in the same program. If an error condition occurs, execution continues with the statement
specified by errs.2

FILE=fin Where fin is a character string defining the file name to be connected to the specified unit.

FORM=fm Where fm is a character string specifying whether the file is being connected for
FORMATTED, UNFORMATTED, or BINARY output. The default is FORMATTED. For
an unformatted file whose form is BINARY, the file is viewed as a byte-stream file, such
as a file created by fwrite() calls in a C program; the data in the file is not organized into
records.

IOSTAT=ios Input/output status specifier where ios is an integer scalar memory reference. If this is
included in list, ios becomes defined with 0 if no error exists or a positive integer when
there is an error condition.

If IOSTAT and ERR are not present, the program terminates if an error occurs.

PAD=padding Specifies whether or not to use blank padding for input items. The padding values are
YES and NO. The value NO requires that the input record and the input list format
specification match.

POSITION=pos Specifies the position of an opened file. ASIS indicates the file position remains
unchanged. REWIND indicates the file is to be rewound, and APPEND indicates the file is
to positioned just before an end-of-file record, or at its terminal point.

RECL=rl Where rl is an integer which defines the record length in a file connected for direct access
and is the number of characters when formatted input/output is specified. This specifier
must only be given when a file is connected for direct access.

Round=specifier Where specifier is a character expression that controls the optional plus
characters in formatted numeric output. The value can be SUPPRESS, PLUS,
PROCESSOR_DEFINED, or UNDEFINED.

Input and Output

PGI Fortran Reference Guide 71

Specifier Description

STATUS=sta The file status where sta is a character expression: it can be NEW, OLD, SCRATCH,
REPLACE or UNKNOWN. When OLD or NEW is specified a file specifier must be given.
SCRATCH must not be used with a named file. The default is UNKNOWN.

SIGN=specifier Where specifier is a character expression that controls the optional plus
characters in formatted numeric output. The value can be SUPPRESS, PLUS,
PROCESSOR_DEFINED, or UNDEFINED.

A unit may be the subject of a CLOSE statement from within any module. If the unit specified
does not exist or has no file connected to it, the use of the CLOSE statement has no effect.
Provided the file is still in existence it may be reconnected to the same or a different unit after
the execution of a CLOSE statement. Note that an implicit CLOSE is executed when a program
stops.

In the following example the file on UNIT 6 is closed and deleted.
CLOSE(UNIT=6,STATUS='DELETE')

5.3. Data Transfer Statements
Once a unit is connected, either using a preconnection, or by executing an OPEN statement, data
transfer statements may be used. The available data transfer statements include: READ, WRITE,
and PRINT. The general form for these data transfer statements is shown in Chapter 3 Fortran
Statements; refer to that section for details on the READ, WRITE and PRINT statements and
their valid I/O control specifiers.

5.4. Unformatted Data Transfer
Unformatted data transfer allows data to be transferred between the current record and the items
specified in an input/output list. Use OPEN to open a file for unformatted output:
OPEN (2, FILE='new.dat', FORM='UNFORMATTED')

The unit specified must be an external unit.

After data is transferred, the file is positioned after the last record read or written, if there is no
error condition or end-of-file condition set.

Unformatted data transfer cannot be carried out if the file is connected for formatted input/output.

The following example shows an unformatted input statement:
READ (2, ERR=50) A, B

‣ On output to a file connected for direct access, the output list must not specify more values
than can fit into a record. If the values specified do not fill the record the rest of the record is
undefined.

‣ On input, the file must be positioned so that the record read is either an unformatted record or
an endfile record.

Input and Output

PGI Fortran Reference Guide 72

‣ The number of values required by the input list in the input statement must be less than or
equal to the number of values in the record being read. The type of each value in the record
must agree with that of the corresponding entity in the input list. However one complex
value may correspond to two real list entities or vice versa. If the input list item is of type
CHARACTER, its length must be the same as that of the character value

‣ In the event of an error condition, the position of the file is indeterminate.

5.5. Formatted Data Transfer
During formatted data transfer, data is edited to conform to a format specification, and the edited
data is transferred between the items specified in the input or output statement’s iolist and the
file; the current record is read or written and, possibly, so are additional records. On input, the
file must be positioned so that the record read is either a formatted record or an endfile record.
Formatted data transfer is prohibited if the file is connected for unformatted input/output.

For variable length record formatted input, each newline character is interpreted as a record
separator. On output, the I/O system writes a newline at the end of each record. If a program
writes a newline itself, the single record containing the newline will appear as two records when
read or backspaced over. The maximum allowed length of a record in a variable length record
formatted file is 2000 characters.

5.5.1. Implied DO List Input Output List
An implied DO list takes the form
(iolist,do-var=var1,var2,var3)

where the items in iolist are either items permissible in an input/output list or another implied
DO list. The value do-var is an INTEGER, REAL or DOUBLE PRECISION variable and var1,
var2 and var3 are arithmetic expressions of type INTEGER, REAL or DOUBLE PRECISION.
Generally, do-var, var1, var2 and var3 are of type INTEGER. Should iolist occur in an input
statement, the do-var cannot be used as an item in iolist. If var3 and the preceding comma are
omitted, the increment takes the value 1. The list items are specified once for each iteration of the
DO loop with the DO-variable being substituted as appropriate.

In the following example OXO, C(7), C(8) and C(9) are each set to 0.0. TEMP, D(1) and D(2) are
set to 10.0.
REAL C(6),D(6)
DATA OXO,(C(I),I=7,9),TEMP,(D(J),J=1,2)/4*0.0,3*10.0/

The following two statements have the same effect.
READ *,A,B,(R(I),I=1,4),S

READ *,A,B,R(1),R(2),R(3),R(4),S

5.5.2. Format Specifications
Format requirements may be given either in an explicit FORMAT statement or alternatively, as
fields within an input/output statement (as values in character variables, arrays or other character
expressions within the input/output statement).

Input and Output

PGI Fortran Reference Guide 73

When a format identifier in a formatted input/output statement is a character array name or other
character expression, the leftmost characters must be defined with character data that constitute a
format specification when the statement is executed. A character format specification is enclosed
in parentheses. Blanks may precede the left parenthesis. Character data may follow the right-
hand parenthesis and has no effect on the format specification. When a character array name is
used as a format identifier, the length of the format specification can exceed the length of the
first element of the array; a character array format specification is considered to be an ordered
concatenation of all the array elements. When a character array element is used as a format
identifier the length must not exceed that of the element used.

The FORMAT statement has the form:
FORMAT (list-of-format-requirements)

The list of format requirements can be any of the following, separated by commas:

‣ Repeatable editor commands which may or may not be preceded by an integer constant
which defines the number of repeats.

‣ Non-repeatable editor commands.
‣ A format specification list enclosed in parentheses, optionally preceded by an integer

constant which defines the number of repeats.

Each action of format control depends on a FORMAT specified edit code and the next item in the
input/output list used. If an input/output list contains at least one item, there must be at least one
repeatable edit code in the format specification. An empty format specification FORMAT() can
only be used if no list items are specified. In such a case, one input record is skipped or an output
record containing no characters is written. Unless the edit code or the format list is preceded
by a repeat specification, a format specification is interpreted from left to right. When a repeat
specification is used, the appropriate item is repeated the required number of times.

Each repeatable edit code has a corresponding item in the iolist; however when a list item is of
type complex two edit codes of F, E, D or G are required. The edit codes P, X, T, TL, TR, S, SP,
SS, H, BN, BZ, /, : and apostrophe act directly on the record and have no corresponding item in
the input/output list.

The file is positioned after the last character read or written when the edit codes I, F, E, D, G, L,
A, H or apostrophe are processed. If the specified unit is a printer then the first character of the
record is used to control the vertical spacing as shown in the following table:

Table 17 Format Character Controls for a Printer

Character Vertical Spacing

Blank One line

0 Two lines

1 To first line on next page

+ No advance

5.5.2.1. A Format Control – Character Data
The A specifier transfers characters. The A specifier has the form:
Aw

Input and Output

PGI Fortran Reference Guide 74

When the optional width field, w, is not specified, the width is determined by the size of the data
item.

On output, if l is the length of the character item and w is the field width, then the following rules
apply:

‣ If w > l, output with w-l blanks before the character.
‣ If w < l, output leftmost w characters.

On input, if l is the length of the character I/O item and w is the field width, then the following
rules apply:

‣ If w > l, rightmost l characters from the input filed.
‣ If w < l, leftmost w characters from the input filed and followed by l – w blanks.

You can also use the A format specifier to process data types other than CHARACTER. For types
other than CHARACTER, the number of characters supplied for input/output equals the size in
bytes of the data allocated to the data type. For example, an INTEGER*4 value is represented
with 4 characters and a LOGICAL*2 is represented with 2 characters.

The following shows a simple example that reads two CHARACTER arrays from the file
data.src:
 CHARACTER STR1*8, STR2*12
 OPEN(2, FILE='data.src')
 READ(2, 10) STR1, STR2
10 FORMAT (A8, A12)

5.5.2.2. B Format Control – Binary Data
The B field descriptor transfers binary values and can be used with any integer data type. The edit
descriptor has the form:
Bw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) binary characters only (0 or 1).
An all blank field is treated as a value of zero. If the value of the external field exceeds the range
of the corresponding list element, an error occurs.

On output, the B field descriptor transfers the binary values of the corresponding I/O list element,
right-justified, to an external field that is w characters long.

‣ If the value to be transmitted does not fill the field, leading spaces are inserted.
‣ If the value is too large for the field, the entire field is filled with asterisks.
‣ If m is present, the external field consists of at least m digits, and is zero-filled on the left if

necessary.
‣ If m is zero, and the internal representation is zero, the external field is blank-filled.

5.5.2.3. D Format Control – Real Double Precision Data with Exponent
The D specifier transfers real values for double precision data with a representation for an
exponent. The form of the D specifier is:
Dw.d

where w is the field width and d the number of digits in the fractional part.

Input and Output

PGI Fortran Reference Guide 75

For input, the same conditions apply as for the F specifier described later in this section.

For output, the scale factor k controls the decimal normalization. The scale factor k is the current
scale factor specified by the most recent P format control.

‣ If one hasn't been specified, the default is zero (0).
‣ If -d < k <= 0, the output file contains leading zeros and d-|k| significant digits after the

decimal point.
‣ If 0 < k < d+2, there are exactly |k| significant digits to the left of the decimal point and d-k

+1 significant digits to the right of the decimal point.
‣ Other values of k are not allowed.

For example:
 DOUBLE PRECISION VAL1 VAL1 = 141.8835 WRITE(*, 20) VAL1 20 FORMAT (D10.4)

produces the following:
0.1418D+03

5.5.2.4. d Format Control – Decimal specifier
The dc and dp descriptors, representing decimal comma and decimal point edit modes,
respectively, are valid in format processing, such as in a FORMAT statement.

The specific edit mode takes effect immediately when encountered in formatting, and stays in
effect until either another descriptor is encountered or until the end of the statement.

5.5.2.5. E Format Control – Real Single Precision Data with Exponent
The E specifier transfers real values for single precision data with an exponent. The E format
specifier has two basic forms:
Ew.d
Ew.dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits
to be printed in the exponent part.

For input the same conditions apply as for F editing.

For output the scale factor controls the decimal normalization as in the D specifier.

5.5.2.6. EN Format Control
The EN specifier transfers real values using engineering notation.
ENw.d
ENw.dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits
to be printed in the exponent part.

On output, the number is in engineering notation where the exponent is divisible by 3 and the
absolute value of the significand is 1000 > |significand | 1. This format is the same as the E
format descriptor, except for restrictions on the size of the exponent and the significand.

Input and Output

PGI Fortran Reference Guide 76

5.5.2.7. ES Format Control
The ES specifier transfers real values in scientific notation. The ES format specifier has two basic
forms:
ESw.d
ESw.dEe

where w is the field width, d the number of digits in the fractional part and e the number of digits
to be printed in the exponent part.

For output, the scale factor controls the decimal normalization as in the D specifier.

On output, the number is presented in scientific notation, where the absolute value of the
significand is 10> | significand | 1.

5.5.2.8. F Format Control - Real Single Precision Data
The F specifier transfers real values. The form of the F specifier is:
Fw.d

where w is the field width and d is the number of digits in the fractional part.

On input, if the field does not contain a decimal digit or an exponent, right-hand d digits, with
leading zeros, are interpreted as being the fractional part.

On output, a leading zero is only produced to the left of the decimal point if the value is less than
one.

5.5.2.9. G Format Control
The G format specifier provides generalized editing of real data. The G format has two basic
forms:
Gw.d
Gw.dEe

The specifier transfers real values; it acts like the F format control on input and depending on the
value’s magnitude, like E or F on output. The magnitude of the data determines the output format.
For details on the actual format used, based on the magnitude, refer to the ANSI FORTRAN
Standard (Section 13.5.9.2.3 G Editing).

5.5.2.10. I Format Control – Integer Data
The I format specifier transfers integer values. The I format specifier has two basic forms:
Iw
Iw.m

where w is the field width and m is the minimum filed width on output, including leading zeros.
If present, m must not exceed width w.

On input, the external field to be input must contain (unsigned) decimal characters only. An all
blank field is treated as a value of zero. If the value of the external field exceeds the range of the
corresponding list element, an error occurs.

On output, the I format descriptor transfers the decimal values of the corresponding I/O list
element, right-justified, to an external field that is w characters long.

Input and Output

PGI Fortran Reference Guide 77

‣ If the value to be transmitted does not fill the field, leading spaces are inserted.
‣ If the value is too large for the field, the entire field is filled with asterisks.
‣ If m is present, the external field consists of at least m digits, and is zero-filled on the left if

necessary.
‣ If m is zero, and the internal representation is zero, the external field is blank-filled.

5.5.2.11. L Format Control – Logical Data
The L format control transfers logical data of field width w:
Lw

On input, the list item will become defined with a logical value; the field consists of optional
blanks, followed by an optional decimal point followed by T or F. The values .TRUE.
or .FALSE. may also appear in the input field

The output field consists of w-1 blanks followed by T or F as appropriate.

5.5.2.12. Quote Format Control
Quote editing prints a character constant. The format specifier writes the characters enclosed
between the quotes and cannot be used on input. The field width is that of the characters
contained within quotes (you can also use apostrophes to enclose the character constant).

To write an apostrophe (or quote), use two consecutive apostrophes (or quotes).

For example:
 WRITE (*, 101)
101 FORMAT ('Print an apostrophe '' and end.')

Produces:
Print an apostrophe ' and end.

Similarly, you can use quotes, for example:
 WRITE (*, 102)
102 FORMAT ("Print a line with a "" and end.")

Produces:
Print a line with a " and end.

5.5.2.13. BN Format Control – Blank Control
The BN and BZ formats control blank spacing. BN causes all embedded blanks except leading
blanks in numeric input to be ignored, which has the effect of right-justifying the remainder of the
field. Note that a field of all blanks has the value zero. Only input statements and I, F, E, D and G
editing are affected.

BZ causes all blanks except leading blanks in numeric input to be replaced by zeros. Only input
statements and I, F, E, D and G editing are affected.

5.5.2.14. H Format Control – Hollerith Control
The H format control writes the n characters following the H in the format specification and
cannot be used on input.

Input and Output

PGI Fortran Reference Guide 78

The basic form of this format specification is:
nHc1cn...

where n is the number of characters to print and c1 through cn are the characters to print.

5.5.2.15. O Format Control Octal Values
The O and Z field descriptors transfer octal or hexadecimal values and can be used with an
integer data type. They have the form:
Ow[.m] and Zw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters
only. An all blank field is treated as a value of zero. If the value of the external field exceeds the
range of the corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively,
of the corresponding I/O list element, right-justified, to an external field that is w characters long.

‣ If the value to be transmitted does not fill the field, leading spaces are inserted.
‣ If the value is too large for the field, the entire field is filled with asterisks.
‣ If m is present, the external field consists of at least m digits, and is zero-filled on the left if

necessary.
‣ If m is zero, and the internal representation is zero, the external field is blank-filled.

5.5.2.16. P Format Specifier – Scale Control
The P format specifier is the scale factor format.
kP

This specifier is applied as follows.

‣ With F, E, D and G editing on input and F editing on output, the external number equals the
internal number multiplied by 10**k .

‣ If there is an exponent in the field on input, editing with F, E, D and G the scale factor has no
effect.

‣ On output with E and D editing, the basic real constant part of the number is multiplied by
10**k and the exponent reduced by k.

‣ On output with G editing, the effect of the scale factor is suspended unless the size of the
datum to be edited is outside the range permitted for F editing.

‣ On output if E editing is required, the scale factor has the same effect as with E output
editing.

The following example uses a scale factor.
 DIMENSION A(6)
 DO 10 I = 1,6 10
 A(I) = 25.
 TYPE 100,A 100
 FORMAT(' ',F8.2,2PF8.2,F8.2)

This example produces this output:

Input and Output

PGI Fortran Reference Guide 79

25.00 2500.00 2500.00 2500.00 2500.00 2500.00

The effect of the scale factor continues until another scale factor is used.

5.5.2.17. Q Format Control - Quantity
The Q edit descriptor calculates the number of characters remaining in the input record and stores
that value in the next I/O list item. On output, the Q descriptor skips the next I/O item.

5.5.2.18. r Format Control - Rounding
The rounding edit descriptors are valid in format processing, such as in a READ or WRITE
statement. The specific rounding mode takes effect immediately when encountered, and stays
in effect until either another descriptor is encountered or until the end of the READ and WRITE
statement. The following table lists the edit descriptors associated with rounding.

Table 18 Format Character Controls for Rounding Printer

This descriptor Indicates this type of rounding

rc round compatible

rd round down

rn round nearest

rp round as processor_defined

ru round up

rz round zero

Both nearest and compatible refer to closest representable value. If these are equidistant,
then the rounding is processor-dependent for nearest and the value away from zero for
compatible.

5.5.2.19. S Format Control – Sign Control
The S format specifier restores the default processing for writing a plus; the default is SS
processing.

SP forces the processor to write a plus in any position where an optional plus is found in numeric
output fields, this only affects output statements.

SS stops the processor from writing a plus in any position where an optional plus is found in
numeric output fields, this only affects output statements.

5.5.2.20. T, TL and X Format Controls – Spaces and Tab Controls
The T specifier controls which portion of a record in an iolist value is read from or written to a
file. The general form, which specifies that the nth value is to be written to or from a record, is as
follows:
Tn

Input and Output

PGI Fortran Reference Guide 80

The TL form specifies the relative position to the left of the data to be read or written, and
specifies that the nth character to the left of the current position is to be written to or from the
record. If the current position is less than or equal to n, the transmission will begin at position one
of the record.
TLn

The TR form specifies the relative position to the right of the data to be read or written, and
specifies that the nth character to the right of the current position is to be written to or from the
record.
TRn

The X control specifies a number of characters to skip forward, and that the next character to be
written to or from is n characters forward from the current position.
nX

The following example uses the X format specifier:
 NPAGE = 19
 WRITE (6, 90) NPAGE
90 FORMAT('1PAGE NUMBER ,I2, 16X, 'SALES REPORT, Cont.')

produces:
PAGE NUMBER 19 SALES REPORT, Cont.

The following example shows use of the T format specifier:
 PRINT 25
25 FORMAT (T41,'COLUMN 2',T21,'COLUMN 1')

produces:
 COLUMN 1 COLUMN 2

5.5.2.21. Z Format Control Hexadecimal Values
The O and Z field descriptors transfer octal or hexadecimal values and can be used with any
integer data type. They have the form:
Ow[.m] and Zw[.m]

where w specifies the field width and m indicates minimum field width on output.

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters
only. An all-blank field is treated as a value of zero. If the value of the external field exceeds the
range of the corresponding list element, an error occurs.

On output, the O and Z field descriptors transfer the octal and hexadecimal values, respectively,
of the corresponding I/O list element, right-justified, to an external field that is w characters long.

‣ If the value to be transmitted does not fill the field, leading spaces are inserted.
‣ If the value is too large for the field, the entire field is filled with asterisks.
‣ If m is present, the external field consists of at least m digits, and is zero-filled on the left if

necessary.
‣ If m is zero, and the internal representation is zero, the external field is blank-filled.

5.5.2.22. Slash Format Control / – End of Record
The slash (/) control indicates the end of data transfer on the current record.

Input and Output

PGI Fortran Reference Guide 81

On input from a file connected for sequential access, the rest of the current record is skipped and
the file positioned at the start of the next record.

On output a new record is created which becomes the last and current record.

‣ For an internal file connected for direct access, the record is filled with blank characters.
‣ For a direct access file, the record number is increased by one and the file is positioned at the

start of the record.

Multiple slashes are permitted, thus multiple records are skipped.

5.5.2.23. The : Format Specifier – Format Termination
The (:) control terminates format control if there are no more items in the input/output list. It has
no effect if there are any items left in the list.

5.5.2.24. $ Format Control
The $ field descriptor allows the programmer to control carriage control conventions on output. It
is ignored on input. For example, on terminal output, it can be used for prompting.

The form of the $ field descriptor is:
$

5.5.3. Variable Format Expressions
Variable format expressions, <expr>, are supported in pgf77 extension only. They provide a
means for substituting runtime expressions for the field width, other parameters for the field and
edit descriptors in a FORMAT statement (except for the H field descriptor and repeat counts).

Variable format expressions are enclosed in "<" and ">" and are evaluated each time they are
encountered in the scan of a format. If the value of a variable used in the expression changes
during the execution of the I/O statement, the new value is used the next time the format item
containing the expression is processed.

5.6. Non-advancing Input and Output
Non-advancing input/output is character-oriented and applies to sequential access formatted
external files. The file position is after the last character read or written and not automatically
advanced to the next record.

For non-advancing input/output, use the ADVANCE='NO' specifier. Two other specifiers apply
to non-advancing IO: EOR applies when end of record is detected and SIZE returns the number
of characters read.

Input and Output

PGI Fortran Reference Guide 82

5.7. List-directed formatting
List-directed formatting is an abbreviated form of input/output that does not require the use of a
format specification. The type of the data determines how a value is read/written. On output, it is
not always accurate enough for certain ranges of values. The characters in a list-directed record
constitute a sequence of values which cannot contain embedded blanks except those permitted
within a character string.

To use list-directed input/output formatting, specify a * for the list of format requirements, as
illustrated in the following example that uses list-directed output:
READ(1, *) VAL1, VAL2

5.7.1. List-directed input
The form of the value being input must be acceptable for the type of item in the iolist. Blanks
must not be used as zeros nor be embedded in constants except in a character constant or within a
type complex form contained in parentheses.

Table 19 List Directed Input Values

Input List Type Form

Integer A numeric input field.

Real A numeric input field suitable for F editing with no fractional part unless a decimal point is used.

Double precision Same as for real.

Complex An ordered pair of numbers contained within parentheses as shown: (real part, imaginary part).

Logical A logical field without any slashes or commas.

Character A non-empty character string within apostrophes. A character constant can be continued on as
many records as required. Blanks, slashes and commas can be used.

A null value has no effect on the definition status of the corresponding iolist item. A null value
cannot represent just one part of a complex constant but may represent the entire complex
constant. A slash encountered as a value separator stops the execution of that input statement after
the assignment of the previous value. If there are further items in the list, they are treated as if
they are null values.

Commas may be used to separate the input values. If there are consecutive commas, or if the first
non-blank character of a record is a comma, the input value is a null value. Input values may also
be repeated.

In the following example of list-directed formatting, assume that A and K are defined as follows
and all other variables are undefined.
A= -1.5
K= 125

Suppose that you have an input file the contains the following record, where the / terminates the
input and consecutive commas indicate a null:
10,-14,25.2,-76,313,,29/

Input and Output

PGI Fortran Reference Guide 83

Further suppose that you use the following statement to read in the list from the input file:
READ * I, J, X, Y, Z, A, C, K

The variables are assigned the following values by the list-directed input/output mechanism:

I=10 J=-14 X=25.2 Y=-76.0

Z=313.0 A=-1.5 C=29 K=125

In the example the value for A does not change because the input record is null.Input is
terminated with the / so no input is read for K, so the program assumes null and K retains its
previous value.

5.7.2. List-directed output
List directed input/output is an abbreviated form of formatted input/output that does not require
the use of a format specification. Depending on the type of the data item or data items in the
iolist, data is transferred to or from the file, using a default, and not necessarily accurate format
specification. The data type of each item appearing in the iolist is formatted according to the rules
in the following table:

Table 20 Default List Directed Output Formatting

Data Type Default Formatting

BYTE I5

INTEGER*2 I7

INTEGER*4 I12

INTEGER*8 I24

LOGICAL*1 I5 (L2)

Note that this format is applied when the option –Munixlogical is selected when
compiling.

LOGICAL*2 L2

LOGICAL*4 L2

LOGICAL*8 L2

REAL*4 G15.7e2

REAL*8 G25.16e3

COMPLEX*8 (G15.7e2, G15.7e2)

COMPLEX*16 (G25.16e3, G25.16e3)

CHAR *n An

The length of a record is less than 80 characters; if the output of an item would cause the length to
exceed 80 characters, a new record is created.

The following rules and guidelines apply when using list-directed output:

‣ New records may begin as necessary.
‣ Logical output constants are T for true and F for false.

Input and Output

PGI Fortran Reference Guide 84

‣ Complex constants are contained within parentheses with the real and imaginary parts
separated by a comma.

‣ Character constants are not delimited by apostrophes and have each internal apostrophe (if
any are present) represented externally by one apostrophe.

‣ Each output record begins with a blank character to provide carriage control when the record
is printed.

‣ A typeless value output with list-directed I/O is output in hexadecimal form by default. There
is no other octal or hexadecimal capability with list-directed I/O.

5.7.3. Commas in External Field
Use of the comma in an external field eliminates the need to "count spaces" to have data match
format edit descriptors. The use of a comma to terminate an input field and thus avoid padding
the field is fully supported.

5.7.4. Character Encoding Format
Users can specify input/output encoding using the encoding= specifier on the OPEN
statement. Further, the use of this specifier with the INQUIRE statement returns the encoding of
the file:

UTF-8 specifies the file is connected for UTF-8 I/O or that the processor can detect this
format in some way.
UNKNOWN specifies the processor cannot detect the format.
A processor-dependent value indicates the file is in another known format, such as
UTF-16LE.

5.8. Namelist Groups
The NAMELIST statement allows for the definition of namelist groups. A namelist group allows
for a special type of formatted input/output, where data is transferred between a named group of
data items defined in a NAMELIST statement and one or more records in a file.

The general form of a namelist statement is:
 NAMELIST /group-name/ namelist [[,] /group-name/ namelist]...

where:

group-name
is the name of the namelist group.

namelist
is the list of variables in the namelist group.

5.8.1. Namelist Input
Namelist input is accomplished using a READ statement by specifying a namelist group as the
input item. The following statement shows the format:
 READ ([unit=] u, [NML=] namelist-group [,control-information])

One or more records are processed which define the input for items in the namelist group.

Input and Output

PGI Fortran Reference Guide 85

The records are logically viewed as follows:
$group-name item=value [,item=value].... $ [END]

The following rules describe these input records:

‣ The start or end delimiter ($) may be an ampersand (&).
‣ The start delimiter must begin in column 2 of a record.
‣ The group-name begins immediately after the start delimiter.
‣ The spaces or tabs may not appear within the group-name, within any item, or within any

constants.
‣ The value may be constants as are allowed for list directed input, or they may be a list of

constants separated by commas (,). A list of items is used to assign consecutive values to
consecutive elements of an array.

‣ Spaces or tabs may precede the item, the = and the constants.
‣ Array items may be subscripted.
‣ Character items may have substrings.

5.8.2. Namelist Output
Namelist output is accomplished using a READ statement by specifying a namelist group as the
output item. The following statement shows the format:
WRITE ([unit=] u, [NML=] namelist-group [,control-information])

The records output are logically viewed as follows:
$group-name
item = value
$ [END]

The following rules describe these output records:

‣ One record is output per value.
‣ Multiple values are separated by a comma (,).
‣ Values are formatted according to the rules of the list-directed write. Exception: character

items are delimited by an apostrophe (').
‣ An apostrophe (') or a quote (") in the value is represented by two consecutive apostrophes or

quotes.

5.9. Recursive Input/Output
Recursive Input/Output allows you to execute an input/output statement while another input/
output statement is being execution. This capability is available under these conditions:

‣ External files, such as a child data transfer statement invoking derived type input/output
‣ Internal files, such as input/output to/from an internal file where that statement does not

modify any internal file other than its own.

5.10. Input and Output of IEEE Infinities and NaNs
In Fortran 2003, input and output of IEEE infinities and NaNs is specified.

Input and Output

PGI Fortran Reference Guide 86

All edit descriptors for reals treat these values in the same way; only the field width is required.

5.10.1. Output Format
Output for infinities and NaNs is right-justified within the output field. For list-directed output the
output field is the minimum size to hold the result. The format is this:

For minus infinity -Infinity
-Inf

For plus infinity Infinity
Inf
+Infinity
+Inf

For a Nan NaN, optionally followed by non-blank characters in parenthesis

5.10.2. Input Format
Input for infinities and NaNs is similar to the output except that case is not significant.

The format is this:

For minus infinity -Infinity
 -Inf

For plus infinity Infinity
Inf
+Infinity
+Inf

For a Nan NaN, optionally followed by non-blank characters in parenthesis
When no non-blank character is present, the NaN is a quiet NaN.

PGI Fortran Reference Guide 87

Chapter 6.
FORTRAN INTRINSICS

An intrinsic is a function available in a given language whose implementation is handled
specifically by the compiler. Typically, an intrinsic substitutes a sequence of automatically-
generated instructions for the original function call. Since the compiler has an intimate knowledge
of the intrinsic function, it can better integrate it and optimize it for the situation.

This section lists the FORTRAN 77 and Fortran 90/95 intrinsics and subroutines and Fortran
2003 intrinsic modules. The Fortran processor, rather than the user or a third party, provides the
intrinsic functions and intrinsic modules.

For details on the standard intrinsics, refer to the Fortran language specifications readily available
on the internet. The Origin column in the tables in this section provides the Fortran language
origin of the statement; for example, F95 indicates the statement is from Fortran 95.

6.1. Intrinsics Support
The tables in this section contain the FORTRAN 77, Fortran 90/95 and Fortran 2003 intrinsics
that are supported. At the top of each reference page is a brief description of the statement
followed by a header that indicates the origin of the statement. The following list describes the
meaning of the origin abbreviations.

F77
FORTRAN 77 intrinsics that are essentially unchanged from the original FORTRAN 77
standard and are supported by the PGF77 compiler.

F77 extension
The statement is an extension to the Fortran language.

F90/F95
The statement is either new for Fortran 90/95 or significantly changed in Fortran 95 from
its original FORTRAN 77 definition and is supported by the PGF95 and PGFORTRAN
compilers.

F2003
The statement is new for Fortran 2003.

The functions in the following table are specific to Fortran 90/95 unless otherwise specified.

Fortran Intrinsics

PGI Fortran Reference Guide 88

6.1.1. Fortran 90/95 Bit Manipulation Functions and Subroutines
Generic
Name Purpose

Num.
Args Argument Type Result Type

AND Performs a logical AND on
corresponding bits of the arguments.

2 ANY type except CHAR or COMPLEX

BIT_SIZE Return the number of bits (the precision)
of the integer argument.

1 INTEGER INTEGER

BTEST Tests the binary value of a bit in
a specified position of an integer
argument.

2 INTEGER, INTEGER LOGICAL

IAND Perform a bit-by-bit logical AND on the
arguments.

2 INTEGER, INTEGER (of same kind) INTEGER

IBCLR Clears one bit to zero. 2 INTEGER, INTEGER >=0 INTEGER

IBITS Extracts a sequence of bits. 3 INTEGER, INTEGER >=0,

INTEGER >=0

INTEGER

IBSET Sets one bit to one. 2 INTEGER, INTEGER >=0 INTEGER

IEOR Perform a bit-by-bit logical exclusive OR
on the arguments.

2 INTEGER, INTEGER (of same kind) INTEGER

IOR Perform a bit-by-bit logical OR on the
arguments.

2 INTEGER, INTEGER (of same kind) INTEGER

ISHFT Perform a logical shift. 2 INTEGER, INTEGER INTEGER

ISHFTC Perform a circular shift of the rightmost
bits.

2 or 3 INTEGER, INTEGER

INTEGER, INTEGER, INTEGER

INTEGER

LSHIFT Perform a logical shift to the left. 2 INTEGER, INTEGER INTEGER

MVBITS Copies bit sequence 5 INTEGER(IN), INTEGER(IN),
INTEGER(IN), INTEGER(INOUT),
INTEGER(IN)

none

NOT Perform a bit-by-bit logical complement
on the argument.

2 INTEGER INTEGER

OR Performs a logical OR on each bit of the
arguments.

2 ANY type except CHAR or COMPLEX

POPCNT
(F2008)

Return the number of one bits. 1 INTEGER or bits INTEGER

POPPAR
(F2008)

Return the bitwise parity. 1 INTEGER or bits INTEGER

RSHIFT Perform a logical shift to the right. 2 INTEGER, INTEGER INTEGER

SHIFT Perform a logical shift. 2 Any type except CHAR or COMPLEX,
INTEGER

XOR Performs a logical exclusive OR on each
bit of the arguments.

2 INTEGER, INTEGER INTEGER

ZEXT Zero-extend the argument. 1 INTEGER or LOGICAL INTEGER

Fortran Intrinsics

PGI Fortran Reference Guide 89

6.1.2. Elemental Character and Logical Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

ACHAR Return character in specified ASCII
collating position.

1 INTEGER CHARACTER

ADJUSTL Left adjust string 1 CHARACTER CHARACTER

ADJUSTR Right adjust string 1 CHARACTER CHARACTER

CHAR (f77) Return character with specified
ASCII value.

1 LOGICAL*1

INTEGER

CHARACTER

CHARACTER

IACHAR Return position of character in
ASCII collating sequence.

1 CHARACTER INTEGER

ICHAR Return position of character in the
character set’s collating sequence.

1 CHARACTER INTEGER

INDEX Return starting position of substring
within first string.

2

3

CHARACTER, CHARACTER

CHARACTER, CHARACTER, LOGICAL

INTEGER

INTEGER

LEN Returns the length of string 1 CHARACTER INTEGER

LEN_TRIM Returns the length of the supplied
string minus the number of trailing
blanks.

1 CHARACTER INTEGER

LGE Test the supplied strings to
determine if the first string is
lexically greater than or equal to the
second.

2 CHARACTER, CHARACTER LOGICAL

LGT Test the supplied strings to
determine if the first string is
lexically greater than the second.

2 CHARACTER, CHARACTER LOGICAL

LLE Test the supplied strings to
determine if the first string is
lexically less than or equal to the
second.

2 CHARACTER, CHARACTER LOGICAL

LLT Test the supplied strings to
determine if the first string is
lexically less than the second.

2 CHARACTER, CHARACTER LOGICAL

LOGICAL Logical conversion 1

2

LOGICAL

LOGICAL, INTEGER

LOGICAL

LOGICAL

SCAN Scan string for characters in set 2

3

CHARACTER, CHARACTER

CHARACTER, CHARACTER, LOGICAL

INTEGER

INTEGER

VERIFY Determine if string contains all
characters in set

2

3

CHARACTER, CHARACTER

CHARACTER, CHARACTER, LOGICAL

INTEGER

Fortran Intrinsics

PGI Fortran Reference Guide 90

6.1.3. Fortran 90/95 Vector/Matrix Functions

Generic Name Purpose
Num.
Args Argument Type Result Type

DOT_PRODUCT Perform dot product on two vectors 2 NONCHAR*K, NONCHAR*K NONCHAR*K

MATMUL Perform matrix multiply on two
matrices

2 NONCHAR*K, NONCHAR*K NONCHAR*K

6.1.4. Fortran 90/95 Array Reduction Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

1 LOGICAL LOGICALALL Determine if all array values are true

2 LOGICAL, INTEGER LOGICAL

1 LOGICAL LOGICALANY Determine if any array value is true

2 LOGICAL, INTEGER LOGICAL

1 LOGICAL INTEGERCOUNT Count true values in array

2 LOGICAL, INTEGER INTEGER

MAXLOC Determine position of array element
with maximum value

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

MAXVAL Determine maximum value of array
elements

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

MINLOC Determine position of array element
with minimum value

1

2

2

3

1

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

INTEGER

Fortran Intrinsics

PGI Fortran Reference Guide 91

Generic
Name Purpose

Num.
Args Argument Type Result Type
2

2

3

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

MINVAL Determine minimum value of array
elements

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

PRODUCT Calculate the product of the
elements of an array

1

2

2

3

NUMERIC

NUMERIC, LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER, LOGICAL

NUMERIC

SUM Calculate the sum of the elements
of an array

1

2

2

3

NUMERIC

NUMERIC, LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER, LOGICAL

NUMERIC

6.1.5. Fortran 90/95 String Construction Functions
Generic
Name Purpose Num. Args Argument Type Result Type

REPEAT Concatenate copies of a
string

2 CHARACTER, INTEGER CHARACTER

TRIM Remove trailing blanks from
a string

1 CHARACTER CHARACTER

6.1.6. Fortran 90/95 Array Construction/Manipulation Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

CSHIFT Perform circular shift on array 2

3

ARRAY, INTEGER

ARRAY, INTEGER, INTEGER

ARRAY

ARRAY

EOSHIFT Perform end-off shift on array 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER, any

ARRAY, INTEGER, INTEGER

ARRAY, INTEGER, any, INTEGER

ARRAY

ARRAY

ARRAY

ARRAY

Fortran Intrinsics

PGI Fortran Reference Guide 92

Generic
Name Purpose

Num.
Args Argument Type Result Type

MERGE Merge two arguments based on
logical mask

3 any, any, LOGICAL

The second argument must be of the
same type as the first argument.

any

PACK Pack array into rank-one array 2

3

ARRAY, LOGICAL

ARRAY, LOGICAL, VECTOR

ARRAY

RESHAPE Change the shape of an array 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER, ARRAY

ARRAY, INTEGER, INTEGER

ARRAY, INTEGER, ARRAY, INTEGER

ARRAY

SPREAD Replicates an array by adding a
dimension

3 any, INTEGER, INTEGER ARRAY

TRANSPOSE Transpose an array of rank two 1 ARRAY ARRAY

UNPACK Unpack a rank-one array into an
array of multiple dimensions

3 VECTOR, LOGICAL, ARRAY ARRAY

6.1.7. Fortran 90/95 General Inquiry Functions

Generic Name Purpose
Number of
Args Argument Type Result Type

ASSOCIATED Determine association status 12 POINTER, POINTER,..., POINTER,
TARGET

LOGICAL
LOGICAL

KIND Determine argument’s kind 1 any intrinsic type INTEGER

PRESENT Determine presence of optional
argument

1 any LOGICAL

6.1.8. Fortran 90/95 Numeric Inquiry Functions

Generic Name Purpose
Number of
Args Argument Type Result Type

DIGITS Determine number of
significant digits

1

1

INTEGER

REAL

INTEGER

EPSILON Smallest representable
number

1 REAL REAL

HUGE Largest representable
number

1

1

INTEGER

REAL

INTEGER

REAL

MAXEXPONENT Value of maximum
exponent

1 REAL INTEGER

MINEXPONENT Value of minimum
exponent

1 REAL INTEGER

PRECISION Decimal precision 1 REAL INTEGER

Fortran Intrinsics

PGI Fortran Reference Guide 93

Generic Name Purpose
Number of
Args Argument Type Result Type
1 COMPLEX INTEGER

RADIX Base of model 1

1

INTEGER

REAL

INTEGER

INTEGER

RANGE Decimal exponent range 1

1

1

INTEGER

REAL

COMPLEX

INTEGER

INTEGER

INTEGER

SELECTED_INT_KIND Kind type titlemeter in
range

1 INTEGER INTEGER

SELECTED_REAL_KIND Kind type titlemeter in
range

1

2

INTEGER

INTEGER, INTEGER

INTEGER

INTEGER

TINY Smallest representable
positive number

1 REAL REAL

6.1.9. Fortran 90/95 Array Inquiry Functions

Generic Name Purpose
Number of
Args Argument Type Result Type

ALLOCATED Determine if array is allocated 1 ARRAY LOGICAL

LBOUND Determine lower bounds 1

2

ARRAY

ARRAY, INTEGER

INTEGER

SHAPE Determine shape 1 any INTEGER

SIZE Determine number of elements 1

2

ARRAY

ARRAY, INTEGER

INTEGER

UBOUND Determine upper bounds 1

2

ARRAY

ARRAY, INTEGER

INTEGER

6.1.10. Fortran 90/95 Subroutines

Generic Name Purpose
Number of
Args Argument Type

CPU_TIME Returns processor time 1 REAL (OUT)

DATE_AND_TIME Returns date and time 4 (optional) DATE (CHARACTER, OUT)

TIME (CHARACTER, OUT)

ZONE (CHARACTER, OUT)

VALUES (INTEGER, OUT)

RANDOM_NUMBER Generate pseudo-random
numbers

1 REAL (OUT)

RANDOM_SEED Set or query pseudo-
random number generator

0

1
SIZE (INTEGER, OUT)

Fortran Intrinsics

PGI Fortran Reference Guide 94

Generic Name Purpose
Number of
Args Argument Type
1

1

PUT (INTEGER ARRAY, IN)

GET (INTEGER ARRAY, OUT)

SYSTEM_CLOCK Query real time clock 3 (optional) COUNT (INTEGER, OUT)

COUNT_RATE (REAL, OUT)

COUNT_MAX (INTEGER, OUT)

6.1.11. Fortran 90/95 Transfer Functions

Generic Name Purpose
Number of
Args Argument Type Result Type

TRANSFER Change type but maintain bit
representation

2

3

any, any

any, any, INTEGER

any*

*Must be of the same type as the second argument

6.1.12. Arithmetic Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

ABS Return absolute value of the
supplied argument.

1 INTEGER

REAL

COMPLEX

INTEGER

REAL

COMPLEX

ACOS Return the arccosine (in radians) of
the specified value

1 REAL REAL

ACOSD Return the arccosine (in degrees) of
the specified value

1 REAL REAL

AIMAG Return the value of the imaginary
part of a complex number.

1 COMPLEX REAL

AINT Truncate the supplied value to a
whole number.

2 REAL, INTEGER REAL

AND Performs a logical AND on
corresponding bits of the arguments.

2 ANY type except CHAR or COMPLEX

ANINT Return the nearest whole number to
the supplied argument.

2 REAL, INTEGER REAL

ASIN Return the arcsine (in radians) of the
specified value

1 REAL REAL

ASIND Return the arcsine (in degrees) of
the specified value

1 REAL REAL

ATAN Return the arctangent (in radians) of
the specified value

1 REAL REAL

ATAN2 Return the arctangent (in radians) of
the specified pair of values.

2 REAL, REAL REAL

Fortran Intrinsics

PGI Fortran Reference Guide 95

Generic
Name Purpose

Num.
Args Argument Type Result Type

ATAN2D Return the arctangent (in degrees)
of the specified pair of values

1 REAL, REAL REAL

ATAND Return the arctangent (in degrees)
of the specified value

1 REAL REAL

CEILING Return the least integer greater
than or equal to the supplied real
argument.

2 REAL, KIND INTEGER

CMPLX Convert the supplied argument or
arguments to complex type.

2

3

INTEGER, REAL, or COMPLEX;

INTEGER, REAL, or COMPLEX;

INTEGER, REAL, or COMPLEX;

INTEGER or REAL

KIND

COMPLEX

COMPL Performs a logical complement on
the argument.

1 ANY, except CHAR or COMPLEX

COS Return the cosine (in radians) of the
specified value

1 REAL

COMPLEX

REAL

COSD Return the cosine (in degrees) of the
specified value

1 REAL

COMPLEX

REAL

COSH Return the hyperbolic cosine of the
specified value

1 REAL REAL

DBLE Convert to double precision real. INTEGER, REAL, or COMPLEX REAL

DCMPLX Convert the supplied argument or
arguments to double complex type.

1

2

INTEGER, REAL, or COMPLEX

INTEGER, REAL

DOUBLE
COMPLEX

DPROD Double precision real product. 2 REAL, REAL REAL

(double

precision)

EQV Performs a logical exclusive NOR
on the arguments.

2 ANY except CHAR or COMPLEX

EXP Exponential function. 1 REAL

COMPLEX

REAL

COMPLEX

EXPONENT Return the exponent part of a real
number.

1 REAL INTEGER

FLOOR Return the greatest integer less
than or equal to the supplied real
argument.

1

2

REAL

REAL, KIND

REAL

KIND

FRACTION Return the fractional part of a real
number.

1 REAL INTEGER

IINT Converts a value to a short integer
type.

1 INTEGER, REAL, or COMPLEX INTEGER

Fortran Intrinsics

PGI Fortran Reference Guide 96

Generic
Name Purpose

Num.
Args Argument Type Result Type

ININT Returns the nearest short integer to
the real argument.

1 REAL INTEGER

INT Converts a value to integer type. 1

2

INTEGER, REAL, or COMPLEX

INTEGER, REAL, or COMPLEX;

KIND

INTEGER

INT8 Converts a real value to a long
integer type.

1 REAL INTEGER

IZEXT Zero-extend the argument. 1 LOGICAL or INTEGER INTEGER

JINT Converts a value to an integer type. 1 INTEGER, REAL, or COMPLEX INTEGER

JNINT Returns the nearest integer to the
real argument.

1 REAL INTEGER

KNINT Returns the nearest integer to the
real argument.

1 REAL INTEGER (long)

LOG Returns the natural logarithm. 1 REAL or COMPLEX REAL

LOG10 Returns the common logarithm. 1 REAL REAL

MAX Return the maximum value of the
supplied arguments.

2 or
more

INTEGER or REAL

(all of same kind)

Same as
Argument Type

MIN Return the minimum value of the
supplied arguments.

2 or
more

INTEGER or REAL

(all of same kind)

Same as
Argument Type

MOD Find the remainder. 2 or
more

INTEGER or REAL,

INTEGER or REAL

(all of same kind)

Same as
Argument Type

MODULO Return the modulo value of the
arguments.

2 or
more

INTEGER or REAL,

INTEGER or REAL

(all of same kind)

Same as
Argument Type

NEAREST Returns the nearest different
machine representable number in a
given direction.

2 REAL, non-zero REAL REAL

NEQV Performs a logical exclusive OR on
the arguments.

2 ANY except CHAR or COMPLEX

NINT Converts a value to integer type. 1

2

REAL

REAL, KIND

INTEGER

REAL Convert the argument to real. 1

2

IINTEGER, REAL, or COMPLEX

INTEGER, REAL, or COMPLEX;

KIND

REAL

RRSPACING Return the reciprocal of the relative
spacing of model numbers near the
argument value.

1 REAL REAL

Fortran Intrinsics

PGI Fortran Reference Guide 97

Generic
Name Purpose

Num.
Args Argument Type Result Type

SET_EXPONENTReturns the model number whose
fractional part is the fractional part of
the model representation of the first
argument and whose exponent part
is the second argument.

2 REAL, INTEGER REAL

SIGN Return the absolute value of A times
the sign of B.

2 INTEGER or REAL,

INTEGER or REAL

(of same kind)

Same as
Argument

SIN Return the sine (in radians) of the
specified value

1 REAL

COMPLEX

REAL

SIND Return the sine (in degrees) of the
specified value

1 REAL

COMPLEX

REAL

SINH Return the hyperbolic sine of the
specified value

1 REAL REAL

SPACING Return the relative spacing of model
numbers near the argument value.

1 REAL REAL

SQRT Return the square root of the
argument.

1 REAL

COMPLEX

REAL

COMPLEX

TAN Return the tangent (in radians) of
the specified value

1 REAL REAL

TAND Return the tangent (in degrees) of
the specified value

1 REAL REAL

TANH Return the hyperbolic tangent of the
specified value

1 REAL REAL

6.1.13. Fortran 2003 and 2008 Functions

Generic Name Purpose
Num.
Args Argument Type Result Type

COMMAND_
ARGUMENT_COUNT

Returns a scalar of type default
integer that is equal to the
number of arguments passed
on the command line when
the containing program was
invoked. If there were no
command arguments passed,
the result is 0.

0 INTEGER

EXTENDS_TYPE_OF Determines whether the
dynamic type of A is an
extension type of the dynamic
type of B.

2 Objects of extensible type LOGICAL
SCALAR

GET_COMMAND_
ARGUMENT

Returns the specified command
line argument of the command
that invoked the program.

1 to 4 INTEGER

plus optionally:

A command
argument

Fortran Intrinsics

PGI Fortran Reference Guide 98

Generic Name Purpose
Num.
Args Argument Type Result Type

CHAR, INTEGER, INTEGER

GET_COMMAND Returns the entire command
line that was used to invoke the
program.

0 to 3 CHAR, INTEGER, INTEGER A command line

GET_ENVIRONMENT
_VARIABLE

Returns the value of the
specified environment variable.

1 to 5 CHAR, CHAR, INTEGER,
INTEGER, LOGICAL

IS_IOSTAT_END Test whether a variable has the
value of the I/O status: ‘end of
file’.

1 INTEGER LOGICAL

IS_IOSTAT_EOR Test whether a variable has the
value of the I/O status: ‘end of
record’.

1 INTEGER LOGICAL

LEADZ (F2008) Counts the number of leading
zero bits.

1 INTEGER or bits INTEGER

MOVE_ALLOC Moves an allocation from one
allocatable object to another.

2 Any type and rank none

NEW_LINE Return the newline character. 1 CHARACTER CHARACTER

SAME_TYPE_AS Determines whether the
dynamic type of A is the same
as the dynamic type of B.

2 Objects of extensible type LOGICAL
SCALAR

SCALE Return the value X * bi where
b is the base of the number
system in use for X.

2 REAL, INTEGER REAL

6.1.14. Miscellaneous Functions
Generic
Name Purpose

Num.
Args Argument Type Result Type

LOC Return address of argument 1 NUMERIC INTEGER

NULL Assign disassociated status 0

1
POINTER

POINTER

POINTER

6.2. ACOSD
Return the arccosine (in degrees) of the specified value.

F77

Synopsis
ACOSD(X)

Fortran Intrinsics

PGI Fortran Reference Guide 99

Arguments
The argument X must be a real value.

Return Value
The real value representing the arccosine in degrees.

6.3. AND
Performs a logical AND on corresponding bits of the arguments.

F77 extension

Synopsis
AND(M, N)

Arguments
The arguments M and N may be of any type except for character and complex.

Return Value
The return value is typeless.

6.4. ASIND
Return the arcsine (in degrees) of the specified value.

F77

Synopsis
ASIND(X)

Argument
The argument X must be of type real and have absolute value <= 1.

Return Value
The real value representing the arcsine in degrees.

Fortran Intrinsics

PGI Fortran Reference Guide 100

6.5. ASSOCIATED
Determines the association status of the supplied argument or determines if the supplied pointer is
associated with the supplied target.

F90

Synopsis
ASSOCIATED(POINTER [,TARGET])

Arguments
The POINTER argument is a pointer of any type. The optional argument TARGET is a pointer or
a target. If it is a pointer it must not be undefined.

Return Value
If TARGET is not supplied the function returns logical true if POINTER is associated with a
target and false otherwise.

If TARGET is present and is a target, then the function returns true if POINTER is associated
with TARGET and false otherwise.

If TARGET is present and is a pointer, then the function returns true if POINTER and TARGET
are associated with the same target and false otherwise.

6.6. ATAN2D
Return the arctangent (in degrees) of the specified value.

F77

Synopsis
ATAN2D(Y, X)

Arguments
The arguments X and Y must be of type real.

Fortran Intrinsics

PGI Fortran Reference Guide 101

Return Value
A real number that is the arctangent for pairs of reals, X and Y, expressed in degrees. The result is
the principal value of the nonzero complex number (X,Y).

6.7. ATAND
Return the arctangent (in degrees) of the specified value.

F77

Synopsis
ATAND(X)

Argument
The argument X must be of type real.

Return Value
The real value representing the arctangent in degrees.

6.8. COMPL
Performs a logical complement on the argument.

F77 extension

Synopsis
COMPL(M)

Arguments
The argument M may be of any type except for character and complex.

Return Value
The return value is typeless.

Fortran Intrinsics

PGI Fortran Reference Guide 102

6.9. CONJG
Return the conjugate of the supplied complex number.

F77

Synopsis
CONJG(Z)

Argument
The argument Z is a complex number.

Return Value
A value of the same type and kind as the argument.

6.10. COSD
Return the cosine (in degrees) of the specified value.

F77

Synopsis
COSD(X)

Argument
The argument X must be of type real or complex.

Return Value
A real value of the same kind as the argument. The return value for a real argument is in degrees,
or if complex, the real part is a value in degrees.

6.11. DIM
Returns the difference X-Y if the value is positive, otherwise it returns 0.

Fortran Intrinsics

PGI Fortran Reference Guide 103

F77

Synopsis
DIM(X, Y)

Arguments
X must be of type integer or real. Y must be of the same type and kind as X.

Return Value
The result is the same type and kind as X with the value X-Y if X>Y, otherwise zero.

6.12. ININT
Returns the nearest short integer to the real argument.

F77 extension

Synopsis
ININT(A)

Arguments
The argument A must be a real.

Return Value
A short integer with value (A + .5 * SIGN(A)).

6.13. INT8
Converts a real value to a long integer type.

F77 extension

Synopsis
INT8(A)

Fortran Intrinsics

PGI Fortran Reference Guide 104

Arguments
The argument A is of type real.

Return Value
The long integer value of the supplied argument.

6.14. IZEXT
Zero-extend the argument.

F77 extension

Synopsis
IZEXT(A)

Arguments
The argument A is of type logical or integer.

Return Value
A zero-extended short integer of the argument.

6.15. JINT
Converts a value to an integer type.

F77 extension

Synopsis
JINT(A)

Arguments
The argument A is of type integer, real, or complex.

Return Value
The integer value of the supplied argument.

Fortran Intrinsics

PGI Fortran Reference Guide 105

‣ For a real number, if the absolute value of the real is less than 1, the return value is 0.

‣ If the absolute value is greater than 1, the result is the largest integer that does not exceed the
real value.

‣ If argument is a complex number, the return value is the result of applying the real
conversion to the real part of the complex number.

6.16. JNINT
Returns the nearest integer to the real argument.

F77 extension

Synopsis
JNINT(A)

Arguments
The argument A must be a real.

Return Value
An integer with value (A + .5 * SIGN(A)).

6.17. KNINT
Returns the nearest integer to the real argument.

F77 extension

Synopsis
KNINT(A)

Arguments
The argument A must be a real.

Return Value
A long integer with value (A + .5 * SIGN(A)).

Fortran Intrinsics

PGI Fortran Reference Guide 106

6.18. LEADZ
Counts the number of leading zero bits.

F2003

Synopsis
LEADZ(I)

Arguments
I is of type integer or bits.

Return Value
The result is one of the following:

‣ If all of the bits of I are zero: BIT SIZE (I).

‣ If at least one of the bits of I is not zero: BIT SIZE (I) - 1 - k.

k is the position of the leftmost 1 bit in I.

Description
LEADZ is an elemental function that returns the number of leading zero bits.

Examples
The following example returns the value 2.
LEADZ (B’001101000’)

The following example returns the value 31 if BIT SIZE (1) has the value 32.
LEADZ (1)

6.19. LSHIFT
Perform a logical shift to the left.

F77 extension

Synopsis
LSHIFT(I, SHIFT)

Fortran Intrinsics

PGI Fortran Reference Guide 107

Arguments
I and SHIFT are integer values.

Return Value
A value of the same type and kind as the argument I. It is the value of the argument I logically
shifted left by SHIFT bits.

6.20. OR
Performs a logical OR on each bit of the arguments.

F77 extension

Synopsis
OR(M, N)

Arguments
The arguments M and N may be of any type except for character and complex.

Return Value
The return value is typeless.

6.21. RSHIFT
Perform a logical shift to the right.

F77 extension

Synopsis
RSHIFT(I, SHIFT)

Arguments
I and SHIFT are integer values.

Fortran Intrinsics

PGI Fortran Reference Guide 108

Return Value
A value of the same type and kind as the argument I. It is the value of the argument I logically
shifted right by SHIFT bits.

6.22. SHIFT
Perform a logical shift.

F77 extension

Synopsis
RSHIFT(I, SHIFT)

Arguments
The argument I may be of any type except character or complex. The argument SHIFT is of type
integer.

Return Value
The return value is typeless. If SHIFT is positive, the result is I logically shifted left by SHIFT
bits. If SHIFT is negative, the result is I logically shifted right by SHIFT bits.

6.23. SIND
Return the value in degrees of the sine of the argument.

F77

Synopsis
SIND(X)

Argument
The argument X must be of type real or complex.

Return Value
A value that has the same type as X and is expressed in degrees.

Fortran Intrinsics

PGI Fortran Reference Guide 109

6.24. TAND
Return the tangent of the specified value.

F77

Synopsis
TAND(X)

Argument
The argument X must be of type real and have absolute value <= 1.

Return Value
A real value of the same KIND as the argument.

6.25. XOR
Performs a logical exclusive OR on each bit of the arguments.

F77 extension

Synopsis
XOR(M, N)

Arguments
The arguments M and N must be of integer type.

Return Value
An integer.

6.26. ZEXT
Zero-extend the argument.

F77 extension

Fortran Intrinsics

PGI Fortran Reference Guide 110

Synopsis
ZEXT(A)

Arguments
The argument A is of type logical or integer.

Return Value
An integer.

6.27. Intrinsic Modules
Like an intrinsic function, the Fortran processor provides the intrinsic module. It is possible for
a program to use an intrinsic module and a user-defined module of the same name, though they
cannot both be referenced from the same scope.

‣ To use a user-defined module rather than an intrinsic module, specify the keyword non-
intrinsic in the USE statement:
USE, non-intrinsic :: iso_fortran_env

‣ To use an intrinsic module rather than a user-defined one, specify the keyword intrinsic in
the USE statement:
USE, intrinsic :: iso_fortran_env

If both a user-defined and intrinsic module of the same name are available and locatable by the compiler,
a USE statement without either of the keywords previously described accesses the user-defined module. If
the compiler cannot locate the user-defined module, it accessed the intrinsic module and does not issue a
warning.

6.27.1. Module IEEE_ARITHMETIC
The ieee_arithmetic intrinsic module provides access to two derived types, named constants
of these types, and a collection of generic procedures.

This module behaves as if it contained a use statement for the module ieee_exceptions, so
all the features of ieee_exceptions are included. For information of this module, refer to Module
IEEE_EXCEPTIONS.

6.27.2. IEEE_ARITHMETIC Derived Types
The ieee_arithmetic intrinsic module provides access to these two derived types:
ieee_class_type and ieee_round_type.

ieee_class_type
Identifies a class of floating point values.

Fortran Intrinsics

PGI Fortran Reference Guide 111

ieee_round_type
Identifies a particular round mode.

For both of these types, the following are true:

‣ The components are private.
‣ The only operations defined are == and /=.
‣ The return value is of type default logical.

If the operator is ==, for two values of one of the derived types, this operator returns true if
the values are the same; false, otherwise.

If the operator is /=, for two values of one of the derived types, this operator returns true if
the values are different; false, otherwise.

‣ Intrinsic assignment is available.

Table 21 provides a quick overview of the values that each derived type can take.

Table 21 IEEE_ARITHMETIC Derived Types

This derived type... Must have one of these values...

ieee_class_type ieee_signaling_nan

ieee_quiet_nan

ieee_negative_inf

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_positive_zero

ieee_positive_denormal

ieee_positive_normal

ieee_positive_inf

ieee_other_value (Fortran 2003 only)

ieee_round_type ieee_nearest -

ieee_to_zero

ieee_up

ieee_down

ieee_other (for modes other than IEEE ones)

6.27.3. IEEE_ARITHMETIC Inquiry Functions
The ieee_arithmetic intrinsic module supports a number of inquiry functions. Table 22
provides a list and brief description of what it means if the inquiry function returns .true. In all
cases, if the condition for returning .true. is not met, the function returns .false..

Fortran Intrinsics

PGI Fortran Reference Guide 112

Table 22 IEEE_ARITHMETIC Inquiry Functions

Returns .true. if ...

This inquiry function... When optional arg. x is absent When optional arg. x is present

ieee_support_datatype([x]) The processor supports IEEE arithmetic for
all reals

The processor supports IEEE arithmetic for
all reals of the same kind type parameter as
the real argument x.

ieee_support_denormal([x]) The processor supports IEEE denomalized
numbers for all reals

The processor supports IEEE denomalized
numbers for reals of the same kind type
parameter as the real argument x.

ieee_support_divide([x]) The processor supports divide with the
accuracy specified by IEEE standard for all
reals

The processor supports divide with the
accuracy specified by IEEE standard for
reals of the same kind type parameter as
the real argument x.

ieee_support_inf([x]) The processor supports the IEEE infinity
facility for all reals

The processor supports the IEEE infinity
facility for reals of the same kind type
parameter as the real argument x.

ieee_support_nan([x]) The processor supports the IEEE Not-A-
Number facility for all reals

The processor supports the IEEE Not-A-
Number facility for reals of the same kind
type parameter as the real argument x.

ieee_support_rounding
(round_value[,x])

For a round_value of ieee_round_type,
the processor supports the rounding mode
numbers for all reals

For a round_value of ieee_round_type,
the processor supports the rounding mode
numbers for reals of the same kind type
parameter as the real argument x.

ieee_support_sqrt([x]) The processor implements the IEEE square
root for all reals

The processor implements the IEEE
square root for reals of the same kind type
parameter as the real argument x.

ieee_support_standard([x]) The processor supports all IEEE facilities for
all reals

The processor supports all IEEE facilities
for reals of the same kind type parameter as
the real argument x.

ieee_support_underflow_ control
([x])

(Fortran 2003 only) The processor supports
control of the underflow mode for all reals

(Fortran 2003 only) The processor supports
control of the underflow mode for reals of
the same kind type parameter as the real
argument x.

6.27.4. IEEE_ARITHMETIC Elemental Functions
The ieee_arithmetic intrinsic module supports a number of elemental functions. Table 23
provides a list and brief description of the return value. In all cases involving a return value of
true or false, if the condition for returning .true. is not met, the subroutine returns .false..

Table 23 IEEE_ARITHMETIC Elemental Functions

This elemental function... Does this...

ieee_class(x) Returns the IEEE class of the real argument x.

ieee_copy_sign(x,y) Returns a real with the same type parameter as the real argument x, holding the value of x
with the sign of y.

Fortran Intrinsics

PGI Fortran Reference Guide 113

This elemental function... Does this...

ieee_is_finite(x) Returns .true. if ieee_class(x) has one of these values:

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_positive_zero

ieee_positive_denormal

ieee_positive_normal

ieee_is_nan(x) Returns .true. if the value of x is an IEEE NaN.

ieee_is_negative(x) Returns .true. if ieee_class(x) as one of these values:

ieee_negative_normal

ieee_negative_denormal

ieee_negative_zero

ieee_negative_inf

ieee_is_normal(x) Returns .true. if ieee_class(x) has one of these values:

ieee_negative_normal

ieee_negative_zero

ieee_positive_zero

ieee_positive_normal

ieee_is_logb(x) Returns a real with the same type parameter as the argument x.

If x is neither zero, infinity, nor NaN, the value of the result is the unbiased

exponent of x: exponent(x)-1.

If x is 0 and ieee_support_inf(x) is true, the result is -infinity.

If x is 0 and ieee_support_inf(x) is not true, the result is -huge(x).

ieee_next_after(x,y) Returns a real with the same type parameter as the argument x.

If x ==y, the result is x.

Otherwise, the result is the neighbor of x in the direction of y.

ieee_rem(x,y) Returns a real with the same type parameter of whichever argument has the greater precision.

ieee_rint(x,y) Returns a real with the same type parameter as x, and whose value is that of x rounded to an
integer value according to the current rounding mode.

ieee_scalb(x,i) Returns a real with the same type parameter as x, and whose value is 2ix.

If 2ix is too large, ieee_overflow signals.

If 2ix is too small, ieee_underflow signals.

ieee_unordered(x,y) Returns .true. if x or y or both are a NaN.

ieee_value(x,class) Returns a real with the same type parameter as x and a value specified by class.

Fortran Intrinsics

PGI Fortran Reference Guide 114

6.27.5. IEEE_ARITHMETIC Non-Elemental Subroutines
The ieee_arithmetic intrinsic module supports a number of elemental functions. Table 24
provides a list and brief description of what it means if the inquiry function returns .true. In all
cases, if the condition for returning .true. is not met, the function returns .false.

In these subroutines, the argument round_value is a scalar of type ieee_round_type and
the argument gradual is a scalar of type default logical.

Table 24 IEEE_ARITHMETIC Non-Elemental Subroutines

This non-elemental subroutine... Does this...

ieee_get_rounding_mode(round_value) Returns the floating-point rounding mode.

If one of the IEEE modes is in operation, the value is one of these:

ieee_nearest

ieee_to_zero

ieee_up

ieee_down

Otherwise, the value is ieee_positive_normal

ieee_get_underflow_mode(gradual) Returns .true. if gradual underflow is in effect-point rounding
mode.Otherwise, it returns .false.

ieee_set_rounding_mode(round_value) Specifies the rounding mode to be set.

ieee_set_underflow_mode(gradual) Sets gradual underflow in effect if the value is .true. ; otherwise,
gradual underflow ceases to be in effect.

6.27.6. IEEE_ARITHMETIC Transformational Function
The ieee_arithmetic intrinsic module supports ieee_selected_real_kind([p]
[,r]) a transformational function that is permitted in an initialization expression.

This result of this function is the kind value of a real x for which
ieee_support_datatype(x) is true.

6.28. Module IEEE_EXCEPTIONS
The ieee_exceptions intrinsic module provides support for overflow and divide-by-zero
flags in the scoping unit for all available kinds of reals and complex data. It also determines the
level of support for other exceptions.

This module contains two derived types, named constants of these types, and a collection of
generic procedures.

6.28.1. IEEE_EXCEPTIONS Derived Types
‣ ieee_flag_type - Identifies a particular exception flag.
‣ ieee_status_type - Saves the current floating-point status.

Fortran Intrinsics

PGI Fortran Reference Guide 115

For both of these types, the following are true:

‣ The components are private.
‣ No operations are defined for these types.
‣ Only intrinsic assignment is available.

Table 25 provides a quick overview of the values that each derived type can take.

Table 25 IEEE_EXCEPTIONS Derived Types

This derived type... Must have one of these values...

ieee_flag_type For named constants:

ieee_overflow

ieee_underflow

ieee_divide_by_zero

ieee_inexact

ieee_invalid

ieee_status_type Includes the values of all supported flags as well as current rounding mode.

6.28.2. IEEE_EXCEPTIONS Inquiry Functions
The ieee_exceptions intrinsic module supports two inquiry functions, both of which are
pure:

‣ ieee_support_flag(flag [,x])
‣ ieee_support_halting(flag)

For both functions, the argument flag must be of type type(ieee_flag_type).

Table 26 provides a list and brief description of what it means if the inquiry function returns
.true.I n all cases, if the condition for returning .true. is not met, the function returns
.false..

Table 26 IEEE_EXCEPTIONS Inquiry Functions

This inquiry function... Returns .true. if ...

ieee_support_flag(flag [,x]) The processor supports the exception flag for all reals. If the optional argument x is
present, then it returns .true. if the processor supports the exception flag for all
reals of the same kind type parameter as the real argument x.

ieee_support_halting(flag) The processor supports the ability to change the mode by call
ieee_set_halting(flag).

6.28.3. IEEE_EXCEPTIONS Subroutines Functions
The ieee_exceptions intrinsic module supports elemental and non-elemental subroutines.

In all these subroutines:

‣ flag is of type type(ieee_flag_type)

Fortran Intrinsics

PGI Fortran Reference Guide 116

‣ halting is of type default logical
‣ flag_value is of type default logical
‣ status_value if is type type(ieee_status_type).

Elemental Subroutines

Table 27 provides a list and brief description of what it means if the inquiry function returns
.true. In all cases, if the condition for returning .true. is not met, the function returns
.false..

Table 27 IEEE_EXCEPTIONS Elemental Subroutines

This elemental subroutine... Does this...

ieee_get_flag(flag, flag_value) If the value of flag is ieee_invalid, ieee_overflow,
ieee_divide_by_zero, ieee_underflow, or ieee_inexact and the
corresponding exception flag is signaling, flag_value is true.

ieee_get_halting_mode(flag, halting) The value flag must have one of the values: ieee_invalid, ieee_overflow,
ieee_divide_by_zero, ieee_underflow, or ieee_inexact. If the
exception specified causes halting, halting is true.

Non-Elemental Subroutines

The ieee_exceptions intrinsic module supports non-elemental subroutines for flags and
halting mode as well as for floating-point status.

Table 28 provides a list and brief description of these subroutines.

Table 28 IEEE_EXCEPTIONS Elemental Subroutines

This non-elemental subroutine... Does this...

ieee_set_flag(flag, flag_value) If the value returned by ieee_support_halting is true, each flag specified is
set to be signalling if the corresponding flag_value is true and is set to be quiet
if it is false.

ieee_set_halting_mode(flag, halting) Each exception specified by flag causes halting if the corresponding value of
halting is true. If value is false, it does not cause halting.

ieee_get_status(status_value) Returns the floating-point status, including all the exception flags, the rounding mode,
and the halting mode.

ieee_set_status(status_value) Resets the floating-point status, including all the exception flags, the rounding mode,
and the halting mode to the previous invocation of ieee_get_status.

Fortran Intrinsics

PGI Fortran Reference Guide 117

6.29. IEEE_FEATURES
The ieee_features intrinsic module supports specification of essential IEEE features. It
provides access to one derived type and a collection of named constants of this type, each of
which corresponds to an IEEE feature. The named constants affect the manner in which code is
compiled in the scoping units.

6.29.1. IEEE_FEATURES Derived Type
The ieee_features intrinsic module provides access to the derived type:
ieee_features_type. This type identifies a particular feature. It may only take values that
are those of named constants defined in the module.

While permitted, there is no purpose in declaring data of type ieee_features_type. The
components of this type are private, no operation is defined for it, and only intrinsic assignment is
available for it.

6.29.2. IEEE_FEATURES Named Constants
Table 29 lists a complete set of named constants available for the ieee_features intrinsic
module and provides the effect of their accessibility:

Table 29 IEEE_FEATURES Named Constants

This named constant... Requires the scoping unit to support ...

ieee_datatype ieee_ARITHMETIC for at least one kind of real.

ieee_denormal Denormalized numbers for at least one kind of real.

ieee_divide IEEE divide for at least one kind of real.

ieee_halting Control of halting for each flag supported.

ieee_inexact_flag Inexact exception for at least one kind of real.

ieee_inf Infinity and -infinity for at least one kind of real.

ieee_invalid_flag Invalid exception for at least one kind of real.

ieee_nan NaNs for at least one kind of real.

ieee_rounding Control of the rounding mode for all four rounding modes on at least one kind of real.

ieee_sqrt IEEE square root for at least one kind of real.

ieee_underflow_flag Underflow exception for at least one kind of real.

Some features may slow execution on some processorts. Therefore, if ieee_exceptions is accessed
but ieee_features is not, the processor can support a selected subset of the features.

Fortran Intrinsics

PGI Fortran Reference Guide 118

6.30. Module iso_c_binding
The iso_c_binding intrinsic module provides access to named constants of type default
integer that represent kind type parameters of data representations compatible with C types.

‣ A positive value indicates that the Fortran type and kind type parameter interoperate with the
corresponding C type.

‣ A negative value indicates a lack of support.

6.31. Module iso_fortran_env
The iso_fortran_env intrinsic module provides information about the Fortran environment
through named constants. The following table provides the constants and a brief description of
the information provided. Each named constant is a default integer scalar.

Table 30 iso_fortran_env Named Constants

This Named Constant... Provides this Fortran environment information...

character_storage_size The size, in bits, of a character storage unit

error_unit The unit number for a preconnected output unit suitable for reporting errors.

file_storage_size The size, in bits, of a file storage unit.

input_unit The unit number for the preconnected external unit used for input.

iostat_end The value returned by IOSTAT= that indicates an end-of-file condition occurs during
execution of a READ statement.

iostat_eor The value returned by IOSTAT= that indicates an end-of-record condition occurs during
execution of a READ statement.

numeric_storage_size The size, in bits, of a numeric storage unit.

output_unit The unit number for the preconnected external unit used for output.

These special unit numbers may be negative, though they are never -1, since -1 is reserved for
another purpose.

The error-unit may be the same as output-unit.

PGI Fortran Reference Guide 119

Chapter 7.
OBJECT ORIENTED PROGRAMMING

Object-oriented programming, OOP, describes an approach to programming where a program
is viewed as a collection of interacting, but mostly independent software components. These
software components, known as objects, are typically implemented as an entity that encapsulates
both data and procedures. Object-oriented programming focuses on the data structures; that is,
focus is on the objects on which the program operates rather than the procedures. In languages
designed to be object-oriented, there are classes, containing both data and modules, that operate
on that data. In Fortran, modules may contain data, but there is no notion of separate instances of
a module. However, in Fortran 2003, there are type extensions and type-bound procedures that
support an object-oriented approach. To have ‘class-like’ behavior, you can combine a module,
which contains the methods that operate on the ‘class’, with a derived type containing the data.

PGI Fortran compilers contain procedures, functions, and attributes from Fortran 2003 that
facilitate an object-oriented approach to programming. Some of the object-oriented features
include classes, type extensions, polymorphic entities, typed allocation, sourced allocation,
inheritance association, as well as object-oriented intrinsics. This section provides a high-level
overview of these features.

Tip

For specific information on how to use these extensions and for examples, refer to one of the many reports
and texts available, such as these:

‣ Object-Oriented Programming in Fortran 2003, PGI Insider, February 2011
‣ The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures by Adams, J.C.,

Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith, B.T
‣ Fortran 95/2003 explained by Metcalf,m., Reid, J., and Cohen, M.

7.1. Inheritance
Inheritance allows code reusability through an implied inheritance link in which leaf objects,
known as children, reuse components from their parent and ancestor objects.

For example, the following code shows how a square type inherits components from rectangle
which inherits components from shape.

Object Oriented Programming

PGI Fortran Reference Guide 120

Inheritance of Shape Components
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
end type shape
type, EXTENDS (shape) :: rectangle
 integer :: length
 integer :: width
end type rectangle
type, EXTENDS (rectangle) :: square
end type square

The programmer indicates the inheritance relationship with the EXTENDS keyword followed
by the name of the parent type in parentheses. A type that EXTENDS another type is known as a
type extension (e.g., rectangle is a type extension of shape, square is a type extension of rectangle
and shape). A type without any EXTENDS keyword is known as a base type (e.g., shape is a base
type).

A type extension inherits all of the components of its parent (and ancestor) types. A type
extension can also define additional components as well. For example, rectangle has a length
and width component in addition to the color, filled, x, and y components that were inherited
from shape. The square type, on the other hand, inherits all of the components from rectangle and
shape, but does not define any components specific to square objects. The following example
shows how to access the color component of square:
type(square) :: sq ! declare sq as a square object
 sq%color ! access color component for sq
 sq%rectangle%color ! access color component for sq
 sq%reactangle%shape%color ! access color component for sq

There are three different ways for accessing the color component for sq. A type extension
includes an implicit component with the same name and type as its parent type. This approach
is handy when the programmer wants to operate on components specific to a parent type. It also
helps illustrate an important relationship between the child and parent types.

We often say the child and parent types have a "is a" relationship. In the shape example, "a square
is a rectangle", "a rectangle is a shape", "a square is a shape", and "a shape is a base type". This
relationship also applies to the type itself: "a shape is a shape", "a rectangle is a rectangle", and "a
square is a square".

The "is a" relationship does not imply the converse. A rectangle is a shape, but a shape is not a
rectangle since there are components found in rectangle that are not found in shape. Furthermore,
a rectangle is not a square because square has a component not found in rectangle; the implicit
rectangle parent component.

7.2. Polymorphic Entities
Polymorphism permits code reusability in the Object-Oriented Programming paradigm because
the programmer can write procedures and data structures that can operate on a variety of data

Object Oriented Programming

PGI Fortran Reference Guide 121

types and values. The programmer does not have to reinvent the wheel for every data type a
procedure or a data structure will encounter.

The "is a" relationship might help you visualize how polymorphic variables interact with
type extensions. A polymorphic variable is a variable whose data types may vary at run time.
Polymorphic entities must be a pointer or allocatable variable or a dummy data object.

There are two basic types of polymorphism:

procedure polymorphism
Procedure polymorphism deals with procedures that can operate on a variety of data types and
values.

data polymorphism
Data polymorphism deals with program variables that can store and operate on a variety of
data types and values. You see later that the dynamic type of these variables changes when we
assign a target to a polymorphic pointer variable or when we use typed or sourced allocation
with a polymorphic allocatable variable.

To declare a polymorphic variable, use the class keyword.

Polymorphic Variables
In this example, the sh object can be a pointer to a shape or any of its type extensions. So, it can
be a pointer to a shape, a rectangle, a square, or any future type extension of shape. As long as the
type of the pointer target "is a" shape, sh can point to it.
class(shape), pointer :: sh

This second example shows how to declare a pointer p that may point to any object whose type is
in the class of types or extensions of the type type(point)
type point
 real :: x,y
end type point
class(point), pointer :: p

7.2.1. Unlimited Polymorphic Entities
Unlimited polymorphic entities allow the user to have a pointer that may refer to objects of any
type, including non-extensible or intrinsic types. You can use unlimited polymorphic objects
to create heterogeneous data structures, such as a list object that links together a variety of data
types. Further, you can use abstract types to dictate requirements for type extensions and how
they interact with polymorphic variables.

Unlimited polymorphic entities can only be used as an actual argument, as the pointer or target in a pointer
assignment, or as the selector in a SELECT TYPE statement.

To declare an unlimited polymorphic variable, use the * as the class specifier. The following
example shows how to declare up as an unlimited polymorphic pointer and associate it with a
real target.
class(*), pointer :: up
 real, target :: x,
 :
 up => x

Object Oriented Programming

PGI Fortran Reference Guide 122

7.2.2. Typed Allocation for Polymorphic Variables
The ALLOCATE statement allows the user to specify the type of polymorphic variables. It
allocates storage for each allocatable array, pointer object, or pointer-based variable that appears
in the statements; declares storage for deferred-shape arrays.

7.2.3. Sourced Allocation for Polymorphic Variables
Sourced allocation defines the type, type parameters, and value of a variable by using the type,
type parameters and value of another variable or expression. This type of allocation produces a
‘clone’ of the source expression. To do this, use the ALLOCATE statement, specifying the source
of the values through the source= clause of that statement.

7.2.4. Procedure Polymorphism
Procedure polymorphism occurs when a procedure, such as a function or a subroutine, can take a
variety of data types as arguments. In F2003, this procedure is one that has one or more dummy
arguments declared with the CLASS keyword.

In the following example, the setColor subroutine takes two arguments, sh and color. The
sh dummy argument is polymorphic, based on the usage of class(shape).
subroutine setColor(sh, color)
 class(shape) :: sh
 integer :: color
 sh%color = color
 end subroutine setColor

The setColor subroutine takes two arguments, sh and color. The sh dummy argument is
polymorphic, based on the usage of class(shape).

The subroutine can operate on objects that satisfy the "is a" shape relationship. So, setColor
can be called with a shape, rectangle, square, or any future type extension of shape. However,
by default, only those components found in the declared type of an object are accessible. For
example, shape is the declared type of sh. Therefore, you can only access the shape components,
by default, for sh in setColor (i.e., sh%color, sh%filled, sh%x, sh%y).

If a programmer needs to access the components of the dynamic type of an object, the F2003
SELECT TYPE construct is useful. The following example illustrates how a SELECT TYPE
construct can access the components of a dynamic type of an object.

SELECT TYPE construct
subroutine initialize(sh, color, filled, x, y, length, width)
! initialize shape objects
class(shape) :: sh
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 integer, optional :: length
 integer, optional :: width

 sh%color = color
 sh%filled = filled
 sh%x = x
 sh%y = y

Object Oriented Programming

PGI Fortran Reference Guide 123

select type (sh)
type is (shape)
 ! no further initialization required
class is (rectangle)
 ! rectangle or square specific initializations
 if (present(length)) then
 sh%length = length
 else
 sh%length = 0
 endif
 if (present(width)) then
 sh%width = width
 else
 sh%width = 0
 endif
class default
 ! give error for unexpected/unsupported type
 stop 'initialize: unexpected type for sh object!'
end select
end subroutine initialize

The preceding example illustrates an initialization procedure for our shape example. It takes
one shape argument, sh, and a set of initial values for the components of sh. Two optional
arguments, length and width, are specified when we want to initialize a rectangle or a square
object.

SELECT TYPE Construct Type Checks

The SELECT TYPE construct allows us to perform a type check on an object. There are two
styles of type checks that we can perform.

‣ The first type check is called "type is". This type test is satisfied if the dynamic type of the
object is the same as the type specified in parentheses following the "type is" keyword.

‣ The second type check is called "class is". This type test is satisfied if the dynamic type
of the object is the same or an extension of the specified type in parentheses following the
"class is" keyword.

In the example, if the type of sh is rectangle or square, then it initializes the length and width
fields. If the dynamic type of sh is not a shape, rectangle, or square, then it executes the "class
default" branch. This branch may also get executed if the shape type is extended without updating
the initialize subroutine.

With the addition of a "class default" branch, the type is (shape) branch is needed, even
though it does not perform any additional assignments. Otherwise, this example would
incorrectly print an error message when sh is of type shape.

7.2.5. Procedure Polymorphism with Type-Bound Procedures
Derived types in F2003 are considered objects because they encapsulate data as well as
procedures. Procedures encapsulated in a derived type are called type-bound procedures. The
following example illustrates how to add a type-bound procedure to shape:
type shape
 integer :: color
 logical :: filled
 integer :: x

Object Oriented Programming

PGI Fortran Reference Guide 124

 integer :: y
 contains
 procedure :: initialize
end type shape

F2003 added a contains keyword to its derived types to separate a type's data definitions from
its procedures. Anything that appears after the contains keyword in a derived type must be a
type-bound procedure declaration.

Syntax of type-bound procedure declaration:
PROCEDURE [(interface-name)] [[,binding-attr-list]::] binding-name[=>
 procedure-name]

At the minimum, a type-bound procedure is declared with the PROCEDURE keyword followed
with a binding-name.

The binding-name is the name of the type-bound procedure.

The first option is interface-name.

The binding-attr-list option is a list of binding-attributes.

‣ PASS and NOPASS attributes allow the procedure to specify to which argument, if any, the
invoking object is passed. For example, pass(x) passes it to dummy argument x, while
nopass indicates not to pass it at all.

‣ NON_OVERRIDABLE attribute specifies that the type-bound procedure cannot be
overridden during type extension.

‣ PRIVATE and PUBLIC attributes determine where the type-bound procedures can be
referenced. The default is public, which allows the procedures to be referenced anywhere
in the program having that type of variable. If the procedure is private, it can only be
referenced from within the module in which it is defined.

‣ DEFERRED are type bound procedures that are declared in an abstract type, as described
in Abstract Types and Deferred Bindings, and must be defined in all of its non-abstract type
extensions.

The procedure-name option is the name of the underlying procedure that implements the type-
bound procedure. This option is required if the name of the underlying procedure differs from the
binding-name. The procedure-name can be either a module procedure or an external procedure
with an explicit interface.

In the example SELECT TYPE construct, the binding-name is initialize. Because
procedure-name was not specified, an implicit procedure-name, initialize, is
also declared. Another way to write that example is procedure :: initialize =>
initialize.

Type-Bound Procedure using Module Procedure
The following example is a type-bound procedure that uses a module procedure.
module shape_mod
type shape
 integer :: color
 logical :: filled

Object Oriented Programming

PGI Fortran Reference Guide 125

 integer :: x
 integer :: y
 contains
 procedure :: initialize
end type shape
type, extends(shape) :: rectangle
 integer :: length
 integer :: width
end type rectangle
type, extends(rectangle) :: square
end type square
contains
subroutine initialize(sh, color, filled, x, y, length, width)
! initialize shape objects
class(shape) :: sh
integer :: color
logical :: filled
integer :: x
integer :: y
integer, optional :: length
integer, optional :: width

sh%color = color
sh%filled = filled
sh%x = x
sh%y = y
select type (sh)
type is (shape)
 ! no further initialization required
class is (rectangle)
 ! rectangle or square specific initializations
 if (present(length)) then
 sh%length = length
 else
 sh%length = 0
 endif
 if (present(width)) then
 sh%width = width
 else
 sh%width = 0
 endif
class default
 ! give error for unexpected/unsupported type
 stop 'initialize: unexpected type for sh object!'
end select
end subroutine initialize
end module

Type-Bound Procedure using an External Procedure
The following example is a type-bound procedure that uses an external procedure with an explicit
interface:
module shape_mod
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: initialize
end type shape
type, extends(shape) :: rectangle
 integer :: length
 integer :: width
end type rectangle
type, extends(rectangle) :: square

Object Oriented Programming

PGI Fortran Reference Guide 126

end type square
interface
 subroutine initialize(sh, color, filled, x, y, length, width)
 import shape
 class(shape) :: sh
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 integer, optional :: length
 integer, optional :: width
 end subroutine
end interface
end module

Using the preceding examples, we can invoke the type-bound procedure in the following manner:
use shape_mod
type(shape) :: shp ! declare an instance of shape
call shp%initialize(1, .true., 10, 20) ! initialize shape

The syntax for invoking a type-bound procedure is very similar to accessing a data component
in a derived type. The name of the component is preceded by the variable name separated by a
percent (%) sign. In this case, the name of the component is initialize and the name of the
variable is shp. To access the initialize type-bound procedure, type shp%initialize. Using
the preceding invocation calls the initialize subroutine and passes in 1 for color, .true. for
filled, 10 for x, and 20 for y.

But what about the first dummy argument, sh, in initialize? This dummy argument is known
as the passed-object dummy argument. By default, the passed-object dummy is the first dummy
argument in the type-bound procedure. It receives the object that invoked the type-bound
procedure. In our example, sh is the passed-object dummy and the invoking object is shp.
Therefore, the shp object gets assigned to sh when initialize is invoked.

The passed-object dummy argument must be declared CLASS and of the same type as the
derived type that defined the type-bound procedure. For example, a type bound procedure
declared in shape must have a passed-object dummy argument declared "class(shape)".

You can also specify a different passed-object dummy argument using the PASS binding-
attribute. For example, suppose that the sh dummy in our initialize subroutine did not appear as
the first argument. Then you must specify a PASS attribute, as illustrated in the following code:
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure, pass(sh) :: initialize
end type shape

If you do not want to specify a passed-object dummy argument, you can do so using the
NOPASS binding-attribute:
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains

Object Oriented Programming

PGI Fortran Reference Guide 127

 procedure, nopass :: initialize
end type shape

When you specify NOPASS, you invoke the type-bound procedure the same way. The only
difference is that the invoking object is not automatically assigned to a passed-object dummy in
the type-bound procedure. For example, if you were to specify NOPASS in the initialize
type-bound procedure, then you would invoke it this way:
type(shape) :: shp ! declare an instance of shape
call shp%initialize(shp, 1, .true., 10, 20) ! initialize shape

You explicitly specify shp for the first argument of initialize because it was declared NOPASS.

7.2.6. Inheritance and Type-Bound Procedures
A child type inherits or reuses components from their parent or ancestor types. When dealing
with F2003 derived types, this inheritance applies to both data and procedures. In the following
example, rectangle and square both inherit the initialize type-bound procedure from shape.
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: initialize
end type shape
type, EXTENDS (shape) :: rectangle
 integer :: length
 integer :: width
end type rectangle
type, EXTENDS (rectangle) :: square
end type square

Using the example above, we can invoke initialize with a shape, rectangle, or square object:
type(shape) :: shp ! declare an instance of shape
type(rectangle) :: rect ! declare an instance of rectangle
type(square) :: sq ! declare an instance of square
call shp%initialize(1, .true., 10, 20) ! initialize shape
call rect%initialize(2, .false., 100, 200, 50, 25) ! initialize rectangle
call sq%initialize(3, .false., 400, 500, 30, 20) ! initialize rectangle

7.2.7. Procedure Overriding
Most OOP languages allow a child object to override a procedure inherited from its parent object.
This is known as procedure overriding. In F2003, you can specify a type-bound procedure in a
child type that has the same binding-name as a type-bound procedure in the parent type. When
the child overrides a particular type-bound procedure, the version defined in its derived type
is invoked instead of the version defined in the parent. In the following example, rectangle
defines an initialize type-bound procedure that overrides shape's initialize type-bound
procedure.

module shape_mod
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: initialize => initShape

Object Oriented Programming

PGI Fortran Reference Guide 128

end type shape
type, EXTENDS (shape) :: rectangle
 integer :: length
 integer :: width
 contains
 procedure :: initialize => initRectangle
end type rectangle
type, EXTENDS (rectangle) :: square
end type square
contains
subroutine initShape(this, color, filled, x, y, length, width)
! initialize shape objects
class(shape) :: this
integer :: color
logical :: filled
integer :: x
integer :: y
integer, optional :: length ! ignored for shape
integer, optional :: width ! ignored for shape
this%color = color
this%filled = filled
this%x = x
this%y = y
end subroutine

subroutine initRectangle(this, color, filled, x, y, length, width)
! initialize rectangle objects
class(rectangle) :: this
integer :: color
logical :: filled
integer :: x
integer :: y
integer, optional :: length
integer, optional :: width
this%color = color
this%filled = filled
this%x = x
this%y = y
if (present(length)) then
 this%length = length
else
 this%length = 0
endif
if (present(width)) then
 this%width = width
else
 this%width = 0
endif
end subroutine
end module

The preceding example illustrates code that defines a type-bound procedure called initialize
for both shape and rectangle. The only difference is that shape's version of initialize invokes
a procedure called initShape while rectangle's version invokes a procedure called
initRectangle. The passed-object dummy in initShape is declared "class(shape)" and the
passed-object dummy in initRectangle is declared "class(rectangle)".

A type-bound procedure's passed-object dummy must match the type of the derived type that
defined it. Other than differing passed-object dummy arguments, the interface for the child's
overriding type-bound procedure is identical with the interface for the parent's type-bound
procedure. Both type-bound procedures are invoked in the same manner:
type(shape) :: shp ! declare an instance of shape
type(rectangle) :: rect ! declare an instance of rectangle
type(square) :: sq ! declare an instance of square

Object Oriented Programming

PGI Fortran Reference Guide 129

call shp%initialize(1, .true., 10, 20) ! calls initShape
call rect%initialize(2, .false., 100, 200, 11, 22) ! calls initRectangle
call sq%initialize(3, .false., 400, 500) ! calls initRectangle

sq is declared square but its initialize type-bound procedure invokes initRectangle because
sq inherits the rectangle version of initialize.

Although a type may override a type-bound procedure, it is still possible to invoke the version
defined by a parent type. Each type extension contains an implicit parent object of the same name
and type as the parent. You can use this implicit parent object to access components specific to a
parent, say, a parent's version of a type-bound procedure, as illustrated here:
call rect%shape%initialize(2, .false., 100, 200) ! calls initShape
call sq%rectangle%shape%initialize(3, .false., 400, 500) ! calls initShape

If you do not want a child to override a parent's type-bound procedure, you can use the
NON_OVERRIDABLE binding-attribute to prevent any type extensions from overriding a
particular type-bound procedure:
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure, non_overridable :: initialize
end type shape

7.2.8. Functions as Type-Bound Procedures
In the preceding examples, subroutines implement type-bound procedures. You can also
implement type-bound procedures with functions. The following example uses a function that
queries the status of the filled component in shape.
module shape_mod
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 procedure :: isFilled
end type shape
contains
 logical function isFilled(this)
 class(shape) :: this
 isFilled = this%filled
 end function
end module

You can invoke the preceding function in the following manner:
use shape_mod
type(shape) :: shp ! declare an instance of shape
logical filled
call shp%initialize(1, .true., 10, 20)
filled = shp%isFilled()

7.3. Information Hiding
In Procuedure Overriding, you saw how a child type can override a parent's type-bound
procedure. This process allows a user to invoke a type-bound procedure without any knowledge

Object Oriented Programming

PGI Fortran Reference Guide 130

of the implementation details of that procedure. This is another important feature of Object
Oriented Programming know as information hiding.

Information hiding allows the programmer to view an object and its procedures as a "black
box". That is, the programmer can use (or reuse) an object without any knowledge of the
implementation details of the object.

Inquiry functions, like the isFilled function, shown in Functions as Type-Bound Procedures,
are common with information hiding. The motivation for inquiry functions, rather than direct
access to the underlying data, is that the object's implementer can change the underlying data
without affecting the programs that use the object. Otherwise, each program that uses the object
would need to be updated whenever the underlying data of the object changes.

To enable information hiding, F2003 provides a PRIVATE keyword and binding-attribute. To
enable information hiding, F2003 also provides a PUBLIC keyword and binding-attribute. By
default, all derived type components are declared PUBLIC. The PRIVATE keyword can be
placed on derived type data and type-bound procedure components and on module data and
procedures. The following sample illustrates use of PUBLIC and PRIVATE:

Code Using Private and Public
module shape_mod
private ! hide the type-bound procedure implementation procedures
public :: shape, constructor ! allow access to shape & constructor procedure
type shape
 private ! hide the underlying details
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 private ! hide the type bound procedures by default
 procedure :: initShape ! private type-bound procedure
 procedure, public :: isFilled ! allow access to isFilled type-bound
 procedure
 procedure, public :: print ! allow access to print type-bound procedure
end type shape
contains
logical function isFilled(this)
class(shape) :: this

isFilled = this%filled

end function

function constructor(color, filled, x, y)
type(shape) :: constructor
integer :: color
logical :: filled
integer :: x
integer :: y
 call constructor%initShape(color, filled, x, y)
end function
subroutine initShape(this, color, filled, x, y)
! initialize shape objects
class(shape) :: this
integer :: color
logical :: filled
integer :: x
integer :: y

this%color = color
this%filled = filled

Object Oriented Programming

PGI Fortran Reference Guide 131

this%x = x
this%y = y
end subroutine

subroutine print(this)
class(shape) :: this
print *, this%color, this%filled, this%x, this%y

end subroutine
end module

The preceding example uses information hiding in the host module as well as in the shape type.
The private statement, located at the top of the module, enables information hiding on all module
data and procedures. The isFilled module procedure, which is not to be confused with the
isFilled type-bound procedure, is hidden as a result of the private statement at the top of the
module. The public :: constructor allows the user to invoke the constructor module
procedure. There is also a private statement on the data components of shape. Now, the only way
a user can query the filled component is through the isFilled type-bound procedure, which is
declared public.

Notice the private statement after the contains in type shape. The private that appears after type
shape only affects the data components of shape. If you want your type-bound procedures to also
be private, then a private statement must also be added after the contains keyword. Otherwise,
type-bound procedures are public by default.

In Code Using Private and Public, the initShape type-bound procedure is declared private.
Therefore, only procedures local to the host module can invoke a private type-bound procedure.
The constructor module procedure invokes the initShape type-bound procedure. You may
invoke this example in this way:
program shape_prg
use shape_mod
type(shape) :: sh
logical filled
sh = constructor(5, .true., 100, 200)
call sh%print()
end

Here is a sample compile and sample run of the preceding program. In this example, the
shape_mod module is saved in a file called shape.f03 and the main program is called
main.f03:
% pgfortran -V ; pgfortran shape.f03 main.f03 -o shapeTest
pgfortran 14.7-0 64-bit target on x86-64 Linux -tp nehalem
The Portland Group - PGI Compilers and Tools
Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
shape.f03:
main.f03:
% shapeTest
 5 T 100 200

7.3.1. Type Overloading
The example Code Using Private and Public creates an instance of shape by invoking a function
called constructor. This function hides the details for constructing a shape object, including
the underlying type-bound procedure that performs the initialization. However, you may have
noticed that the word constructor could very well be defined somewhere else in the host program.

Object Oriented Programming

PGI Fortran Reference Guide 132

If that is the case, the program cannot use our module without renaming one of the constructor
functions. Since OOP encourages information hiding and code reusability, it would make more
sense to come up with a name that probably is not being defined in the host program. That name
is the type name of the object we are constructing.

F2003 allows the programmer to overload a name of a derived type with a generic interface. The
generic interface acts as a wrapper for our constructor function. The idea is that the user would
then construct a shape in the following manner:
program shape_prg
use shape_mod
type(shape) :: sh
logical filled
! invoke constructor through shape generic interface
sh = shape(5, .true., 100, 200)
call sh%print()
end

Here is the modified version of Code Using Private and Public that uses type overloading:
module shape_mod
private ! hide the type-bound procedure implementation procedures
public :: shape ! allow access to shape
type shape
 private ! hide the underlying details
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
 contains
 private ! hide the type bound procedures by default
 procedure :: initShape ! private type-bound procedure
 procedure, public :: isFilled ! allow access to isFilled type-bound procedure
end type shape
interface shape
procedure constructor ! add constructor to shape generic interface
end interface
contains
 :
 :
end module

The constructor function is now declared private and is invoked through the shape public
generic interface.

7.4. Data Polymorphism
As described in Polymorphic Entities, the class keyword allows F2003 programmers to create
a polymorphic variable, that is, a variable whose data type is dynamic at runtime. Recall that the
polymorphic variable must be a pointer variable, allocatable variable, or a dummy argument.

7.4.1. Pointer Polymorphic Variables
The following example illustrates pointer polymorphic variables.
subroutine init(sh)
class(shape) :: sh ! polymorphic dummy argument
class(shape), pointer :: p ! polymorphic pointer variable
class(shape), allocatable:: als ! polymorphic allocatable variable
end subroutine

Object Oriented Programming

PGI Fortran Reference Guide 133

In the preceding example, the sh, p, and als polymorphic variables can each hold values of type
shape or any type extension of shape.

‣ The sh dummy argument receives its type and value from the actual argument to sh of
subroutine init(). In the same manner that polymorphic dummy arguments form the basis
to procedure polymorphism, polymorphic pointer and allocatable variables form the basis to
data polymorphism.

‣ The polymorphic pointer variable p can point to an object of type shape or any of its
extensions. For example, the select type construct in the following example helps
illustrate the fact that the polymorphic pointer, p, can take on several types. In this case, p
can point to a shape, rectangle, or square object. The dynamic type of pointer p is not known
until the pointer assignment, p => sh in this example, is executed.
subroutine init(sh)
class(shape),target :: sh
class(shape), pointer :: p
select type (sh)
type is (shape)
 p => sh
 : ! shape specific code here
type is (rectangle)
 p => sh
 : ! rectangle specific code here
type is (square)
 p => sh
 : ! square specific code here
class default
 p => null()
end select
:
end subroutine

7.4.2. Allocatable Polymorphic Variables
The following example illustrates pointer polymorphic variables.

An allocatable polymorphic variable receives its type and optionally its value at the point of its
allocation. By default, the dynamic type of a polymorphic allocatable variable is the same as its
declared type after executing an allocate statement.

The following example allocates the polymorphic variable als. This variable receives dynamic
type shape after the ALLOCATE statement is executed.
class(shape), allocatable :: als
allocate(als)

Obviously there is not much use for polymorphic allocatable variables if you can only specify the
declared type in an allocate statement. Therefore, F2003 provides typed allocation to allow the
programmer to specify a type other than the declared type in an allocate statement.

In the following allocate statement, notice that following the type is a :: and then the variable
name.
class(shape), allocatable :: als
allocate(rectangle::als)

In this example, rectangle is the dynamic type of variable als. However, the declared type of
als is still shape.

Object Oriented Programming

PGI Fortran Reference Guide 134

The type specification must be the same or a type extension of the declared type of the allocatable
variable. The following example illustrates how to allocate a polymorphic variable with the same
type of another object:
subroutine init(sh)
class(shape) :: sh
class(shape), allocatable :: als
select type (sh)
type is (shape)
 allocate(shape::als)
type is (rectangle)
 allocate(rectangle::als)
type is (square)
 allocate(square::als)
end select
:
end subroutine

You can expand the preceding example to create a "copy" of an object, as shown here:
subroutine init(sh)
class(shape) :: sh
class(shape), allocatable :: als
select type (sh)
type is (shape)
 allocate(shape::als)
 select type(als)
 type is (shape)
 als = sh ! copy sh
 end select
type is (rectangle)
 allocate(rectangle::als)
 select type (als)
 type is (rectangle)
 als = sh ! copy sh
 end select
type is (square)
 allocate(square::als)
 select type (als)
 type is (square)
 als = sh ! copy sh
 end select
end select
:
end subroutine

The programmer can only access the components of the declared type by default. Therefore, in
the preceding example, you can only access the shape components for object als by default. To
access the components of the dynamic type of object als requires you to use a nested select type
for object als.

The previous example illustrates one application of data polymorphism: making a copy or a
clone of an object. Unfortunately, this approach does not scale well if shape has several type
extensions. Further, whenever a type extension to shape is added, the programmer must update
the init() subroutine to include the new type extension. An alternative to this is sourced
allocation.

7.4.3. Sourced Allocation
Sourced allocation allows you to make an extra copy, or clone, of an object. In the following
example, the ALLOCATE statement allocates als with the same dynamic type as sh and with
the same value(s) of sh. The source= argument specifies the object that you wish to clone.

Object Oriented Programming

PGI Fortran Reference Guide 135

The declared type of the source= must be the same or a type extension of the allocate argument
(e.g., als).
subroutine init(sh)
class(shape) :: sh
class(shape), allocatable :: als
allocate(als, source=sh) ! als becomes a clone of sh
:
end subroutine

7.4.4. Unlimited Polymorphic Objects
Data polymorphism using derived types and their type extensions satisfies most applications.
However, sometimes you may want to write a procedure or a data structure that can operate
on any type, including any intrinsic or derived type. As described in the section on procedure
polymorphism, F2003 provides unlimited polymorphic objects.

Here are some examples of unlimited polymorphic objects:
subroutine init(sh)
class(*) :: sh ! unlimited polymorphic dummy argument
class(*), pointer :: p ! unlimited polymorphic pointer variable
class(*), allocatable:: als ! unlimited polymorphic allocatable variable
end subroutine

You use the class(*) keyword to specify an unlimited polymorphic object declaration. The
operations for unlimited polymorphic objects are similar to those in the preceding section for
"limited" polymorphic objects. However, unlike "limited" polymorphic objects, their "unlimited"
counterparts can take any F2003 type.

The following example illustrates unlimited polymorphic objects that can be used with procedure
polymorphism:
subroutine init(sh)
class(*) :: sh
select type(sh)
type is (shape)
 : ! shape specific code
type is (integer)
 : ! integer specific code
type is (real)
 : ! real specific code
type is (complex)
 : ! complex specific code
end select
end subroutine

Similarly, you can assign any pointer or target to an unlimited polymorphic pointer, regardless of
type.

The following example shows sh assigned to pointer p. Then a select type construct is used
to query the dynamic type of pointer p.
subroutine init(sh)
class(*),target :: sh
class(*), pointer :: p
p => sh
select type(p)
class is (shape)
 : ! shape specific code
type is (integer)
 : ! integer specific code
type is (real)
 : ! real specific code

Object Oriented Programming

PGI Fortran Reference Guide 136

type is (complex)
 : ! complex specific code
end select
end subroutine

You can also use unlimited polymorphic objects with typed allocation. In fact, a type (or
source=) argument must be specified with the ALLOCATE statement since there is no default
type for class(*). However, unlike their "limited" counterparts, as illustrated in the following
example, you can specify any F2003 type, intrinsic or derived.
subroutine init(sh)
class(*) :: sh
class(*), allocatable :: als
select type(sh)
type is (shape)
 allocate(shape::als)
type is (integer)
 allocate(integer::als)
type is (real)
 allocate(real::als)
type is (complex)
 allocate(complex::als)
end select
:
end subroutine

Sourced allocation can also operate on unlimited polymorphic objects:
subroutine init(sh)
class(*) :: sh
class(*), allocatable :: als
allocate(als, source=sh) ! als becomes a clone of sh
:
end subroutine

If the source= argument is an unlimited polymorphic object (i.e., declared class(*)), the allocate
argument, in this example als, must also be an unlimited polymorphic object.

When the ALLOCATE argument is declared class(*), the declared type in the source=
argument can be any type including class(*), any derived type, or any intrinsic type.

The following code demonstrates sourced allocation with an unlimited polymorphic allocatable
argument and an intrinsic typed source= argument.
class(*), allocatable :: als
integer i
i = 1234
allocate(als, source=i)

Data Polymorphic Linked List
One of the advantages to unlimited polymorphic objects is that you can create data structures
that operate on all data types, both intrinsic and derived in F2003. Traditionally, data stored in
a linked list all have the same data type. However, with unlimited polymorphic objects, we can
easily create a list that contains a variety of data types and values.

This example creates data structures that can be used to create a heterogeneous list of objects.

 1. Start by creating a derived type that will represent each link in our linked list.
type link
 class(*), pointer :: value => null()
 type(link), pointer :: next => null()
end type link

Object Oriented Programming

PGI Fortran Reference Guide 137

This basic link derived type contains an unlimited polymorphic pointer that points to the
value of the link followed by a pointer to the next link in the list.

 2. Place this derived type into its own module, add a constructor, and add some type-bound
procedures to access the value(s).

Recall that information hiding allows others to use an object without understanding its
implementation details.
module link_mod
 private ! information hiding
 public :: link
 type link
 private ! information hiding
 class(*), pointer :: value => null()
 type(link), pointer :: next => null()
 contains
 procedure :: getValue ! get value in this link
 procedure :: nextLink ! get the link after this link
 procedure :: setNextLink ! set the link after this link
 end type link

 interface link
 procedure constructor
 end interface

contains
 function nextLink(this)
 class(link) :: this
 class(link), pointer :: nextLink
 nextLink => this%next
 end function nextLink
 subroutine setNextLink(this,next)
 class(link) :: this
 class(link), pointer :: next
 this%next => next
 end subroutine setNextLink
 function getValue(this)
 class(link) :: this
 class(*), pointer :: getValue
 getValue => this%value
 end function getValue
 function constructor(value, next)
 class(link),pointer :: constructor
 class(*) :: value
 class(link), pointer :: next
 allocate(constructor)
 constructor%next => next
 allocate(constructor%value, source=value)
 end function constructor
end module link_mod

This code uses the PRIVATE keyword. Therefore the user of the object must use the
getValue() function to access the values of each link in our list, the nextLink()
procedure to access the next link in the list, and setNextLink() to add a link after a link.
The getValue() function returns a pointer to a class(*), meaning it can return an object
of any type.

We employ type overloading for the constructor function. Recall that type overloading
allows you to create a generic interface with the same name as a derived type. Therefore you
can create a constructor function and hide it behind the name of the type.

Object Oriented Programming

PGI Fortran Reference Guide 138

 3. Construct a link in the following manner:
class(link),pointer :: linkList
integer v
linkList => link(v, linkList%next)

Although you could easily create a linked list with just the preceding link object, the real
power of Object Oriented Programming lies in its ability to create flexible and reusable
components. However, the user must understand how the list is constructed with the link
object; in this example, the link constructor assigns its result to the linkList pointer.

 4. To take advantage of OOP, create another object called list that acts as the "Application
Program Interface" or API to the linked list data structure.
type list
 class(link),pointer :: firstLink => null() ! first link in list
 class(link),pointer :: lastLink => null() ! last link in list
 contains
 procedure :: addInteger ! add integer to list
 procedure :: addChar ! add character to list
 procedure :: addReal ! add real to list
 procedure :: addValue ! add class(*) to list
 generic :: add => addInteger, addChar, addReal, addValue
end type list

The list derived type has two data components, firstlink, which points to the first link in its
list and lastLink which points to the last link in the list. The lastLink pointer allows the user
to easily add values to the end of the list.

There are four type-bound procedures called addInteger(), addChar(), addReal(), and
addValue(). You use the first three procedures to add an integer, a character, and a real to the
linked list respectively. The addValue() procedure adds class(*) values to the list and is the
main add routine. The addInteger(), addChar(), and addReal() procedures are actually
just wrappers to the addValue() procedure.

The addInteger() procedure takes an integer value and allocates a class(*) with that value
using sourced allocation.
subroutine addInteger(this, value)
 class(list) :: this
 integer value
 class(*), allocatable :: v
 allocate(v,source=value)
 call this%addValue(v)
 end subroutine addInteger

The only difference between addInteger(), addChar(), and addReal() is the data type
dummy argument, value.

The value from the procedure is passed to the addValue() procedure:
subroutine addValue(this, value)
 class(list) :: this
 class(*), value
 class(link), pointer :: newLink
 if (.not. associated(this%firstLink)) then
 this%firstLink => link(value, this%firstLink)
 this%lastLink => this%firstLink
 else
 newLink => link(value, this%lastLink%nextLink())
 call this%lastLink%setNextLink(newLink)
 this%lastLink => newLink

Object Oriented Programming

PGI Fortran Reference Guide 139

 end if
 end subroutine addValue

The addValue() procedure takes two arguments; a list and a class(*). If the list's firstlink
is not associated (i.e., points to null()), then add the value to the start of the list by assigning it to
the list's firstlink pointer. Otherwise, add it after the list's lastlink pointer.

Returning to the list type definition, notice the following statement:
generic :: add => addInteger, addChar, addReal, addValue

This statement uses an F2003 feature known as a generic-type bound procedure. These
procedures act very much like generic interfaces, except they are specified in the derived-type
and only type-bound procedures are permitted in the generic-set. You define a type-bound
procedure to be generic by defining a generic statement within the type-bound procedure part.
The statement is of the form:
generic [[, access-spec] ::] generic-spec => tbp-name-list

where tbp-name-list is a list of the specific type-bound procedures to be included in the generic
set. You can use these statements for named generics as well as for operators and assignments.

In the preceding example, you can invoke the add type-bound procedure and either the
addInteger(), addChar(), addReal(), or addValue() implementations get called. The
compiler determines which procedure to invoke based on the data type of the actual arguments.
If you pass an integer to the value argument of add(), addInteger() is invoked, a character
value invokes addChar(), a real value invokes addReal(), and a class(*) value invokes
addValue()

Here is a simple program that adds values to a list and prints out the values. You can download
the complete list_mod and link_mod modules, which encapsulate the list and link objects
respectively.
program main
 use list_mod
 implicit none
 integer i
 type(list) :: my_list

 do i=1, 10
 call my_list%add(i)
 enddo
 call my_list%add(1.23)
 call my_list%add('A')
 call my_list%add('B')
 call my_list%add('C')
 call my_list%printvalues()
end program main

% pgfortran -c list.f90
% pgfortran -c link.f90
% pgfortran -V main.f90 list.o link.o
...
% a.out
 1
 2
 3
 4
 5
 6

http://www.pgroup.com/lit/samples/list.f90
http://www.pgroup.com/lit/samples/link.f90

Object Oriented Programming

PGI Fortran Reference Guide 140

 7
 8
 9
 10
 1.230000
 A
 B
 C

7.4.5. Abstract Types and Deferred Bindings
The example, Data Polymorphic Linked List, contained a list derived type that acted as the API
for a linked list. Rather than employ one implementation for the list derived type, you could
choose to define some of the components and type-bound procedures for a list object and require
the user to define the rest. One way to do this is through an abstract type.

An abstract type is a derived type that cannot be instantiated. Instead, it is extended and further
defined by another type. The type extension can also be declared abstract, but ultimately it must
be extended by a non-abstract type if it ever is to be instantiated in a program.

The following example illustrates a list type declared abstract:
module abstract_list_mod
:
type, abstract :: list
 private
 class(link),pointer :: firstLink => null() ! first link in list
 class(link),pointer :: lastLink => null() ! last link in list
 class(link),pointer :: currLink => null() ! list iterator
 contains
 procedure, non_overridable :: addValue ! add value to list
 procedure, non_overridable :: firstValue ! get first value in list
 procedure, non_overridable :: reset ! reset list iterator
 procedure, non_overridable :: next ! iterate to next value in list
 procedure, non_overridable :: currentValue! get current value in list
 procedure, non_overridable :: moreValues ! more values to iterate?
 generic :: add => addValue
 procedure(printValues), deferred :: printList ! print contents of list
 end type list
 abstract interface
 subroutine printValues(this)
 import list
 class(list) :: this
 end subroutine
 end interface
 :
 end module abstract_list_mod

The abstract list type in the preceding code uses the link type from Data Polymorphic Linked
List as its underlying data structure. This example has three data components, firstLink,
lastLink, and currLink.

‣ The firstLink component points to the first link in the list.
‣ The lastLink component points to the last link in the list.
‣ The currLink component points to the "current" link that we are processing in the list. In

other words, currLink acts as a list iterator that allows us to traverse the list using inquiry
functions. Without a list iterator, the user of this list type would need to understand the
underlying link data structure. Instead, the code takes advantage of information hiding by
providing a list iterator.

Object Oriented Programming

PGI Fortran Reference Guide 141

Our list type is declared abstract. Therefore, the following declaration and allocate statements
are invalid for list:
type(list) :: my_list ! invalid because list is abstract
allocate(list::x) ! invalid because list is abstract

On the other hand, you can use the abstract type in a class declaration since its dynamic type
can be a non-abstract type extension. In the following example, the usage of list is valid because
nothing is declared or allocated with type list. Instead, each variable is some type extension of
list.
subroutine list_stuff(my_list)
class(list) :: my_list
class(list), pointer :: p
class(list), allocatable :: a
select type (my_list)
type is (list)
:
end select
end subroutine

The preceding list type definition has the deferred binding added to the printValues type-
bound procedure. Deferred bindings allow the author of the abstract type to dictate what
procedures must be implemented by the user of the abstract type and what may or may not be
overridden. You can add the deferred binding to type-bound procedures that are not defined in
the abstract type, but these must be defined in all of its non-abstract type extensions. F2003 also
requires that a deferred binding have an interface (or an abstract interface) associated with it.

You use the following syntax for deferred bindings:

procedure (interface-name), deferred :: procedure-name

Because deferred bindings have an interface associated with them, there is no => followed by an
implementation-name allowed in the syntax. For example, procedure, deferred :: foo
=> bar is not allowed.

The following module includes an integerList which extends the abstract type, list,
previously defined.
module integer_list_mod
:
 type, extends(list) :: integerList
 contains
 procedure :: addInteger
 procedure :: printList => printIntegerList
 generic :: add => addInteger
 end type integerList
:
end module integer_list_mod

In this example, printList() is defined as required by the deferred binding in list. You can
use the following implementation for the printList() type-bound procedure:
 subroutine printIntegerList(this)
 class(integerList) :: this
 class(*), pointer :: curr
 call this%reset() ! reset list iterator
 do while(this%moreValues()) ! loop while there are values to print
 curr => this%currentValue() ! get current value
 select type(curr)
 type is (integer)
 print *, curr ! print the integer
 end select
 call this%nextValue() ! increment the list iterator

Object Oriented Programming

PGI Fortran Reference Guide 142

 end do
 call this%reset() ! reset list iterator
 end subroutine printIntegerList

printIntegerList() prints the integers in the list. The list reset() procedure verifies that
the list iterator is at the beginning of the list. Then the subroutine loops through the list, calling
the list's moreValues() function to determine if our list iterator has reached the end of the
list. The list's currentValue() function gets the value to which the list iterator is pointing. A
select type accesses the integer value and prints it. Finally, the list's nextValue() procedure
increments the list iterator to access the next value.

The following sample program uses the abstract list and integerList types. The
sample program adds the integers one through ten to the list and then calls the integerList's
printList() procedure. Next, the program traverses the list, places the integers into an
array, and then prints out the array. You can download the complete abstract_list_mod and
integer_list_mod modules from the PGI website.

program main
 use integer_list_mod
 implicit none
 integer i
 type(integerList) :: my_list
 integer values(10)
 do i=1, 10
 call my_list%add(i)
 enddo
 call my_list%printList()
 print *
 call my_list%reset()
 i = 1
 do while(my_list%moreValues())
 values(i) = my_list%current()
 call my_list%next()
 i = i + 1
 end do
 print *, values
end program main

Here is a sample compile and run of the preceding program:
% pgfortran -c link.f90
% pgfortran -c abstract_list.f90
% pgfortran -c integerList.f90
% pgfortran -V main.f90 link.o abstract_list.o integerList.o
pgfortran 11.6-0 64-bit target on x86-64 Linux -tp penryn
Copyright 2014 NVIDIA Corporation All Rights Reserved.

% a.out
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 1 2 3 4 5
6 7 8 9 10

Object Oriented Programming

PGI Fortran Reference Guide 143

7.5. IEEE Modules
PGI 2016 supports the Fortran IEEE standard intrinsic modules ieee_arithmetic,
ieee_exceptions, and ieee_features.

‣ ieee_arithmetic affects the manner in which code is compiled in the scoping units.
‣ ieee_exceptions specifies accessibility of overflow and divide-by-zero flags as well as

determines the level of support for other exceptions.
‣ ieee_features supports specification of essential IEEE features. It provides access to one

derived type and a collection of named constants of this type that affect the manner in which
code is compiled in the scoping units.

For details on each of these modules, refer to Intrinsic Modules.

7.6. Intrinsic Functions
The following table lists the Fortran 2003 intrinsic functions available to facilitate an object-
oriented approach to programming. A more complete description of each of these intrinsics is
available in Fortran Intrinsics.

Table 31 Fortran 2003 Functions and Procedures

Generic Name Purpose
Num.
Args Argument Type Result Type

EXTENDS_TYPE_OF Determines whether the
dynamic type of A is an
extension type of the dynamic
type of B.

2 Objects of extensible type LOGICAL
SCALAR

MOVE_ALLOC Moves an allocation from one
allocatable object to another.

2 Any - of same type and rank none

SAME_TYPE_AS Determines whether the
dynamic type of A is the same
as the dynamic type of B.

2 Objects of extensible type LOGICAL
SCALAR

PGI Fortran Reference Guide 144

Chapter 8.
OPENMP DIRECTIVES FOR FORTRAN

The PGF77 and PGFORTRAN compilers support the OpenMP Fortran Application Program
Interface. The OpenMP shared-memory parallel programming model is defined by a collection
of compiler directives, library routines, and environment variables that can be used to specify
shared-memory parallelism in Fortran programs.

The directives include a parallel region construct for writing coarse grain SPMD programs, work-
sharing constructs which specify that DO loop iterations should be split among the available
threads of execution, and synchronization constructs. The data environment is controlled using
clauses on the directives or with additional directives. Runtime library routines are provided
to query the parallel runtime environment, for example to determine how many threads are
participating in execution of a parallel region. Finally, environment variables are provided to
control the execution behavior of parallel programs. For more information on OpenMP, refer to
this website:

http://www.openmp.org

For an introduction to how to execute programs that use multiple processors along with some
pointers to example code, refer to ‘Parallel Programming Using PGI Compilers’ in the PGI
Compiler User’s Guide.

The C/C++ pragmas to which this section refers are not available in PVF.

8.1. OpenMP Overview
Let’s look at the OpenMP shared-memory parallel programming model and some common
OpenMP terminology.

8.1.1. OpenMP Shared-Memory Parallel Programming Model
The OpenMP shared-memory programming model is a collection of compiler directives, library
routines, and environment variables that can be used to specify shared-memory parallelism in
Fortran, C and C++ programs.

http://www.openmp.org
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

OpenMP Directives for Fortran

PGI Fortran Reference Guide 145

Fortran directives
Allow users to place hints in the source code to help the compiler generate more efficient
code. You typically use directives to control the actions of the compiler in a particular portion
of a program without affecting the program as a whole. You place them in your source code
where you want them to take effect; and they usually stay in effect from the point where
included until the end of the compilation unit or until another directive or C/C++ pragma
changes its status.

Fortran directives and C/C++ pragmas include a parallel region construct for writing coarse
grain SPMD programs, work-sharing constructs which specify that DO loop iterations should
be split among the available threads of execution, and synchronization constructs.

The data environment is controlled either by using clauses on the directives or with additional
directives.

Runtime library routines
Are available to query the parallel runtime environment, for example to determine how many
threads are participating in execution of a parallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more information on
OpenMP, refer to www.openmp.org.

8.1.2. Terminology
For OpenMP 3.0 there are a number of terms for which it is useful to have common definitions.

Thread
An execution entity with a stack and associated static memory, called threadprivate memory.

‣ An OpenMP thread is a thread that is managed by the OpenMP runtime system.
‣ A thread-safe routine is a routine that performs the intended function even when executed

concurrently, that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct or of an
OpenMP library routine. A region includes any code in called routines as well as any implicit
code introduced by the OpenMP implementation.

Regions are nested if one region is (dynamically) enclosed by another region, that is, a region
is encountered during the execution of another region. PGI currently does not support nested
parallel regions.

Parallel region
In OpenMP 3.0 there is a distinction between a parallel region and an active parallel region. A
parallel region can be either inactive or active.

‣ An inactive parallel region is executed by a single thread.

www.openmp.org

OpenMP Directives for Fortran

PGI Fortran Reference Guide 146

‣ An active parallel region is a parallel region that is executed by a team consisting of more
than one thread.

The definition of an active parallel region changed between OpenMP 2.5 and OpenMP 3.0. In
OpenMP 2.5, the definition was a parallel region whose IF clause evaluates to true. To examine
the significance of this change, look at the following example:
 program test
 logical omp_in_parallel

!$omp parallel
 print *, omp_in_parallel()
!$omp end parallel

 stop
 end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP 2.5, this
program yields T while in OpenMP 3.0, the program yields F. In OpenMP 3.0, execution is not
occurring by more than one thread. Therefore, change in this definition may mean previous
programs require modification.

Task
A specific instance of executable code and its data environment, generated when a thread
encounters a task construct or a parallel construct.

8.1.3. OpenMP Example
Look at the following simple OpenMP example involving loops.

OpenMP Loop Example
 PROGRAM MAIN
 INTEGER I, N, OMP_GET_THREAD_NUM
 REAL*8 V(1000), GSUM, LSUM

 GSUM = 0.0D0
 N = 1000

 DO I = 1, N
 V(I) = DBLE(I)
 ENDDO

!$OMP PARALLEL PRIVATE(I,LSUM) SHARED(V,GSUM,N)
 LSUM = 0.0D0
!$OMP DO
 DO I = 1, N
 LSUM = LSUM + V(I)
 ENDDO
!$OMP END DO
!$OMP CRITICAL
 print *, "Thread ",OMP_GET_THREAD_NUM()," local sum: ",LSUM
 GSUM = GSUM + LSUM
!$OMP END CRITICAL
!$OMP END PARALLEL

 PRINT *, "Global Sum: ",GSUM

 STOP
 END

OpenMP Directives for Fortran

PGI Fortran Reference Guide 147

If you execute this example with the environment variable OMP_NUM_THREADS set to 4, then
the output looks similar to this:
Thread 0 local sum: 31375.00000000000
Thread 1 local sum: 93875.00000000000
Thread 2 local sum: 156375.0000000000
Thread 3 local sum: 218875.0000000000
Global Sum: 500500.0000000000
FORTRAN STOP

8.2. Task Overview
Every part of an OpenMP program is part of a task. A task, whose execution can be performed
immediately or delayed.

In the following sections, we use this terminology:

Task
The package of code and instructions for allocating data created when a thread encounters a
task construct. A task can be implicit or explicit.

‣ An explicit task is a task generated when a task construct is encountered during execution.
‣ An implicit task is a task generated by the implicit parallel region or generated when a

parallel construct is encountered during execution.

Task construct
A task directive plus a structured block

Task region
The dynamic sequence of instructions produced by the execution of a task by a thread.

8.3. Tasks
Every part of an OpenMP program is part of a task. Task Overview provides a general overview
of tasks and general terminology associated with tasks. This section provides more detailed
information about tasks, including tasks scheduling points and the task construct.

8.3.1. Task Characteristics and Activities
A task, whose execution can be performed immediately or delayed, has these characteristics:

‣ Code to execute
‣ A data environment - that is, it owns its data
‣ An assigned thread that executes the code and uses the data.

There are two activities associated with tasks: packaging and execution.

‣ Packaging: Each encountering thread packages a new instance of a task - code and data.
‣ Execution: Some thread in the team executes the task at some later time.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 148

8.3.2. Task Scheduling Points
PGI currently supports four task scheduling points: at the beginning of a task, at the end of a task,
a taskwait, and at a barrier.

Beginning of a task.
At the beginning of a task, the task can be executed immediately or registered for later
execution. A programmer-specified "if" clause that is FALSE forces immediate execution of
the task. The implementation can also force immediate execution; for example, a task within a
task is never registered for later execution, it executes immediately.

End of a task
At the end of a task, the behavior of the scheduling point depends on how the task was
executed. If the task was immediately executed, execution continues to the next statement. If
it was previously registered and is being executed "out of sequence", control returns to where
the task was executed - a taskwait.

Taskwait
A taskwait executes all registered tasks at the time it is called. In addition to executing all
tasks registered by the calling thread, it also executes tasks previously registered by other
threads. Let’s take a quick look at this process.

Suppose thread 0 called taskwait and is executing tasks and that thread 1 is registering tasks.
Depending on the timing between thread 0 and thread 1, thread 0 may execute none of the
tasks, all of the tasks, or some of tasks.

Taskwait waits only for immediate children tasks, not for descendant tasks. You can achieve waiting on
descendants but ensuring that each child also waits on its children.

Barrier
A barrier can be explicit or implicit. An example of an implicit barrier is the end of a parallel
region.

The barrier effectively contains taskwaits. All threads must arrive at the barrier for the barrier
to complete. This rule guarantees that all tasks have been executed at the completion of the
barrier.

8.3.3. Task Construct
A task construct is a task directive plus a structured block, with the following syntax:
#pragma omp task [clause[[,]clause] ...]
 structured-block

where clause can be one of the following:
if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default(shared | none)

Consider the following simple example of a program using tasks. This example illustrates
the difference between registering tasks and executing tasks, a concept that is fundamental to
understanding tasks.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 149

This program contains a parallel region that contains a single region. The single region contains
a loop that registers 10 tasks. Before reading the explanation that follows the example, consider
what happens if you use four threads with this example.

OpenMP Task Fortran Example
 PROGRAM MAIN
 INTEGER I
 INTEGER omp_get_thread_num
!$OMP PARALLEL PRIVATE(I)
!$OMP SINGLE
 DO I = 1, 10
 CALL SLEEP(MOD(I,2))
 PRINT *,"TASK ",I," REGISTERED BY THREAD ",omp_get_thread_num()
!$OMP TASK FIRSTPRIVATE(I)
 CALL SLEEP(MOD(I,5))
 PRINT *,"TASK ",I," EXECUTED BY THREAD ",omp_get_thread_num()
!$OMP END TASK
 ENDDO
!$OMP END SINGLE
!$OMP END PARALLEL
 END

If you run this program with four threads, 0 through 3, one thread is in the single region
registering tasks. The other three threads are in the implied barrier at the end of the single region
executing tasks. Further, when the thread executing the single region completes registering the
tasks, it joins the other threads and executes tasks.

The program includes calls to sleep to slow the program and allow all threads to participate.

The output for the Fortran example is similar to the following. In this output, thread 1 was
registering tasks while the other three threads - 0,2, and 3 - were executing tasks When all 10
tasks were registered, thread 1 began executing tasks as well.
TASK 1 REGISTERED BY THREAD 1
TASK 2 REGISTERED BY THREAD 1
TASK 1 EXECUTED BY THREAD 0
TASK 3 REGISTERED BY THREAD 1
TASK 4 REGISTERED BY THREAD 1
TASK 2 EXECUTED BY THREAD 3
TASK 5 REGISTERED BY THREAD 1
TASK 6 REGISTERED BY THREAD 1
TASK 6 EXECUTED BY THREAD 3
TASK 5 EXECUTED BY THREAD 3
TASK 7 REGISTERED BY THREAD 1
TASK 8 REGISTERED BY THREAD 1
TASK 3 EXECUTED BY THREAD 0
TASK 9 REGISTERED BY THREAD 1
TASK 10 REGISTERED BY THREAD 1
TASK 10 EXECUTED BY THREAD 1
TASK 4 EXECUTED BY THREAD 2
TASK 7 EXECUTED BY THREAD 0
TASK 8 EXECUTED BY THREAD 3
TASK 9 EXECUTED BY THREAD 1

8.4. Parallelization Directives
Parallelization directives are comments in a program that are interpreted by the PGI Fortran
compilers when the option –mp is specified on the command line. The form of a parallelization
directive is:

OpenMP Directives for Fortran

PGI Fortran Reference Guide 150

sentinel directive_name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with
these rules:

‣ Be one of these: !OMP, COMP, or *$OMP.
‣ Must start in column 1 (one).
‣ Must appear as a single word without embedded white space.
‣ The sentinel marking a DOACROSS directive is C$.

In addition to the sentinel rules, the directive must also comply with these rules:

‣ Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply
to the directive line.

‣ Initial directive lines must have a space or zero in column six.
‣ Continuation directive lines must have a character other than a space or a zero in column six.

Continuation lines for C$DOACROSS directives are specified using the C$& sentinel.
‣ Directives which are presented in pairs must be used in pairs.

Valid clauses depend on the directive. Clauses associated with directives have these
characteristics:

‣ The order in which clauses appear in the parallelization directives is not significant.
‣ Commas separate clauses within the directives, but commas are not allowed between the

directive name and the first clause.
‣ Clauses on directives may be repeated as needed, subject to the restrictions listed in the

description of each clause.

8.5. Directive Recognition
The compiler option –mp enables recognition of the parallelization directives. The use of this
option also implies:

–Mreentrant
Local variables are placed on the stack and optimizations, such as -Mnoframe, that may
result in non-reentrant code are disabled.

–Miomutex
Critical sections are generated around Fortran I/O statements.

Many of the directives are presented in pairs and must be used in pairs. In the examples given
with each section, the routines omp_get_num_threads() and omp_get_thread_num() are used;
refer to Runtime Library Routines for more information. These routines return the number of
threads currently in the team executing the parallel region and the thread number within the team,
respectively.

8.6. Directive Clauses
Some directives accept clauses that further allow a user to control the scope attributes of variables
for the duration of the directive or pragma. Not all clauses are allowed on all directives, so the

OpenMP Directives for Fortran

PGI Fortran Reference Guide 151

clauses that are valid are included with the description of the directive. Typically, if no data scope
clause is specified for variables, the default scope is share

The following table provides a brief summary of the clauses associated with OpenMP directives
that PGI supports. Following the table is more detailed information about these clauses. For
complete information on OpenMP and use of these clauses, refer to the User’s Guide and to the
OpenMP documentation available on the WorldWide Web.

Table 32 Directive Clauses Summary Table

Clause Applies to Description

COLLAPSE (n) DO...END DO
PARALLEL DO ...
END PARALLEL DO
PARALLEL WORKSHARE

Specifies how many loops are associated with the loop
construct.

COPYIN (list) PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE

Allows threads to access the master thread's value, for
a threadprivate variable. You assign the same value
to threadprivate variables for each thread in the team
executing the parallel region. Then, for each variable
specified, the value of the variable in the master thread
of the team is copied to the threadprivate copies at the
beginning of the parallel region.

COPYPRIVATE(list) END SINGLE Specifies that one or more variables should be shared
among all threads. This clause provides a mechanism
to use a private variable to broadcast a value from one
member of a team to the other members.

DEFAULT PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE

Specifies the behavior of unscoped variables in a parallel
region, such as the data-sharing attributes of variables.

COPYPRIVATE(list) DO
PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS
SINGLE

Specifies that each thread should have its own instance
of a variable, and that each variable in the list should be
initialized with the value of the original variable, because
it exists before the parallel construct.

IF() PARALLEL ... END
PARALLEL
PARALLEL DO ...

Specifies whether a loop should be executed in parallel
or in serial.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 152

Clause Applies to Description
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE

LASTPRIVATE(list) DO
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
SECTIONS

Specifies that the enclosing context's version of the
variable is set equal to the private version of whichever
thread executes the final iteration of a for-loop construct.

NOWAIT DO ... END DO
SECTIONS
SINGLE
WORKSHARE ...
END WORKSHARE

Overrides the barrier implicit in a directive.

NUM_THREADS PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE

Sets the number of threads in a thread team.

ORDERED DO...END DO
PARALLEL DO ...
END PARALLEL DO

Required on a parallel FOR statement if an ordered
directive is used in the loop.

PRIVATE DO
PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS
SINGLE

Specifies that each thread should have its own instance
of a variable.

REDUCTION({operator |
intrinsic } : list)

DO
PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE
SECTIONS

Specifies that one or more variables that are private to
each thread are the subject of a reduction operation at
the end of the parallel region.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 153

Clause Applies to Description

SCHEDULE(type [,chunk]) DO ... END DO
PARALLEL DO...
END PARALLEL DO

Applies to the FOR directive, allowing the user to
specify the chunking method for parallelization. Work is
assigned to threads in different manners depending on
the scheduling type or chunk size used.

SHARED PARALLEL
PARALLEL DO ...
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL SECTIONS
PARALLEL WORKSHARE

Specifies that one or more variables should be shared
among all threads. All threads within a team access the
same storage area for shared variables

UNTIED TASK
TASKWAIT

Specifies that any thread in the team can resume the
task region after a suspension.

8.6.1. COLLAPSE (n)
The COLLAPSE(n) clause specifies how many loops are associated with the loop construct.

The parameter of the collapse clause must be a constant positive integer expression. If no
COLLAPSE clause is present, the only loop that is associated with the loop construct is the one
that immediately follows the construct.

If more than one loop is associated with the loop construct, then the iterations of all associated
loops are collapsed into one larger iteration space, which is then divided according to the
schedule clause. The sequential execution of the iterations in all associated loops determines the
order of the iterations in the collapsed iteration space.

If the loop directive contains a COLLAPSE clause then there may be more than one associated
loop.

8.6.2. COPYIN (list)
The COPYIN(list) clause allows threads to access the master thread's value, for a threadprivate
variable. You assign the same value to threadprivate variables for each thread in the team
executing the parallel region; that is, for each variable specified, the value of the variable in the
master thread of the team is copied to the threadprivate copies at the beginning of the parallel
region.

The COPYIN clause applies only to THREADPRIVATE common blocks. If you specify a
COPYIN clause, here are a few tips:

‣ You cannot specify the same entity name more than once in the list.

‣ You cannot specify the same entity name in separate COPYIN clauses of the same directive.

‣ You cannot specify both a common block name and any variable within that same named
common block in the list.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 154

‣ You cannot specify both a common block name and any variable within that same named
common block in separate COPYIN clauses of the same directive.

8.6.3. COPYPRIVATE(list)
The COPYPRIVATE(list) clause specifies that one or more variables should be shared among all
threads. This clause provides a mechanism to use a private variable to broadcast a value from one
member of a team to the other members.

You use a COPYPRIVATE(list) clause on an END SINGLE directive to cause the variables in
the list to be copied from the private copies in the single thread that executes the SINGLE region
to the other copies in all other threads of the team at the end of the SINGLE region.

The COPYPRIVATE clause must not appear on the same END SINGLE directive as a NOWAIT clause.

The compiler evaluates a COPYPRIVATE clause before any threads have passed the implied BARRIER
directive at the end of that construct.

8.6.4. DEFAULT
The DEFAULT clause specifies the behavior of unscoped variables in a parallel region, such
as the data-sharing attributes of variables. The DEFAULT clause lets you specify the default
attribute for variables in the lexical extent of the parallel region. Individual clauses specifying
PRIVATE, SHARED, and so on, override the declared DEFAULT.

Specifying DEFAULT(NONE) declares that there is no implicit default. With this declaration,
each variable in the parallel region must be explicitly listed with an attribute of PRIVATE,
SHARED, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION.

8.6.5. FIRSTPRIVATE(list)
The FIRSTPRIVATE(list) clause specifies that each thread should have its own instance of a
variable, and that each variable in the list should be initialized with the value of the original
variable, because it exists before the parallel construct.

Variables that appear in the list of a FIRSTPRIVATE clause are subject to the same semantics as
PRIVATE variables; however, these variables are initialized from the original object that exists
prior to entering the parallel region.

If a directive construct contains a FIRSTPRIVATE argument to a Message Passing Interface
(MPI) routine performing non-blocking communication, the MPI communication must complete
before the end of the construct.

8.6.6. IF()
The IF() clause specifies whether a loop should be executed in parallel or in serial.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 155

In the presence of an IF clause, the parallel region is executed in parallel only if the
corresponding scalar_logical_expression evaluates to .TRUE.. Otherwise, the code
within the region is executed by a single processor, regardless of the value of the environment
variable OMP_NUM_THREADS.

8.6.7. LASTPRIVATE(list)
The LASTPRIVATE(list) clause specifies that the enclosing context's version of the variable
is set equal to the private version of whichever thread executes the final iteration (for-loop
construct).

8.6.8. NOWAIT
The NOWAIT clause overrides the barrier implicit in a directive. When you specify NOWAIT, it
removes the implicit barrier synchronization at the end of a for or sections construct.

8.6.9. NUM_THREADS
The NUM_THREADS clause sets the number of threads in a thread team. The num_threads
clause allows a user to request a specific number of threads for a parallel construct. If the
num_threads clause is present, then

8.6.10. ORDERED
The ORDERED clause specifies that a loop is executed in the order of the loop iterations. This
clause is required on a parallel FOR statement when an ordered directive is used in the loop.

You use this clause in conjunction with a DO or SECTIONS construct to impose a serial order on
the execution of a section of code. If ORDERED constructs are contained in the dynamic extent
of the DO construct, the ordered clause must be present on the DO directive.

8.6.11. PRIVATE
The PRIVATE clause specifies that each thread should have its own instance of a variable.
Therefore, variables specified in a PRIVATE list are private to each thread in a team. In effect,
the compiler creates a separate copy of each of these variables for each thread in the team. When
an assignment to a private variable occurs, each thread assigns to its local copy of the variable.
When operations involving a private variable occur, each thread performs the operations using its
local copy of the variable.

Tips about private variables:

‣ Variables declared private in a parallel region are undefined upon entry to the parallel
region. If the first use of a private variable within the parallel region is in a right-hand-side
expression, the results of the expression will be undefined, indicating the probability of a
coding error.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 156

‣ Variables declared private in a parallel region are undefined when serial execution resumes
at the end of the parallel region.

8.6.12. REDUCTION
The REDUCTION clause specifies that one or more variables that are private to each thread are
the subject of a reduction operation at the end of the parallel region. updates named variables
declared on the clause within the directive construct.

Intermediate values of REDUCTION variables are not used within the parallel construct, other
than in the updates themselves.Variables that appear in the list of a REDUCTION clause must be
SHARED. A private copy of each variable in list is created for each thread as if the PRIVATE
clause had been specified. Each private copy is initialized according to the operator as specified
in the following table:

Table 33 Initialization of REDUCTION Variables

Operator /
Intrinsic Initialization

Operator /
Intrinsic Initialization

+ 0 .NEQV. .FALSE.

* 1 MAX Smallest representable number

- 0 MIN Largest representable number

.AND. .TRUE. IAND All bits on

.OR. .FALSE. IOR 0

.EQV. .TRUE. IEOR 0

At the end of the parallel region, a reduction is performed on the instances of variables appearing
in list using operator or intrinsic as specified in the REDUCTION clause. The initial value
of each REDUCTION variable is included in the reduction operation. If the {operator |
intrinsic}: portion of the REDUCTION clause is omitted, the default reduction operator is
"+" (addition).

8.6.13. SCHEDULE
The SCHEDULE clause specifies how iterations of the DO loop are divided up between
processors. Given a SCHEDULE (type [, chunk]) clause, the type can be STATIC, DYNAMIC,
GUIDED, or RUNTIME, defined in the following list.

‣ When SCHEDULE (STATIC, chunk) is specified, iterations are allocated in contiguous
blocks of size chunk. The blocks of iterations are statically assigned to threads in a round-
robin fashion in order of the thread ID numbers. The chunk must be a scalar integer
expression. If chunk is not specified, a default chunk size is chosen equal to:
(number_of_iterations + omp_num_threads() - 1) / omp_num_threads()

OpenMP Directives for Fortran

PGI Fortran Reference Guide 157

‣ When SCHEDULE (DYNAMIC, chunk) is specified, iterations are allocated in contiguous
blocks of size chunk. As each thread finishes a piece of the iteration space, it dynamically
obtains the next set of iterations. The chunk must be a scalar integer expression. If no chunk
is specified, a default chunk size is chosen equal to 1.

‣ When SCHEDULE (GUIDED, chunk) is specified, the chunk size is reduced in an
exponentially decreasing manner with each dispatched piece of the iteration space. Chunk
specifies the minimum number of iterations to dispatch each time, except when there are less
than chunk iterations remaining to be processed, at which point all remaining iterations are
assigned. If no chunk is specified, a default chunk size is chosen equal to 1.

‣ When SCHEDULE (RUNTIME) is specified, the decision regarding iteration scheduling is
deferred until runtime. The schedule type and chunk size can be chosen at runtime by setting
the OMP_SCHEDULE environment variable. If this environment variable is not set, the
resulting schedule is equivalent to SCHEDULE(STATIC).

8.6.14. SHARED
The SHARED clause specifies variables that must be available to all threads. If you specify
a variable as SHARED, you are stating that all threads can safely share a single copy of the
variable. When one or more variables are shared among all threads, all threads access the same
storage area for the shared variables.

8.6.15. UNTIED
The UNTIED clause specifies that any thread in the team can resume the task region after a
suspension.

The thread number may change at any time during the execution of an untied task. Therefore, the value
returned by omp_get_thread_num is generally not useful during execution of such a task region.

8.7. Directive Summary Table
Table 34 provides a brief summary of the directives and pragmas that PGI supports.

Table 34 Directive Summary Table

Directive Description

ATOMIC [TYPE} ... END ATOMIC Semantically equivalent to enclosing a single statement in the CRITCIAL...END
CRITICAL directive.

TYPE may be empty or one of the following: UPDATE, READ, WRITE, or CAPTURE.
The END ATOMIC directive is only allowed when ending ATOMIC CAPTURE regions.

Only certain statements are allowed.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 158

Directive Description

BARRIER Synchronizes all threads at a specific point in a program so that all threads complete
work to that point before any thread continues.

CRITICAL ... END CRITICAL Defines a subsection of code within a parallel region, a critical section, which is
executed one thread at a time.

DO...END DO Provides a mechanism for distribution of loop iterations across the available threads
in a parallel region.

C$DOACROSS Specifies that the compiler should parallelize the loop to which it applies, even though
that loop is not contained within a parallel region.

FLUSH When this appears, all processor-visible data items, or, when a list is present (FLUSH
[list]), only those specified in the list, are written to memory, thus ensuring that all the
threads in a team have a consistent view of certain objects in memory.

MASTER ... END MASTER Designates code that executes on the master thread and that is skipped by the other
threads.

ORDERED Defines a code block that is executed by only one thread at a time, and in the order
of the loop iterations; this makes the ordered code block sequential, while allowing
parallel execution of statements outside the code block.

PARALLEL DO Enables you to specify which loops the compiler should parallelize.

PARALLEL ... END PARALLEL Supports a fork/join execution model in which a single thread executes all statements
until a parallel region is encountered.

PARALLEL SECTIONS Defines a non-iterative work-sharing construct without the need to define an
enclosing parallel region.

PARALLEL WORKSHARE ... END
PARALLEL WORKSHARE

Provides a short form method for including a WORKSHARE directive inside a
PARALLEL construct.

SECTIONS ... END SECTIONS Defines a non-iterative work-sharing construct within a parallel region.

SINGLE ... END SINGLE Designates code that executes on a single thread and that is skipped by the other
threads.

TASK Defines an explicit task.

TASKYIELD Specifies a scheduling point for a task where the currently executing task may be
yielded, and a different deferred task may be executed.

TASKWAIT Specifies a wait on the completion of child tasks generated since the beginning of the
current task.

THREADPRIVATE When a common block or variable that is initialized appears in this directive, each
thread’s copy is initialized once prior to its first use.

WORKSHARE ... END WORKSHARE Provides a mechanism to effect parallel execution of non-iterative but implicitly data
parallel constructs.

8.7.1. ATOMIC
The OpenMP ATOMIC directive is semantically equivalent to a single statement in a
CRITICAL...END CRITICAL directive.

Syntax
!$OMP ATOMIC

OpenMP Directives for Fortran

PGI Fortran Reference Guide 159

Usage
The ATOMIC directive is semantically equivalent to enclosing the following single statement in
a CRITICAL / END CRITICAL directive pair.

The statements must be one of the following forms:

 x = x operator expr

 x = expr operator x

 x = intrinsic (x, expr)

 x = intrinsic (expr, x)

where x is a scalar variable of intrinsic type, expr is a scalar expression that does not reference
x, intrinsic is one of MAX, MIN, IAND, IOR, or IEOR, and operator is one of +, *,
-, /, .AND., .OR., .EQV., or .NEQV..

8.7.2. BARRIER
The OpenMP BARRIER directive defines a point in a program where each thread waits for all
other threads to arrive before continuing with program execution.

Syntax
!$OMP BARRIER

Usage
There may be occasions in a parallel region when it is necessary that all threads complete work
to that point before any thread is allowed to continue. The BARRIER directive synchronizes all
threads at such a point in a program. Multiple barrier points are allowed within a parallel region.
The BARRIER directive must either be executed by all threads executing the parallel region or by
none of them.

8.7.3. CRITICAL ... END CRITICAL
The CRITICAL...END CRITICAL directive requires a thread to wait until no other thread is
executing within a critical section.

Syntax
!$OMP CRITICAL [(name)]
 < Fortran code executed in body of critical section >
!$OMP END CRITICAL [(name)]

Usage
Within a parallel region, there may exist subregions of code that will not execute properly when
executed by multiple threads simultaneously. This issue is often due to a shared variable that is
written and then read again.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 160

The CRITICAL... END CRITICAL directive pair defines a subsection of code within a parallel
region, referred to as a critical section, which is executed one thread at a time.

The first thread to arrive at a critical section is the first to execute the code within the section. The
second thread to arrive does not begin execution of statements in the critical section until the first
thread exits the critical section. Likewise, each of the remaining threads wait its turn to execute
the statements in the critical section.

You can use the optional name argument to identify the critical region. Names that identify
critical regions have external linkage and are in a name space separate from the name spaces used
by labels, tags, members, and ordinary identifiers. If a name argument appears on a CRITICAL
directive, the same name must appear on the END CRITICAL directive.

Critical sections cannot be nested, and any such specifications are ignored. Branching into or out of a
critical section is illegal.

Example of Critical...End Critical directive
 PROGRAM CRITICAL_USE
 REAL A(100,100),MX, LMX
 INTEGER I, J MX = -1.0
 LMX = -1.0
 CALL RANDOM_SEED()
 CALL RANDOM_NUMBER(A)
!$OMP PARALLEL PRIVATE(I), FIRSTPRIVATE(LMX)
!$OMP DO
 DO J=1,100
 DO I=1,100
 LMX = MAX(A(I,J),LMX)
 ENDDO ENDDO
!$OMP CRITICAL
 MX = MAX(MX,LMX)
!$OMP END CRITICAL
!$OMP END PARALLEL
 PRINT *,"MAX VALUE OF A IS ", MX
 END

This program could also be implemented without the critical region by declaring MX as a
reduction variable and performing the MAX calculation in the loop using MX directly rather than
using LMX. Refer to PARALLEL...END PARALLEL and DO...END DO for more information on
how to use the REDUCTION clause on a parallel DO loop.

8.7.4. C\$DOACROSS
The C$DOACROSS directive, while not part of the OpenMP standard, is supported for
compatibility with programs parallelized using legacy SGI-style directives.

Syntax
C$DOACROSS [Clauses]
 < Fortran DO loop to be executed in parallel >

OpenMP Directives for Fortran

PGI Fortran Reference Guide 161

Clauses

{PRIVATE | LOCAL} (list)

{SHARED | SHARE} (list)

MP_SCHEDTYPE={SIMPLE | INTERLEAVE}

CHUNK=<integer_expression>

IF (logical_expression)

Usage
The C$DOACROSS directive has the effect of a combined parallel region and parallel DO
loop applied to the loop immediately following the directive. It is very similar to the OpenMP
PARALLEL DO directive, but provides for backward compatibility with codes parallelized for
SGI systems prior to the OpenMP standardization effort.

The C$DOACROSS directive must not appear within a parallel region. It is a shorthand notation
that tells the compiler to parallelize the loop to which it applies, even though that loop is not
contained within a parallel region.

Important While The C$DOACROSS syntax may be more convenient, if multiple successive DO loops are
to be parallelized, it is more efficient to define a single enclosing parallel region and parallelize each loop
using the OpenMP DO directive.

A variable declared PRIVATE or LOCAL to a C$DOACROSS loop is treated the same as a
private variable in a parallel region or DO. A variable declared SHARED or SHARE to a C
$DOACROSS loop is shared among the threads, meaning that only 1 copy of the variable exists
to be used and/or modified by all of the threads. This is equivalent to the default status of a
variable that is not listed as PRIVATE in a parallel region or DO. This same default status is used
in C$DOACROSS loops as well.

For more information on clauses, refer to Directive Clauses.

8.7.5. DO...END DO
The OpenMP DO...END DO directive supports parallel execution and the distribution of loop
iterations across available threads in a parallel region.

Syntax:
 !$OMP DO [Clauses] < Fortran DO loop to be executed in parallel> !$OMP END
 DO [NOWAIT]

OpenMP Directives for Fortran

PGI Fortran Reference Guide 162

Clauses:

PRIVATE(list)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

SCHEDULE (type [, chunk])

COLLAPSE (n)

ORDERED

Usage:
The real purpose of supporting parallel execution is the distribution of work across the available
threads. The DO... END DO directive pair provides a convenient mechanism for the distribution
of loop iterations across the available threads in a parallel region.

While you can explicitly manage work distribution with constructs such as the following one,
these constructs are not in the form of directives.

Examples:
 IF (omp_get_thread_num() .EQ. 0)
 THEN
 ...
 ELSE IF (omp_get_thread_num() .EQ. 1)
 THEN
 ...
 ENDIF

Tips
Remember these items about clauses in the DO...END DO directives:

‣ Variables declared in a PRIVATE list are treated as private to each thread participating in
parallel execution of the loop, meaning that a separate copy of the variable exists with each
thread.

‣ Variables declared in a FIRSTPRIVATE list are PRIVATE, and are initialized from the
original object existing before the construct.

‣ Variables declared in a LASTPRIVATE list are PRIVATE, and the thread that executes the
sequentially last iteration updates the version of the object that existed before the construct.

‣ The REDUCTION clause for the directive is described in REDUCTION.

‣ The SCHEDULE clause specifies how iterations of the DO loop are divided up between
threads. For more information on this clause, refer to SCHEDULE.

‣ If ORDERED code blocks are contained in the dynamic extent of the DO directive, the
ORDERED clause must be present. For more information on ORDERED code blocks, refer
to ORDERED.

‣ The DO... END DO directive pair directs the compiler to distribute the iterative DO loop
immediately following the !$OMP DO directive across the threads available to the program.
The DO loop is executed in parallel by the team that was started by an enclosing parallel
region. If the !$OMP END DO directive is not specified, the !$OMP DO is assumed to end

OpenMP Directives for Fortran

PGI Fortran Reference Guide 163

with the enclosed DO loop. DO... END DO directive pairs may not be nested. Branching into
or out of a !$OMP DO loop is not supported.

‣ By default, there is an implicit barrier after the end of the parallel loop; the first thread to
complete its portion of the work waits until the other threads have finished their portion of
work. If NOWAIT is specified, the threads will not synchronize at the end of the parallel
loop.

In addition to the preceding items, remember these items about !$OMP DO loops :

‣ The DO loop index variable is always private.

‣ !$OMP DO loops must be executed by all threads participating in the parallel region or none
at all.

‣ The END DO directive is optional, but if it is present it must appear immediately after the
end of the enclosed DO loop.

‣ Values of the loop control expressions and the chunk expressions must be the same for all
threads executing the loop.

Example:
PROGRAM DO_USE
 REAL A(1000), B(1000)
 DO I=1,1000
 B(I) = FLOAT(I)
 ENDDO
!$OMP PARALLEL
!$OMP DO
 DO I=1,1000
 A(I) = SQRT(B(I));
 ENDDO
 ...
!$OMP END PARALLEL
 ...
END

8.7.6. FLUSH
The OpenMP FLUSH directive ensures that processor-visible data item are written back to
memory at the point at which the directive appears.

Syntax
!$OMP FLUSH [(list)]

Usage
The OpenMP FLUSH directive ensures that all processor-visible data items, or only those
specified in list, when it is present, are written back to memory at the point at which the directive
appears.

8.7.7. MASTER ... END MASTER
The MASTER...END MASTER directive allows the user to designate code that must execute on
a master thread and that is skipped by other threads in the team of threads.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 164

Syntax
!$OMP MASTER
 < Fortran code executed in body of MASTER section >
!$OMP END MASTER

Usage
A master thread is a single thread of control that begins an OpenMP program and which is
present for the duration of the program. In a parallel region of code, there may be a sub-region of
code that should execute only on the master thread. Instead of ending the parallel region before
this subregion and then starting it up again after this subregion, the MASTER... END MASTER
directive pair allows the user to conveniently designate code that executes on the master thread
and is skipped by the other threads.

‣ There is no implied barrier on entry to or exit from a master section of code.

‣ Nested master sections are ignored.

‣ Branching into or out of a master section is not supported.

Examples
Example of Fortran MASTER...END MASTER directive
PROGRAM MASTER_USE
 INTEGER A(0:1)
 INTEGER omp_get_thread_num
 A=-1
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()
!$OMP MASTER
 PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"
!$OMP END MASTER
!$OMP END PARALLEL
 PRINT *, "A(0)=", A(0), " A(1)=", A(1)
END

8.7.8. ORDERED
The OpenMP ORDERED directive allows the user to identify a portion of code within an
ordered code block that must be executed in the original, sequential order, while allowing parallel
execution of statements outside the code block.

Syntax
!$OMP ORDERED
 < Fortran code block executed by processor >
!$OMP END ORDERED

Usage
The ORDERED directive can appear only in the dynamic extent of a DO or PARALLEL
DO directive that includes the ORDERED clause. The structured code block between the
ORDERED / END ORDERED directives is executed by only one thread at a time, and in the

OpenMP Directives for Fortran

PGI Fortran Reference Guide 165

order of the loop iterations. This sequentializes the ordered code block while allowing parallel
execution of statements outside the code block. The following additional restrictions apply to the
ORDERED directive:

‣ The ordered code block must be a structured block.

‣ It is illegal to branch into or out of the block.

‣ A given iteration of a loop with a DO directive cannot execute the same ORDERED
directive more than once, and cannot execute more than one ORDERED directive.

8.7.9. PARALLEL ... END PARALLEL
The OpenMP PARALLEL...END PARALLEL directive supports a fork/join execution model in
which a single thread executes all statements until a parallel region is encountered.

Syntax
!$OMP PARALLEL [Clauses]
 < Fortran code executed in body of parallel region >
!$OMP END PARALLEL

Clauses

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

REDUCTION([{operator | intrinsic}:] list)

COPYIN(list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

Usage
This directive pair declares a region of parallel execution. It directs the compiler to create an
executable in which the statements within the structured block, such as between PARALLEL and
PARALLEL END for directives, are executed by multiple lightweight threads. The code that lies
within this structured block is called a parallel region.

The OpenMP parallelization directives support a fork/join execution model in which a single
thread executes all statements until a parallel region is encountered. At the entrance to the parallel
region, a system-dependent number of symmetric parallel threads begin executing all statements
in the parallel region redundantly. These threads share work by means of work-sharing constructs
such as parallel DO loops or FOR loops.

‣ The number of threads in the team is controlled by the OMP_NUM_THREADS environment
variable. If OMP_NUM_THREADS is not defined, the program executes parallel regions using
only one processor.

‣ Branching into or out of a parallel region is not supported.

‣ All other shared-memory parallelization directives must occur within the scope of a parallel
region. Nested PARALLEL... END PARALLEL directive pairs are not supported and are
ignored.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 166

‣ There is an implicit barrier at the end of the parallel region, which, in the directive, is
denoted by the END PARALLEL directive. When all threads have completed execution of
the parallel region, a single thread resumes execution of the statements that follow.

By default, there is no work distribution in a parallel region. Each active thread executes the entire region
redundantly until it encounters a directive that specifies work distribution. For work distribution, refer to the
DO...END DO, PARALLEL DO, or C$DOACROSS directives.

Example
Example of Fortran PARALLEL...END PARALLEL directive
PROGRAM WHICH_PROCESSOR_AM_I
 INTEGER A(0:1)
 INTEGER omp_get_thread_num
 A(0) = -1
 A(1) = -1
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()
!$OMP END PARALLEL
 PRINT *, "A(0)=",A(0)," A(1)=",A(1)
END

Clause Usage
COPYIN: The COPYIN clause applies only to THREADPRIVATE common blocks. In the
presence of the COPYIN clause, data from the master thread’s copy of the common block is
copied to the THREADPRIVATE copies upon entry to the parallel region.

IF: In the presence of an IF clause, the parallel region is executed in parallel only if the
corresponding scalar_logical_expression evaluates to .TRUE.. Otherwise, the code
within the region is executed by a single processor, regardless of the value of the environment
variable OMP_NUM_THREADS.

NUM_THREADS: If the NUM_THREADS clause is present, the corresponding expression,
scalar_integer_expression, must evaluate to a positive integer value. This value sets the
maximum number of threads used during execution of the parallel region. A NUM_THREADS
clause overrides either a previous call to the library routine omp_set_num_threads() or the setting
of the OMP_NUM_THREADS environment variable.

8.7.10. PARALLEL DO
The OpenMP PARALLEL DO directive is a shortcut for a PARALLEL region that contains a
single DO directive.

The OpenMP PARALLEL DO or DO directive must be immediately followed by a DO statement (as defined
by R818 of the ANSI Fortran standard). If you place another statement or an OpenMP directive between
the PARALLEL DO or DO directive and the DO statement, the compiler issues a syntax error.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 167

Syntax
!$OMP PARALLEL DO [CLAUSES]
 < Fortran DO loop to be executed in parallel >
[!$OMP END PARALLEL DO]

Clauses

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION([{operator | intrinsic}:] list)

COPYIN(list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

SCHEDULE (type [, chunk])

COLLAPSE (n)

ORDERED

Usage
The semantics of the PARALLEL DO directive are identical to those of a parallel region
containing only a single parallel DO loop and directive. The available clauses are the same as
those defined in PARALLEL...END PARALLEL and DO...END DO.

The END PARALLEL DO directive is optional.

8.7.11. PARALLEL SECTIONS
The OpenMP PARALLEL SECTIONS / END SECTIONS directive pair define tasks to be
executed in parallel; that is, they define a non-iterative work-sharing construct without the need to
define an enclosing parallel region.

Syntax
!$OMP PARALLEL SECTIONS [CLAUSES]
[!$OMP SECTION]
 < Fortran code block executed by processor i >
[!$OMP SECTION]
 < Fortran code block executed by processor j >
 ...
!$OMP END SECTIONS [NOWAIT]

Clauses

PRIVATE(list)

SHARED(list)

REDUCTION({operator | intrinsic} : list)

OpenMP Directives for Fortran

PGI Fortran Reference Guide 168

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

COPYIN (list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

Usage
The PARALLEL SECTIONS / END SECTIONS directive pair define a non-iterative work-
sharing construct without the need to define an enclosing parallel region. Each section is executed
by a single processor. If there are more processors than sections, some processors will have no
work and will jump to the implied barrier at the end of the construct. If there are more sections
than processors, one or more processors will execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing PARALLEL
SECTIONS / END SECTIONS directives. In addition, the code within the PARALLEL
SECTIONS / END SECTIONS directives must be a structured block, and the code in each
SECTION must be a structured block.

Semantics are identical to a parallel region containing only an omp sections pragma and
the associated structured block. The available clauses are as defined in PARALLEL...END
PARALLEL and DO...END DO.

8.7.12. PARALLEL WORKSHARE
The OpenMP PARALLEL WORKSHARE directive provides a short form method of including a
WORKSHARE directive inside a PARALLEL construct.

Syntax
!$OMP PARALLEL WORKSHARE [CLAUSES]
< Fortran structured block to be executed in parallel >
[!$OMP END PARALLEL WORKSHARE]

!$OMP PARALLEL DO [CLAUSES]
< Fortran DO loop to be executed in parallel >
[!$OMP END PARALLEL DO]

Clauses

PRIVATE(list)

SHARED(list)

DEFAULT(PRIVATE | SHARED | NONE)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION([{operator | intrinsic}:] list)

COPYIN(list)

IF(scalar_logical_expression)

NUM_THREADS(scalar_integer_expression)

SCHEDULE (type [, chunk])

COLLAPSE (n)

ORDERED

OpenMP Directives for Fortran

PGI Fortran Reference Guide 169

Usage
The OpenMP PARALLEL WORKSHARE directive provides a short form method of including
a WORKSHARE directive inside a PARALLEL construct. The semantics of the PARALLEL
WORKSHARE directive are identical to those of a parallel region containing a single
WORKSHARE construct.

The END PARALLEL WORKSHARE directive is optional, and NOWAIT may not be specified
on an END PARALLEL WORKSHARE directive. The available clauses are as defined in
PARALLEL...END PARALLEL.

8.7.13. SECTIONS ... END SECTIONS
The OpenMP SECTIONS / END SECTIONS directive pair define a non-iterative work-sharing
construct within a parallel region in which each section is executed by a single processor.

Syntax
!$OMP SECTIONS [Clauses]
[!$OMP SECTION]
 < Fortran code block executed by processor i >
[!$OMP SECTION]
 < Fortran code block executed by processor j >
 ...
!$OMP END SECTIONS [NOWAIT]

Clauses

PRIVATE(list)

FIRSTPRIVATE(list)

LASTPRIVATE(list)

REDUCTION({operator | intrinsic} : list)

Usage
The SECTIONS / END SECTIONS directive pair defines a non-iterative work-sharing construct
within a parallel region. Each section is executed by a single processor. If there are more
processors than sections, some processors have no work and thus jump to the implied barrier at
the end of the construct. If there are more sections than processors, one or more processors must
execute more than one section.

A SECTION directive may only appear within the lexical extent of the enclosing SECTIONS /
END SECTIONS directives. In addition, the code within the SECTIONS / END SECTIONS
directives must be a structured block.

The available clauses are as defined in PARALLEL...END PARALLEL and DO...END DO.

8.7.14. SINGLE ... END SINGLE
The SINGLE...END SINGLE directive designates code that executes on a single thread and that
is skipped by the other threads.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 170

Syntax
!$OMP SINGLE [Clauses]
 < Fortran code executed in body of SINGLE processor section >
!$OMP END SINGLE [NOWAIT]

Clauses
PRIVATE(list)

FIRSTPRIVATE(list)

COPYPRIVATE(list)

Usage
In a parallel region of code, there may be a sub-region of code that only executes correctly on a
single thread. Instead of ending the parallel region before this subregion and then starting it up
again after this subregion, the SINGLE...END SINGLE directive pair or the omp single pragma
lets you conveniently designate code that executes on a single thread and is skipped by the other
threads.

The following restrictions apply to the SINGLE...END SINGLE directive:

‣ There is an implied barrier on exit from a SINGLE...END SINGLE section of code unless
the optional NOWAIT clause is specified.

‣ Nested single process sections are ignored.

‣ Branching into or out of a single process section is not supported.

Examples
PROGRAM SINGLE_USE
 INTEGER A(0:1)
 INTEGER omp_get_thread_num()
!$OMP PARALLEL
 A(omp_get_thread_num()) = omp_get_thread_num()
!$OMP SINGLE
 PRINT *, "YOU SHOULD ONLY SEE THIS ONCE"
!$OMP END SINGLE
!$OMP END PARALLEL
 PRINT *, "A(0)=",A(0), " A(1)=", A(1)
END

8.7.15. TASK
The OpenMP TASK directive defines an explicit task.

Syntax
!$OMP TASK [Clauses]
 < Fortran code executed as task >
!$OMP END TASK

OpenMP Directives for Fortran

PGI Fortran Reference Guide 171

Clauses

IF(scalar_logical_expression)

UNTIED

DEFAULT(private | firstprivate | shared | none)

PRIVATE(list)

FIRSTPRIVATE(list)

SHARED(list)

Usage
The TASK / END TASK directive pair defines an explicit task.

When a thread encounters a task construct, a task is generated from the code for the associated
structured block. The data environment of the task is created according to the data-sharing
attribute clauses on the task construct and any defaults that apply. The encountering thread may
immediately execute the task, or delay its execution. If the task execution is delayed, then any
thread in the team may be assigned the task. Completion of the task can be guaranteed using task
synchronization constructs.

A task construct may be nested inside an outer task, but the task region of the inner task is not a
part of the task region of the outer task.

When an if clause is present on a task construct and the if clause expression evaluates to false, the
encountering thread must suspend the current task region and begin execution of the generated
task immediately, and the suspended task region may not be resumed until the generated task is
completed. The task still behaves as a distinct task region with respect to data environment, lock
ownership, and synchronization constructs.

Use of a variable in an if clause expression of a task construct causes an implicit reference to the variable
in all enclosing constructs.

A thread that encounters a task scheduling point within the task region may temporarily suspend
the task region. By default, a task is tied and its suspended task region can only be resumed by the
thread that started its execution. If the untied clause is present on a task construct, any thread in
the team can resume the task region after a suspension.

The task construct includes a task scheduling point in the task region of its generating task,
immediately following the generation of the explicit task. Each explicit task region includes a
task scheduling point at its point of completion. An implementation may add task scheduling
points anywhere in untied task regions.

When storage is shared by an explicit task region, it is the programmer's responsibility to ensure, by
adding proper synchronization, that the storage does not reach the end of its lifetime before the explicit task
region completes its execution.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 172

Restrictions
The following restrictions apply to the TASK directive:

‣ A program that branches into or out of a task region is non-conforming.

‣ A program must not depend on any ordering of the evaluations of the clauses of the task
directive, or on any side effects of the evaluations of the clauses.

‣ At most one if clause can appear on the directive.

‣ Unsynchronized use of Fortran I/O statements by multiple tasks on the same unit has
unspecified behavior.

8.7.16. TASKWAIT
The OpenMP TASKWAIT directive specifies a wait on the completion of child tasks generated
since the beginning of the current task.

Syntax
!$OMP TASKWAIT

Clauses

IF(scalar_logical_expression)

UNTIED

DEFAULT(private | firstprivate | shared | none)

PRIVATE(list)

FIRSTPRIVATE(list)

SHARED(list)

Usage
The OpenMP TASKWAIT directive specifies a wait on the completion of child tasks generated
since the beginning of the current task.

Restrictions
The following restrictions apply to the TASKWAIT directive:

‣ The TASKWAIT directive and the omp taskwait pragma may be placed only at a point
where a base language statement is allowed.

‣ The taskwait directive may not be used in place of the statement following an if, while,do,
switch, or label.

8.7.17. THREADPRIVATE
The OpenMP THREADPRIVATE directive identifies a Fortran common block as being private
to each thread.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 173

Syntax
!$OMP THREADPRIVATE (list)

Usage
The list for this directive is a comma-separated list of named variables to be made private to
each thread or named common blocks to be made private to each thread but global within the
thread.

On entry to a parallel region, data in a THREADPRIVATE common block or variable is
undefined unless COPYIN is specified on the PARALLEL directive. When a common block or
variable that is initialized using DATA statements appears in a THREADPRIVATE directive,
each thread’s copy is initialized once prior to its first use.

Restrictions
The following restrictions apply to the THREADPRIVATE directive:

‣ The THREADPRIVATE directive must appear after every declaration of a thread private
common block.

‣ Only named common blocks can be made thread private.

‣ Common block names must appear between slashes, such as /common_block_name/.

‣ This directive must appear in the declarations section of a program unit after the declaration
of any common blocks or variables listed.

‣ It is illegal for a THREADPRIVATE common block or its constituent variables to appear in
any clause other than a COPYIN clause.

‣ A variable can appear in a THREADRIVATE directive only in the scope in which
it is declared. It must not be an element of a common block or be declared in an
EQUIVALENCE statement.

‣ A variable that appears in a THREADPRIVATE directive and is not declared in the scope of
a module must have the SAVE attribute.

8.7.18. WORKSHARE ... END WORKSHARE
The OpenMP WORKSHARE ... END WORKSHARE directive pair provides a mechanism to
effect parallel execution of non-iterative but implicitly data parallel constructs.

Syntax
!$OMP WORKSHARE
 < Fortran structured block to be executed in parallel >
!$OMP END WORKSHARE [NOWAIT]

Usage
The Fortran structured block enclosed by the WORKSHARE ... END WORKSHARE directive
pair can consist only of the following types of statements and constructs:

OpenMP Directives for Fortran

PGI Fortran Reference Guide 174

‣ Array assignments

‣ Scalar assignments

‣ FORALL statements or constructs

‣ WHERE statements or constructs

‣ OpenMP ATOMIC, CRITICAL or PARALLEL constructs

The work implied by these statements and constructs is split up between the threads executing the
WORKSHARE construct in a way that is guaranteed to maintain standard Fortran semantics. The
goal of the WORKSHARE construct is to effect parallel execution of non-iterative but implicitly
data parallel array assignments, FORALL, and WHERE statements and constructs intrinsic to
the Fortran language beginning with Fortran 90. The Fortran structured block contained within a
WORKSHARE construct must not contain any user-defined function calls unless the function is
ELEMENTAL.

8.8. Runtime Library Routines
User-callable functions are available to the programmer to query and alter the parallel execution
environment.

Unlimited OpenMP thread counts are available in all PGI configurations. The number of threads is
unlicensed in the OpenMP runtime libraries – up to the hard limit of 256 threads. The OpenPOWER
compiler relies on the llvm OpenMP runtime, which has a maximum of 231 threads.

The following table summarizes the runtime library calls.

Table 35 Runtime Library Routines Summary

Runtime Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When called from a serial region,
this function returns 1. A nested parallel region is the same as a single parallel region. By default, the value returned by this
function is equal to the value of the environment variable OMP_NUM_THREADS or to the value set by the last previous call to
omp_set_num_threads().

Fortran integer function omp_get_num_threads()

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

This subroutine can only be called from a serial region of code. If it is called from within a parallel region, or from within a
subroutine that is called from within a parallel region, the results are undefined. Further, this subroutine has precedence over the
OMP_NUM_THREADS environment variable.

Fortran subroutine omp_set_num_threads(scalar_integer_exp)

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and omp_get_num_threads()-1. When
called from a serial region, this function returns 0. A nested parallel region is the same as a single parallel region.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 175

Runtime Library Routines with Examples

Fortran integer function omp_get_thread_num()

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran integer function omp_get_ancestor_thread_num(level)
 integer level

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call.

Fortran integer function omp_get_active_level()

omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

Fortran integer function omp_get_level()

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp_get_num_threads().

If omp_set_num_threads() is used to change the number of processors, subsequent calls to
omp_get_max_threads() return the new value. Further, this function returns the maximum value whether executing from a
parallel or serial region of code.

Fortran integer function omp_get_max_threads()

omp_get_num_procs

Returns the number of processors that are available to the program

Fortran integer function omp_get_num_procs()

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a stack for a newly created
thread.

This value may not be the size of the stack of the current thread.

Fortran !omp_get_stack_size interface
 function omp_get_stack_size ()
 use omp_lib_kinds
 integer (kind=OMP_STACK_SIZE_KIND)
 :: omp_get_stack_size
 end function omp_get_stack_size
 end interface

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a stack for a newly created
thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread cannot be changed. In the
PGI implementation, all OpenMP or auto-parallelization threads are created just prior to the first parallel region; therefore, only
calls to omp_set_stack_size() that occur prior to the first region have an effect.

Fortran subroutine omp_set_stack_size(integer(KIND=OMP_STACK_SIZE_KIND))

omp_get_team_size

OpenMP Directives for Fortran

PGI Fortran Reference Guide 176

Runtime Library Routines with Examples

Returns, for a given nested level of the current thread, the size of the thread team to which the ancestor belongs.

Fortran integer function omp_get_team_size (level)
integer level

omp_in_final

Returns whether or not the call is within a final task.

Returns .TRUE. if called from within a parallel region and .FALSE. if called outside of a parallel region. When called from
within a parallel region that is serialized, for example in the presence of an IF clause evaluating .FALSE., the function returns
.FALSE..

Fortran integer function omp_in_final()

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns .TRUE. if called from within a parallel region and .FALSE. if called outside of a parallel region. When called from
within a parallel region that is serialized, for example in the presence of an IF clause evaluating .FALSE., the function returns
.FALSE..

Fortran logical function omp_in_parallel()

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

Fortran subroutine omp_set_dynamic(scalar_logical_exp)

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for execution of parallel regions is
enabled.

This function is recognized, but currently always returns .FALSE. for directives and zero for pragmas.

This function is recognized, but currently always returns .FALSE..

Fortran logical function omp_get_dynamic()

omp_set_nested

Allows enabling/disabling of nested parallel regions.

Fortran subroutine omp_set_nested(nested)
logical nested

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution of parallel regions is
enabled.

Fortran logical function omp_get_nested()

omp_set_schedule

Set the value of the run_sched_var.

Fortran subroutine omp_set_schedule(kind, modifier)
 include 'omp_lib_kinds.h'
 integer (kind=omp_sched_kind) kind

OpenMP Directives for Fortran

PGI Fortran Reference Guide 177

Runtime Library Routines with Examples
 integer modifier

omp_get_schedule

Retrieve the value of the run_sched_var.

Fortran subroutine omp_get_schedule(kind, modifier)
 include 'omp_lib_kinds.h'
 integer (kind=omp_sched_kind) kind
 integer modifier

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran double precision function omp_get_wtime()

omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value.

Fortran double precision function omp_get_wtick()

omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp_init_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine omp_destroy_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

omp_set_lock

Causes the calling thread to wait until the specified lock is available.

The thread gains ownership of the lock when it is available. If the variable is not already associated with a lock, it is illegal to make
a call to this routine.

Fortran subroutine omp_set_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with integer_var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp_unset_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

omp_test_lock

OpenMP Directives for Fortran

PGI Fortran Reference Guide 178

Runtime Library Routines with Examples

Causes the calling thread to try to gain ownership of the lock associated with the variable.

The function returns .TRUE. if the thread gains ownership of the lock; otherwise, it returns .FALSE..

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran logical function omp_test_lock(lock)
 include 'omp_lib_kinds.h'
 integer(kind=omp_lock_kind) lock

8.9. OpenMP Environment Variables
OpenMP environment variables allow you to control the behavior of OpenMP programs. These
environment variables allow you to set and pass information that can alter the behavior of
directives.

The following table provides a brief summary of these variables. After the table this section
contains more information about each of them. For complete information and more details related
to these environment variables, refer to the OpenMP documentation available on the WorldWide
Web.

Table 36 OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Currently has no effect.

Typically enables (TRUE) or disables (FALSE) the dynamic adjustment
of the number of threads.

OMP_MAX_ACTIVE_LEVELS 1 Specifies the maximum number of nested parallel regions.

OMP_NESTED FALSE Enables (TRUE) or disables (FALSE) nested parallelism.

OMP_NUM_THREADS 1 Specifies the number of threads to use during execution of
parallel regions at the corresponding nested level. For example,
OMP_NUM_THREADS=4,2 uses 4 threads at the first nested parallel
level, and 2 at the next nested parallel level.

OMP_SCHEDULE STATIC with
chunk size of 1

Specifies the type of iteration scheduling and optionally the chunk size
to use for omp for and omp parallel for loops that include the runtime
schedule clause. The supported schedule types, which can be specified
in upper- or lower-case are static, dynamic, guided, and auto.

OMP_PROC_BIND FALSE Specifies whether executing threads should be bound to a core during
execution. Allowable values are "true" and "false".

OMP_STACKSIZE Overrides the default stack size for a newly created thread.

OMP_THREAD_LIMIT 64 Specifies the absolute maximum number of threads that can be used in
a program.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin or sleep
when idle. The values are ACTIVE and PASSIVE.

OpenMP Directives for Fortran

PGI Fortran Reference Guide 179

8.9.1. OMP_DYNAMIC
OMP_DYNAMIC currently has no effect. Typically this variable enables (TRUE) or disables
(FALSE) the dynamic adjustment of the number of threads.

8.9.2. OMP_MAX_ACTIVE_LEVELS
OMP_MAX_ACTIVE_LEVELS specifies the maximum number of nested parallel regions.

8.9.3. OMP_NESTED
OMP_NESTED currently has no effect. Typically this variable enables (TRUE) or disables
(FALSE) nested parallelism.

8.9.4. OMP_NUM_THREADS
OMP_NUM_THREADS specifies the number of threads to use during execution of parallel regions.
The default value for this variable is 1. For historical reasons, the environment variable NCPUS is
supported with the same functionality. In the event that both OMP_NUM_THREADS and NCPUS are
defined, the value of OMP_NUM_THREADS takes precedence.

OMP_NUM_THREADS defines the threads that are used to execute the program, regardless of the
number of physical processors available in the system. As a result, you can run programs using more
threads than physical processors and they execute correctly. However, performance of programs executed
in this manner can be unpredictable, and oftentimes will be inefficient.

8.9.5. OMP_PROC_BIND
OMP_PROC_BIND specifies whether executing threads should be bound to a core during
execution. Allowable values are "true" and "false".

8.9.6. OMP_SCHEDULE
OMP_SCHEDULE specifies the type of iteration scheduling to use for DO and PARALLEL DO
loop directives that include the SCHEDULE(RUNTIME) clause, described in SCHEDULE. The
default value for this variable is STATIC.

If the optional chunk size is not set, a chunk size of 1 is assumed except in the case of a static
schedule. For a static schedule, the default is as defined in DO...END DO.

Examples of the use of OMP_SCHEDULE are as follows:
% setenv OMP_SCHEDULE "STATIC, 5"
% setenv OMP_SCHEDULE "GUIDED, 8"
% setenv OMP_SCHEDULE "DYNAMIC"

OpenMP Directives for Fortran

PGI Fortran Reference Guide 180

8.9.7. OMP_STACKSIZE
OMP_STACKSIZE is an OpenMP 3.0 feature that controls the size of the stack for newly-created
threads. This variable overrides the default stack size for a newly created thread. The value
is a decimal integer followed by an optional letter B, K, M, or G, to specify bytes, kilobytes,
megabytes, and gigabytes, respectively. If no letter is used, the default is kilobytes. There is no
space between the value and the letter; for example, one megabyte is specified 1M. The following
example specifies a stack size of 8 megabytes.
% setenv OMP_STACKSIZE 8M

The API functions related to OMP_STACKSIZE are omp_set_stack_size and
omp_get_stack_size.

The environment variable OMP_STACKSIZE is read on program start-up. If the program changes
its own environment, the variable is not re-checked.

This environment variable takes precedence over MPSTKZ, which increases the size of the stacks
used by threads executing in parallel regions. Once a thread is created, its stack size cannot be
changed.

In the PGI implementation, threads are created prior to the first parallel region and persist for the
life of the program. The stack size of the main thread (thread 0) is set at program start-up and is
not affected by OMP_STACKSIZE.

For more information on controlling the program stack size in Linux, refer to‘Running Parallel
Programs on Linux’ in Chapter 2 of the PGI Compiler User’s Guide. For more information on
MPSTKZ, refer to the PGI Compiler User’s Guide.

8.9.8. OMP_THREAD_LIMIT
You can use the OMP_THREAD_LIMIT environment variable to specify the absolute maximum
number of threads that can be used in a parallel program. Attempts to dynamically set the number
of processes or threads to a higher value, for example using set_omp_num_threads(), cause the
number of processes or threads to be set at the value of OMP_THREAD_LIMIT rather than the
value specified in the function call.

8.9.9. OMP_WAIT_POLICY
OMP_WAIT_POLICY sets the behavior of idle threads - specifically, whether they spin or sleep
when idle. The values are ACTIVE and PASSIVE, with ACTIVE the default. The behavior
defined by OMP_WAIT_POLICY is also shared by threads created by auto-parallelization.

‣ Threads are considered idle when waiting at a barrier, when waiting to enter a critical region,
or when unemployed between parallel regions.

‣ Threads waiting for critical sections always busy wait (ACTIVE).

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

OpenMP Directives for Fortran

PGI Fortran Reference Guide 181

‣ Barriers always busy wait (ACTIVE), with calls to sched_yield determined by the
environment variable MP_SPIN, that specifies the number of times it checks the semaphore
before calling sched_yield() (on Linux or MAC OS X) or _sleep()(on Windows).

‣ Unemployed threads during a serial region can either busy wait using the barrier (ACTIVE)
or politely wait using a mutex (PASSIVE). This choice is set by OMP_WAIT_POLICY, so the
default is ACTIVE.

When ACTIVE is set, idle threads consume 100% of their CPU allotment spinning in a busy loop
waiting to restart in a parallel region. This mechanism allows for very quick entry into parallel
regions, a condition which is good for programs that enter and leave parallel regions frequently.

When PASSIVE is set, idle threads wait on a mutex in the operating system and consume no
CPU time until being restarted. Passive idle is best when a program has long periods of serial
activity or when the program runs on a multi-user machine or otherwise shares CPU resources.

PGI Fortran Reference Guide 182

Chapter 9.
3F FUNCTIONS AND VAX SUBROUTINES

The PGI Fortran compilers support FORTRAN 77 3F functions and VAX/VMS system
subroutines and built-in functions.

9.1. 3F Routines
This section describes the functions and subroutines in the Fortran runtime library which are
known as 3F routines on many systems. These routines provide an interface from Fortran
programs to the system in the same manner as the C library does for C programs. These functions
and subroutines are automatically loaded from PGI's Fortran runtime library if referenced by a
Fortran program.

The implementation of many of the routines uses functions which reside in the C library. If a C
library does not contain the necessary functions, undefined symbol errors will occur at link-time.
For example, if PGI’s C library is the C library available on the system, the following 3F routines
exist in the Fortran runtime library, but use of these routines will result in errors at link-time:

besj0 besj1 besjn besy0 besy1 besyn

dbesj0 dbesj1 dbesjn dbesy0 dbesy1 dbesyn

derf derfc erf erfc getlog hostnm

lstat putenv symlnk ttynam

The routines mclock and times depend on the existence of the C function times().

The routines dtime and etime are only available in a SYSVR4 environment. These routines are
not available in all environments simply because there is no standard mechanism to resolve the
resolution of the value returned by the times() function.

There are several 3F routines, such as fputc and fgetc, that perform I/O on a logical unit. These
routines bypass normal Fortran I/O. If normal Fortran I/O is also performed on a logical unit
which appears in any of these routines, the results are unpredictable.

9.1.1. abort
Terminate abruptly and write memory image to core file.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 183

Synopsis
subroutine abort()

Description
The abort function cleans up the I/O buffers and then aborts, producing a core file in the current
directory.

9.1.2. access
Determine access mode or existence of a file.

Synopsis
integer function access(fil, mode)
character*(*) fil
character*(*) mode

Description
The access function tests the file, whose name is fil, for accessibility or existence as determined
by mode.

The mode argument may include, in any order and in any combination, one or more of:

r
test for read permission

w
test for write permission

x
test for execute permission

(blank)
test for existence

An error code is returned if either the mode argument is illegal or if the file cannot be accessed in
all of the specified modes. Zero is returned if the specified access is successful.

9.1.3. alarm
Execute a subroutine after a specified time.

Synopsis
integer function alarm(time, proc)
integer time
external proc

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 184

Description
This routine establishes subroutine proc to be called after time seconds. If time is 0, the alarm is
turned off and no routine will be called. The return value of alarm is the time remaining on the
last alarm.

9.1.4. Bessel functions
These functions calculate Bessel functions of the first and second kinds for real and double
precision arguments and integer orders.

besj0

besj1

besjn

besy0

besy1

besyn

dbesj0

dbesj1

dbesjn

dbesy0

dbesy1

dbesyn

Synopsis
real function besj0(x)
real x
real function besj1(x)
real x

real function besjn(n, x)
integer n
real x
real function besy0(x)
real x
real function besy1(x)
real x
real function besyn(n, x)
integer n
real x
double precision function dbesj0(x)
double precision x
double precision function dbesj1(x)
double precision x
double precision function dbesjn(n, x)
integer n
double precision x
double precision function dbesy0(x)
double precision x
double precision function dbesy1(x)
double precision x
double precision function dbesyn(n, x)

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 185

integer n
double precision x

9.1.5. chdir
Change default directory.

Synopsis
integer function chdir(path)
character*(*) path

Description
Change the default directory for creating and locating files to path. Zero is returned if successful;
otherwise, an error code is returned.

9.1.6. chmod
Change mode of a file.

Synopsis
integer function chmod(nam, mode)
character*(*) nam
integer mode

Description
Change the file system mode of file nam. If successful, a value of 0 is returned; otherwise, an
error code is returned.

9.1.7. ctime
Return the system time.

Synopsis
character*(*) function ctime(stime)
integer*8 stime

Description
ctime converts a system time in stime to its ASCII form and returns the converted form. Neither
newline nor NULL is included.

9.1.8. date
Return the date.

Synopsis
character*(*) function date(buf)

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 186

Description
Returns the ASCII representation of the current date. The format returned is dd-mmm-yy.

9.1.9. error functions
The functions erf and derf return the error function of x. erfc and derfc return 1.0-erf(x) and 1.0-
derf(x), respectively.

Synopsis
real function erf(x)
real x
real function erfc(x)
real x
double precision function derf(x)
double precision x
double precision function derfc(x)
double precision x

9.1.10. etime, dtime
Get the elapsed time.

Synopsis
real function etime(tarray)
real function dtime(tarray)
real tarray(2)

Description
etime returns the total processor runtime in seconds for the calling process.

dtime (delta time) returns the processor time since the previous call to dtime. The first time it is
called, it returns the processor time since the start of execution.

Both functions place values in the argument tarray: user time in the first element and system time
in the second element. The return value is the sum of these two times.

9.1.11. exit
Terminate program with status.

Synopsis
subroutine exit(s)
integer s

Description
exit flushes and closes all of the program's files, and returns the value of s to the parent process.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 187

9.1.12. fdate
Return date and time in ASCII form.

Synopsis
character*(*) function fdate()

Description
fdate returns the current date and time as a character string. Neither newline nor NULL will be
included.

9.1.13. fgetc
Get character from a logical unit.

Synopsis
integer function fgetc(lu, ch)
integer lu
character*(*) ch

Description
Returns the next character in ch from the file connected to the logical unit lu, bypassing normal
Fortran I/O statements. If successful, the return value is zero; -1 indicates that an end-of-file was
detected. Any other value is an error code.

9.1.14. flush
Flush a logical unit.

Synopsis
subroutine flush(lu)
integer lu

Description
flush flushes the contents of the buffer associated with logical unit lu.

9.1.15. fork
Fork a process.

Synopsis
integer function fork()

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 188

Description
fork creates a copy of the calling process. The value returned to the parent process will be the
process id of the copy. The value returned to the child process (the copy) will be zero. If the
returned value is negative, an error occurred and the value is the negation of the system error
code.

9.1.16. fputc
Write a character to a logical unit.

Synopsis
integer function fputc(lu, ch)
integer lu
character*(*) ch

Description
A character ch is written to the file connected to logical unit lu bypassing normal Fortran I/O. If
successful, a value of zero is returned; otherwise, an error code is returned.

9.1.17. free
Free memory.

Synopsis
subroutine free(p)
int p

Description
Free a pointer to a block of memory located by malloc; the value of the argument, p, is the pointer
to the block of memory.

9.1.18. fseek
Position file at offset.

Synopsis
integer function fseek(lu, offset, from)
integer lu
integer offset
integer from

Description
fseek repositions a file connected to logical unit lu. offset is an offset in bytes relative to the
position specified by from :

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 189

0
beginning of the file

1
current position

2
end of the file

If successful, the value returned by fseek will be zero; otherwise, it's a system error code.

9.1.19. ftell
Determine file position.

Synopsis
integer function ftell(lu)
integer lu

Description
ftell returns the current position of the file connected to the logical unit lu. The value returned is
an offset, in units of bytes, from the beginning of the file. If the value returned is negative, it is
the negation of the system error code.

9.1.20. gerror
Return system error message.

Synopsis
character*(*) function gerror()

Description
Return the system error message of the last detected system error.

9.1.21. getarg
Get the nth command line argument.

Synopsis
subroutine getarg(n, arg)
integer n
character*(*) arg

Description
Return the nth command line argument in arg, where the 0th argument is the command name.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 190

9.1.22. iargc
The iargc subroutine returns the number of command line arguments following the program
name.
integer function iargc()

9.1.23. getc
Get character from unit 5.

Synopsis
integer function getc(ch)
character*(*) ch

Description
Returns the next character in ch from the file connected to the logical unit 5, bypassing normal
Fortran I/O statements. If successful, the return value is zero; -1 indicates that an end-of-file was
detected. Any other value is an error code.

9.1.24. getcwd
Get pathname of current working directory.

Synopsis
integer function getcwd(dir)
character*(*) dir

Description
The pathname of the current working directory is returned in dir. If successful, the return value is
zero; otherwise, an error code is returned.

9.1.25. getenv
Get value of environment variable.

Synopsis
subroutine getenv(en, ev)
character*(*) en
character*(*) ev

Description
getenv checks for the existence of the environment variable en. If it does not exist or if its value is
not present, ev is filled with blanks. Otherwise, the string value of en is returned in ev.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 191

9.1.26. getgid
Get group id.

Synopsis
integer function getgid()

Description
Return the group id of the user of the process.

9.1.27. getlog
Get user's login name.

Synopsis
character*(*) function getlog()

Description
getlog returns the user's login name or blanks if the process is running detached from a terminal.

9.1.28. getpid
Get process id.

Synopsis
integer function getpid()

Description
Return the process id of the current process.

9.1.29. getuid
Get user id.

Synopsis
integer function getuid()

Description
Return the user id of the user of the process.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 192

9.1.30. gmtime
Return system time.

Synopsis
subroutine gmtime(stime, tarray)
integer stime
integer tarray(9)

Description
Dissect the UNIX time, stime , into month, day, etc., for GMT and return in tarray.

9.1.31. hostnm
Get name of current host.

Synopsis
integer function hostnm(nm)
character*(*) nm

Description
hostnm returns the name of the current host in nm. If successful, a value of zero is returned;
otherwise an error occurred.

9.1.32. idate
Return the date.

Synopsis
subroutine idate(im, id, iy)
integer im, id, iy

Description
Returns the current date in the variables im, id, and iy, which indicate the month, day, and year,
respectively. The month is in the range 1-12; only the last 2 digits of the year are returned.

9.1.33. ierrno
Get error number.

Synopsis
integer function ierrno()

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 193

Description
Return the number of the last detected system error.

9.1.34. ioinit
Initialize I/O

Synopsis
subroutine ioinit(cctl, bzro, apnd, prefix, vrbose)
integer cctl
integer bzro
integer apnd
character*(*) prefix
integer vrbose

Description
Currently, no action is performed.

9.1.35. isatty
Is logical unit a tty.

Synopsis
logical function isatty(lu)
integer lu

Description
Returns .TRUE. if logical unit lu is connected to a terminal; otherwise, .FALSE. is returned.

9.1.36. itime
Return time in numerical form.

Synopsis
subroutine itime(iarray)
integer iarray(3)

Description
Return current time in the array iarray. The order is hour, minute, and second.

9.1.37. kill
Send signal to a process.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 194

Synopsis
integer function kill(pid, sig)
integer pid
integer sig

Description
Send signal number sig to the process whose process id is pid. If successful, the value zero is
returned; otherwise, an error code is returned.

9.1.38. link
Make link

Synopsis
integer function link(n1, n2)
character*(*) n1
character*(*) n2

Description
Create a link n2 to an existing file n1. If successful, zero is returned; otherwise, an error code is
returned.

9.1.39. lnblnk
Return index of last non-blank.

Synopsis
integer function lnblnk(a1)
character*(*) a1

Description
Return the index of the last non-blank character in string a1.

9.1.40. loc
Address of an object.

Synopsis
integer function loc(a)
integer a

Description
Return the value which is the address of a.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 195

9.1.41. ltime
Return system time.

Synopsis
 subroutine ltime(stime, tarray)
integer stime
integer tarray(9)

Description
Dissect the UNIX time, stime , into month, day, etc., for the local time zone and return in tarray.

9.1.42. malloc
Allocate memory.

Synopsis
integer function malloc(n)
integer n

Description
Allocate a block of n bytes of memory and return the pointer to the block of memory.

9.1.43. mclock
Get elapsed time.

Synopsis
integer function mclock()

Description
mclock returns the sum of the user's cpu time and the user and system times of all child processes.
The return value is in units of clock ticks per second.

9.1.44. mvbits
Move bits.

Synopsis
subroutine mvbits(src, pos, len, dest, posd)
integer src
integer pos
integer len
integer dest
integer posd

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 196

Description
len bits are moved beginning at position pos of argument src to position posd of argument dest.

9.1.45. outstr
Print a character string.

Synopsis
integer function outstr(ch)
character*(*) ch

Description
Output the character string to logical unit 6 bypassing normal Fortran I/O. If successful, a value
of zero is returned; otherwise, an error occurred.

9.1.46. perror
Print error message.

Synopsis
subroutine perror(str)
character*(*) str

Description
Write the message indicated by str to logical unit 0 and the message for the last detected system
error.

9.1.47. putc
Write a character to logical unit 6.

Synopsis
integer function putc(ch)
character*(*) ch

Description
A character ch is written to the file connected to logical unit 6 bypassing normal Fortran I/O. If
successful, a value of zero is returned; otherwise, an error code is returned.

9.1.48. putenv
Change or add environment variable.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 197

Synopsis
integer function putenv(str)
character*(*) str

Description
str contains a character string of the form name=value. This function makes the value of the
environment variable name equal to value. If successful, zero is returned.

9.1.49. qsort
Quick sort.

Synopsis
subroutine qsort(array, len, isize, compar)
dimension array(*)
integer len
integer isize
external compar
integer compar

Description
qsort sorts the elements of the one dimensional array, array. len is the number of elements in
the array and isize is the size of an element. compar is the name of an integer function that
determines the sorting order. This function is called with 2 arguments (arg1 and arg2) which are
elements of array. The function returns:

negative
if arg1 is considered to precede arg2

zero
if arg1 is equivalent to arg2

positive
if arg1 is considered to follow arg2

9.1.50. rand, irand, srand
Random number generator.

Synopsis
double precision function rand()
integer function irand()
subroutine srand(iseed)
integer iseed

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 198

Description
The functions rand and irand generate successive pseudo-random integers or double precision
numbers. srand uses its argument, iseed, to re-initialize the seed for successive invocations of
rand and irand.

irand
returns a positive integer in the range 0 through 2147483647.

rand
returns a value in the range 0 through 1.0.

9.1.51. random, irandm, drandm
Return the next random number value.

Synopsis
real function random(flag)
integer flag
integer function irandm(flag)
integer flag
double precision function drandm(flag)
integer flag

Description
If the argument, flag, is nonzero, the random number generator is restarted before the next
random number is generated.

Integer values range from 0 through 2147483647.

Floating point values range from 0.0 through 1.0.

9.1.52. range
Range functions.

Synopsis
real function flmin()
real function flmax()
real function ffrac()
double precision function dflmin()
double precision function dflmax()
double precision function dffrac()
integer function inmax()

Description
The following range functions return a value from a range of values.

flmin
minimum single precision value

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 199

flmax
maximum single precision value

ffrac
smallest positive single precision value

dflmin
minimum double precision value

dflmax
maximum double precision value

dffrac
smallest positive double precision value

inmax
maximum integer

9.1.53. rename
Rename a file.

Synopsis
integer function rename(from, to)
character*(*) from
character*(*) to

Description
Renames the existing file from where the new name is, the from value, to what you want it to be,
the to value.. If the rename is successful, zero is returned; otherwise, the return value is an error
code.

9.1.54. rindex
Return index of substring.

Synopsis
integer function rindex(a1, a2)
character*(*) a1
character*(*) a2

Description
Return the index of the last occurrence of string a2 in string a1.

9.1.55. secnds, dsecnds
Return elapsed time.

Synopsis
real function secnds(x)

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 200

real x
double precision function dsecnds(x)
double precision x

Description
Returns the elapsed time, in seconds, since midnight, minus the value of x.

9.1.56. setvbuf
Change I/O buffering behavior.

Synopsis
integer function setvbuf(lu, typ, size, buf)
integer lu
integer typ
integer size
character* (*) buf

Description
Fortran I/O supports 3 types of buffering:

‣ Fully buffered: on output, data is written once the buffer is full. On input, the buffer is filled
when an input operation is requested and the buffer is empty.

‣ Line buffered: on output, data is written when a newline character is inserted in the buffer or
when the buffer is full. On input, if an input operation is encountered and the buffer is empty,
the buffer is filled until a newline character is encountered.

‣ Unbuffered: No buffer is used. Each I/O operation is completed as soon as possible. In this
case, the typ and size arguments are ignored.

Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit 0 (stderr) is unbuffered.
Disk files are fully buffered. These defaults generally give the expected behavior. You can use
setvbuf3f to change a unit's buffering type and size of the buffer.

The underlying stdio implementation may silently restrict your choice of buffer size.

This function must be called after the unit is opened and before any I/O is done on the unit.

The typ parameter can have the following values, 0 specifies full buffering, 1 specifies line
buffering, and 2 specifies unbuffered. The size parameter specifies the size of the buffer. Note,
the underlying stdio implementation may silently restrict your choice of buffer size.

The buf parameter is the address of the new buffer.

The buffer specified by the buf and size parameters must remain available to the Fortran runtime until after
the logical unit is closed.

This function returns zero on success and non-zero on failure.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 201

An example of a program in which this function might be useful is a long-running program that
periodically writes a small amount of data to a log file. If the log file is line buffered, you could
check the log file for progress. If the log file is fully buffered (the default), the data may not be
written to disk until the program terminates.

9.1.57. setvbuf3f
Change I/O buffering behavior.

Synopsis
integer function setvbuf3f(lu, typ, size)
integer lu
integer typ
integer size

Description
Fortran I/O supports 3 types of buffering., described in detail in the description of setvbuf.
Logical units 5 (stdin) and 6 (stdout) are line buffered. Logical unit 0 (stderr) is unbuffered.
Disk files are fully buffered. These defaults generally give the expected behavior. You can use
setvbuf3f to change a unit's buffering type and size of the buffer.

The underlying stdio implementation may silently restrict your choice of buffer size.

This function must be called after the unit is opened and before any I/O is done on the unit.

The typ parameter can have the following values, 0 specifies full buffering, 1 specifies line
buffering, and 2 specifies unbuffered. The size parameter specifies the size of the buffer.

This function returns zero on success and non-zero on failure.

An example of a program in which this function might be useful is a long-running program that
periodically writes a small amount of data to a log file. If the log file is line buffered, you could
check the log file for progress. If the log file is fully buffered (the default), the data may not be
written to disk until the program terminates.

9.1.58. signal
Signal facility.

Synopsis
integer function signal(signum, proc, flag)
integer signum
external proc
integer flag

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 202

Description
signal allows the calling process to choose how the receipt of a specific signal is handled; signum
is the signal and proc is the choice. If flag is negative, proc is a Fortran subprogram and is
established as the signal handler for the signal. Otherwise, proc is ignored and the value of flag
is passed to the system as the signal action definition. In particular, this is how previously saved
signal actions can be restored. There are two special cases of flag: 0 means use the default action
and 1 means ignore this signal.

The return value is the previous action. If this is a value greater than one, then it is the address of
a routine that was to have been called. The return value can be used in subsequent calls to signal
to restore a previous action. A negative return value indicates a system error.

9.1.59. sleep
Suspend execution for a period of time.

Synopsis
subroutine sleep(itime)
integer itime

Description
Suspends the process for t seconds.

9.1.60. stat, lstat, fstat, fstat64
Get file status.

Synopsis
integer function stat(nm, statb)
character*(*) nm
integer statb(*)

integer function lstat(nm, statb)
character*(*) nm
integer statb(*)

integer function fstat(lu, statb)
integer lu
integer statb(*)

integer function fstat64(lu, statb)
integer lu
integer*8 statb(*)

Description
Return the file status of the file in the array statb. If successful, zero is returned; otherwise, the
value of -1 is returned. stat obtains information about the file whose name is nm; if the file is a
symbolic link, information is obtained about the file the link references. lstat is similar to stat

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 203

except lstat returns information about the link. fstat obtains information about the file which is
connected to logical unit lu.

9.1.61. stime
Set time.

Synopsis
integer function stime(tp)
integer tp

Description
Set the system time and date. tp is the value of the time measured in seconds from 00:00:00 GMT
January 1, 1970.

9.1.62. symlnk
Make symbolic link.

Synopsis
integer function symlnk(n1, n2)
character*(*) n1
character*(*) n2

Description
Create a symbolic link n2 to an existing file n1. If successful, zero is returned; otherwise, an error
code is returned.

9.1.63. system
Issue a shell command.

Synopsis
integer function system(str)
character*(*) str

Description
system causes the string, str, to be given to the shell as input. The current process waits until the
shell has completed and returns the exit status of the shell.

9.1.64. time
Return system time.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 204

Synopsis
integer *8 function time()

Description
Return the time since 00:00:00 GMT, January 1, 1970, measured in seconds.

9.1.65. times
Get process and child process time

Synopsis
integer function times(buff)
integer buff(*)

Description
Returns the time-accounting information for the current process and for any terminated child
processes of the current process in the array buff. If successful, zero is returned; otherwise, the
negation of the error code is returned.

9.1.66. ttynam
Get name of a terminal

Synopsis
character*(*) ttynam(lu)
integer lu

Description
Returns a blank padded path name of the terminal device connected to the logical unit lu. The lu
is not connected to a terminal, blanks are returned.

9.1.67. unlink
Remove a file.

Synopsis
integer function unlink(fil)
character*(*) fil

Description
Removes the file specified by the pathname fil. If successful, zero is returned; otherwise, an error
code is returned.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 205

9.1.68. wait
Wait for process to terminate.

Synopsis
integer function wait(st)
integer st

Description
wait causes its caller to be suspended until a signal is received or one of its child processes
terminates. If any child has terminated since the last wait, return is immediate. If there are no
child processes, return is immediate with an error code.

If the return value is positive, it is the process id of the child and st is its termination status. If the
return value is negative, it is the negation of an error code.

9.2. VAX System Subroutines
The PGI FORTRAN77 compiler, pgf77, supports a variety of built-in functions amd VAX/VMS
system subroutines.

9.2.1. Built-In Functions
The built-in functions perform inter-language utilities for argument passing and location
calculations. The following built-in functions are available:

%LOC(arg)
Compute the address of the argument arg.

%REF(a)
Pass the argument a by reference.

%VAL(a)
Pass the argument as a 32-bit immediate value (64-bit if a is double precision.) A value of 64-bits
is also possible if supported for integer and logical values.

9.2.2. VAX/VMS System Subroutines
The PGI FORTRAN77 compiler, pgf77, supports a variety of built-in functions and VAX/VMS
system subroutines.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 206

DATE
The DATE subroutine returns a nine-byte string containing the ASCII representation of the
current date. It has the form:
CALL DATE(buf)

where buf is a nine-byte variable, array, array element, or character substring. The date is
returned as a nine-byte ASCII character string of the form:
dd-mmm-yy

Where:

dd
is the two-digit day of the month

mmm
is the three-character abbreviation of the month

yy
is the last two digits of the year

EXIT
The EXIT subroutine causes program termination, closes all open files, and returns control to the
operating system. It has the form:
CALL EXIT[(exit_status)]

Where:

exit_status
is an optional integer argument used to specify the image exit value.

GETARG
The GETARG subroutine returns the Nth command line argument in character variable ARG. For
N equal to zero, the name of the program is returned.
SUBROUTINE GETARG(N, ARG)
INTEGER*4 N
CHARACTER*(*) ARG

IARGC
The IARGC subroutine returns the number of command line arguments following the program
name.
INTEGER*4 FUNCTION IARGC()

IDATE
The IDATE subroutine returns three integer values representing the current month, day, and year.
It has the form:
CALL IDATE(IMONTH, IDAY, IYEAR)

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 207

If the current date were October 9, 2004, the values of the integer variables upon return would be:
IMONTH = 10
IDAY = 9
IYEAR = 04

MVBITS
The MVBITS subroutine transfers a bit field from one storage location (source) to a field in a
second storage location (destination). MVBITS transfers a3 bits from positions a2 through (a2 +
a3 - 1) of the source, src, to positions a5 through (a5 + a3 - 1) of the destination, dest. Other bits
of the destination location remain unchanged. The values of (a2 + a3) and (a5 + a3) must be less
than or equal to 32 (less than or equal to 64 if the source or destination is INTEGER*8). It has the
form:
CALL MVBITS(src, a2, a3, dest, a5)

Where:

src
is an integer variable or array element that represents the source location.

a2
is an integer expression that identifies the first position in the field transferred from src.

a3
is an integer expression that identifies the length of the field transferred from src.

dest
is an integer variable or array element that represents the destination location.

a5
is an integer expression that identifies the starting position within a4, for the bits being
transferred.

RAN
The RAN subroutine returns the next number from a sequence of pseudo-random numbers of
uniform distribution over the range 0 to 1. The result is a floating point number that is uniformly
distributed in the range between 0.0 and 1.0 exclusive. It has the form:
y = RAN(i)

where y is set equal to the value associated by the function with the seed argument i. The
argument i must be an INTEGER*4 variable or INTEGER*4 array element.

The argument i should initially be set to a large, odd integer value. The RAN function stores a
value in the argument that it later uses to calculate the next random number.

There are no restrictions on the seed, although it should be initialized with different values on
separate runs in order to obtain different random numbers. The seed is updated automatically, and
RAN uses the following algorithm to update the seed passed as the parameter:
SEED = 6969 * SEED + 1 ! MOD
2**32

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point
and returned as the result.

3F Functions and VAX Subroutines

PGI Fortran Reference Guide 208

If the command-line option to treat all REAL declarations as DOUBLE PRECISION declarations
is in effect, RAN returns a DOUBLE PRECISION value.

SECNDS
The SECNDS subroutine provides system time of day, or elapsed time, as a floating point value
in seconds. It has the form:
y = SECNDS(x)

where (REAL or DOUBLE PRECISION) y is set equal to the time in seconds since midnight,
minus the user supplied value of the (REAL or DOUBLE PRECISION) x. Elapsed time
computations can be performed with the following sequence of calls.
X = SECNDS(0.0)
...
... ! Code to be timed
...
DELTA = SECNDS(X)

The accuracy of this call is the same as the resolution of the system clock.

TIME
The TIME subroutine returns the current system time as an ASCII string. It has the form:
CALL TIME(buf)

where buf is an eight-byte variable, array, array element, or character substring. The TIME call
returns the time as an eight-byte ASCII character string of the form:
hh:mm:ss

For example:
16:45:23

Note that a 24-hour clock is used.

PGI Fortran Reference Guide 209

Chapter 10.
INTEROPERABILITY WITH C

Fortran 2003 provides a mechanism for interoperating with C. Any entity involved must have
equivalent declarations made in both C and Fortran. This section describes the pointer types and
enumerators available for interoperability.

10.1. Enumerators
Fortran 2003 has enumerators to provide interoperability with C. An enumerator is a set of integer
constants. The kind of enumerator corresponds to the integer type that C would choose for the
same set of constants.

You can specify the value of an enumerator when it is declared. If the value is not specified, then
it is one of two values:

‣ If the enumerator is the first one, the value is zero.
‣ If the enumerator is not the first one, the value is one greater than the previous enumerator.

Enumerator Example
In the following example, green has a value of 4, purple a value of 8, and gold a value of 9.
enum, bind(c)
 enumerator :: green = 4, purple = 8
 enumerator gold
end enum

10.2. Interoperability with C Pointer Types
C pointers are addresses. The derived type c_ptr is interoperable with C pointer types. The
named constant c_null_ptr corresponds to the null value in C.

10.2.1. c_f_pointer
A subroutine that assigns the C pointer target to the Fortran pointer, and specifies its shape.

F2003

Interoperability with C

PGI Fortran Reference Guide 210

Syntax
c_f_pointer (cptr, fptr [,shape])

Type
subroutine

Description
c_f_pointer assigns the target, cptr, to the Fortran pointer, fptr, and specifies its shape.

‣ cptr is a scalar of the type C_PTR with INTENT(IN). Its value is one of the following:

‣ the C address of an interoperable data entity

If cptr is the C address of a Fortran variable, the Fortran variable must have the target
attribute.

‣ the result of a reference to c_loc with a non-interoperable argument.

‣ fptr is is a procedure pointer with INTENT(OUT).

‣ If cptr is the C address of an interoperable data entity, then fptr must be a data
pointer of the type and type parameters of the entity. It becomes pointer associated with
the target of cptr.

‣ If cptr was returned by a call of c_loc with a non-interoperable argument x, then
fptr must be a nonpolymorphic scalar pointer of the type and type parameters of x.

x, or its target if it is a pointer, must not have been deallocated or become undefined due to
execution of a return or end statement.

fptr is associated with x or its target.

‣ shape is an optional argument that is a rank-one array of type INTEGER with INTENT(IN).
shape is present if and only if fptr is an array. The size must be equal to the rank of fptr;
each lower bound is assumed to be 1.

Example
program main
 use iso_c_binding
 implicit none
 interface
 subroutine my_routine(p) bind(c,name='myC_func')
 import :: c_ptr
 type(c_ptr), intent(out) :: p
 end subroutine
 end interface
 type(c_ptr) :: cptr
 real,pointer :: a(:)
 call my_routine(cptr)
 call c_f_pointer(cptr, a, [12])
end program main

Interoperability with C

PGI Fortran Reference Guide 211

10.2.2. c_f_procpointer
A subroutine that associates a procedure pointer with the target of a C function pointer.

F2003

Syntax
c_f_procpointer (cptr, fptr)

Type
subroutine

Description
c_f_procpointer associates a procedure pointer with the target of a C function pointer.

‣ cptr is a scalar of the type C_PTR with INTENT(IN). Its value is the C address of the
procedure that is interoperable.

Its value is one of the following:

‣ the C address of an interoperable procedure

‣ the result of a reference to c_loc with a non-interoperable argument. In this case, there
is no intent that any use of it be made within C except to pass it back to Fortran, where
C_F_POINTER is available to reconstruct the Fortran pointer.

‣ fptr is is a procedure pointer with INTENT(OUT).

The interface for ftpr shall be interoperable with the prototype that describes the target of
cptr.

fptr becomes pointer associated with the target of cptr.

‣ If cptr is the C address of an interoperable procedure, then the interface for fptr shall
be interoperable with the prototype that describes the target of cptr. fptr must be a
data pointer of the type and type parameters of the entity. It becomes pointer associated
with the target of cptr.

‣ If cptr was returned by a call of c_loc with a non-interoperable argument x, then
fptr must be a nonpolymorphic scalar pointer of the type and type parameters of x.

x or its target if it is a pointer, must not have been deallocated or become undefined due to
execution of a return or end statement.

fptr is associated with x or its target.

Interoperability with C

PGI Fortran Reference Guide 212

Example
program main
 use iso_c_binding
 implicit none
 interface
 subroutine my_routine(p) bind(c,name='myC_func')
 import :: c_ptr
 type(c_ptr), intent(out) :: p
 end subroutine
 end interface
 type(c_ptr) :: cptr
 real,pointer :: a(:)
 call my_routine(cptr)
 call c_f_pointer(cptr, a, [12])
end program main

10.2.3. c_associated
A subroutine that determines the status of a C_PTR, or determines if one C_PTR is associated
with a target C_PTR.

F2003

Syntax
c_associated (cptr1[, cptr2])

Type
subroutine

Description
c_associated determines the status of a C_PTR,cptr1, or determines if cptr1 is associated with
a target cptr2.

‣ cptr1 is a scalar of the type C_PTR.

‣ cptr2 is an optional scalar or the same type as cptr1.

Return Value
A logical value:

‣ .false. if either cptr1 is a C NULL pointer or if cptr1 and cptr2 point to different
addresses.

‣ .true. if cptr1 is a not a C NULL pointer or if cptr1 and cptr2 point to the same address.

Example
program main
 use iso_c_binding
 subroutine test_association(h,k)
 only: c_associated, c_loc, c_ptr

Interoperability with C

PGI Fortran Reference Guide 213

 real, pointer :: h
 type(c_ptr) :: k
 if(c_associated(k, c_loc(h))) &
 stop 'h and k do not point to same target'
 end subroutine test_association

10.3. Interoperability of Derived Types
For a derived type to be interoperable, the following must be true:

‣ It must have the bind attribute.
type, bind(c) :: atype
 :
end type atype

‣ It cannot be a sequence type.
‣ It cannot have type pmeters.
‣ It cannot have the extends attribute.
‣ It cannot have any type-bound procedures.
‣ Each component must comply with these rules:

‣ Must have interoperable type and type pmeters.
‣ Must not be a pointer.
‣ Must not be allocatable.

Under the preceding conditions the type can interoperate with a C struct type that has the same
number of components, with components corresponding by their position in the definitions.
Further, each Fortran component must be interoperable with its corresponding C component. The
name of the type and names of the components is not significant for interoperability.

There is no Fortran type that is interoperable with these C types:

‣ a C union type,
‣ a C struct type that contains a bit field
‣ a C struct type that contains a flexible array member.

Derived Type Interoperability
This type... Is interoperable with this type

typedef struct {
 int a,b;
 float t;
} my_c_type

use iso_c_binding
type, bind(c) :: my_fort_type
 integer(c_int) :: i,j
 real(c_float) :: s
end type my_fort_type

PGI Fortran Reference Guide 214

Chapter 11.
CONTACT INFORMATION

You can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGI engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
questions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/faq.htm

All technical support is by email or submissions using an online form at:

http://www.pgroup.com/support

Phone support is not currently available.

PGI documentation is available at http://www.pgroup.com/resources/docs.htm.

mailto: sales@pgroup.com
mailto: trs@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
http://www.pgroup.com/support
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013–2016 NVIDIA Corporation. All rights reserved.

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Related Publications

	Language Overview
	1.1. Elements of a Fortran Program Unit
	1.1.1. Fortran Statements
	1.1.2. Free and Fixed Source
	1.1.3. Statement Ordering

	1.2. The Fortran Character Set
	1.3. Free Form Formatting
	1.4. Fixed Formatting
	1.4.1. Column Formatting
	1.4.2. Fixed Format Label Field
	1.4.3. Fixed Format Continuation Field
	1.4.4. Fixed Format Statement Field
	1.4.5. Fixed Format Debug Statements
	1.4.6. Tab Formatting
	1.4.7. Fixed Input File Format Summary

	1.5. Include Fortran Source Files
	1.6. Components of Fortran Statements
	1.6.1. Symbolic Names

	1.7. Expressions
	1.7.1. Forming Expressions
	1.7.2. Expression Precedence Rules
	1.7.3. Arithmetic Expressions
	1.7.4. Relational Expressions
	1.7.5. Logical Expressions
	1.7.6. Character Expressions
	1.7.7. Character Concatenation

	1.8. Symbolic Name Scope
	1.9. Assignment Statements
	1.9.1. Arithmetic Assignment
	1.9.2. Logical Assignment
	1.9.3. Character Assignment

	1.10. Listing Controls
	1.11. OpenMP Directives

	Fortran Data Types
	2.1. Intrinsic Data Types
	2.1.1. Kind Parameter
	2.1.2. Number of Bytes Specification

	2.2. Constants
	2.2.1. Integer Constants
	2.2.2. Binary, Octal and Hexadecimal Constants
	2.2.3. Real Constants
	2.2.4. Double Precision Constants
	2.2.5. Complex Constants
	2.2.6. Double Complex Constants
	2.2.7. Logical Constants
	2.2.8. Character Constants
	2.2.9. Parameter Constants

	2.3. Structure Constructors
	2.4. Derived Types
	2.5. Deferred Type Parameters
	2.5.1. Typed Allocation

	2.6. Arrays
	2.6.1. Array Declaration Element
	2.6.2. Deferred Shape Arrays
	2.6.3. Subscripts
	2.6.4. Character Substring
	2.6.5. Array Constructor Syntax

	2.7. Fortran Pointers and Targets
	2.8. Fortran Binary, Octal and Hexadecimal Constants
	2.8.1. Octal and Hexadecimal Constants - Alternate Forms

	2.9. Hollerith Constants
	2.10. Structures
	2.10.1. Records
	2.10.2. UNION and MAP Declarations
	2.10.3. Data Initialization

	2.11. Pointer Variables
	2.11.1. Restrictions
	2.11.2. Pointer Assignment

	Fortran Statements
	3.1. Statement Format Overview
	3.1.1. Definition of Statement-related Terms
	3.1.2. Origin of Statement
	3.1.3. List-related Notation

	3.2. Fortran Statement Summary Table
	3.3. ACCEPT
	F77 extension
	Syntax
	Examples
	Non-character Format-specifier
	See Also

	3.4. ARRAY
	CMF
	Syntax
	Description
	Example
	See Also

	3.5. BYTE
	F77 extension
	Syntax
	Description
	Example

	3.6. DECODE
	F77 extension
	Syntax
	Non-character Format-specifier
	See Also

	3.7. DOUBLE COMPLEX
	F77 extension
	Syntax
	Syntax Extension
	Description
	Examples
	See Also

	3.8. DOUBLE PRECISION
	F90
	Syntax
	Syntax Extension
	Description
	Example

	3.9. ENCODE
	F77 extension
	Syntax
	Non-character Format-specifier
	See Also

	3.10. END MAP
	F77 extension
	Syntax
	Description
	Example

	3.11. END STRUCTURE
	F77 extension
	Syntax
	Description

	3.12. END UNION
	F77 extension
	Syntax
	Description

	3.13. INCLUDE
	F77 extension
	Syntax
	Example

	3.14. MAP
	F77 extension
	Syntax
	Description
	Example

	3.15. POINTER (Cray)
	F77 extension
	Syntax
	Example
	Restrictions

	3.16. PROTECTED
	F2003
	Syntax
	Description
	Examples

	3.17. RECORD
	F77 extension
	Syntax
	Description
	Example

	3.18. REDIMENSION
	F77 extension
	Syntax
	Example

	3.19. RETURN
	F77
	Syntax
	Alternate RETURN
	Example

	3.20. STRUCTURE
	F77 VAX extension
	Syntax
	Description

	3.21. UNION
	F77 extension
	Syntax
	Description

	3.22. VOLATILE
	F77 extension (statement)
	F2003 (attribute)
	Syntax
	Volatile Attribute
	Volatile Statement
	Description
	Volatile Attribute Example
	Volatile Statement Example

	3.23. WAIT
	F2003
	Syntax
	Description
	Examples

	Fortran Arrays
	4.1. Array Types
	4.1.1. Explicit Shape Arrays
	4.1.2. Assumed Shape Arrays
	4.1.3. Deferred Shape Arrays
	4.1.4. Assumed Size Arrays

	4.2. Array Specification
	4.2.1. Explicit Shape Arrays
	4.2.2. Assumed Shape Arrays
	4.2.3. Deferred Shape Arrays
	4.2.4. Assumed Size Arrays

	4.3. Array Subscripts and Access
	4.3.1. Array Sections and Subscript Triplets
	4.3.2. Array Sections and Vector Subscripts

	4.4. Array Constructors

	Input and Output
	5.1. File Access Methods
	5.1.1. Standard Preconnected Units

	5.2. Opening and Closing Files
	5.2.1. Direct Access Files
	5.2.2. Closing a File

	5.3. Data Transfer Statements
	5.4. Unformatted Data Transfer
	5.5. Formatted Data Transfer
	5.5.1. Implied DO List Input Output List
	5.5.2. Format Specifications
	5.5.2.1. A Format Control – Character Data
	5.5.2.2. B Format Control – Binary Data
	5.5.2.3. D Format Control – Real Double Precision Data with Exponent
	5.5.2.4. d Format Control – Decimal specifier
	5.5.2.5. E Format Control – Real Single Precision Data with Exponent
	5.5.2.6. EN Format Control
	5.5.2.7. ES Format Control
	5.5.2.8. F Format Control - Real Single Precision Data
	5.5.2.9. G Format Control
	5.5.2.10. I Format Control – Integer Data
	5.5.2.11. L Format Control – Logical Data
	5.5.2.12. Quote Format Control
	5.5.2.13. BN Format Control – Blank Control
	5.5.2.14. H Format Control – Hollerith Control
	5.5.2.15. O Format Control Octal Values
	5.5.2.16. P Format Specifier – Scale Control
	5.5.2.17. Q Format Control - Quantity
	5.5.2.18. r Format Control - Rounding
	5.5.2.19. S Format Control – Sign Control
	5.5.2.20. T, TL and X Format Controls – Spaces and Tab Controls
	5.5.2.21. Z Format Control Hexadecimal Values
	5.5.2.22. Slash Format Control / – End of Record
	5.5.2.23. The : Format Specifier – Format Termination
	5.5.2.24. $ Format Control

	5.5.3. Variable Format Expressions

	5.6. Non-advancing Input and Output
	5.7. List-directed formatting
	5.7.1. List-directed input
	5.7.2. List-directed output
	5.7.3. Commas in External Field
	5.7.4. Character Encoding Format

	5.8. Namelist Groups
	5.8.1. Namelist Input
	5.8.2. Namelist Output

	5.9. Recursive Input/Output
	5.10. Input and Output of IEEE Infinities and NaNs
	5.10.1. Output Format
	5.10.2. Input Format

	Fortran Intrinsics
	6.1. Intrinsics Support
	6.1.1. Fortran 90/95 Bit Manipulation Functions and Subroutines
	6.1.2. Elemental Character and Logical Functions
	6.1.3. Fortran 90/95 Vector/Matrix Functions
	6.1.4. Fortran 90/95 Array Reduction Functions
	6.1.5. Fortran 90/95 String Construction Functions
	6.1.6. Fortran 90/95 Array Construction/Manipulation Functions
	6.1.7. Fortran 90/95 General Inquiry Functions
	6.1.8. Fortran 90/95 Numeric Inquiry Functions
	6.1.9. Fortran 90/95 Array Inquiry Functions
	6.1.10. Fortran 90/95 Subroutines
	6.1.11. Fortran 90/95 Transfer Functions
	6.1.12. Arithmetic Functions
	6.1.13. Fortran 2003 and 2008 Functions
	6.1.14. Miscellaneous Functions

	6.2. ACOSD
	F77
	Synopsis
	Arguments
	Return Value

	6.3. AND
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.4. ASIND
	F77
	Synopsis
	Argument
	Return Value

	6.5. ASSOCIATED
	F90
	Synopsis
	Arguments
	Return Value

	6.6. ATAN2D
	F77
	Synopsis
	Arguments
	Return Value

	6.7. ATAND
	F77
	Synopsis
	Argument
	Return Value

	6.8. COMPL
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.9. CONJG
	F77
	Synopsis
	Argument
	Return Value

	6.10. COSD
	F77
	Synopsis
	Argument
	Return Value

	6.11. DIM
	F77
	Synopsis
	Arguments
	Return Value

	6.12. ININT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.13. INT8
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.14. IZEXT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.15. JINT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.16. JNINT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.17. KNINT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.18. LEADZ
	F2003
	Synopsis
	Arguments
	Return Value
	Description
	Examples

	6.19. LSHIFT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.20. OR
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.21. RSHIFT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.22. SHIFT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.23. SIND
	F77
	Synopsis
	Argument
	Return Value

	6.24. TAND
	F77
	Synopsis
	Argument
	Return Value

	6.25. XOR
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.26. ZEXT
	F77 extension
	Synopsis
	Arguments
	Return Value

	6.27. Intrinsic Modules
	6.27.1. Module IEEE_ARITHMETIC
	6.27.2. IEEE_ARITHMETIC Derived Types
	6.27.3. IEEE_ARITHMETIC Inquiry Functions
	6.27.4. IEEE_ARITHMETIC Elemental Functions
	6.27.5. IEEE_ARITHMETIC Non-Elemental Subroutines
	6.27.6. IEEE_ARITHMETIC Transformational Function

	6.28. Module IEEE_EXCEPTIONS
	6.28.1. IEEE_EXCEPTIONS Derived Types
	6.28.2. IEEE_EXCEPTIONS Inquiry Functions
	6.28.3. IEEE_EXCEPTIONS Subroutines Functions

	6.29. IEEE_FEATURES
	6.29.1. IEEE_FEATURES Derived Type
	6.29.2. IEEE_FEATURES Named Constants

	6.30. Module iso_c_binding
	6.31. Module iso_fortran_env

	Object Oriented Programming
	7.1. Inheritance
	7.2. Polymorphic Entities
	7.2.1. Unlimited Polymorphic Entities
	7.2.2. Typed Allocation for Polymorphic Variables
	7.2.3. Sourced Allocation for Polymorphic Variables
	7.2.4. Procedure Polymorphism
	7.2.5. Procedure Polymorphism with Type-Bound Procedures
	7.2.6. Inheritance and Type-Bound Procedures
	7.2.7. Procedure Overriding
	7.2.8. Functions as Type-Bound Procedures

	7.3. Information Hiding
	7.3.1. Type Overloading

	7.4. Data Polymorphism
	7.4.1. Pointer Polymorphic Variables
	7.4.2. Allocatable Polymorphic Variables
	7.4.3. Sourced Allocation
	7.4.4. Unlimited Polymorphic Objects
	7.4.5. Abstract Types and Deferred Bindings

	7.5. IEEE Modules
	7.6. Intrinsic Functions

	OpenMP Directives for Fortran
	8.1. OpenMP Overview
	8.1.1. OpenMP Shared-Memory Parallel Programming Model
	8.1.2. Terminology
	8.1.3. OpenMP Example

	8.2. Task Overview
	8.3. Tasks
	8.3.1. Task Characteristics and Activities
	8.3.2. Task Scheduling Points
	8.3.3. Task Construct

	8.4. Parallelization Directives
	8.5. Directive Recognition
	8.6. Directive Clauses
	8.6.1. COLLAPSE (n)
	8.6.2. COPYIN (list)
	8.6.3. COPYPRIVATE(list)
	8.6.4. DEFAULT
	8.6.5. FIRSTPRIVATE(list)
	8.6.6. IF()
	8.6.7. LASTPRIVATE(list)
	8.6.8. NOWAIT
	8.6.9. NUM_THREADS
	8.6.10. ORDERED
	8.6.11. PRIVATE
	8.6.12. REDUCTION
	8.6.13. SCHEDULE
	8.6.14. SHARED
	8.6.15. UNTIED

	8.7. Directive Summary Table
	8.7.1. ATOMIC
	Syntax
	Usage

	8.7.2. BARRIER
	Syntax
	Usage

	8.7.3. CRITICAL ... END CRITICAL
	Syntax
	Usage
	Example of Critical...End Critical directive

	8.7.4. C\$DOACROSS
	Syntax
	Clauses
	Usage

	8.7.5. DO...END DO
	Clauses:
	Usage:
	Examples:
	Tips

	8.7.6. FLUSH
	Syntax
	Usage

	8.7.7. MASTER ... END MASTER
	Syntax
	Usage
	Examples

	8.7.8. ORDERED
	Syntax
	Usage

	8.7.9. PARALLEL ... END PARALLEL
	Syntax
	Clauses
	Usage
	Example
	Clause Usage

	8.7.10. PARALLEL DO
	Syntax
	Clauses
	Usage

	8.7.11. PARALLEL SECTIONS
	Syntax
	Clauses
	Usage

	8.7.12. PARALLEL WORKSHARE
	Syntax
	Clauses
	Usage

	8.7.13. SECTIONS ... END SECTIONS
	Syntax
	Clauses
	Usage

	8.7.14. SINGLE ... END SINGLE
	Syntax
	Clauses
	Usage
	Examples

	8.7.15. TASK
	Syntax
	Clauses
	Usage
	Restrictions

	8.7.16. TASKWAIT
	Syntax
	Clauses
	Usage
	Restrictions

	8.7.17. THREADPRIVATE
	Syntax
	Usage
	Restrictions

	8.7.18. WORKSHARE ... END WORKSHARE
	Syntax
	Usage

	8.8. Runtime Library Routines
	8.9. OpenMP Environment Variables
	8.9.1. OMP_DYNAMIC
	8.9.2. OMP_MAX_ACTIVE_LEVELS
	8.9.3. OMP_NESTED
	8.9.4. OMP_NUM_THREADS
	8.9.5. OMP_PROC_BIND
	8.9.6. OMP_SCHEDULE
	8.9.7. OMP_STACKSIZE
	8.9.8. OMP_THREAD_LIMIT
	8.9.9. OMP_WAIT_POLICY

	3F Functions and VAX Subroutines
	9.1. 3F Routines
	9.1.1. abort
	Synopsis
	Description

	9.1.2. access
	Synopsis
	Description

	9.1.3. alarm
	Synopsis
	Description

	9.1.4. Bessel functions
	Synopsis

	9.1.5. chdir
	Synopsis
	Description

	9.1.6. chmod
	Synopsis
	Description

	9.1.7. ctime
	Synopsis
	Description

	9.1.8. date
	Synopsis
	Description

	9.1.9. error functions
	Synopsis

	9.1.10. etime, dtime
	Synopsis
	Description

	9.1.11. exit
	Synopsis
	Description

	9.1.12. fdate
	Synopsis
	Description

	9.1.13. fgetc
	Synopsis
	Description

	9.1.14. flush
	Synopsis
	Description

	9.1.15. fork
	Synopsis
	Description

	9.1.16. fputc
	Synopsis
	Description

	9.1.17. free
	Synopsis
	Description

	9.1.18. fseek
	Synopsis
	Description

	9.1.19. ftell
	Synopsis
	Description

	9.1.20. gerror
	Synopsis
	Description

	9.1.21. getarg
	Synopsis
	Description

	9.1.22. iargc
	9.1.23. getc
	Synopsis
	Description

	9.1.24. getcwd
	Synopsis
	Description

	9.1.25. getenv
	Synopsis
	Description

	9.1.26. getgid
	Synopsis
	Description

	9.1.27. getlog
	Synopsis
	Description

	9.1.28. getpid
	Synopsis
	Description

	9.1.29. getuid
	Synopsis
	Description

	9.1.30. gmtime
	Synopsis
	Description

	9.1.31. hostnm
	Synopsis
	Description

	9.1.32. idate
	Synopsis
	Description

	9.1.33. ierrno
	Synopsis
	Description

	9.1.34. ioinit
	Synopsis
	Description

	9.1.35. isatty
	Synopsis
	Description

	9.1.36. itime
	Synopsis
	Description

	9.1.37. kill
	Synopsis
	Description

	9.1.38. link
	Synopsis
	Description

	9.1.39. lnblnk
	Synopsis
	Description

	9.1.40. loc
	Synopsis
	Description

	9.1.41. ltime
	Synopsis
	Description

	9.1.42. malloc
	Synopsis
	Description

	9.1.43. mclock
	Synopsis
	Description

	9.1.44. mvbits
	Synopsis
	Description

	9.1.45. outstr
	Synopsis
	Description

	9.1.46. perror
	Synopsis
	Description

	9.1.47. putc
	Synopsis
	Description

	9.1.48. putenv
	Synopsis
	Description

	9.1.49. qsort
	Synopsis
	Description

	9.1.50. rand, irand, srand
	Synopsis
	Description

	9.1.51. random, irandm, drandm
	Synopsis
	Description

	9.1.52. range
	Synopsis
	Description

	9.1.53. rename
	Synopsis
	Description

	9.1.54. rindex
	Synopsis
	Description

	9.1.55. secnds, dsecnds
	Synopsis
	Description

	9.1.56. setvbuf
	Synopsis
	Description

	9.1.57. setvbuf3f
	Synopsis
	Description

	9.1.58. signal
	Synopsis
	Description

	9.1.59. sleep
	Synopsis
	Description

	9.1.60. stat, lstat, fstat, fstat64
	Synopsis
	Description

	9.1.61. stime
	Synopsis
	Description

	9.1.62. symlnk
	Synopsis
	Description

	9.1.63. system
	Synopsis
	Description

	9.1.64. time
	Synopsis
	Description

	9.1.65. times
	Synopsis
	Description

	9.1.66. ttynam
	Synopsis
	Description

	9.1.67. unlink
	Synopsis
	Description

	9.1.68. wait
	Synopsis
	Description

	9.2. VAX System Subroutines
	9.2.1. Built-In Functions
	%LOC(arg)
	%REF(a)
	%VAL(a)

	9.2.2. VAX/VMS System Subroutines
	DATE
	EXIT
	GETARG
	IARGC
	IDATE
	MVBITS
	RAN
	SECNDS
	TIME

	Interoperability with C
	10.1. Enumerators
	10.2. Interoperability with C Pointer Types
	10.2.1. c_f_pointer
	F2003
	Syntax
	Type
	Description
	Example

	10.2.2. c_f_procpointer
	F2003
	Syntax
	Type
	Description
	Example

	10.2.3. c_associated
	F2003
	Syntax
	Type
	Description
	Return Value
	Example

	10.3. Interoperability of Derived Types

	Contact Information

