[Compilers and Tools

=2

_,Z.

TABLE OF CONTENTS

o Y 2T T T XXiv
AUGIENCE DESCIIPHON. ... vttt ettt ettt b bt e e a bbbt s s s e st e b bt s s XXiv
Compatibility and Conformance t0 STaNAArGS............coeriiir e XXiV
OFGANIZALION. ..ottt ettt bbb e s bbb bbb bbb bbbt bbbttt XXV
Hardware and SOftware CONSITAINES...........v ettt ettt XXVi
CONVENTIONS.cvo vtttk bbbt XXVi
REIAtEA PUDIICAHIONS. ...ttt ettt ne st nns et esnnas Xxvii

Chapter 1.Language OVEIVIEW........c.cccururemesssressessssesessssessessssessssssssssessssesssssssesss s s sss s 1
1.1. Elements of @ Fortran Program URiL.............c.ooec sttt 1

111, FOMran SEAEMENES.......cciiiece ettt bbbt 1
1.1.2. FIEE @Nd FIXEU SOUCE.......cuieiriiiieisciii ettt 1
1.1.3. SEAIEMENT OFUBIING. ... et bbbt 2
1.2. The FOrran CharaCter SEL.........ccveiirieicirieeete sttt 3
1.3, Free FOrM FOMATING.c.euiriereei ettt 4
1.4, FIXEA FOMMAMING. ...ttt et bbb s e bbbt a s ettt s s s s 4
1,41, COlUMN FOMMAING. ...ttt 5
1.4.2. Fixed FOrmMat LaDEl FIBIG. ...ttt 5
1.4.3. Fixed Format ContinUation FIEl..............ov ittt 5
1.4.4. Fixed Format Statement FIeld.........cooiirecec e e 5
1.4.5. Fixed Format Debug StatemeNts.........c.ciiiiriicic 6
1.4.6. TAD FOMMATING......c.oieiiieieiieirercr e 6
1.4.7. Fixed Input File FOrMAt SUMMAIY........coiuiiriiirieiiisiirieisse sttt ss s s 6
1.5. InClude FOMran SOUMCE FIlES........iiieriicrice ettt 7
1.6. Components Of FOrran StatEMENLS............ccccuiiviiiicieice et 7
1.6.1. SYMDONC NAMES......coiieiieice bbb 7
I =0 (=TS TSR TTTRRP 8
1,71, FOMMING EXPrESSIONS.covrieuireirieesetieeeseietes ettt bbb 8
1.7.2. EXPression PreCeaENCE RUIES..........cciuiuiiiieieiit ittt 8
1.7.3. ArtMELIC EXPIESSIONS.cveeiieeireeieis ettt sttt ses st sna st s et snnnas 9
1.7.4. Relational EXPrESSIONS.....c.cviviiiiieecereeieisieisisisese ettt sttt se e st s et ettt st e e s st s s es s e e e sene 11
1.7.5. LOGICAI EXPIESSIONS.vuivueieiieeieieieesetrttee ettt bbbt bbbttt 11
1.7.68. CharaCter EXPIrESSIONS......c.cuivuiieiircreiiretnissetsisssessssssstss et st sa st s s st bbb s s b st s st s et s s et s st s snsesenas 12
1.7.7. Character CONCAENALION.c.c. ettt es ettt 12
1.8. SYMDONC NAME SCOPE......cuirieiieiciriieiiir ettt bbb 12
1.9, ASSIGNMENT STAIEMENES......cvivieicieieies ettt 13
1.9.1. Arithmetic ASSIGNMENL. ..o b 13
1.9.2. LOGICAI ASSIGNMENL.......eiieiiriiietrieter ettt bbbttt 13
1.9.3. CharaCter ASSIGNMENT..........c ittt bbbt bbbt 14
110, LISHNG CONMIOIS.....cuiiiviitcteiicte ettt ettt b bbb bbb bbb s bbb bbb sttt s st b s 14
111, OPENMP DiFECHVES. ...ttt ettt es ettt s ettt et enset e 15

PGI Fortran Reference Guide i

Chapter 2.FOrtran Data TYPES........oerrremenmsremessssessesss s s s s s s s 16

2.0, INUNSIC DA TYPES.evcviieiceseiei ettt bbb 16
2.0, KING PATAMELEL........cviiiieicireeste ettt bbb 16
2.1.2. Number of Bytes SPECIfICAtION.ceuriieeeieiere et 17

2.2, CONSEANTS......cviteteteieiii ettt et b bbb b bbb bbb bbbt bbb bR R bbb b bbb sttt et et ettt 19
2.2.1. INTEGET CONSIANES......vvveiicieiee ettt 19
2.2.2. Binary, Octal and Hexadecimal CONSIANTS...........ccoviruriirniicercee et 19
2.2.3. REAI CONSLANES.coiviviitiieiiete sttt bbb bbb s e b b s bbb bbb st bbb s et b s et s 20
2.2.4. Double PreCision CONSIANES...........cccuiuiuiiiicieiiecccctcie ettt bbbt bbb 20
2.2.5. COMPIEX CONSIANES.......oucveviiriicietcte ettt b bbb bbbttt s bbbt et na 21
2.2.6. Double COMPIEX CONSLANES.c.ovrrrerieeeirieieireees sttt ees e se s es s e 21
2.2.7. LOGICAI CONSIANTS.ocviiviiiiie ittt s bbb bbb bbb bbb nas 21
2.2.8. CharaCter CONSIANES.........c.viiiccecicte ettt bbbttt bbbt bbb s s s 22
2.2.9. Parameter CONSIANTS.......ccvviuriieieerie ettt 22

2.3, SHUCKUIE CONSIIUCIONS. ..ottt bbbttt bbbt bbb s bbbt b s s s 22

2.4, DEMVEA TYPES.....viiireetieietstiei ettt ettt ettt bbb bbb 24

2.5. Deferred TYPE ParamMELETS........cveuiuriieiriiseieietseiet sttt sttt sttt ettt st s 25
2.5, TYPEA AlIOCAHION. ..ottt 25

2.6, AITAYS. ...ttt ettt et bR £ R E AR R R AR £t R b S E bbbt 25
2.6.1. Array Declaration EIEBMENL..........coiiiiriiirie bbbt 26
2.6.2. DEfErred SNAPE AITAYS........cviviviieiiieieiete ettt b sttt a bbb bbb bbb s bbb s b 26
TR S 1000 o] TP 26
2.6.4. CharaCter SUDSIIING........cociiiiiiieceicts ettt et a bbbt s bbb st s naas 27
2.6.5. Array CONSIIUCION SYNEAX........eviierieiiieieiieiei ettt 27

2.7. Fortran POINErS @nd TargelS..........oveeururiiiirisiriieieeree ettt se ettt s sttt s bbb s s s s serenis 28

2.8. Fortran Binary, Octal and Hexadecimal CONSIANS.........c..ocururiirireicre e 28
2.8.1. Octal and Hexadecimal Constants - Alternate FOMMS.........coovivniierieers e 28

2.9, HOIETiIN CONSIANTS........cuivcvevcicicceeecc e bbb bbbt b bbb s bbbt b s s s 29

210, SHUCKUIES ..ottt ettt et b bbbt e s e bbb b bbb ee s s b b e b e bbb s s s e sn s et et et et bbb snnanaesetis
2.10.1. Records
2.10.2. UNION and MAP DECIAratiOnS............ccoueueveriririiiiieieieiciereiete ettt ss sttt be bbbt sn s besenans 32
2.10.3. Data INHAlIZAtHON.c.cveveviisiciciecccce ettt bbbt 33

211, POINIEI VATADIES........coiiececectctee ettt bbb bbb bbbt b bt st bbb bnas 34
2110, RESHICHONS......cececvttciesi ettt b bbb bt e r bbb a et s e e neaetenes 35
2.11.2. POINTET ASSIGNMENT. ..ottt bbb 35

Chapter 3.FOrtran STat@MENES...........oceovererensrrerener e sss s ss s s s sesse s s sse s s s s s s sessessssessens 36

3.1, Statement FOMMAt OVEIVIEW.............oiiecicieieicicciseeee ettt bbbt ettt et bbbt st ettt b s en s n s senis 36
3.1.1. Definition of Statement-related TEMMS.........cviiiriiire et 36
3.1.2. 0rigin Of SAEEMENT........cviieiieee bbb 36
31,3, List-related NOTALION.cocviiceccce ettt bbbt ettt bbbt s s st nas 37

3.2. Fortran Statement SUMMANY TaDIE..........ccoviiririiriree st 37

3 3L ACCEPT ..t R bbb AR AR bR bRttt 42
- (=Y 1o TP T T TTSTRPRO 42

PGI Fortran Reference Guide iii

EXAMPIES ...ttt R AR E et RSt ne e s et 42
NON-Character FOrMat-SPECITIET........cvivivicieiirictcce et bbbt 42
SE AlSD ...ttt R bR RS E e R AR R £ AR e SR RR R AR e R R s At s et esna e ennis 42
3L, ARRAY ...ttt b1 b s bR AR bR AR bR R AR b bbbt en 43
CMPF ettt 8RR R R R R R R 43
YN 1ttt E R h £ E R bR bR bbbt 43
)T ol oo 3T TTTTTRPP 43
EXMPIE ...t 43
S AlSO....eeiiiiiettie ettt 44
K TR = 2 I =TT 44
F77 @XEBNSION.cveeeeeie et s bbbt 44
SYNEAX. .ttt bbb E bbb bbbt en s 44
)T o 0o T TTSTT 44
EXAMIPIE. ..o bbb b bbbt A R b bbb bbb st ettt et nen e 44
318, DECODE........coooi ittt ettt ettt ettt bbb bbb bbb bbb bbb 44
F77 @XEBNSION.eieeeeeiee ettt s bbb bR E bR bbbttt 44
31 - SO OO OO O O POO PR ORPT PR 44
NON-Character FOMMAt-SPECITIEN.........ccviiuiieiiecte ettt bbbt bbb aes 45
ST o TSR 45
3.7. DOUBLE COMPLEX ...t ttitiettietieietssieisetssieeetssse ettt ses sttt ettt ettt ettt et en et n st entns 45
= T o PR 45
31 OO P TP 46
SYNEAX EXEBNSION. ...ttt 46
DT o 0o TP 46
EXAMPIES ...ttt f SRR R R E A SRS e et n s 46
SE AlSD....e.eeieeiieeieit ettt et E et RS e R AR e AR bt b R b nnis 46
3.8. DOUBLE PRECISION......coituiiitrisieieriseesiesissesssssseessssssesssss s s st s ssssssssssssasssssssssssssssasssssssassessssassssssessesnsassesnsns 46
F 0.ttt bbb R b SRR bR RS R R bR R Rt b st et 47
L1 - SO OU TR ORSTRORTO 47
SYNEAX EXEBNSION. ...ttt 47
)T ol oo 3T TTTTTRPP 47
EXMPIE ..o bbb 47
3.9, ENCODE.......ccooieteieetseie ettt ettt bbb 47
= T o o OO POPTTTRTT 47
1= OO P TR 48
NoN-Character FOMMAt-SPECITIEN. ..o ettt ettt sna et nnen 48
S AlSO.. .ttt 48
310, END MAP......oooeeeiieiiteiseietes ettt s8££ AR R R Rt 48
- (=T T PP TS U SSSTTSSTT 48
31 - SO PP ORPTT ORI 49
DIBSCIIPHON. ...ttt bbb 49
EXAMIPIE. ..o b bR e AR A bbb bbb s bbbttt n s 49

PGI Fortran Reference Guide iv

=) TS o OO POV 49
16 PP P 49
DESCIIPHION. . .cv vttt b bbbt bbb R bbbt e R b s e AR R bbb b bbb n Rttt bt nan e 49
312, END UNION....citiceeiiecieiseete sttt st st ettt 49
F77 @XEBNSION. ...ttt s8R ARttt 49
YN 1ttt E R h £ E R bR bR bbbt 49
)T ol oo 3T TTTTTRPP 49
343 INCLUDE ... ettt s8££ e e st et ens et e e 50
F77 @XEBNSION. ...ttt bbb bR Rttt 50
SYNEAX .1ttt E R h R E R R bbb bbbt 50
oy 1] 0] TP 50
B4, MAP. ..ottt RS R R R R ARt 51
FTT @XIBNSION. ... oottt 51
SYNMEAX. 11ttt E bbbt 51
DIBSCIIPHION. ... bbb 51
EXAMIPIE. ..o A bR E b e R AR bbb bbb s e bbbttt n s e 51
315, POINTER (CraY)..evveeeeeiieeriisisineseeeisesesesssastsessesesese st sessssssssessssss s st s sssssssssassssssssessesesssssssssssssessnssesnssesesassesesnes 52
F77 @XEBNSION. ...ttt s8££ bR e AR bbbt 52
YN 1ttt f bR bR bR bR bbbt 52
1] 0] LY TPTTRPP 53
][40 0 PP 53
318, PROTEGCTED......coetttitieiiestieittsese ittt ees s st 5 b8 s bbbttt 53
F 2003ttt e AR £ AR AR RR SRS A £ R R AR AR SRR R e R s AR s A s e et een R s nneen 53
1 OO P TP 53
LTS 40 (1o} USSR 54
EXAMPIES. ... 54
317 RECORD.......coitiieitietieieteese sttt ettt s st s8££+ R s R bbbt 54
= 1o TP 54
L1 - SO OU TR ORSTRORTO 54
DIBSCIIPHON. ...ttt bbb 55
EXAMIPIE. ..o et A et A AR bbb bbb s ettt et n s 55
3.18. REDIMENSION......ccctiiiietreeteies ettt ettt es et ne e s et s s b e e et ee st s e e 55
F77 @XEBNSION. ... vttt e bbb bR bbb bbbt 55
SYNEAX .1ttt R E R bbb bbbttt 55
ey 1] o)L TP 56
T 1 TR 1 TP 56
BT bR R R RS R R R R R R AR R b 56
SYNMEAX .1ttt E R E R bbb R bbbt 56
AEINAIE RETURN......ooiiiiii ettt ettt e ettt s e 56
EXAMIPIE. ..o b bR E bR R bbb b bbb s b E ettt n s e 56
3.20. STRUGCTURE......coeitttetstieieirists ettt et s sse ettt e et en s s 57
F77 VAX EXEBNSION. ...ttt ettt s b s R b bbbt 57

PGI Fortran Reference Guide v

LTS 40 (1o} ST ST 57
B2, UNION . bbb 58
=) TS OO PSP O ST EUU T TT 58
YN 1ttt E R bR bbbttt 59
DESCTIPHION. ...ttt b bbb bbb bR A bbb R s s R AR bbb bbb ettt b s s 59
322, VOLATILE. ...ttt ettt 60
F77 extension (STAIEMENL).......ccoiiiirierceece bbb 60
F2003 (QHIDUE). ... e e ceeeeereeeereereereese sttt ettt 60
MBI 11ttt ettt h bbb bbb AR bR b E bR bbb bbb s bbb s b 60
VOIALIIE ABFIDULE. ...ttt ettt ettt en 60
VOIBLIIE SEAIEMENL........eieieceircec bbb 60
DTS4 (1o} OO TTTT 60
Volatile AHMDULE EXAMPIE........ciieiiiceeiie ettt bbbt nen 60
Volatile Statement EXAMPIE.coirree ettt ettt 61
323, WWAIT ettt 61
F2003.....ceeeeeeeeeee sttt b b 61
31 - SO OO OO O O POO PR ORPT PR 61
DESCTIPHION. ...ttt ettt bbbt bbb s e R A bbb R R s AR b bbb bbb st bbbt nen e 62
EXAMPIES. ...ttt bbb R SRR 62
LT B o 4 Ty BV)T 63
4.0, AITAY TYPES. oottt eb bbb s8££ R 63
4.1.1. EXPlCIE SNAPE AITAYS.....ovviveiiecteieieie ittt ettt e bbb e b bbb bbbt s st s st an s tnn 64
4.1.2. ASSUMEA SNAPE ATTAYS. .. covrieriieerieiieeeeeiee ettt es bbb bbb bbb bbb 64
4.1.3. DEfErred SNAPE AITAYS......civeveiiriieiiiieteieie sttt et bbb s st b bbbttt b s et sen 64
414, ASSUMEA SIZE ATTAYS. ... cevreeieeerieriteesetstiee ettt bbb s bbb s bbb 64
4.2, AITAY SPECITICALION. ..ottt bbbttt 64
4.2.1. EXPlICIE SNAPE AITAYS......ceieeeieeeeieeieiee ettt s ettt bbbt enneeen 64
4.2.2. ASSUMEA SNAPE ATTAYS. .. covrieeresieiieiseireieeseeseseeeeses et es et et es et s bbb s st s b s bbbt 65
4.2.3. DEFEITEU ShAPE AITAYS......oivrieiieerieriseiseiesseeeessseeeesss e sss s es s es st s b s s s b s et s b s b s 65
4.2.4. ASSUMEA SIZE ATTAYS. ... coerieeeeerierieeesetreieesetses ettt eb s eb s b s b st b 888 s b st 65
4.3, AIray SUDSCIIPES @NG ACCESS. ... vuieeeriiiiniieistiessetssies ettt sstes ettt s bbbttt s bt s bt s et es et enbensebs 65
4.3.1. Array Sections and SUDSCHPE THPIELS.........coueeriiic e 65
4.3.2. Array Sections and VECOr SUDSCIIPLS........ccvviueviiiieiictceecsi sttt naes 66
4.4, ATAY CONSITUCIOTS. ..ottt bbbt 66
Chapter 5.INput and OUEPUL.........cocerirercereresse s 67
5.1, File ACCESS MEINOUS. ...ttt es et eee et e e enneeen 67
5.1.1. Standard PreconneCted UNILS..........cvceeecriiiciiesssses et 68
5.2. Opening and ClOSING FIIES.........cururiirrieeeseeiereeis sttt bbbt 68
5.2.1. DIFECE ACCESS FlES......vuiieiicirieicie ettt sttt as bbbt snnas 68
B.2.2. ClOSING @ Fil..uvuiviuiirieiiieiitsiieiite ettt sttt s bbb 69
5.3. Data Transfer StatEMENTS.........cciiieicriccn st 71
5.4, Unformatted Data TraNSTET........cciuiririiirieisits sttt st 71

PGI Fortran Reference Guide Vi

5.5. FOrmatted Data TraANSTEN.........c.cuieieii ittt ettt bbb as et sttt ettt st b tenens 72

5.5.1. Implied DO List INput OUEPUL LISt........ovieeeeiericee et en 72
5.5.2. FOrmat SPECITICALIONS......civiieiiiiiericte sttt bbbttt e 72
5.5.2.1. A Format Control — Character Data............cocerieiuriercirrce et 73
5.5.2.2. B Format Control — BiNary Data..........cccrueuiriririririsecse e 74
5.5.2.3. D Format Control — Real Double Precision Data with EXponent...........ccccccueceviceiiecreicesceeeeee e 74
5.5.2.4. d Format Control — Decimal SPECIfIEN.........c.cciieiiiririirceere e 75
5.5.2.5. E Format Control — Real Single Precision Data with EXponent...........cccocovrneninnsninnsinnnescesencenns 75
5.5.2.8. EN FOrMat CONIOL.... ...ttt sttt 75
5.5.2.7. ES FOMMAt CONIIOL.......vuivieiriiiieieisiisiesets sttt ss s 76
5.5.2.8. F Format Control - Real Single Precision Data.............coereriinieriiiesese e 76
5.5.2.9. G FOMMAL CONMOL ..ottt bbbttt 76
5.5.2.10. | Format Control — INtEGEr DAta..........cvueeiuieriiriiec e 76
5.5.2.11. L Format Control — LOgiCal Data...........cccerieuiiiiriieiiesssicss ettt ss s sssess s 77
5.5.2.12. QuOte FOrMAat CONIIOL. ..ottt 77
5.5.2.13. BN Format Control — Blank CONtrOL...........cccvueirriiisirieesieissseseet s sss s 77
5.5.2.14. H Format Control — Hollerith CONIOL...........ccoueuiiriririscsissese s 77
5.5.2.15. O Format Control OCtal VAIUES........ccrviereririericirsecrs st sses 78
5.5.2.16. P Format Specifier — Scale CONrOL...........cccoviuiviiieiiiceceece ettt 78
5.5.2.17. Q Format Control - QUANTIEY...........crieriiuriiiriec e 79
5.5.2.18. r Format Control - ROUNGING.........c.ccviiueiicieiece ettt s 79
5.5.2.19. S Format Control = Sign CONOL........c.euiuiimiuieriirirencise e 79
5.5.2.20. T, TL and X Format Controls — Spaces and Tab CONtrolS...........ccccovueuerveeeiicrenecnsse e 79
5.5.2.21. Z Format Control Hexadecimal ValUES..........ccurirururiierirceeneees et 80
5.5.2.22. Slash Format Control / — End of RECOM.........eviuriiriiiririsceeise s 80
5.5.2.23. The : Format Specifier — Format Termination.............cceurieriirnicncesreessees e 81
5.5.2.24. 8 FOrMAt CONOL.........ooivieciciiicieie ettt eenens 81
5.5.3. Variable FOrmMat EXPrESSIONS.......cciviiiiiiiicicietetets sttt bbbt b bbb 81
5.6. Non-advancing INPUt @nd OULPUL..........c.cveuierireiiirieiie bbb 81
5.7, List-direCted fOrmMatling........oveveuriuriiiiesiecis et 82
B.7.1. LISt-AIrECEA INPUL.....eoctiieecie et 82
5.7.2. LISt-0ireCted OUIPUL.......cvitiiiieeee ettt bbbttt s s 83
5.7.3. Commas in EXIEMAl FIEIA..........ovieeeceece ettt 84
5.7.4. Character ENCOdiNG FOMMAL.........coccuiiiiieiics ettt bbb bbb 84
5.8, NGMEIIST GrOUPS.ceeeeeeeerieees ettt e s ettt st ne et eens 84
5.8.1. NAMELISE INPULL......eeeeecccctee ettt bttt e s a s s bbb 84
5.8.2. NAMEIST OULPUL. ...ttt es sttt b s ns e 85
5.9. RECUISIVE INPUYOULIDUL.......cveviictcies ettt sttt 85
5.10. Input and Output of IEEE Infinities and NaNS...........cccoeriiiiiiiccee et 85
5101, OUIPUE FOMMAL. ...t 86
5.10.2. INPUL FOMMAL........ooccectcccee ettt bbbttt s s bbbttt s 86
Chapter 6.FOrtran INtriNSICS. ..o s s p s st 87
B.1. INMTNSICS SUPPO.......oieiteiiectietcte ettt ettt et bbb bbb b s bbb bbb s bbb bbbt st 87

PGI Fortran Reference Guide vii

6.1.1. Fortran 90/95 Bit Manipulation Functions and SUBIOUEINES...........cccceeiieeiiiieiees s 88

6.1.2. Elemental Character and Logical FUNCHONS. ..o 89
6.1.3. Fortran 90/95 Vector/MatriX FUNCHONS. ..o s 90
6.1.4. Fortran 90/95 Array RedUCHON FUNCHONS..........ccciviiirieiieiniieisisse et 90
6.1.5. Fortran 90/95 String CONSrUCHON FUNCHONS.........ciiuiiiiiiieir e 91
6.1.6. Fortran 90/95 Array Construction/Manipulation FUNCHONS..........ccccevirieiniinieienieesce e, 91
6.1.7. Fortran 90/95 General INQUIrY FUNCHONS.........c.euiiriiirieieirie et 92
6.1.8. Fortran 90/95 Numeric INQUINy FUNCHONS........c.ccvieiiinieieirce st 92
6.1.9. Fortran 90/95 Array INQUIrY FUNCHONS.........couiuiiiiici e 93
6.1.10. Fortran 90/95 SUDIOULINES.........c.euiiieiieiriieiieistieie sttt 93
6.1.11. Fortran 90/95 Transfer FUNCHONS.coiuiiiiiececee bbb 94
6.1.12. ArthMETIC FUNCHONS.......cociiiicic e 94
6.1.13. Fortran 2003 and 2008 FUNCHONS.........c..ciuriieiririeireice et 97
B.1.14. MISCEllAaNEOUS FUNCHONS......ccucvuiiririereiscieii ettt 98
B.2. ACOSD......oeeeieie ettt RS £E e RERE e e 98
OO TS 98
Y NMOPSIS. 11t tvevutteieteee ettt ettt ettt R bR E RS e n bbbttt s 98
ATGUIMENTS. ...ttt s bbb s bbb bbbttt 99
REIUIM VAIUE. ...ttt bbb 99
8.3 AND ...ttt E R AR n et 99
F77 @XEBNSION. ...ttt bbb bR ettt 99
SYNMOPSIS. ...ttt R R b s bbb 99
o 1041] 3PP 99
RETUM VIUE. ...ttt s s b e et e et et e s een et en s s 99
B4, ASIND. ...ttt 99
OO OSSOSO 99
SYNMOPSIS. ...ttt ettt E RS e bbbt 99
ATGUIMENLE. ..ttt es ettt et ee s £ 2R b4t ee 8 b 42 E e £ A ee s b e R b s At e et ee s 99
RETUMN VAIUE......coo et 99
B8.5. ASSOCIATED.......oueuueiuiriieieeie et eese bbb bbb 100
F 0. ettt f £ RS R AR E bRt 100
Y NMIOPSIS. 111t etattesetseee sttt ettt E Rt 100
ATGUIMENTS. ...ttt E bbbt 100
REIUM VEIUE.......eoee bbbttt 100
B.8. ATANZD........ooeeice ettt ettt ettt s et s £ 8282 E e AR R £ R R bRt 100
BT bR 100
SYNMOPSIS. 11ttt etes ettt E R bbb 100
ATGUIMENES. ..ottt ettt sttt s st s e ee s s st E e b e st st n Rttt 100
REIUM VAIUE....... ettt ettt st 101
B.7. ATAND.......ooeeieee ettt ettt s8££ttt 101
e OO OO RRTOO 101
SYNMOPSIS. .t tteeretseeees ettt E AR E AR R Rt 101
ATGUIMENLE. ...ttt s8££ bbbt b Rttt 101

PGI Fortran Reference Guide viii

= (01 AT 10T TR 101

B.8. COMPL.......o vttt ettt s eb st b st 101
FTT @XIBNSION......c.oceireiiet ettt bbb bbbt 101
RS0 05T 101
ATGUIMENTS. ...ttt E bbbt 101
REIUIN VAIUE.......ooiccc ettt bbb bbb bbb e bbbt et bbbt sn e nenetan 101

B.9. CONUG.......otiiieiciet ettt bbbt bbb b8 s bbb R bR bbbttt 102
T RS R R 102
SYNMOPSIS. 1.t vreereer ettt E AR 102
o 10411 | OO PR TTRRPPTRTTTOT 102
REIUIN VAIUE........oiicecte ettt ettt bbb e e a bbbt b b e e bbbt et bbb s snannebebena 102

B.10. COSD.....ou ittt ettt bR R bbbttt 102
T ettt RS RS Rt 102
R3] 01T TP 102
ATGUIMEBNLE. ..ttt s £ e 8 b4 E £ e e b a2 b e e £ e E e e Rt e et s e nn e 102
REIUMN VAIUE........oe ettt e et et s s s e nnnnsetas 102

8.1, DIM..oeeieieet ettt ettt ettt AR RS bR bbbttt 102
T et R SRR R AR AR bR bbbt 103
Y NMIOPSIS. 111ttt ettt ettt R R R AR Rt 103
ATGUIMENTS. ...ttt E bbb 103
REIUMN VAIUE........iiiccccc ettt bbbt s bbb a bbb bbb e bt b s e e snnenetas 103

B.12. ININT ettt b ettt b et s b s et £ et E b £ bRt b et bt E ettt 103
F77 @XEBNSION.ottt bbb bbb bbbttt 103
SYNMOPSIS. vttt ettt E bbb 103
o 1041 3PS 103
REIUIN VAIUE.......ooiecccecc et bbbt s e e bbb bbb s e e e bbb e b et bbb s s e nenebetan 103

B.13. INTB..o ettt b bbb bbb bbb bbbt bbbt 103
F77 BXEBNSION.cvvttieieeee ettt b bbb bbb e e s bbb bbb s s e bbbt e bbbt e s e a e bbbt b 103
SYNMOPSIS. c.v.ttreeretr ettt R AR R bR 103
ATGUIMEBNES. ...ttt 8 bR R bbbt 104
REIUM VEIUE......ceiee ettt ettt n e 104

B.14. IZEXT ..ottt bbb 8RR R ARt 104
F77 BXIBNSION. ..ottt ettt bbbttt b bbbt es e et b et e bbb bbb e s bbb bbbt s s s e e anbe bbb bnas 104
SYNMOPSIS. ...ttt ettt bbb bbb bbb a b s bR b SR bbb R bbb bRt st bbbt 104
ATGUIMENTS. ...t bbb 104
REIUM VEIUE........ooe bbb bbbt 104

815, JINT .ottt ettt 104
FTT @XIBNSION.....ce.ceeseiiiets ittt bbb bbbt 104
SYNMOPSIS. 11ttt ettt R bbb 104
ATGUIMENES. ...ttt bbb 104
REIUIN VAIUE........oiicccctce ettt s s a bbbt b s ee bbb e bbb b s s sn s e nebetan 104

B.18. UNINT ..ottt s bbb s s s bbb bbbttt 105
- (=Y 1o OO TP TP 105

PGI Fortran Reference Guide ix

R3] 0T OPTPPTTPRR 105

ATGUIMENTS. ...t bbb 105
RETUMN VAIUE......cooe s 105
B.17. KNINT ..ttt st s s s s 105
= T TR 105
Y NMIOPSIS. 111t vuttesetsete ettt E R RS R R AR Rt 105
ATGUIMENTS. ...t E 18R 105
REIUM VEIUE.......oe bbb bbbttt 105
B.18. LEADZ.......ooieeeeietsiteetstt ettt s st bR R AR bbbt 106
F2003... .ottt £ £ R R R bR 106
SYNMOPSIS. 11ttt ettt ettt E R bbb 106
o 1041 3T 106
RETUM VAUt ete e e e t e e e e e s e sttt ee et enn e 106
T4 010} 3OS 106
EXAMIPIES. ...t a bbb bbb ARt bbbt b s s s e s R bbbt et b s n st 106
8.1, LSHIFT .ottt ettt bt bbb b bbb a bR bbb bbb b bbb 106
F77 @XEBNSION. ...ttt bbb bbb bR et b bbbt 106
SYNMOPSIS. vt treeretee sttt E AR R bbb 106
ATGUIMEBNES. ...ttt s R bRt Rttt 107
REIUM VaIUE......eiee sttt n e 107
B.20. OR...eeet ettt E bR E bbbttt es 107
= T o PP TRRR 107
RS0 0T OTT PR PRRRO 107
ATGUIMENTS. ...t 107
REIUIM VEIUB.......eo bbb bbbt 107
B.21. RSHIFT ...ttt ettt £ bbb E et n bt n bbbttt 107
- (=T T PSPPSR 107
RS0 0TSPTSRO 107
ATGUIMENTS. ...ttt 107
REIUM VEIUE....... bbbttt 108
B.22. SHIFT ..ottt ettt ettt ettt bbbt et bbb bbb s bR bttt bbbttt 108
FT7 @XEBNSION. ...ttt bbb bbb bbbt 108
SYNMOPSIS. .11t etreesee ettt E AR 108
ATGUMENES. ...ttt ettt bbb e e s s bbb s s e e e s s R bbb bbb s e ARt bbb s s s e s Rttt st 108
REIUM VEIUE.......eoeee ettt ettt en e 108
B.23. SIND...... ettt ettt s bR E SRR 108
T ettt RS RS Rt 108
R3] 01T TP 108
AATGUIMEBNLE. ..ttt e E £ s e E £ 428 b 45 e b ee e b e £ b e b £ E s ee s b b e b s e s bt e ne b s 108
REIUMN VAIUE........oeee ettt s st s bbb s s ee e nnsesntas 108
B.24. TAND.....co ittt ettt ettt s bR AR R R SRRttt 109
T e bR A R R AR bR bbb bbbt 109
Y NMOPSIS. 111 vtatteietsete ettt R R R AR R 109

PGI Fortran Reference Guide X

o 10 41T | OO TR 109

RETUM VAIUE....... ettt E bbbttt s et 109
B.25. XOR....oetttei ettt 109
F77 @XEBNSION. ...ttt ettt s s R e n st s bttt 109
SYNMOPSIS. c.v. vttt ettt E AR Rt R e 109
ATGUIMEBNES. ...ttt s s bbb bR E bR bbbkt 109
REIUM VEIUE......ceiee ettt ettt n e 109
B.26. ZEXToeiieeeieeieestineeseisei ettt 109
= T TP TRTRT 109
SYNMOPSIS. ...ttt ettt bbb bbb bbb st R bbb AR b bbb Rt bbb bbbt 110
ATGUIMENTS. ...ttt bbb 110
RETUMN VAIUB......cooee e 110
B6.27. INEHNSIC MOTUIES. ... ettt ee ettt s st ennnen 110
6.27.1. Module IEEE_ARITHMETIC........coiiiiirireirireer et 110
6.27.2. IEEE_ARITHMETIC DErVEA TYPES.....ceeereeerreeereeeereeseeseiseeseisessessesssssssssesessssesssssesssssessessessesssssessassassasenns 110
6.27.3. IEEE_ARITHMETIC INQUINY FUNCHONS. ..ottt ettt 11
6.27.4. IEEE_ARITHMETIC Elemental FUNCHONS.........ccovviriurieriiiiinisissisiessis e 112
6.27.5. IEEE_ARITHMETIC Non-Elemental SUDIOULINES..........cceveveiiiiiieeetceceeecse ettt 114
6.27.6. IEEE_ARITHMETIC Transformational FUNCHON...........ccoiiririininescesess s 114
6.28. Module I[EEE_EXCEPTIONS.........coiureeeeireisireeseieessessesseesesessesssssessssss e sses st essessessessesssssssssssssssssessessessessnns 114
6.28.1. IEEE_EXCEPTIONS DErVEA TYPES. ..o cvuvrriiiiiniieineisiseiseiesseies e 114
6.28.2. IEEE_EXCEPTIONS INQUINY FUNCHONS........ccoumiiieereiriecieicieiin ettt 115
6.28.3. IEEE_EXCEPTIONS Subroutines FUNCHONS. ..ot 115
8.29. IEEE_FEATURES.........coteieeeeeie ettt ettt s8££ttt 117
6.29.1. IEEE_FEATURES DEIVEA TYPE.....cvucvuivreriiiiieiniessissiseissiseiseses e 117
6.29.2. IEEE_FEATURES Named CONSIANS.......c.cvoiuiureieeirieieireeie ettt esans 117
6.30. MOAUIE 1SO_C_DINGING......ciiririeeiiircieirieis ettt sttt ettt 118
6.31. MOAUIE ISO_FOMIAN_BNV....... ettt ettt 118
Chapter 7.0bject Oriented Programming.........ocrmensmsssness s s st sessssss s sessssssses 119
A 12127 =T OSSOSO 119
7.2, POIYMOIPNIC ENHHIES. ..ottt 120
7.2.1. Unlimited PolymorphiC ENLIHES.........ccviuriierci et 121
7.2.2. Typed Allocation for Polymorphic Variables............cocieiniseceeeseeeiee e 122
7.2.3. Sourced Allocation for Polymorphic VariabIES.............cccvireueiicieiiesiecicseee et 122
7.2.4. Procedure POIYMOIPRISITL.......c.vuiuieieiiiiiseitiis ittt bbb 122
7.2.5. Procedure Polymorphism with Type-Bound ProCeAUIES........cccvviviiiceceeiesissseseeeeee s 123
7.2.6. Inheritance and Type-Bound ProCEAUES............ccvruieiriiieircis e 127
7.2.7. ProCEAUrE OVEITIAING. ... iveviieetieicieiietsisese ettt st b bbbt b st et s et s st enas 127
7.2.8. Functions as Type-Bound PrOCEAUIES..........cciruriieuriieeeireeieese ettt 129
7.3, INfOrMALION HIGING.cveerieiieice bbbt 129
7.3.1. TYPE OVEIOAING. ...vvviviririerireietseseietses ettt st st s s s bbb bbbt 131
7.4, Data POIYMOIPRISI. ..o bbb 132
7.4.1. Pointer PolymorphiC Variables...........c et 132

PGI Fortran Reference Guide Xi

7.4.2. Allocatable PolymorphiC VariablEs............ccvvcueieriirriieeceee s 133

7.4.3. SOUMCEA AIOCAHION. ... ettt s ettt ea ettt 134
7.4.4. Unlimited PolymorphiC ODJECES.........civiiiieiieisicicss ettt nnen 135
7.4.5. Abstract Types and Deferred BiNdiNGS........c.ocerrerrirrrirneein et 140
7.5, IEEE MOGUIBS. ..ottt bbb bbb bbb s b a bbbt 143
7.6, INEFINSIC FUNCHONS. ..ottt bbbttt 143
Chapter 8.0penMP Directives fOr FOtran..........cvvnnincnsnissssnessssessss s s s sessssssssssessssssens 144
8.1, OPENMP OVEIVIEW.......ceviecviisitetsicte ettt b ettt st b se bbb bbb st bbb s bbbt bbb s st n s seeas 144
8.1.1. OpenMP Shared-Memory Parallel Programming MOGEL...........cccrririinieriniiirineneseeseees s 144

T A =Y 3111 o] oo 2T 145
8.1.3. OPENMP EXGMPIE.....cooiieieriiieieieteriet ettt s es sttt ne st 146
8.2, TASK OVEIVIEW........cvireceesciieeis ettt sttt 147
TR TR - T OO 147
8.3.1. Task Characteristics and ACHVIHIES.........eveurieriirieeire e 147
8.3.2. Task SChedUIING POINES.........c.cceiiiieiiiieieei et 148
8.3.3. TASK CONSITUCE.......cvveeieiicieisicie ettt ettt b st 148
8.4. Parallelization DIFECHVES..........ceiiiueireeeieireiets sttt bbbttt 149
8.5. DireCtive RECOGNITION........ceoviiiiiieieieeei sttt 150
8.6, DIFECHVE ClAUSES.vvvuetireirciriieietste sttt ettt ettt bbbt s bbbt bbbttt b et n bt 150
8.8.1. COLLAPSE (1N)..r1evutvevietsiessetistesessstes et sstes s ss s b st bt b st b st s bttt st bbb s bt s b en s bt n st 153
8.6.2. COPYIN ([IS)...vurvereeeeeereeeenisetssietet sttt ettt ettt s 153
8.6.3. COPYPRIVATE(lISt).....cvveevrevreesserssiessessssesessssessessssessessssessessssessessssessessssesssssssessessssessessssessessnsessessssessessssessasans 154
B.8.4. DEFAULT ..ottt ettt 154
8.6.5. FIRSTPRIVATE(lIST).....vvvevreeiieiieesietseissetsete ettt sttt ettt sttt s st s st ssesnsns 154
BL8.6. TF().eurrereeeeieieteee ettt bbb 154
8.6.7. LASTPRIVATE(IISE).....vevrrvireiieeiseiiesieisissis et sssssssse st e ssss st ss st ss sttt s 155
B.8.8. NOWAIT ...ttt bbbt bbb bbb bbb bbb bbb bbbttt 155
8.6.9. NUM_THREADS ..ottt ettt ettt ettt bttt b sttt n st s 155
8.6.10. ORDERED..........cco ettt sttt bbbttt bbb bbbttt b st b et 155
B.8.11. PRIVATE ..ottt s e 155
8.6.12. REDUCTION.......couitiiiiieiitieiete ettt ettt sttt sttt b ettt bbbt ns 156
8.8.13. SCHEDULE........co ettt bbb bbb 156
8.8.14. SHARED.........cocoeiitiiieietsie ettt bttt eb bbb bbb bbbttt 157
B.8.15. UNTIED........coiiiieieieieie sttt ettt ettt ns 157
8.7. DireCtive SUMMAIY TaDIE.......cuii et 157
871, ATOMIC..... oottt bbbt 158
SYNEAX. 1ttt 158
07 o TSRS 159
8.7.2. BARRIER ..ottt bbbttt bbbttt 159
YN 1ttt R R R R R ARt 159
USBGE 1.t eee ettt bbbt E R E R AR AR £ £ AR AR R £ R bR E R bbbttt 159
8.7.3. CRITICAL ... END CRITICAL.....coctiriieiiteietietsse ettt sttt sttt st 159
- CH OSSO 159

PGI Fortran Reference Guide Xii

Example of Critical...End CritiCal dir€CHVE.........ccvrureeir ettt 160
8.7.4. CABDOACROSS........ociierieiiseiss ettt sttt bbb 160
1= GO PSP 160
0 0T3PPSR 161
USBGE 1.ttt eee ettt ettt bbb R £ R AR AR bR E bbbttt 161
8.7.5. DOL..EEND DO....ooviiiciiieictseie sttt sttt sttt bbbt bttt ettt 161
ClAUSES: ..t vvere ittt s s RS ERRRRRRRR e ER e rnEnne 162
0T oo PT TP TPPTOROOON 162
oy 1] 0] LY TSP 162
LI o3PS 162
B.7.6. FLUSH. ...ttt bbbt 163
SYNEAX. 11ttt e 163
07 o TSR 163
8.7.7. MASTER ... END MASTER.......cotiiirieiitriese sttt sttt 163
YNttt R R R R R 164
USBGE 1.ttt eee ettt es et E R AR R AR £ AR AR R bR e bbbttt 164
EXAMPIES. ... 164
8.7.8. ORDERED........coctetetiieiietstiei ettt stttk 164
SYNMEAX 1ttt R R R Rt 164
USBQE... ettt ettt sttt bbbt R AR bbb s e AR R R R AR R et s AR AR bbb s e e R Rttt et st e e e 164
8.7.9. PARALLEL ... END PARALLEL.......coitrietieisiieieietese ettt ettt ettt en s 165
R3¢ O P TP RPN 165
CIAUSES. ... ettt ettt sttt et e s s e e e e e 2R R £ e e RS E R R £ R RS A SRR e R R AR A e e e s Rt enne e s e eees 165
U= oL TSP 165
= 0 11 OO TP 166
ClAUSE USBGE.rcvueeereeciiseescie sttt es bbb s 166
8.7.10. PARALLEL DO.....oitiieicieieiieist ettt bbbttt 166
YNttt R R R R R 167
ClAUSES. ... vttt s et s8R 8RR AR R e 167
USBQE. .. ettt bR E bbbt 167
8.7.11. PARALLEL SECTIONS........cootiitiriieitietieississe sttt ettt sttt b sttt ettt nnsansenas 167
SYNMEAX .1ttt R R R 167
ClAUSES. ... vttt ettt b8 s8R R Rt 167
USBQE. .. ettt bbb bbb 168
8.7.12. PARALLEL WORKSHARE........c.cittitirtieieintieistseie sttt sttt bbbttt ssansenas 168
SYNEAX. 1ttt 168
ClAUSES........cereereee bbb 168
U= OSSPSR 169
8.7.13. SECTIONS ... END SECTIONS........coeriieirireieiri ettt sss et ses sttt sssenns 169
1TSS 169
0 0T3PPSR 169
USBGE 1+ et eee ittt ettt s bR SRR R £ AR R bR E bbbttt ne et 169

PGI Fortran Reference Guide Xiii

SYNEAX. 11ttt e 170
ClAUSES. ... vttt R R R R 170
U= TSP 170
EXAMPIES. ...t 170
L7185, TASK ettt SRR AR bR 170
SYNMEAX .1ttt R R R AR 170
ClAUSES. ... vt creisctes sttt R R ARt 171
0T oSO OTOOPTOTUPOROOON 171
RESHIICHONS. ...t bbb bbbt 172
87168, TASKWAIT ..ottt ettt ettt ettt sttt b bbbttt s bbbt s bt b s 172
R3] b OO T TP PR 172

O T3PS 172
07 o TSR 172
RESHIICHONS. ...ttt R Rt ne e 172
8.7.17. THREADPRIVATE........ooetiiiteiieiite ettt a s s bbb bbb bbbt 172
SYNEAX 1ttt AR R AR 173
USBQE. .. ettt E bbbt 173
RESHICHONS. ...t e s bbbt 173
8.7.18. WORKSHARE ... END WORKSHARE..........cccoitiitiititiiteieissie sttt ssss s sse s ss s 173
Y MEAX 1+ttt bbb bbb a bbb h bR b b s A b a b bbb bbbttt s tns 173
USBQE. .. ettt bbbt 173
8.8. RUNIME Library ROULINES.........cceeieiii ittt s nnnenas 174
8.9. OpenMP Environment Vari@bles.............crururierieiercee ettt 178
8.9.1. OMP_DYNAMIC........ccoeeieeeieicteteiset ettt eb bbbttt ettt 179
8.9.2. OMP_MAX_ACTIVE_LEVELS......c.coeiiiieieirtieiseissieietssseie sttt st st ss st ss st sse st ssssnes 179
8.9.3. OMP_NESTED........ceiiiiteititcteteiet ettt ettt b bbbttt bbb bt s bbbt n s 179
8.9.4. OMP_NUM_THREADS.........ooteiiteiieirieeteisstetee et ss s sss bt s sttt 179
8.9.5. OMP_PROC_BIND........ccstuiiritiitiieiiisistssse e ssssestsss bbb bbb bbbttt 179
8.9.6. OMP_SCHEDULE........co ittt bbbt 179
8.9.7. OMP_STACKSIZE..........coooeieiieieiiisse ettt st ss bbbt s bt 180
8.9.8. OMP_THREAD_LIMIT.....ottitieiierireiiesissieessseessessseesass st sssessss s ssss s sssss s sssssssssssssssssassssssessssassesnsassesas 180
8.9.9. OMP_WAIT_POLICY ...ttt sttt s s st s bbb 180
Chapter 9.3F Functions and VAX Subroutines............ccornmnnnssssssssssssssssssssssssssssssens 182
LI T T o 4TSRS 182
0010, DO ..t 182
SYNMOPSIS. 1.ttt bbb 183
Dot 0] o] PP 183
LI T T TSROSO 183
SYNMOPSIS. 1.ttt 183

[T=TTor 10110 o RPN 183
LSRG T T ST 183
Y NMOPSIS. 11t vvrreertte sttt R R R R R ARt 183

PGI Fortran Reference Guide Xiv

Do 0o TR 184

9.1.4. BESSEl TUNCHONS.... ...ttt ettt ettt 184
R3] TR 184
LT o3 TP 185
SYNMOPSIS. v vvreertce sttt R R AR 185
DESCIIPHION. ...ttt bbbt b b bR ARt bbb e R bbbt nen e e e s 185
LI 0o T 4o TSRS 185
Y NMOPSIS. 11t vvureiretce sttt R AR 185
DIBSCIIPHON. ...ttt 185
0.7 ClIME. bR bbbttt 185
SYNMOPSIS. c1v- vttt 185
Do 1o TSR TTTTRTRRRP 185
0.1.8. ALB...u ettt RS R s R Rttt 185
R3] TP 185
DESCIIPHION. ...ttt et bbb bbbt b bbb s e ARt bbb b s bbbttt s s e e s 186
9.1.9. EITOT TUNCHONS. ... covtieieiicieit ettt b st n bbb enas 186
Y NMOPSIS. 11t vt vartisetttts ettt R ARt 186
LS TR LR 30T =T 186
Y NMOPSIS. 11t vvreeese ittt R R R ARt 186
DIBSCIIPHON. ...ttt bbbttt 186
L b T () TSP SP PSSRSO 186
SYNMOPSIS. vttt sttt R AR 186
DT 1o PR 186
Lo 1 (- TP 187
RS0 0TSPTSRO 187
LTSy (1o} OO PU TSRS 187
00113, GBIC. vttt RS n R 187
7] 01T 187
DIBSCIIPHON. ...ttt bbb bbbt 187
0104, FIUSN. o bbb 187
SYNMOPSIS. c.v. v treeretce sttt R £ 187
DT ot oo 3PP RRTTRTRRPP 187
Lo 1 T (o PO PP TR 187
SYNMOPSIS. ...ttt ettt ettt bbb bbb s bR bbb bbb bbb a bbb bbbt ens 187
TS0 (1o} PRSP TRTTSR 188
0. 0.18. FDULC ettt bbb 188
SYNMOPSIS. 1.ttt bbb 188
LT 4010} 3OS RTRPTR 188
L T YOO 188
SYNMOPSIS. 1.ttt 188
DESCIIPHION. ...ttt bbb R bbb AR R bbb b s e Rt ettt bt n s e e s 188
0.1.18. SBEK....vuvviecviiet ettt bbb bbbttt 188
Y NMOPSIS. 11t vvrreertte sttt R R R R R ARt 188

PGI Fortran Reference Guide XV

Do 0o TR 188

0119, FBIL. ettt 189
R3] TR 189
DESCIIPHION. . ..v vttt bbb h bbb b b s R bbbt bbb st ettt bt n s e s 189

01,20, GITOT.vereeeeeseeeeee et es et es e s s s8R 8RR R 189
Y NMOPSIS. 11t vvaeeistei sttt R AR R ARt 189
DIBSCIIPHON. ...ttt E bbbt 189

01,27, GBEAIG. .ttt R bbbttt 189
SYNMOPSIS. vttt 189
DESCTIPHION. ...ttt b bbb R R R AR AR ARt s e e ARt ettt s s e e s 189

0.0.22. HAIGC...vvreveeeseteiees ettt ettt eb et bbb bbb bbb bR bbb bbbt 190

LT X T o (o RPN 190
SYNMOPSIS. vttt bbb 190
LT 4010} 3PP 190

01,24 GEICWA. ...ttt R AR R R bttt ne et en 190
SYNMOPSIS. 1.ttt R AR AR 190
DESCIIPHION. ...ttt et b bbb e bbb R bR ARt bbb s e Rt bbbt et n s e e s 190

01125, GBIV, bbb bbbt 190
Y NMOPSIS. 11t vvreeese ittt R R R ARt 190
DIBSCIIPHON. ...ttt bbbttt 190

01,26, GOLGIA. ...ttt 191
SYNMOPSIS. vttt sttt R AR 191
DT 1o PR 191

0027 GBHOG. ...ttt 191
RS0 0TSPTSRO 191
LTSy (1o} OO PU TSRS 191

0.1.28. GOIPIG. ... vttt bR R R RS R R 191
7] 01T 191
DIBSCIIPHON. ...ttt bbb bbbt 191

01229, GOUUIG. ...ttt bbb 191
SYNMOPSIS. c.v. v treeretce sttt R £ 191
DT ot oo 3PP RRTTRTRRPP 191

0.1.30. GIMEME... ettt bbbttt 192
SYNMOPSIS. ...ttt ettt ettt bbb bbb s bR bbb bbb bbb a bbb bbbt ens 192
TS0 (1o} PRSP TRTTSR 192

0.1.30. NOSINM. ..ottt 192
SYNMOPSIS. 1.ttt bbb 192
LT 4010} 3OS RTRPTR 192

0.1.32, HUAEE. .ottt ettt E bbbt 192
SYNMOPSIS. 1.ttt 192
DESCIIPHION. ...ttt bbb R bbb AR R bbb b s e Rt ettt bt n s e e s 192

LSRG TR 1T o TSP 192
Y NMOPSIS. 11t vvrreertte sttt R R R R R ARt 192

PGI Fortran Reference Guide Xvi

Do 0o TR 193

LS 7 1o o1 TP 193
R3] TR 193
DESCIIPHION. . ..v vttt bbb h bbb b b s R bbbt bbb st ettt bt n s e s 193

0.1.35, HSALY....cvurvrsceeteic it b bbb bRttt a s aen 193
Y NMOPSIS. 11t vvaeeistei sttt R AR R ARt 193
DIBSCIIPHON. ...ttt E bbbt 193

0.1.38. TNttt ettt bbbt 193
SYNMOPSIS. vttt 193
DESCTIPHION. ...ttt b bbb R R R AR AR ARt s e e ARt ettt s s e e s 193

0137, Killu. vttt et ettt 193
RS0 T T SRR 194
LS4 0 (1o} OO STTTTTR 194

0.0.38. TINK. vt R R AR 194
SYNMOPSIS. vttt 194
DIBSCIIPHION. ...ttt bbb 194

01,39, INDINK .ottt R R s 194
SYNMOPSIS. 1.t treertce sttt R AR 194
DESCIIPHION. ...ttt bbb bbb bR ARt bt bbb s a bbbt nen s e s 194

01140, JOC. .. ettt ettt ettt ettt et bbb A AR bbbttt 194
SYNMOPSIS. ...ttt ettt ettt bbb bbb h bR bR A bbb b bbb Rt bbbt tens 194
IS4 0] (1o} PR STRTSR 194

01147, THIME ettt bbbt 195
SYNMOPSIS. vttt 195
DT 0o TP 195

91142, MAMIOC. ...ttt et f e R AR E e Rk E ettt en 195
Y NMOPSIS. c1v. vttt R AR R 195
DESCIIPHION. ...ttt ettt bbbt b b bbb ARttt bbb s bbbttt n s e e s 195

911143, MNCIOCK. ...ttt R ettt nnes 195
Y NMOPSIS. 11t vvaeeistei sttt R AR R ARt 195
DIBSCIIPHON. ...ttt bbbt 195

0. 1.44 . MIVDIES. ...ttt Rt 195
SYNMOPSIS. vttt R R R 195
DS CTIPHION. ...ttt st bbb R R AR R AR bbb s e ARttt s s e e s 196

LI T TV O 196
R3] 0T TP 196
TS0 (1o} PSR 196

LI LT 0= (o TSP 196
SYNMOPSIS. vttt bbb 196
DIBSCIIPHION. ...ttt bbb 196

LI o (o O R P U ST URRPPTPRTRTTN 196
SYNMOPSIS. ...ttt R R R AR 196
DESCIIPHION. ...ttt bbb bbb bR a Rt beb bbb e Rt ettt nen e s 196

PGI Fortran Reference Guide xvii

0148, PULBNV ...ttt R AR ARttt ARt a et b 196

SYNMOPSIS. vttt bbb 197
LTS 41010} 3PP 197
0,149, QSO ettt h bbb bbb bbb bR e AR bbbt bbb s Rt ettt s 197
SYNMOPSIS. v vvreertce sttt R R AR 197
DESCIIPHION. ...ttt bbbt b b bR ARt bbb e R bbbt nen e e e s 197
LS TR o R =T o B T T TR = [o T 197
Y NMOPSIS. 11t vvureiretce sttt R AR 197
DIBSCIIPHON. ...ttt 198
9.1.51. random, Irandm, AraNAM. ..o bbb bbb 198
SYNMOPSIS. c1v- vttt 198
Do 1o TSR TTTTRTRRRP 198
0.0.52, TANGE. ... ettt bbb 198
R3] TP 198
DESCIIPHION. ...ttt et bbb bbbt b bbb s e ARt bbb b s bbbttt s s e e s 198
0.1.53. TENAME. ...ttt ettt ettt e e RS e RS bRt e bbbt nnes 199
Y NMOPSIS. 11t vt vartisetttts ettt R ARt 199
DIBSCIIPHON. ...ttt bbbttt 199
01,54, TINABX. ettt bbb R R R bR R bbbt 199
SYNMOPSIS. c.v. v evreertce sttt AR 199
DESCTIPHION. ...ttt ettt bbb bR R AR R AR R bbb s e e Rttt s e e s 199
0.1.55. SECNAS, USECNAS.cueeiieeeteteeeee et ettt sttt e e e sese sttt eae s st st st et esese e sessssesebeaeasssssesetesesesesesessasesesensassensates 199
RS0 TP 199
LS4 (1o] OO TTRTSR 200
0.1.58. SBIVDUT ..o bbb 200
SYNMOPSIS. vttt 200
DIBSCIIPHION. ...ttt bbb 200
0157, SBIVDUBE ... R 201
SYNMOPSIS. c1v. v vreertee sttt R R AR 201
DESCTIPHION. ...ttt b bbbt bR ARt bbb e et bbbt s s s e e s 201
0.1.58. SIGNAL...... et 201
Y NMOPSIS. 11t vvureesettte sttt R AR 201
DIBSCIIPHON. ...ttt bbbt 202
0.1.50. SIEP... ittt bbb E AR Rttt R AR b bRttt r et r s 202
SYNMOPSIS. vt tateretet sttt bbb 202
Do 1o TR 202
9.1.60. stat, Istat, fstat, fSIAtB4..............oeeeieeeeeeeeeeee ettt ettt et 202
R3] 0T TP 202
DESCTIPHION. ...ttt ettt b bbb bbb bt s e e R bbbt bbb e Rt bbbt rn s e e s 202
LI 3 O 11T TP 203
Y NMOPSIS. 11ttt vurtesetti sttt R ARt 203
DIBSCIIPHON. ...ttt bbbt 203
01,82, SYMINK.....e ettt Rttt 203

PGI Fortran Reference Guide XViii

RS0 0TSRRI 203

=T Tot o] o] OSSP P U TRTTSR 203

L8 LT T - 4P 203
7] 05T 203
DESCIIPHION. 1.ttt 203
0.1.84. HIMI ittt b bR R RS E AR 203
SYNMOPSIS. c.v. v vreertce sttt R AR 204

[T=T Yo7 11110 o TP 204

L0 1< T (4TRSS 204
SYNMOPSIS....vuivviicte ittt ettt bbb bbb s b et b SRR bbb bbb b a bbb bbb tns 204
DTt o] o OO STRSR 204

LT LT 11 0= TP 204
SYNMOPSIS. vttt bbb 204
DTSt 0] o] TP 204
0187 UNINK .ttt ettt b bR R R R e 204
SYNMOPSIS. 1.ttt R AR AR 204

[T=TTor 110110 o TR 204
0,188, WALcvucvescveeetct ettt bbbt bR bR bR bR bRt R bbb en 205
Y NMOPSIS. 11t vvreeese ittt R R R ARt 205
DBSCIIPHION. ...ttt bbb s8R R 205
9.2, VAX SYSIEM SUDIOULINES.c.cviieviiecteiiieis ettt bbb bbb b s 205
9.2.1. BUIIEIN FUNCHONS. ..ottt ettt ettt et 205
DOLOC(BIG). v rvervreeereiseesesee ettt ss etttk bbbt 205
DOREF(Q)..... vttt ettt ettt ettt bbbt 205
DOVAL(Q). ... v vttt ettt 205
9.2.2. VAXIVMS SyStem SUDIOULINES..........cuieireirieisienieieseeeieiseineesesee s s 205
DATEottt ettt s bbb b1 b s b s Sb A 1A bbb a bbbt aen 206

E KT et eE e R e E Rttt 206
GETARG.....c..cutictitie ettt bbb bbb a1t a bR bRt a bbb a s 206
TARGC....... ettt ettt bbb R bbbttt 206
IDATEottt ettt b bbbttt bbb bRt E AR bR bRt b bt bbbttt nt s 206
MVBITS. .ottt b b8 bbb 207
RAN . .ottt bbbt b bR R R RSt bbbt 207
SECNDS.....c ettt bbb R Rttt 208
TIME. .ottt ettt R bbbt 208
Chapter 10.Interoperability With C..........cccorirrmrenrnerensrsessssess s ssesssssssesssssssens 209
OIS T 404 = (o £SO 209
10.2. Interoperability With C POINTET TYPES......c.cvivririieiriceriets st 209
10,20, Gl P0IBT et bbbt bbb bbbttt b s e bbbt et bt n s e rn 209
F2003... .ottt bbb bR bR bR bbb bR bbbt bt 209
1TSS 210
7L 210
DESCIIPHION. ...ttt bbbt bbbt R Rt b et bbbt et ee 210

PGI Fortran Reference Guide XiX

10.2.2. C_f_PIOCPOINEET. ...ttt ettt st b e bbbt 211
F2003... .ottt R £ Rt 211
1= GO PSP 211
/LSOO 211
[1=TTor 10110 o OO RPN 211
EXAMPIE. ... R AR R 212

10.2.3. C_BSSOCIALE. ... ettt bbb bbb 212
F2003... .ottt sttt SR RS ettt 212
SYNEAX 1ttt ettt bbb s bbb A A b AR b SRR b st bbbttt a b 212
7L T OO 212
D=1 o711 (1o] o TP 212
REIUM VIUE....... ettt ettt 212
EXAMPIE. ...t R bRt R et bR s et neas 212

10.3. Interoperability Of DEMIVEA TYPES. ..ot 213
Chapter 11.Contact INfOrmMation...........coccurernnmnnins s s p st 214

PGI Fortran Reference Guide XX

LIST OF FIGURES

Figure 1 Order Of SEAIEMENTSviie bbb 2

PGI Fortran Reference Guide XXi

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

LIST OF TABLES

FOMIAN CRETACIETScvieie i bbbt 3
C Language Character ESCape SEQUENCEScvviuierirririiniieieiriseiees ettt 3
Fixed Format Record POSitions and FIeldScooeiiciciceeee et 5
Fortran Operator PrECEABNCEcccviiviieiicieiicte ettt bbbttt 8
ALNMELIC OPEIATOTScucvveiicvciicte ettt et bbb bbb bbbttt st b s st s 10
Arithmetic OPErator PrECEABNCEceviveeeceeieeceee ettt ettt sttt a bbb ense s 10
R Lo 0= I O] =T = (o] - OO T 11
Logical EXPreSSion OPEIALOrSc.c.ieererreeriieeeireseieesesetseseseesesesseseseesesessesesesesessesssssssessssessssssssessesssssnssesessssssnsns 1"
Fortran INtriNSIC DAta TYPES ...cuevucviieeieireieieireieiei sttt bbbt bbbt eb et 16
Data Types KiNd PArameters ..ottt 17
Data TYPE EXIENSIONSuvviviiecieiiici sttt bbbttt bt 17
Data TYPE RANKS ...ttt et a bbbttt a st e e st bbb 18
Examples 0of REaI CONSIANEScciueiiiiieiciectc ettt bbbttt 20
Examples of Double Precision CONSIANESc.c.cucieiuiueiieciciccce ettt 21
Statement SUMMANY TaDIE ..o 37
OPEN SPECIfIEIS ... veeeeeeeirieeeireseieiseet s ses ettt ee s e e st s et s st e e s st eesesessnnens 69
Format Character Controls for @ PrINLET ..o 73
Format Character Controls for ROUNAING PHNEEE ..o 79
List DIreCted INPUL VAIUEScvevviiieecccce ettt 82
Default List Directed Output FOrMattingcceeiieiiiiiiiice ettt 83
|[EEE_ARITHMETIC DENVEA TYPES ..vuvvivrieereirierireiirsiseesissisessssssetsssssssssssssssssssssssssssssssesssssssessssssesssssssessssnses 111
IEEE_ARITHMETIC INQUIrY FUNCHONSceeicieiieee ettt 112
I[EEE_ARITHMETIC Elemental FUNCHONScoiiuiiiiiricre e 112
I[EEE_ARITHMETIC Non-Elemental SUBFOULINES ..ot 114

PGI Fortran Reference Guide XXii

Table 25

Table 26

Table 27

Table 28

Table 29

Table 30

Table 31

Table 32

Table 33

Table 34

Table 35

Table 36

IEEE_EXCEPTIONS DEriVEd TYPESourvuiiriiirrieneiesieiiesresseieei st 115

IEEE_EXCEPTIONS INQUIrY FUNCHONScocviiivciicieiicts ettt b sttt 115
[EEE_EXCEPTIONS Elemental SUDIOULINESccovuieieiirieriineineiseiei et 116
IEEE_EXCEPTIONS Elemental SUDTOULINEScccuieiirimiiiieiiiieeneiee et 116
IEEE_FEATURES Named CONSLANESc.ocevrivriieiiiriieieireieei sttt 117
is0_fortran_env Named CONSLANES ..o 118
Fortran 2003 FUNCLONS @NA PrOCEAUIESc.cueviuiieieircieiieereiee ettt 143
Directive Clauses SUMMArY TADIEcoiuririiirieire e 151
Initialization of REDUCTION Variablesceiiiiiiiiininnincnc st 156
Directive SUMMANY TADIE ..ot bbbt bbb 157
Runtime Library ROUINES SUMMATYcceiiiiriiiiiieieisencie ettt 174
OpenMP-related Environment Variable Summary Table ..o 178

PGI Fortran Reference Guide XXili

PREFACE

This manual describes the Portland Group's implementation of the FORTRAN 77, Fortran 90/95,
and Fortran 2003 languages. Collectively, The Portland Group compilers that implement these
languages are referred to as the PGI Fortran compilers. This manual is part of a set of documents
describing the Fortran language and the compilation tools available from The Portland Group. It
presents the Fortran language statements, intrinsics, and extension directives.

Two Compilers represent the PGI Fortran compiler products. Fortran 77 (pgf77) is one of them.
paf90, pgfas, and pgfortran are the same compiler that has evolved from Fortran 90 to Fortran
2003 standards. The older names are supported so that makefiles that were written using pgfo0/
pgf95, will still work. All three names refer to the same one compiler that supports the Fortran
2003 language standard.

The Portland Group’s Fortran compilation system includes a compilation driver, multiple Fortran
compilers, associated runtime support and mathematical libraries, and associated software
development tools for debugging and profiling the performance of Fortran programs. Depending
on the target system, The Portland Group’ s Fortran software devel opment tools may also include
an assembler or alinker. Y ou can use these tools to create, debug, optimize and profile your
Fortran programs. Related Publications lists other manuals in the PGI documentation set.

Audience Description

This manual isintended for people who are porting or writing Fortran programs using the PGI
Fortran compilers. To use Fortran you should be aware of the role of Fortran and of source-
level programsin the software development process and you should have some knowledge of
aparticular system or workstation cluster. To use the PGI Fortran compilers, you need to be
familiar with the Fortran language FORTRANT77, Fortran 90/95, or F2003 as well as the basic
commands available on your host system.

Compatibility and Conformance to Standards

The PGI Fortran compilers, PGF77 and PGFORTAN, run on avariety of x86 and OpenPOWER
processor-based host systems. The PGF77 compiler, supported on x86 only, accepts an enhanced
version of FORTRAN 77 that conformsto the ANSI standard for FORTRAN 77 and includes
various extensions from VAX/VMS Fortran, IBM/V S Fortran, and MIL-STD-1753. The

PGI Fortran Reference Guide XXiv

Preface

PGFORTRAN compiler accepts a similarly enhanced version of the ANSI standard for Fortran
90/95/2003.

For further information on the Fortran language, you can also refer to the following:

» American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

» ISO/EC 1539 : 1991, Information technology — Programming L anguages — Fortran, Geneva,
1991 (Fortran 90).

» ISO/EC 1539 : 1997, Information technology — Programming L anguages — Fortran, Geneva,
1997 (Fortran 95).

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

» Fortran 95 Handbook Complete ISO/ANSI Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» Fortran 2003 Handbook, The Complete Syntax, Features and Procedures, Adams et al,
Springer; 1st Edition. 2008.

» OpenMP Fortran Application Program Interface, Version 3.1, July 2011, http://
WWW.openmp.org.

» Programmingin VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-41109.

» Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

Organization

This guide is divided into the following sections and appendices:
Language Overview, provides an introduction to the Fortran language.

Fortran Data Types, describes the data types supported by PGl Fortran compilers and provides
examples using various data types. It also contains information on memory allocation and
alignment issue.

Fortran Statements, briefly describes each Fortran statement that the PGI Fortran compilers
accept. Longer descriptions are available for PGl extensions.

Fortran Arrays, describes special characteristics of arrays in Fortran 90/95.

Input and Output, describes the input, output, and format statements that allow programsto
transfer data to or from files.

Fortran Intrinsics, lists the Fortran intrinsics and subroutines supported by the PGI Fortran
compilers.

Object Oriented Programming, provides a high-level overview of procedures, functions, and
attributes from Fortran 2003 that facilitate an object-oriented approach to programming.

OpenMP Directives for Fortran, lists the language extensions that the PGI Fortran compilers
support.

PGI Fortran Reference Guide XXV

http://www.openmp.org.
http://www.openmp.org.

Preface

Functions and VAX Subroutines, describes the functions and subroutines in the Fortran runtime
library and discusses the VAX/VMS system subroutines and the built-in functions supported by
the PGI Fortran compilers.

Interoperability with C, describes the pointer types and enumerators available for Fortran
interoperability with C.

Hardware and Software Constraints

The PGI compilers operate on avariety of host systems and produce object code for a variety of
target systems. Details concerning environment-specific values and defaults and host-specific
features or limitations are presented in the PGl Compiler User’s Guide, the man pages for each
compiler in agiven installation, and in the release notes and installation instructions included
with all PGI compilers and tools software products.

Conventions

This guide uses the following conventions:
italic
is used for emphasis.
Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.
Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item?2 or item3.
filename....
élipsisindicate arepetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.
FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.
C/C++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on wide variety of Linux, OS X and Windows
operating systems running on x86-compatible processors, and on Linux running on OpenPOWER

PGI Fortran Reference Guide XXVi

http://www.pgroup.com/resources/docs.htm

Preface

processors. (Currently, the PGDBG debugger is supported on x86 only.) See the Compatibility
and Installation section on the PGI website for a comprehensive listing of supported platforms.

Support for 32-bit development is deprecated in PGl 2016 and will no longer be available as of the PGl
2017 release. PGI 2017 will only be available for 64-bit operating systems and will not include the ability to
compile 32-bit applications for execution on either 32- or 64-bit operating systems.

Related Publications

The following documents contain additional information related to compilers and tools available
from The Portland Group, Inc.

>

The PGI Compiler User's Guide and the PGI Visual Fortran User’s Guide describe the
general features and usage guidelines for all PGI compilers, and describesin detail various
available compiler options in a user's guide format.

Fortran 95 Handbook, from McGraw-Hill, describes the Fortran 95 language and the
statements, data types, input/output format specifiers, and additional reference material that
defines ANSI/ISO Fortran 95.

Fortran 2003 Handbook, from Springer, provides the complete syntax, features and
procedures for Fortran 2003.

System V Application Binary Interface Processor Supplement by AT& T UNIX System
Laboratories, Inc, (available from Prentice Hall, Inc.)

American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).
Programming in VAX FORTRAN, Version 4.0, Digital Equipment Corporation (September,
1984).

IBM VS FORTRAN, IBM Corporation, Rev. GC26-4119.

PGI Fortran Reference Guide XXVii

http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/install.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Preface

PGI Fortran Reference Guide XXviii

Chapter 1.
LANGUAGE OVERVIEW

This section describes the basic elements of the Fortran language, the format of Fortran
statements, and the types of expressions and assignments accepted by the PGl Fortran compilers.

The PGF77 compiler accepts as input FORTRAN 77 and produces as output assembly language
code, binary object code or binary executables in conjunction with the assembler, linker and
libraries on the target system. The input language must be extended FORTRAN 77 as specified in
this reference manual. The PGFORTRAN compiler functions similarly for Fortran 90/95/2003.

This section is not an introduction to the overall capabilities of Fortran. Rather, it is an overview
of the syntax requirements of programs used with the PGI Fortran compilers. The Fortran 2003
Handbook, provides the complete syntax, features and procedures for Fortran 2003.

1.1. Elements of a Fortran Program Unit

A Fortran program is composed of SUBROUTINE, FUNCTION, MODULE, BLOCK DATA, or
PROGRAM program units.

Fortran source code consists of a sequence of program units which are to be compiled. Every
program unit consists of statements and optionally comments beginning with a program unit
statement, either a SUBROUTINE, FUNCTION, or PROGRAM statement, and finishing with an
END statement (BLOCK DATA and MODULE program units are also allowed).

In the absence of one of these statements, the PGI Fortran compilers insert a PROGRAM
statement.

1.1.1. Fortran Statements

Statements are either executable statements or nonexecutabl e specification statements.

Each statement consists of asingle line or source record, possibly followed by one or more
continuation lines. Multiple statements may appear on asingle lineif they are separated by a
semicolon (;). Comments may appear on any line following a comment character (!).

1.1.2. Free and Fixed Source

Fortran permits two types of source formatting, fixed source form and free source form.

PGI Fortran Reference Guide 1

>

Language Overview

Fixed sour ce form uses the traditional Fortran approach where specific column positions are
reserved for labels, continuation characters, and statements and blank characters are ignored.
The PGF77 compiler supports only fixed source form. The PGF77 compiler also supports a
lessrestrictive variety of fixed source form called tab source form.

» Usethe compiler option -Mf i xed.
» Usethe suffix .f

Free sour ce for m introduced with Fortran 90 places few restrictions on source formatting;
the context of an element, as well as the position of blanks, or tabs, separate logical tokens.
Y ou can select free source form as an option to PGFORTRAN in one of these ways.

» Usethe compiler option -Mfreeform.
» Useeither the suffix .f90, the suffix .f95, or the suffix .f03.

1.1.3. Statement Ordering

Fortran statements and constructs must conform to ordering requirements imposed by the
language definition. Figure 1 illustrates these requirements. Vertical lines separate statements
and constructs that can be interspersed. Horizontal lines separate statements that must not be
interspersed.

These rules are less strict than those in the ANSI standard. The differences are as follows;

>

>

DATA statements can be freely interspersed with PARAMETER statements and other
specification statements.

NAMELIST statements are supported and have the same order requirements as FORMAT
and ENTRY statements.

The IMPLICIT NONE statement can precede other IMPLICIT statements.

Figure 1 Order of Statements

OPTIONS Statement
Comments PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statements
and USE Statements
INCLUDE IMPORT Statements
Statements IMPLICIT NONE Statements
NAMELIST,
FORMAT IMPLICIT Statements PARAMETER
Other Specifications
and ENTRY Data Statements P
Statements Statement Function Definition
EXECUTABLE Statements
CONTAINS Statement

Internal Subprograms or Module

END Statement

PGI Fortran Reference Guide

Language Overview

1.2. The Fortran Character Set

Table 1, Fortran Characters, hows the set of Fortran characters. Character variables and constants
can use any ASCII character. The value of the command-line option —Mupcase determines if

the compiler distinguishes between case (upper and lower) in identifiers. By default, without

the -Mupcase option selected, the compiler does not distinguish between upper and lower case
charactersin identifiers (upper and lower case are always significant in character constants).

Table 1 Fortran Characters

Character Description Character Description
, Comma A-Z, a-z Alphabetic
Colon <space> Space character
; Semicolon = Equals
_ Underscore character + Plus
< Less than - Minus
> Greater than ¥ Asterisk
? Question mark / Slash
% Percent (Left parenthesis
" Quotation mark) Right parenthesis
$ Currency symbol [Left bracket
Decimal point] Right bracket
! Exclamation mark <CR> Carriage return
0-9 Numeric <TAB> Tabulation character

Table 2, C Language Character Escape Sequences, shows C language character escape sequences
that the PGI Fortran compilers recognize in character string constants when —-Mbackslash ison
the command line. These values depend on the command-line option -Mbackslash.

Table 2 C Language Character Escape Sequences

Character Description

\v vertical tab

\a alert (bell)

\n newline

\t tab

\b backspace

\f formfeed

\r carriage return

PGI Fortran Reference Guide 3

Language Overview

Character Description

\0 null

\ apostrophe (does not terminate a string)

\" double quotes (does not terminate a string)

\ \

\x X, where x is any other character

\ddd character with the given octal representation.

1.3. Free Form Formatting

Using free form formatting, columns are not significant for the elements of a Fortran line, and a
blank or series of blanks or tabs and the context of atoken specify the token type. The following
rules apply to free form formatting:

» Upto 132 characters are valid per line, and the compiler option -Mextend does not apply.

» A single Fortran line may contain multiple statements, with the ; (semicolon) separating
multiple statements on asingle line.

» Freeformat labels are valid at the start of aline.

» Thelabel must be separated from the remaining statements on the line by at least one
blank or a<TAB>.

» Labelsconsist of anumeric field drawn from digits O to 9.

» Thelabel cannot be more than 5 characters.

» Either ablank line, or the ! character following a Fortran line indicates a comment. The
Fortran text does not contain any of the characters after the!.

» The& character at the end of aline means the following line represents a continuation line.

» If acontinuation line starts with the & character, then the characters following the & are
the start of the continuation line.

» If the continuation line does not start with a &, then all characters on the line are part of
the continuation line, including any initial blanks or tabs.

A single Fortran line may contain multiple statements. The ; (semicolon) separates multiple
statements on asingle line. Free format labels are valid at the start of aline, aslong as the label
is separated from the remaining statements on the line by at least one blank or a<TAB>. Labels
consist of anumeric field drawn from digits 0 to 9. The label cannot be more than 5 characters.

1.4. Fixed Formatting

This section describes the two types of fixed formatting that PGl Fortran compilers support:
column formatting and tab formatting.

PGI Fortran Reference Guide 4

Language Overview

1.4.1. Column Formatting

When using column formatting a Fortran record consists of a sequence of up to 72 or 132 ASCI|I
characters, the last being <CR>. Table 3 shows the fixed layout.

n For column formatting of 132 characters, you must specify ~-Mextend.

Table 3 Fixed Format Record Positions and Fields

Position Field

1-5 Label field
6 Continuation field
7-72 or 7-132 Statement field

Characters on aline beyond position 72, or position 132 if -Mextend is specified, areignored. In
addition, any characters following an exclamation (!) character are considered comments and are
thus disregarded during compilation.

1.4.2. Fixed Format Label Field

The label field holds up to five characters. Further, each label must be unique in its program unit.

» ThecharactersC, D, *, or ! inthefirst character position of alabel field indicate a comment
line.
» When anumeric field drawn from digits 0 to 9 is placed in the label field, thefield isalabel.

» A linewith no label, and with five space characters or a<TAB> in the label field, isan
unlabeled statement.

» Continuation lines must not be labeled.
» A program to only jump to labels that are on executable statements.

1.4.3. Fixed Format Continuation Field

The sixth character position, or the position after the tab, is the continuation field. Thisfield
isignored in comment lines. It isinvalid if the labdl field is not five spaces. A value of 0,
<gpace> or <TAB> indicates the first line of a statement. Any other value indicates a subsequent,
continuation line to the preceding statement.

1.4.4. Fixed Format Statement Field

The statement field consists of valid identifiers and symbols, possibly separated by <space> or
<TAB> and terminated by <CR>.

Within the statement field, tabs, spaces, comments and any characters found beyond the 72nd
character, or position 132 if -Mextend is specified, are ignored. As stated earlier, any characters
following an exclamation (!) character are considered comments.

PGI Fortran Reference Guide 5

Language Overview

1.4.5. Fixed Format Debug Statements

Theletter D in column 1 using fixed formatting designates the statement on the specified line
is a debugging statement. The compiler treats the debugging statement as a comment, ignoring
it, unless the command line option -Md1ines is set during compilation. If -Mdlines iS Set,
the compiler acts asif the line starting with D were a Fortran statement and compilesthe line
according to the standard rules.

1.4.6. Tab Formatting

The PGI Fortran compilers support an alternate form of fixed source from called tab source form.
A tab formatted source file is made up of alabd field, an optional continuation indicator and a
statement field. The label field isterminated by atab character. The label cannot be more than 5
characters.

A continuation lineisindicated by atab character followed immediately by anon-zero digit. The
statement field starts after a continuation indicator, when one is present. Again, any characters
found beyond the 72nd character, or position 132 if —-Mextend is specified, are ignored.

1.4.7. Fixed Input File Format Summary
For fixed input file format, the following is true:
» Tab-Format lines are supported.

» A tabin columns 1-6 ends the statement label field and begins an optional continuation
indicator field.

» If anon-zero digit follows the tab character, the continuation field exists and indicates a
continuation field.

» I anything other than anon-zero digit follows the tab character, the statement body
begins with that character and extends to the end of the source statement.

This does not override Fortran's free source form handling since no valid Fortran statement can
begin with a non-zero digit.

» Thetab character isignored if it occursin aline except in Hollerith or character
constants.

» Input lines may be of varying lengths.

» If there are fewer than 72 characters, the line is padded with blanks.

» Characters after the 72nd are ignored unless the -Mextend option is used on the
command line.

n The —-Mextend option extends the statement field to position 132.

When the -Mextend option is used, the input line is padded with blanks if it is fewer
than 132 characters; characters after the 132nd are ignored.

» Blank lines are dlowed at the end of a program unit.

PGI Fortran Reference Guide 6

Language Overview

» The number of continuation lines allowed is extended to 1000 lines.

1.5. Include Fortran Source Files

The sequence of consecutive compilation of source statements may be interrupted so that an extra
source file can be included. To do this, use the INCLUDE statement which takes the form:

INCLUDE "filename"

where filename is the name of the file to be included. Pairs of either single or double quotes are
acceptable enclosing filename.

The INCLUDE fileis compiled to replace the INCLUDE statement, and on completion of that
source thefile is closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same
COMMON block data mappings are used in several program units. For example the following
statement includes the file MY FILE.DEF.

INCLUDE "MYFILE.DEF"
Nested includes are alowed, up to a PGl Fortran defined limit of 20.

Recursive includes are not allowed. That is, if afileincludes afile, that file may not also include
the samefile.

1.6. Components of Fortran Statements

Fortran program units are made up of statements which consist of expressions and elements. An
expression can be broken down to simpler expressions and eventually to its el ements combined
with operators. Hence the basic building block of a statement is an element.

An element takes one of the following forms:

» A constant represents a fixed value.

» A variable represents a value which may change during program execution.

» Anarray isagroup of values that can be referred to as awhole, as a section, or separately.
The separate values are known as the elements of the array. The array has a symbolic name.

» A function reference or subroutine reference is the name of a function or subroutine followed
by an argument list. The reference causes the code specified at function/subroutine definition
to be executed and if a function, the result is substituted for the function reference.

1.6.1. Symbolic Names

Symbolic names identify different entitiesin Fortran source code. A symbolic name isastring
of letters and digits, which must start with aletter and be terminated by a character not in the
symbolic names set (for example a <space> or a<TAB> character). Underscore (_) characters
may appear within symbolic names. Only the first 63 charactersidentify the symbolic name.

Here several examples of symbolic names:

NUM
CRAS
numericabcdefghijklmnopgrstuvwxyz

PGI Fortran Reference Guide 7

Language Overview

The last exampleisidentified by itsfirst 63 characters and is equivalent to:

numericabcdefghijklmnopgrstuvwx
Some examples of invalid symbolic name include:
80 Invalid because it begins with a number

FIVE.4 Invalid because it contains a period, an invalid
character for a symbolic name.

1.7. Expressions

Each dataitem, such as a variable or a constant, represents a particular value at any point during
program execution. These elements may be combined together to form expressions, using binary
or unary operators, so that the expression itself yields avalue. A Fortran expression may be any
of the following:

» Ascalar expression » A specification expression
> An array expression > Aninitialization expression
» Aconstant expression » Mixed array and scalar expressions

1.7.1. Forming Expressions

Expressions fall into one of four classes. arithmetic, relational, logical or character, each class
described later in this section.

An expression is formed like this:

expr binary-operator expr or unary-operator expr

where expr isformed as an expression or as an element.

For example, these are simple expressions whose components are elements. The first expression
involves a binary operator and the other two are unary operators.

A+B =C +D

1.7.2. Expression Precedence Rules

Arithmetic, relational and logical expressions may be identified to the compiler by the use of
parentheses, as described in Table 6. When no guidance is given to the compiler it imposes a set
of precedence rulesto identify each expression uniquely. Table 4 shows the operator precedence
rulesfor expressions.

Table 4 Fortran Operator Precedence

Operator Evaluated

Unary defined Highest
** N/A
*or/ N/A

PGI Fortran Reference Guide 8

Language Overview

Operator Evaluated

Unary + or - N/A

Binary + or — N/A

Relational operators: GT., .GE., .LE. N/A

Relational operators ==, /= Same precedence
Relational operators <, <=, >, >= Same precedence
Relational operators .EQ., .NE., .LT. Same precedence
.NOT. N/A

.AND. N/A

.OR. N/A

.NEQV. and .EQV. N/A

Binary defined Lowest

For example, the following two expressions are equivalent. If we set A to 16, B to 4, and C to 2,
both expressions equal 8.

A/B*C such as 16 / 4 * 2

(A/B) *C such as (16 /4) * 2

Another example of equivalent expressions are these:
A*B+B**C LEQ. X+Y/Z .AND. .NOT. K-3.0 .GT. T

((((A*B)+(B**C)) .EQ. (X+(Y/Z))) .AND. (.NOT. ((K-3.0) .GT. T)))

1.7.3. Arithmetic Expressions

Arithmetic expressions are formed from arithmetic elements and arithmetic operators.

Arithmetic Elements

An arithmetic element may be:

> an arithmetic expression > anarray element
> avariable » afunction reference
» aconstant » afield of a structure

n A value should be associated with a variable or array element before it is used in an expression.

Arithmetic Operators

The arithmetic operators specify a computation to be performed on the elements. Theresultisa
numeric result. Table 5 shows the arithmetic operators.

PGI Fortran Reference Guide 9

Language Overview

Table 5 Arithmetic Operators

Operator Function

> Exponentiation

* Multiplication

/ Division

+ Addition or unary plus
Subtraction or unary minus

Arithmetic Operator Precedence

Arithmetic expressions are evaluated in an order determined by a precedence associated with
each operator. Table 6 shows the precedence of each arithmetic operator.

Table 6 Arithmetic Operator Precedence

Operator Precedence

** First
*and/ Second
+and - Third

Thisfollowing example is resolved into the arithmetic expressions (A) + (B * C) rather than (A +
B) * (C).

A+ B *C
Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed
to be evaluated first. For example, in the following expression the computer firsts adds A and B,
and then multiplies that sum by C.

(A + B) * C

Arithmetic Expression Types

Thetype of an arithmetic expression depends on the type of elementsin the expression:

INTEGER
if it contains only integer elements.
REAL
if it contains only real and integer elements.
DOUBLE PRECISION
if it contains only double precision, rea and integer elements.

PGI Fortran Reference Guide 10

Language Overview

COMPLEX
if any element is complex. Any element which needs conversion to complex will be converted
by taking the real part from the original value and setting the imaginary part to zero.
DOUBLE COMPLEX
if any element is double complex.

The Data Type Ranks table provides more information about these expressions.

1.7.4. Relational Expressions

A relational expression is composed of two arithmetic expressions separated by arelationa
operator. The value of the expression istrue or false (TRUE. or .FALSE.) depending on the value
of the expressions and the nature of the operator. Table 7 shows the relational operators.

Table 7 Relational Operators

Operator Relationship

< Less than

<= Less than or equal to
== Equal to

= Not equal to

> Greater than

>= Greater than or equal to

In relational expressions the arithmetic elements are evaluated to obtain their values. The
relationship is then evaluated to obtain the true or false result. Thus the relational expression:

TIME + MEAN .LT. LAST

means if the sum of TIME and MEAN is |less than the value of LAST, then the result istrue,
otherwiseit isfalse.

1.7.5. Logical Expressions

A logical expression is composed of two relational or logical expressions separated by alogical
operator. Each logical expression yields the value true or false (TRUE. or .FALSE.). Table 8
shows the logical operators.

Table 8 Logical Expression Operators

Operator Relationship

AND. True if both expressions are true.

.OR. True if either expression or both is true.

PGI Fortran Reference Guide 11

Language Overview

Operator Relationship

.NOT. This is a unary operator; it is true if the expression is false, otherwise it is false.
.NEQV. False if both expressions have the same logical value

XOR. Same as .NEQV.

EQV. True if both expressions have the same logical value

In the following example, TEST will be . TRUE. if Aisgreater than B or | isnot equal to J+17.
TEST = A .GT. B .OR. I .NE. J+17

1.7.6. Character Expressions

An expression of type CHARACTER can consist of one or more printable characters. Itslength is
the number of charactersin the string. Each character is numbered consecutively from left to right
beginning with 1. For example:

'ab &'
'A@HJi2'
'var[1,12]"

1.7.7. Character Concatenation

A character expression can be formed by concatenating two (or more) valid character expressions
using the concatenation operator //. The following table shows several examples of concatenation.

Expression Value

‘ABC//YZ' "ABCYZ"
JOHN 7/SMITH' "JOHN SMITH"
J7/JAMES //JOY' "J JAMES JOY"

1.8. Symbolic Name Scope

Fortran 90/95/2003 scoping is expanded from the traditional FORTRAN 77 capabilities which
provide a scoping mechanism using subroutines, main programs, and COMMONSs. Fortran
90/95/2003 adds the MODULE statement. Modules provide an expanded alternative to the use of
both COMMONSs and INCLUDE statements. Modules allow data and functions to be packaged
and defined as a unit, incorporating data hiding and using a scope that is determined with the
USE statement.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONSs are global to those modules that
reference them. They must refer to unigque objects, not only during compilation, but also in the
link stage.

The scope of names other than these islocal to the module in which they occur, and any reference
to the name in a different module will imply anew local declaration. This includes the arithmetic
function statement.

PGI Fortran Reference Guide 12

Language Overview

1.9. Assignment Statements

A Fortran assignment statement can be any of the following:

» Anintrinsic assignment statement
A statement label assignment

An array assignment

A masked array assignment

A pointer assignment

» A defined assignment

v v VY

v

1.9.1. Arithmetic Assignment

The arithmetic assignment statement has the following form:

object = arithmetic-expression
where object is one of the following:

» Variable

» Function name (within afunction body)
Subroutine argument

Array element

Field of astructure

The type of object determines the type of the assignment (INTEGER, REAL, DOUBLE
PRECISION or COMPLEX) and the arithmetic-expression is coerced into the correct type if
necessary.

v v VY

In the case of:

complex = real expression

the implication isthat the real part of the complex number becomes the result of the expression
and the imaginary part becomes zero. The same appliesif the expression is double precision,
except that the expression will be coerced to real.

The following are examples of arithmetic assignment statements.

A= (P+Q) * (T/V)
B=R**T**2

1.9.2. Logical Assignment

Thelogical assignment statement has the following form:

object = logical-expression
where object is one of the following:

Variable

Function name (only within the body of the function)
Subroutine argument

Array element

v

v

v

v

PGI Fortran Reference Guide 13

Language Overview

» A field of astructure
The type of object must be logical.

In the following example, FLAG takesthe logical value .TRUE. if P+Q is greater than R;
otherwise FLAG hasthelogical value .FALSE.

FLAG=(P+Q) .GT. R

1.9.3. Character Assignment

The form of a character assignment is:

object = character expression

where object must be of type character, and is one of the following:

Variable

Function name (only within the body of the function)
Subroutine argument

Array element

Character substring

» Afield of astructure

vV v v VY

v

In addition, these rules apply:

» None of the character positions being defined in abject can be referenced in the character
expression.

» Only such characters as are necessary for the assignment to object need to be defined in the
character expression.

» The character expression and object can have different lengths.

» When object is longer than the character expression, trailing blanks are added to the
object.

» If object is shorter than the character expression the right-hand characters of the
character expression are truncated as necessary.

In the following example, all the variables and arrays are assumed to be of type character.

FILE = 'BOOKS'
PLOT (3:8) = 'PLANTS'
TEXT (I,K+1) (2:B-1) = TITLE//X

1.10. Listing Controls

The PGI Fortran compilers recognize three compiler directives that affect the program listing
process:
%LIST
Turns on the listing process beginning at the following source code line.
%NOLIST
Turns off the listing process (including the %NOLIST lineitself).

PGI Fortran Reference Guide 14

Language Overview

%EJECT
Causes anew listing page to be started.

These directives have an effect only when the —M1 1 st option is used. All of the directives must begin in
column one.

1.11. OpenMP Directives

OpenMP directives in a Fortran program provide information that alows the PGF77 and
PGFORTRAN compilersto generate executable programs that use multiple threads and
processors on a shared-memory parallel (SMP) computer system. An OpenM P directive may
have any of the following forms:

!'SOMP directive

CSOMP directive

*SOMP directive

For acomplete list and specifications of OpenM P directives supported by the PGF77 and
PGFORTRAN compilers, along with descriptions of the related OpenMP runtime library
routines, refer to OpenM P.

PGI Fortran Reference Guide 15

Chapter 2.
FORTRAN DATA TYPES

Every Fortran element and expression has a data type. The data type of an element may be
implicit in its definition or explicitly attached to the element in a declaration statement. This
section describes the Fortran data types and constants that are supported by the PGI Fortran
compilers.

Fortran provides two kinds of data types, intrinsic data types and derived data types. Types
provided by the language are intrinsic types. Types specified by the programmer and built from
the intrinsic data types are called derived types.

2.1. Intrinsic Data Types

Fortran provides six different intrinsic data types, listed in Table 9 and Table 11 show variations
and different KIND of intrinsic data types supported by the PGI Fortran compilers.

Table 9 Fortran Intrinsic Data Types

Data Type Value

INTEGER An integer number.

REAL A real number.

DOUBLE PRECISION A double precision floating point number, real number, taking up two numeric storage units
and whose precision is greater than REAL.

LOGICAL A value which can be either TRUE or FALSE.

COMPLEX A pair of real numbers used in complex arithmetic. Fortran provides two precisions for
COMPLEX numbers.

CHARACTER A string consisting of one or more printable characters.

2.1.1. Kind Parameter

The Fortran 95 KIND parameter specifies a precision for intrinsic data types. The KIND
parameter follows a data type specifier and specifies size or type of the supported data type. A
KIND specification overrides the length attribute that the statement implies and assigns a specific

PGI Fortran Reference Guide 16

Fortran Data Types

length to the item, regardless of the compiler's command-line options. A KIND is defined for a
datatype by a PARAMETER statement, using sizes supported on the particular system.

The following are some examples using a KIND specification:

INTEGER (SHORT) :: L

REAL (HIGH) B

REAL (KIND=HIGH) XVAR, YVAR

These examples require that the programmer use a PARAMETER statement to define kinds:

INTEGER, PARAMETER :: SHORT=1
INTEGER HIGH
PARAMETER (HIGH=8)

The following table shows several examples of KINDs that a system could support.

Table 10 Data Types Kind Parameters

Type Kind Size
INTEGER SHORT 1 byte
INTEGER LONG 4 bytes
REAL HIGH 8 bytes

2.1.2. Number of Bytes Specification

The PGI Fortran compilers support alength specifier for some data types. The datatype can be
followed by a data type length specifier of the form *s, where sis one of the supported lengths
for the data type. Such a specification overrides the length attribute that the statement implies and
assigns a specific length to the specified item, regardless of the compiler options. For example,
REAL*8 isequivalent to DOUBLE PRECISION. Table 11 shows the lengths of data types, their
meanings, and their sizes.

Table 11 Data Type Extensions

Type Meaning Size
LOGICAL*1 Small LOGICAL 1 byte
LOGICAL*2 Short LOGICAL 2 bytes
LOGICAL*4 LOGICAL 4 bytes
LOGICAL*8 LOGICAL 8 bytes
BYTE Small INTEGER 1 byte
INTEGER*1 Same as BYTE 1 byte
INTEGER*2 Short INTEGER 2 bytes
INTEGER*4 INTEGER 4 bytes
INTEGER*8 INTEGER 8 bytes
REAL*4 REAL 4 bytes
REAL*8 DOUBLE PRECISION 8 bytes

PGI Fortran Reference Guide 17

Fortran Data Types

Type Meaning Size
COMPLEX*8 COMPLEX 8 bytes
COMPLEX (Kind=4)

COMPLEX*16 DOUBLE COMPLEX 16 bytes
COMPLEX (Kind=8)

The BYTE typeistreated as a signed one-byte integer and is equivalent to INTEGER* 1.

n Assigning a value too big for the data type to which it is assigned is an undefined operation.

A specifier is alowed after a CHARACTER function name even if the CHARACTER type
word has a specifier. In the following example, the function size specification C*8 overrides the
CHARACTER*4 specification.

CHARACTER*4 FUNCTION C*8 (VARI1)

Logical dataitems can be used with any operation where asimilar sized integer dataitem is
permissible and vice versa. The logical dataitem istreated as an integer or the integer dataitemis
treated as alogical of the same size and no type conversion is performed.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array
subscripts, in computed GOTOs, in array bounds and in aternate returns. The floating point data
item is converted to an integer.

The datatype of the result of an arithmetic expression corresponds to the type of its data. The
type of an expression is determined by the rank of its elements. Table 12 shows the ranks of the
various data types, from lowest to highest.

A variable of logical type may appear in an arithmetic context, and the logical type is then treated as an
integer of the same size.

Table 12 Data Type Ranks

Data Type Rank

LOGICAL 1 (lowest)
LOGICAL*8 2
INTEGER*2 3
INTEGER*4 4
INTEGER*8 5
REAL*4 6
7
8
9

REAL*8 (Double precision)
COMPLEX*8 (Complex)

COMPLEX*16 (Double complex) (highest)

PGI Fortran Reference Guide 18

Fortran Data Types

The data type of avalue produced by an operation on two arithmetic elements of different
datatypesisthe data type of the highest-ranked element in the operation. The exception

to thisrule is that an operation involving a COMPLEX*8 element and a REAL*8 element
produces a COMPLEX* 16 result. In this operation, the COMPLEX* 8 element is converted to
a COMPLEX*16 element, which consists of two REAL* 8 elements, before the operation is
performed.

In most cases, alogical expression will have a LOGICAL*4 result. In cases where the hardware
supports LOGICAL*8 and if the expression is LOGICAL* 8, the result may be LOGICAL*8.

2.2. Constants

A constant is an unchanging value that can be determined at compile time. It takes aform
corresponding to one of the data types. The PGI Fortran compilers support decimal (INTEGER
and REAL), unsigned binary, octal, hexadecimal, character and Hollerith constants.

The use of character constants in a numeric context, for example, in the right-hand side of an
arithmetic assignment statement, is supported. These constants assume a data type that conforms
to the context in which they appear.

2.2.1. Integer Constants

The form of adecimal integer constant is:
[s]dld2...dn [_ kind-parameter]

where s isan optional sign and di isadigit in therange 0to 9. The optiona _kind@parameter
is aFortran 90/95/2003 feature supported by PGFORTRAN, and specifies a supported kind. The
value of an integer constant must be within the range for the specified kind.

The value of an integer constant must be within the range -2147483648 (-2°%) to 2147483647
(2- 1) inclusive. Integer constants assume a data type of INTEGER* 4 and have a 32-bit storage
requirement.

The -1 8 compilation option causes all data of type INTEGER to be promoted to an 8 byte
INTEGER. The —i8 option does not override an explicit data type extension size specifier, such
as INTEGER*4. The range, data type and storage requirement change if the -8 flag is specified,
although thisflag is not supported on all x86 targets. With the —8 flag, the range for integer
constants is -2%° to (2% - 1)), and in this case the value of an integer constant must be within

the range -9223372036854775808 to 9223372036854775807. If the constant does not fit in an
INTEGER*4 range, the datatype is INTEGER* 8 and the storage requirement is 64 bits.

Here are several examples of integer constants:

+2
-36

437
-36_SHORT
369 12

2.2.2. Binary, Octal and Hexadecimal Constants

The PGI compilers and Fortran 90/95/2003 support various types of constants in addition to
decimal constants. Fortran allows unsigned binary, octal, or hexadecimal constantsin DATA

PGI Fortran Reference Guide 19

Fortran Data Types

statements. PGl compilers support these constantsin DATA statements, and additionally, support
some of these constants outside of DATA statements. For more information on support of these
constants, refer to Fortran Binary, Octal, and Hexadecimal Constants.

2.2.3. Real Constants

Rea constants have two forms, scaled and unscaled. An unscaled real constant consists of a
signed or unsigned decimal number (a number with adecimal point). A scaled real constant takes
the same form as an unscaled constant, but is followed by an exponent scaling factor of the form:

E+digits [kind-parameter]
Edigit [kind-parameter]
E-digits [_kind-parameter]

where digits is the scaling factor, the power of ten, to be applied to the unscaled constant. The
first two forms above are equivalent, that is, a scaling factor without a sign is assumed to be
positive. Table 13 shows several real constants.

Table 13 Examples of Real Constants

Constant Value

1.0 unscaled single precision constant

1. unscaled single precision constant

-.003 signed unscaled single precision constant
-.003_LOW signed unscaled constant with kind LOW
-1.0 signed unscaled single precision constant
6.1E2_LOW is equivalent to 610.0 with kind LOW
+2.3E3_HIGH is equivalent to 2300.0 with kind HIGH
6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-1 is equivalent to -0.35

2.2.4. Double Precision Constants

A double precision constant has the same form as a scaled REAL constant except that the E is
replaced by D and the kind parameter is not permitted. For example:

D+digits

Ddigit

D-digits

Table 14 shows several double precision constants.

PGI Fortran Reference Guide 20

Fortran Data Types

Table 14 Examples of Double Precision Constants

Constant Value

6.1D2 is equivalent to 610.0
+2.3D3 is equivalent to 2300.0
-3.5D-1 is equivalent to -0.35
+4D4 is equivalent to 40000

2.2.5. Complex Constants

A complex constant is held as two real or integer constants separated by a comma and surrounded
by parentheses. The first real number isthe real part and the second real number is the imaginary
part. Together these values represent a complex number. Integer values supplied as parameters
for aCOMPLEX constant are converted to REAL numbers. Here are several examples:

(18,-4)
(3:5,=305)
(6.1E2,+2.3E3)

2.2.6. Double Complex Constants

A complex constant is held as two double constants separated by a comma and surrounded by
parentheses. Thefirst doubleisthereal part and the second double is the imaginary part. Together
these values represent a complex number. Here is an example:

(6.1D2,+2.3D3)

2.2.7. Logical Constants

A logical constant is one of:
.TRUE. [kind-parameter]

.FALSE.[_ kind-parameter]

Thelogical constants .TRUE. and .FALSE. are by default defined to be the four-byte values -1
and O respectively. A logical expression is defined to be .TRUE. if itsleast significant bitis 1
and .FALSE. otherwise,

The option —-Munixlogical defines alogical expression to be TRUE if its value is non-zero, and
FALSE otherwise; also, theinternal value of .TRUE. is set to one. This option is not available on
all target systems.

Here are several examples:

.TRUE.
.FALSE.
.TRUE. BIT

The abbreviations .T. and .F. can be used in place of .TRUE. and .FALSE. in datainitialization
statements and in NAMELIST inpuit.

PGI Fortran Reference Guide 21

Fortran Data Types

2.2.8. Character Constants

A string in the Cor C++ languages is defined by a starting location in memory. The end of the
string is the character prior to the first occurence of aC NULL character, and the length of the
string can be derived from the location of the C NULL character. Fortran does not have a string
datatype. Character constants are sequences of characters and are defined by the starting location
in memory, and alength.

Character constants may be delimited using either an apostrophe (') or adouble quote (). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use
double quotes or two apostrophes together to include an apostrophe as part of an expression. If
acharacter constant begins with one variety of quote mark, the other may be embedded within

it without using the repeated quote or backslash escape. Within character constants, blanks are
significant. For further information on the use of the backslash character, refer to -Moackslash
information in the User’s Guide.

A character constant is one of:

[kind-parameter] "[characters]"

[kind-parameter] '[characters]'

Here are several examples of character constants.

'abc'

'abc !

Iabl ICI
"Test Word"
GREEK_"p"

A zero length character constant iswrittenas™ or "".

If a character constant is used in a numeric context, for example as the expression on the right
side of an arithmetic assignment statement, it istreated as a Hollerith constant. The rules for
typing and sizing character constants used in a numeric context are described in Hollerith
Constants.

2.2.9. Parameter Constants

The PARAMETER statement permits named constants to be defined. For more details on
defining constants, refer to the description of the PARAMETER statement in Fortran Statements.

2.3. Structure Constructors

A structure constructor looks like afunction call. It is a mechanism whose purpose is to specify a
value of aderived type or of atype aiasthat describes a derived type. The constructor specifies a
sequence of values for the components of the type.

» If acomponent is of derived type, an embedded structure constructor is required to specify
the value of that component.

» If acomponent is an array, an embedded array constructor is required to specify the values
for that component.

PGI Fortran Reference Guide 22

Fortran Data Types

Syntax

A structure constructor is the name of the type followed by a sequence of component valuesin
parentheses. The format for a structure_constructor is one of the following:
type name (expr list)

type alias name (expr list)

Structure Constructor Enhancements

In Fortran 2003, there are three significant enhancements to structure constructors that make
structure constructors more like built-in generic functions that can be overridden when necessary.

» Component names can be used as keywords, the same way that dummy argument names can
be used as argument keywords

» Values can be omitted for components that have default initialization.

» Type names can be the same as generic function names; references are resolved by choosing
asuitable function (if the syntax matches the function's argument list) and treating as a
structure constructor only if no function matches the actual arguments

Structure Constructor Rules
The following rules apply to structure constructors:

» A structure constructor must not appear before that type is defined.

» There must be avaluein the expression list for each component unless that component has
default initialization.

» The expressions must agree in number and order with the components of the derived type.
Values may be converted to agreein type, kind, length, and, in some cases, rank, with the
components.

» The structure constructor for a private type or a public type with private components is not
available outside the module in which the type is defined.

» If the valuesin a structure constructor are constants, you can use the structure constructor to
specify a named constant.

» If acomponent is an explicit-shape array, such as a nonpointer array or a nonallocatable
array, the array constructor for it in the expression list must be the same shape as the
component.

» If acomponent is a pointer, the value for it in the expression list must evaluate to an
alowable target for the pointer. A constant is not an allowable target.

» A constant expression cannot be constructed for a type with a pointer component because a
constant is not an allowable target in a pointer assignment statement.

» If acomponent hasthe ALLOCATABLE attribute, its value in the expression list must have
the samerank if it isan array or must be scalar if it is scalar. The value must be one of the
following:

» A call tothe NULL() intrinsic command without any arguments. The allocatable
component receives a‘ not currently allocated’ status.

PGI Fortran Reference Guide 23

Fortran Data Types

» A variablethat hasthe ALLOCATABLE attribute. The allocatable component receives
the variable's allocation status and, if allocated, shape and value.

» Anexpression. The allocatable component receives the ‘ currently alocated’ status and
the same value and shape of the expression.

2.4. Derived Types

Unlike the intrinsic types that are defined by the language, you must define derived types. A
derived type is atype made up of components whose typeis either intrinsic or another derived
type. These types have the same functionality as the intrinsic types; for example, variables of
these types can be declared, passed as procedure arguments, and returned as function results.

A derived-type definition specifies a name for the type; this name is used to declare objects of the
type. A derived-type definition also specifies components of the type, of which there must be at
least one. A component can be either an intrinsic or derived type.

The TYPE and END TY PE keywords define a derived type. The definition of avariable of the
new typeiscalled a TY PE statement.

Syntax

For derived type definition:

derived type stmt
[data component part]
end type stmt

For a derived type statement:

TYPE [[, type attr spec list] ::] type name

Example

The following derived type declaration defines the type PERSON and the array CUSTOMER of
type PERSON:

! Declare a structure to define a person derived type
TYPE PERSON

INTEGER ID

LOGICAL LIVING

CHARACTER (LEN=20) FIRST, LAST, MIDDLE

INTEGER AGE
END TYPE PERSON
TYPE (PERSON) CUSTOMER (10)

A derived type statement consists of the statements between the TY PE and END TY PE
statements. In the previous example, the derived-type statement for PERSON consists of all the
statements between TY PE PERSON and END TY PE PERSON.

Notice in this example that CUSTOMER is avariable of type PERSON. Use of parenthesesin
the TY PE statement indicate a reference to the derived type PERSON rather than declaration of a
derived type.

PGI Fortran Reference Guide 24

Fortran Data Types

The % character accesses the components of a derived type. For example, to assign the value
12345 asthe ID of the first customer, you might use the following statement:
CUSTOMER (1) $ID = 12345

2.5. Deferred Type Parameters

A deferred type parameter is atype parameter that has no defined value until it is given one.
In Fortran 2003, deferred type parameters are available both for CHARACTER length and for
parameterized derived types.

A variable with a deferred type parameter must have the ALLOCATABLE or POINTER
attribute. The value of a deferred type parameter depends on this attribute:

» For an allocatable variable, the value of a deferred type parameter is determined by
alocation - either by atyped allocation, or by an intrinsic assignment with automatic
reallocation.

» For apointer, the value of a deferred type parameter is the value of the type parameter of its
target.

2.5.1. Typed Allocation

A length type parameter that is deferred has no defined value until it is given one by the
ALLOCATE statement or by pointer assignment. There are a couple rules that apply with typed
allocation and deferred type parameters:

» If the length parameters of an item being allocated is assumed, it must be specified as an
asterisk (*) in the type-spec of the ALLOCATE statement.

» Since there can only be one type-spec in an ALLOCATE statement, it must be suitable for all
the items being allocated. For example, if any of the allocatable itemsis a dummy argument,
then they must al be dummy arguments.

2.6. Arrays

Arraysin Fortran are not data types, but are data objects of intrinsic or derived type with special
characteristics. A dimension statement provides a data type with one or more dimensions. There
are severa differences between Fortran 2003 and traditional FORTRAN 77 arrays.

n Fortran 2003 supports all FORTRAN 77 array semantics.

An array isagroup of consecutive, contiguous storage |ocations associated with a symbolic
name which isthe array name. Each individual element of storage, called the array element,

is referenced by the array name modified by alist of subscripts. Arrays are declared with type
declaration statements, DIMENSION statements and COMMON statements; they are not defined
by implicit reference. These declarations will introduce an array name and establish the number
of dimensions and the bounds and size of each dimension. If asymbol, modified by alist of
subscripts is not defined as an array, then it will be assumed to be a FUNCTION reference with
an argument list.

PGI Fortran Reference Guide 25

Fortran Data Types

Fortran 2003 arrays are ‘ objects’ and operations and expressions involving arrays may apply to
every element of the array in an unspecified order. For example, in the following code, where A
and B are arrays of the same shape (conformable arrays), the following expression adds six to
every element of B and assigns the results to the corresponding elements of A:

A =B+ 6

Fortran arrays may be passed with unspecified shapes to subroutines and functions, and sections
of arrays may be used and passed as well. Arrays of derived type are aso valid. In addition,
allocatable arrays may be created with deferred shapes (number of dimensions is specified at
declaration, but the actual bounds and size of each dimension are determined when the array is
allocated while the program is running).

2.6.1. Array Declaration Element

An array declaration has the following form:
name ([1lb:]Jub[, [1b:Jub]...)

where name is the symbolic hame of the array, 1b is the specification of the lower bound of the
dimension and ub is the specification of the upper bound. The upper bound, ub must be greater
than or equal to the lower bound Ib. The values 1b and ub may be negative. The bound 1b is
takento be 1 if it is not specified. The difference (ub-1b+1) specifies the number of elementsin
that dimension. The number of 1b, ub pairs specifies the rank of the array. Assuming the array is
of adatatype that requires N bytes per element, the total amount of storage of the array is:

N* (ub-1b+1) * (ub-1b+1) *...

The dimension specifiers of an array subroutine argument may themselves be subroutine
arguments or members of COMMON.

2.6.2. Deferred Shape Arrays

Deferred-shape arrays are those arrays whose shape can be changed by an executabl e statement.
Deferred-shape arrays are declared with arank, but with no bounds information. They

assume their shape when either an ALLOCATE statement or a REDIMENSION statement is
encountered.

For example, the following statement declares a deferred shape REAL array A of rank two:
REAL A(:, :)

2.6.3. Subscripts

A subscript is used to specify an array element for access. An array name qualified by a subscript
list has the following form:

name (sub [, sub]...)
where there must be one sub entry for each dimension in array name.

Each sub must be an integer expression yielding a value which is within the range of the lower
and upper bounds. Arrays are stored as alinear sequence of valuesin memory and are held such
that the first element isin the first store location and the last element isin the last store location.
In amulti-dimensional array the first subscript varies more rapidly than the second, the second
more rapidly than the third, and so on (column major order).

PGI Fortran Reference Guide 26

Fortran Data Types

2.6.4. Character Substring

A character substring is a contiguous portion of a character variable and is of type character.
A character substring can be referenced, assigned values and named. It can take either of the
following forms:

character variable name (x1:x2)

character:arrayiname(subscripts)(xl:x2)

where x1 and x2 are integers and x1 denotes the left-hand character position and x2 the right-
hand one. These are known as substring expressions. In substring expressions x1 must be both
greater than or equal to 1 and less than x2 and x2 must be less than or equal to the length of the
character variable or array element.

For example, the following expression indicates the charactersin positions 2 to 4 of character
variable J.

J(2:4)

This next expression indicates charactersin positions 1 to 4 of array element K(3,5).
K(3,5) (1:4)

A substring expression can be any valid integer expression and may contain array elements or
function references.

2.6.5. Array Constructor Syntax

In Fortran 2003, array constructors may be bracketed with [] instead of (/ /). In addition, array
constructors may contain atype specification that explicitedly specifies the type and type
parameters of the array. These constructors begin with atype specification followed by adouble
colon (), asillustrated in the examples later in this section. The general format for this type
specification isthis:

(/ type-spec :: ac-value-list /)

If the t ype-spec is absent in the array specification, Fortran 95 rules apply; and all items must have the
same type and type parameters.

The type-spec syntax is useful for a number of reasons, such as these:

» It simplifies zero-sized constructors.
» It provides assignment conversions that eliminate the need for usersto pad all charactersin
an array to the same length.

» It makes some constructors easiers, such as allowing users to specify either real or integer
valuesin acomplex array.

Examples

[character (len=12) : : ‘crimson’, ‘cream’, ‘purple’, ‘gold’]
[complex(kind(0d0) ;; 1, (0,1), 3.3333d0]

[matrix (kind=kind (0,0), n=5, m=7) :] !zero-sized array

[Logical ::] ! Zero-sized logical array

[Double Precision :: 17.5, 0, 0.1d0] ! Conversions

PGI Fortran Reference Guide 27

Fortran Data Types

2.7. Fortran Pointers and Targets

Fortran pointers are similar to allocatable arrays. Pointers are declared with atype and arank;

they do not actually represent avalue, however, but represent a value's address. Fortran 2003 has

a specific assignment operator, =>, for use in pointer assignments.

2.8. Fortran Binary, Octal and Hexadecimal Constants

The PGI Fortran compilers support two representations for binary, octal, and hexadecimal
numbers: the standard Fortran 2003 representation and the PGl extension representation. In
addition, PGI supports an alternate representation, described in the next section.

Fortran supports binary, octal and hexadecimal constantsin DATA statements.

Binary Constants

The form of abinary constant is:

B'blb2...bn'
B"blb2...bn"

wherebi iseither 0 or 1., such as B’01001001’

Octal Constants

The form of an octal constant is:

O'clc2...cn'
O"clc2...cn"

where ci isin therange O through 7. such as O’ 043672’

Hexadecimal Constants

The form of a hexadecimal constant is;

Z'ala2...an'
zZ"ala2...an"

where ai isin therange O through 9 or aletter in the range A through F or athrough f (case
mixing is allowed), such as Z' 8473Abc58' or "BF40289cd" X .

2.8.1. Octal and Hexadecimal Constants - Alternate Forms

The PGFORTRAN compiler supports additional extensions. Thisis an alternate form for octal
constants, outside of DATA statements. The form for an octal constant is:

'clc2...cn'0O
where ci isadigitintherangeOto 7.

The form of a hexadecimal constant is:

'ala2...an'X

PGI Fortran Reference Guide

28

Fortran Data Types

"ala2...an"X

where ai isadigitintherange 0 to 9 or aletter intherange A to F or ato f (case mixing is
allowed). Up to 64 bits (22 octal digits or 16 hexadecimal digits) can be specified.

Octa and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded
on the left with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

» A constant is always either 32 or 64 bitsin size and is typeless. Sign-extension and type-
conversion are never performed. All binary operations are performed on 32-bit or 64-bit
quantities. Thisimpliesthat the rules to follow are only concerned with mixing 32-bit and
64-bit data.

» When aconstant is used with an arithmetic binary operator (including the assignment
operator) and the other operand is typed, the constant assumes the type and size of the other
operand.

» When aconstant isused in arelational expression such as.EQ., its size is chosen from the
operand having the largest size. Thisimplies that 64-bit comparisons are possible.

» When aconstant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or
COMPL function, a 32-bit operation is performed if no argument is more than 32 bitsin size;
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

» When aconstant is used as an actual argument in any other context, no data type is assumed;
however, alength of four bytesis always used. If necessary, truncation on the left occurs.

» When a specific 32-bit or 64-bit datatypeis required, that type is assumed for the constant.
Array subscripting is an example.

» When aconstant is used in a context other than those mentioned above, an INTEGER* 4 data
typeis assumed. Logical expressions and binary arithmetic operations with other untyped
constants are exampl es.

» When the required data type for a constant implies that the length needed is more than the
number of digits specified, the leftmost digits have avalue of zero. When the required data
type for a constant implies that the length needed is less than the number of digits specified,
the constant is truncated on the left. Truncation of nonzero digitsis allowed.

In the following example, the constant | (of type INTEGER*4) and the constant J (of type
INTEGER*2) are assigned hex values 1234 and 4567, respectively. The variable D (of type
REAL*8) has the hex value x4000012345678954 after its second assignment:

'1234'X ! Leftmost Pad with zero

'1234567'X ! Truncate Leftmost 3 hex digits

dble ('40000123456789%ab'X)
NEQV (D, 'ff'X) ! 64-bit Exclusive Or

OogH

2.9. Hollerith Constants

The form of aHollerith constant is:

nHclc2...cn

where n specifies the positive number of charactersin the constant and cannot exceed 2000
characters.

PGI Fortran Reference Guide 29

Fortran Data Types

A Hollerith constant is stored as a byte string with four characters per 32-bit word. Hollerith
constants are untyped arrays of INTEGER*4. The last word of the array is padded on the right
with blanks if necessary. Hollerith constants cannot assume a character data type and cannot be
used where a character value is expected.

The data type of aHollerith constant used in a numeric expression is determined by the following
rules:

» Sign-extension is never performed.

» The byte size of the Hollerith constant is determined by its context and is not strictly limited
to 32 or 64 bhits like hexadecimal and octal constants.

» When the constant is used with a binary operator (including the assignment operator), the
datatype of the constant assumes the data type of the other operand.

» When a specific data typeis required, that type is assumed for the constant. When an integer
or logical isrequired, INTEGER*4 and LOGICAL*4 are assumed. When afloat is required,
REAL*4 is assumed (array subscripting is an example of the use of arequired data type).

» When aconstant is used as an argument to certain generic functions (AND, OR, EQV,
NEQV, SHIFT, and COMPL), a 32-bit operation is performed if no argument islarger than
32 bits; otherwise, a 64-bit operation is performed. The size of the result corresponds to the
chosen operation.

» When aconstant is used as an actual argument, no data type is assumed and the argument is
passed as an INTEGER* 4 array. Character constants are passed by descriptor only.

» When aconstant is used in any other context, a 32-bit INTEGER*4 array typeis assumed.

When the length of the Hollerith constant is less than the length implied by the data type, spaces
are appended to the constant on the right. When the length of the constant is greater than the
length implied by the data type, the constant is truncated on the right.

2.10. Structures

A structure, a DEC extension to FORTRAN 77, is a user-defined aggregate data type having the
following form:

STRUCTURE [/structure name/] [field namelist]
field declaration
[field declaration]

[field declaration]
END STRUCTURE

Where:

structure_name
isunique and is used both to identify the structure and to allow its use in subsequent RECORD
statements.

field_namelist
isalist of fields having the structure of the associated structure declaration. A field_namelist
is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations, union
declarations or unnamed field declarations.

PGI Fortran Reference Guide 30

Fortran Data Types

The following rules apply:

» Field names within the same declaration nesting level must be unique.

» Aninner structure declaration can include field names used in an outer structure declaration
without conflict.

» Records use periods to separate fields, so it is not legal to use relational operators (for
example, .EQ., .XOR.), logica constants (.TRUE. or .FALSE.), or logical expressions
(\AAND., .NOT., .OR.) asfield names in structure declarations.

» Fieldswithin structures conform to machine-dependent alignment requirements, that is,
fieldsin a structure are aligned as required by hardware.

» A structure's storage requirements are machine-dependent.
» Alignment of fields provides a C-like "struct" building capability and allows convenient
inter-language communications.
» Because explicit padding of recordsis not necessary, the compiler recognizes the %FILL
intrinsic, but performs no action in response to it.
» Datainitialization can occur for the individual fields.

2.10.1. Records

A record, a DEC extension to FORTRAN 77, is a user-defined aggregate data item having the
following form:

RECORD /structure name/record namelist
[, /structure name/record namelist]

[, /structure name/record namelist]

where:

structure_name
isthe name of a previously declared structure.
record namelist
isalist of one or more variable or array names separated by commas.

Y ou create memory storage for arecord by specifying a structure name in the RECORD
statement. Y ou define the field valuesin arecord either by defining them in the structure
declaration or by assigning them with executable code.

Y ou can access individual fieldsin arecord by combining the parent record name, a period (.),
and the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed data item (for example, INTEGER), while an
aggregate reference means a reference that resolvesto a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with
the exception of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements.
Aggregate references may only appear in aggregate assignment statements, unformatted 1/0
statements, and as parameters to subprograms.

The following example shows RECORD and STRUCTURE usage.

STRUCTURE /person/

! Declare a structure defining a person

! Person has id, names, age, and may or not be living
INTEGER id

LOGICAL living

PGI Fortran Reference Guide 31

Fortran Data Types

CHARACTER*5 first, last, middle
INTEGER age
END STRUCTURE

! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /person/ population (2), me

me.age = 34 ! Assign values for the variable me
me.living = .TRUE. ! to some of the fields.
me.first = 'Steve'

me.id = 542124822

population(l) .last = 'Jones' ! Assign the "last" field of

! element 1 of array population.
population(2) = me ! Assign all values of record

! "me" to the record population (2)

2.10.2. UNION and MAP Declarations

A UNION declaration, a DEC extension to FORTRAN 77, is amulti-statement declaration
defining a data area that can be shared intermittently during program execution by one or more
fields or groups of fields. It declares groups of fields that share a common location within a
structure.

Declaring and Defining Fields

Each group of fields within a UNION declaration is declared by a MAP declaration, with one or
more fields per MAP declaration.

Y ou use union declarations when you want to use the same area of memory to alternately contain
two or more groups of fields. Whenever one of the fields declared by a union declaration is
referenced in a program, that field and any other fields in its map declaration become defined.
Then, when afield in one of the other map declarations in the union declaration is referenced,
the fields in that map declaration become defined, superseding the fields that were previously
defined.

A union declaration isinitiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields
is defined by a separate map declaration.

Format

The format of aUNION statement isillustrated in the following example:

UNION
map declaration
[map declaration]

iﬁép_declaration]
END UNION
The format of the map_declaration is as follows:

MAP
field declaration
[field declaration]

[field declaration]
END MAP

PGI Fortran Reference Guide 32

Fortran Data Types

wherefield_declaration is a structure declaration or RECORD statement contained within a
union declaration, a union declaration contained within a union declaration, or the declaration of a
typed data field within a union.

With respect to UNION and MAP statements, the following is true:

» Datacan beinitidized in field declaration statements in union declarations.

n It is illegal to initialize multiple map declarations in a single union.

» Field alignment within multiple map declarationsis performed as previously defined in
structure declarations.

» Thesize of the shared areafor a union declaration is the size of the largest map defined for
that union.

» Thesize of amap isthe sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarations is similar to what happens using EQUIVALENCE
statements. However, union declarations are probably more similar to union declarations for the
language C. The main difference is that the C language requires one to associate a name with
each "map" (union). Fortran field names must be unique within the same declaration nesting level
of maps.

The following example shows RECORD, STRUCTURE, MAP and UNION usage. The size of
each element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest
MAP, in this case, the employee map (24 bytes).

STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map.
UNION

MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary ! Salary

CHARACTER*8 empdate ! Employment date

END MAP

MAP ! Structure for a customer
INTEGER*4 acct cust ! 4-digit account
REAL*4 credit amt ! credit amount
CHARACTER*8 due date ! due date

END MAP

MAP ! Structure for a supplier
INTEGER*4 acct supp ! supply account

REAL*4 debit amt ! debit amount

BYTE num items ! number of items

BYTE items (12) ! items supplied

END MAP

END UNION

END STRUCTURE
RECORD /account/ recarr (1000)

2.10.3. Data Initialization

Datainitialization is allowed within data type declaration statements. Thisis an extension to the
Fortran language. Datais initialized by placing values bounded by slashes immediately following

PGI Fortran Reference Guide 33

Fortran Data Types

the symbolic name (variable or array) to beinitialized. Initialization of fields within structure
declarationsis allowed, but initialization of unnamed fields and recordsis not.

Hollerith, octal and hexadecimal constants can be used to initialize datain both data type
declarationsand in DATA statements. Truncation and padding occur for constants that differ in
size from the declared dataitem (as specified in the discussion of constants).

2.11. Pointer Variables

The POINTER statement, a CRAY extension to FORTRAN 77 which is distinct from the Fortran
90/95 POINTER specification statement or attribute, declares a scalar variable to be a pointer
variable of datatype INTEGER, and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:
POINTER (pl, v1) [, (p2, v2) ...]

vl and v2
are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression may be
adjustable, where the rules for adjustable dummy arrays regarding any variables which appear
in the dimension declarators apply.

pland p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array.
The pointer is an integer variable containing the address of a pointer-based variable. The
storage located by the pointer variable is defined by the pointer-based variable (for example,
array, datatype, etc.). A reference to a pointer-based variable appears in Fortran statements
like anormal variable reference (for example, alocal variable, a COMMON block variable,
or adummy variable). When the based variableis referenced, the address to which it refersis
always taken from its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.
The pointer is defined in one of the following ways:

» By assigning the value of the LOC function.
» By assigning avalue defined in terms of another pointer variable.

» By dynamically allocating a memory areafor the based variable. If a pointer-based variable
isdynamically allocated, it may also be freed.

The following code illustrates the use of pointers:

REAL XC(10)

COMMON IC, XC

POINTER (P, I)

POINTER (Q, X(5))

P LOC (IC)

0 ! IC gets O

LOC (XC)

P + 20 ! same as LOC (XC(6))

(1) = 0 ! XC(6) gets O

LLOCATE (X) ! Q locates an allocated memory area

I
P
Q
X
A

PGI Fortran Reference Guide 34

Fortran Data Types

2.11.1. Restrictions

The following restrictions apply to the POINTER statement:

» No storageis allocated when a pointer-based variable is declared.

» If apointer-based variable is referenced, its pointer variable is assumed to be defined.

» A pointer-based variable may not appear in the argument list of a SUBROUTINE or
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SAVE statements.

» A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION
subprogram.

If a pointer-based variableis an adjustable array, it is assumed that the variablesin the
dimension declarators are defined with an integer value at the time the SUBROUTINE or
FUNCTION iscalled.

For avariable which appears in a pointer-based variabl€'s adjustable declarator, modifying
its value during the execution of the SUBROUTINE or FUNCTION does not modify the
bounds of the dimensions of the pointer-based array.

» A pointer-based variable is assumed not to overlap with another pointer-based variable.

2.11.2. Pointer Assignment

Fortran 2003 extends pointer assignment for arrays alowing lower bounds and possibly upper
bounds to be specified.

Syntax:
p(0:,0:) => a
The lower bounds may be any scalar integer expressions when upper bounds are specified.

Further, remapping of the elements of atarget array is permitted, as shown in this example:
p(lim,1:2*m) => a(l:2*m)

Description
The following is true for pointer assignments involving arrays:

» Thebounds may be any scalar integer expressions.

» Theassignment isin array-element order and the target array must be large enough.

» When remapping occurs, the target must be rank-one; otherwise, the ranks of the pointer and
target must be the same.
a => Db(l:10:2)

» Length type parameters of the pointer may be deferred, that is, declared with a colon.

» Pointer assignment gives these the values of the corresponding parameters of the target.

» All other type parameters of the pointer must have the same values as the corresponding type
parameters of the target.

PGI Fortran Reference Guide 35

Chapter 3.
FORTRAN STATEMENTS

This section describes each of the Fortran statements supported by the PGI Fortran compilers.
Each description includes a brief summary of the statement, a syntax description, a complete
description and an example. The statements are listed in aphabetical order. The first section lists
terms that are used throughout the section.

3.1. Statement Format Overview

This section lists terms that are used throughout the section and provides information on how

to interpret the information in the statement descriptions. This section only provides detailed
descriptions for statements that are extensions of the standard Fortran language definitions. For
details on the standard statements, refer to the Fortran language specifications readily available on
theinternet. The 0rigin columnin the tablesin this section provides the Fortran language origin
of the statement; for example F95 indicates the statement is from Fortran 95.

3.1.1. Definition of Statement-related Terms

character scalar memory reference
is acharacter variable, a character array element, or a character member of a structure or
derived type.

integer scalar memory reference
isan integer variable, an integer array element, or an integer member of a structure or derived
type.

logical scalar memory reference
isalogical variable, alogical array element, or alogical member of a structure or derived
type.

obsolescent
The statement is unchanged from the FORTRAN 77 definition but has a better replacement in
Fortran 95.

3.1.2. Origin of Statement

At the top of each reference pageis abrief description of the statement followed by a header
that indicates the origin of the statement. The following list describes the meaning of the origin
header.

PGI Fortran Reference Guide 36

Fortran Statements

Fr7
FORTRAN 77 statements that are essentially unchanged from the original FORTRAN 77
standard and are supported by the PGF77 compiler.

F77 extension
The statement is an extension to the Fortran language.

FO0/F95
The statement is either new for Fortran 90/95 or significantly changed in Fortran 95 from its
original FORTRAN 77 definition and is supported by the PGF95 compiler.

F2003
The statement is new for Fortran 2003.

CMF
The statement is Connection Machine Fortran, a SIMD language that strongly influenced High
Performance Fortran.

3.1.3. List-related Notation

Severa statements allow lists of a specific type of data. For example, the ALLOCATABLE
statement allows alist in which each element of a deferred-array-spec. The notation used in
statementsis this:

» Within the statement, the notation is foo-1ist, suchasdeferred-array-spec-list.
» When the list elements have a specific format that is defined, the referenceisjust to that
element, such asdeferred-array-spec.

Asin Fortran, the list is a set of comma-separated values.

3.2. Fortran Statement Summary Table

This section contains an alphabetical listing with a brief one-line description of the Fortran
statements that PGl supports.Later in this section there is more detailed description of the
statements that are extensions to the standard Fortran definitions.

Table 15 Statement Summary Table

Statement Origin Description

ACCEPT F77 Causes formatted input to be read on standard input.

ALLOCATABLE F90 Specifies that an array with fixed rank but deferred shape is available for a future
ALLOCATE statement.

ALLOCATE F90 Allocates storage for each allocatable array, pointer object, or pointer-based variable that
appears in the statements; declares storage for deferred-shape arrays.

ARRAY CMF Defines the number of dimensions in an array that may be defined, and the number of
elements and bounds in each dimension. [Not in PVF]

ASSIGN F77 [Obsolescent]. Assigns a statement label to a variable.

ASSOCIATE F2003 Associates a name either with a variable or with the value of an expression for the

duration of a block.

ASYNCHRONOUS Fr77 Warns the compiler that incorrect results might occur for optimizations involving
movement of code across wait statements or statements that cause wait operations.

PGI Fortran Reference Guide 37

Fortran Statements

Statement Origin Description

BACKSPACE F77 Positions the file connected to the specified unit to before the preceding record.

BLOCK DATA Fr77 Introduces a number of non-executable statements that initialize data values in
COMMON tables

BYTE F77 ext Establishes the data type of a variable by explicitly attaching the name of a variable to a
1-byte integer, overriding implied data typing.

CALL F77 Transfers control to a subroutine.

CASE F90 Begins a case-statement-block portion of a SELECT CASE statement.

CHARACTER F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
character data type, overriding the implied data typing.

CLOSE Fr7 Terminates the connection of the specified file to a unit.

COMMON F77 Defines global blocks of storage that are either sequential or non-sequential; can be
either a static or dynamic form.

COMPLEX F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
complex data type, overriding implied data typing.

CONTAINS F90 Precedes a subprogram, a function or subroutine and indicates the presence of the
subroutine or function definition inside a main program, external subprogram, or module
subprogram.

F2003 In F2003 a contains statement can also appear in a derived type right before any
type bound procedure definitions.

CONTINUE F77 Passes control to the next statement.

CYCLE F90 Interrupts a DO construct execution and continues with the next iteration of the loop.

DATA F77 Assigns initial values to variables before execution.

DEALLOCATE F77 Causes the memory allocated for each pointer-based variable or allocatable array that
appears in the statement to be deallocated (freed); also deallocates storage for deferred-
shape arrays.

DECODE F77 ext Transfers data between variables or arrays in internal storage and translates that data
from character form to internal form, according to format specifiers.

DIMENSION F90 Defines the number of dimensions in an array and the number of elements in each
dimension.

DO (lterative) Fo0 Introduces an iterative loop and specifies the loop control index and parameters.

DO WHILE F77 Introduces a logical do loop and specifies the loop control expression.

DOUBLE COMPLEX F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double complex data type, overriding implied data typing.

DOUBLE PRECISION F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double precision data type, overriding implied data typing.

ELSE F77 Begins an ELSE block of an IF block and encloses a series of statements that are
conditionally executed.

ELSE IF F77 Begins an ELSE IF block of an IF block series and encloses statements that are
conditionally executed.

ELSE WHERE Fo0 The portion of the WHERE ELSE WHERE construct that permits conditional masked

assignments to the elements of an array or to a scalar, zero-dimensional array.

PGI Fortran Reference Guide

38

Fortran Statements

Statement Origin Description

ENCODE F77 ext Transfers data between variables or arrays in internal storage and translates that data
from internal to character form, according to format specifiers.

END F77 Terminates a segment of a Fortran program.

END ASSOCIATE F2003 Terminates an Associate block.

END DO F77 Terminates a DO or DO WHILE loop.

END FILE Fr7 Writes an endfile record to the files.

END IF Fr7 Terminates an |F ELSE or ELSE IF block.

END MAP F77 ext Terminates a MAP declaration.

END SELECT F90 Terminates a SELECT declaration.

END STRUCTURE F77 ext Terminates a STRUCTURE declaration.

END UNION F77 ext Terminates a UNION declaration.

END WHERE F90 Terminates a WHERE ELSE WHERE construct.

ENTRY F77 Allows a subroutine or function to have more than one entry point.

EQUIVALENCE F77 Allows two or more named regions of data memory to share the same start address.

EXIT F90 Interrupts a DO construct execution and continues with the next statement after the loop.

EXTERNAL Fr7 Identifies a symbolic name as an external or dummy procedure which can then be used
as an actual argument.

FINAL F2003 Specifies a Final subroutine inside a derived type.

FORALL F95 Provides, as a statement or construct, a parallel mechanism to assign values to the
elements of an array.

FORMAT F77 Specifies format requirements for input or output.

FUNCTION Fr7 Introduces a program unit; all the statements that follow apply to the function itself.

GENERIC F2003 Specifies a generic type bound procedure inside a derived type.

GOTO (Assigned) F77 [Obsolescent]. Transfers control so that the statement identified by the statement label is
executed next.

GOTO (Computed) F77 Transfers control to one of a list of labels according to the value of an expression.

GOTO (Unconditional) F77 Unconditionally transfers control to the statement with the label label, which must be
declared within the code of the program unit containing the GOTO statement and must
be unique within that program unit.

IF (Arithmetic) F77 [Obsolescent]. Transfers control to one of three labeled statements, depending on the
value of the arithmetic expression.

IF (Block) Fr7 Consists of a series of statements that are conditionally executed.

IF (Logical) Fr77 Executes or does not execute a statement based on the value of a logical expression.

IMPLICIT F77 Redefines the implied data type of symbolic names from their initial letter, overriding
implied data types.

IMPORT F2003 Gives access to the named entities of the containing scope.

INCLUDE F77 ext Directs the compiler to start reading from another file.

PGI Fortran Reference Guide

39

Fortran Statements

Statement Origin Description

INQUIRE F77 Inquires about the current properties of a particular file or the current connections of a
particular unit.

INTEGER F77 Establishes the data type of a variable by explicitly attaching the name of a variable to an
integer data type, overriding implied data types.

INTENT F90 Specifies intended use of a dummy argument, but may not be used in a main program's
specification statement.

INTERFACE Fo0 Makes an implicit procedure an explicit procedure where the dummy parameters and
procedure type are known to the calling module; Also overloads a procedure name.

INTRINSIC F77 Identifies a symbolic name as an intrinsic function and allows it to be used as an actual
argument.

LOGICAL F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
logical data type, overriding implied data types.

MAP F77 ext Designates each unique field or group of fields within a UNION statement.

MODULE F90 Specifies the entry point for a Fortran 90/95 module program unit. A module defines a
host environment of scope of the module, and may contain subprograms that are in the
same scoping unit.

NAMELIST F90 Allows the definition of namelist groups for namelist-directed 1/0.

NULLIFY F90 Disassociates a pointer from its target.

OPEN F77 Connects an existing file to a unit, creates and connects a file to a unit, creates a file that
is preconnected, or changes certain specifiers of a connection between a file and a unit.

OPTIONAL F90 Specifies dummy arguments that may be omitted or that are optional.

OPTIONS F77 ext Confirms or overrides certain compiler command-line options.

PARAMETER F77 Gives a symbolic name to a constant.

PAUSE F77 [Obsolescent]. Stops the program's execution.

POINTER F90 Provides a means for declaring pointers.

POINTER (Cray) F77 ext Declares a scalar variable to be a pointer variable (of type INTEGER), and another
variable to be its pointer-based variable.

PRINT F77 Transfers data to the standard output device from the items specified in the output list
and format specification.

PRIVATE F90 Specifies entities defined in a module are not accessible outside of the module.
Private can also appear inside a derived type to disallow access to its data
components outside the defining module.

F2003 In F2003, a Private statement may appear after the type’'s contains statement to
disallow access to type bound procedures outside the defining module.

PROCEDURE F2003 Specifies a type bound procedure, procedure pointer, module procedure, dummy
procedure, intrinsic procedure, or an external procedure.

PROGRAM F77 Specifies the entry point for the linked Fortran program.

PROTECTED F2003 Protects a module variable against modification from outside the module in which it was
declared.

PUBLIC Fo0 Specifies entities defined in a module are accessible outside of the module.

PURE F95 Indicates that a function or subroutine has no side effects.

PGI Fortran Reference Guide

40

Fortran Statements

Statement Origin Description

READ F90 Transfers data from the standard input device to the items specified in the input and
format specifications.

REAL F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
data type, overriding implied data types.

RECORD F77 ext A VAX Fortran extension, defines a user-defined aggregate data item.

RECURSIVE F90 Indicates whether a function or subroutine may call itself recursively.

REDIMENSION F77 ext Dynamically defines the bounds of a deferred-shape array.

RETURN F77 Causes a return to the statement following a CALL when used in a subroutine, and
returns to the relevant arithmetic expression when used in a function.

REWIND Fr7 Positions the file at its beginning. The statement has no effect if the file is already
positioned at the start or if the file is connected but does not exist.

SAVE F77 Retains the definition status of an entity after a RETURN or END statementin a
subroutine or function has been executed.

SELECT CASE F90 Begins a CASE construct.

SELECT TYPE F2003 Provides the capability to execute alternative code depending on the dynamic type
of a polymorphic entity and to gain access to dynamic parts. The alternative code is
selected using the type 1s statement for a specific dynamic type, or the class
is statement for a specific type and all its type extensions. Use the optional c1ass
default statement to specify all other dynamic types that don’'t match a specified
type isorclass is statement. Like the CASE construct, the code consists of a
number of blocks and at most one is selected for execution.

SEQUENCE F90 A derived type qualifier that specifies the ordering of the storage associated with
the derived type. This statement specifies storage for use with COMMON and
EQUIVALENCE statements.

STOP F77 Stops the program's execution and precludes any further execution of the program.

STRUCTURE F77 Vax | A VAX extension to FORTRAN 77 that defines an aggregate data type.

ext

SUBROUTINE Fr77 Introduces a subprogram unit.

TARGET F90 Specifies that a data type may be the object of a pointer variable (e.g., pointed to by a
pointer variable). Types that do not have the TARGET attribute cannot be the target of a
pointer variable.

THEN Fr7 Part of a block IF statement, surrounds a series of statements that are conditionally
executed.

TYPE F90 Begins a derived type data specification or declares variables of a specified user-defined
type.

F2003 Use the optional EXTENDS statement with TYPE to indicate a type extension in F2003.

UNION F77 Vax | A multi-statement declaration defining a data area that can be shared intermittently

ext during program execution by one or more fields or groups of fields.

USE F90 Gives a program unit access to the public entities or to the named entities in the specified
module.

VOLATILE F77 ext Inhibits all optimizations on the variables, arrays and common blocks that it identifies.

wait F2003 Performs a wait operation for specified pending asynchronous data transfer operations.

PGI Fortran Reference Guide

41

Fortran Statements

Statement Origin Description

WHERE F90 Permits masked assignments to the elements of an array or to a scalar, zero dimensional
array.

WRITE F90 Transfers data to the standard output device from the items specified in the output list
and format specification.

3.3. ACCEPT

The ACCEPT statement has the same syntax asthe PRINT statement and causes formatted input
to be read on standard input. ACCEPT isidentical to the READ statement with a unit specifier of
asterisk (*).

F77 extension

Syntax

ACCEPT f [,iolist]
ACCEPT namelist

f
format-specifier, a* indicates list directed input.
iolist
isalist of variablesto beinput.
namelist
is the name of anamelist specified with the NAMELIST statement.

Examples

ACCEPT *, IA, ZA
ACCEPT 99, I, J, K
ACCEPT SUM

99 FORMAT (I2, I4, 1I3)

Non-character Format-specifier

If aformat-specifier is avariable which is neither CHARACTER nor asimple INTEGER
variable, the compiler acceptsit and treats it as if the contents were character. In the following
example, sum istreated as aformat descriptor. The code in the first column is roughly equivalent
to that in the second column.

real sum character*4 ch
sum = 4h () ch = "()"
accept sum accept ch
See Also

READ, PRINT

PGI Fortran Reference Guide 42

Fortran Statements

3.4. ARRAY

The ARRAY attribute defines the number of dimensionsin an array that may be defined and the
number of elements and boundsin each dimension. [Not in PVF]

CMF

Syntax

ARRAY [::] array-name (array-spec) [, array-name (array-spec)]

array-name
is the symbolic name of an array.

array-spec
isavalid array specification, either explicit-shape, assumed-shape, deferred-shape, or assumed
size (refer to Fortran Arrays, for details on array specifications).

Description

ARRAY can be used in a subroutine as a synonym for DIMENSION to establish an argument as
an array, and in this case the declarator can use expressions formed from integer variables and
constants to establish the dimensions (adjustable arrays).

These integer variables must be either arguments or declared in COMMON; they cannot be local. Further,
in this case, the function of ARRAY statement is merely to supply a mapping of the argument to the
subroutine code, and not to allocate storage.

Thetyping of the array in an ARRAY statement is defined by the initial letter of the array name
in the same way as variable names, unless overridden by an IMPLICIT or type declaration
statement. Arrays may appear in type declaration and COMMON statements but the array name
can appear in only one array declaration.

Example
REAL, ARRAY (3:10):: ARRAY ONE
INTEGER, ARRAY (3,-2:2):: ARRAY TWO

This specifies ARRAY_ONE as a vector having eight elements with the lower bound of 3 and the
upper bound of 10.

ARRAY_TWO as amatrix of two dimensions having fifteen elements. The first dimension has
three e ements and the second has five with bounds from -2 to 2.

PGI Fortran Reference Guide 43

Fortran Statements

See Also
ALLOCATE, DEALLOCATE

3.5.BYTE

The BY TE statement establishes the data type of avariable by explicitly attaching the name of a
variable to a 1-byte integer. This overrides data typing implied by theinitial letter of a symbolic
name.

F77 extension

Syntax
BYTE name [/clist/], ...

name
is the symbolic name of avariable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).
clist
isalist of constants that initialize the data, asin aDATA statement.
Description
Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. BY TE declaration statements must not be labeled.

Example

BYTE TB3, SEC, STORE (5,5)

3.6. DECODE

The DECODE statement transfers data between variables or arraysin internal storage and
trandates that data from character form to internal form, according to format specifiers. Similar
results can be accomplished using internal files with formatted sequential READ statements.

F77 extension

Syntax

DECODE (c, f, b [,IOSTAT= ios] [,ERR= errs]) [list]

PGI Fortran Reference Guide 44

Fortran Statements

isan integer expression specifying the number of bytes involved in translation.

is the format-specifier.

b
isascalar or array reference for the buffer area containing formatted data (characters).

ios
isan integer scalar memory reference which is the input/output status specifier: if thisis
specified ios becomes defined with zero if no error condition exists or a positive integer when
thereisan error condition.

errs
an error specifier which takes the form of a statement label of an executable statement in
the same program unit. If an error condition occurs execution continues with the statement
specified by errs.

list
isalist of input items.

Non-character Format-specifier

If aformat-specifier is avariable which is neither CHARACTER nor asimple INTEGER
variable, the compiler acceptsit and treats it as if the contents were character. In the following
example, sum istreated as aformat descriptor:

real sum
sum = 4h ()
accept sum

The preceding code segment is roughly equivalent to this:

character*4 ch
ch = "'()"'
accept ch

See Also
READ, PRINT,

3.7. DOUBLE COMPLEX

The DOUBLE COMPLEX statement establishes the data type of avariable by explicitly
attaching the name of avariable to a double complex data type. This overrides the data typing
implied by theinitial letter of a symbolic name.

F77 extension

PGI Fortran Reference Guide 45

Fortran Statements

Syntax

The syntax for DOUBLE COMPLEX has two forms, a standard Fortran 90/95 entity based form,
and the PGI extended form. This section describes both syntax forms.

DOUBLE COMPLEX [, attribute-list ::] entity-list
attribute-list

isthelist of attributes for the double complex variable.
entity-list

isthelist of defined entities.

Syntax Extension

DOUBLE COMPLEX name [/clist/] [,name] [/clist/]...

name
is the symbolic name of avariable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
isalist of constants that initialize the data, asin aDATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The datatype
of asymbol may be explicitly declared only once. It is established by type declaration statement,
IMPLICIT statement or by predefined typing rules. Explicit declaration of atype overrides any
implicit declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of aDOUBLE COMPLEX variableis 16 bytes. With the -r8 option, the default
size of aDOUBLE COMPLEX variable is also 16 bytes.

Examples

DOUBLE COMPLEX CURRENT, NEXT

See Also
COMPLEX

3.8. DOUBLE PRECISION

The DOUBLE PRECISION statement establishes the data type of avariable by explicitly
attaching the name of avariable to a double precision data type. This overrides the data typing
implied by the initial letter of a symbolic name.

PGI Fortran Reference Guide 46

Fortran Statements

F90

Syntax

The syntax for DOUBLE PRECISION has two forms, a standard Fortran 90/95 entity based
form, and the PGI extended form. This section describes both syntax forms.

DOUBLE PRECISION [, attribute-list ::] entity-list
attribute-list

isthelist of attributes for the double precision variable.
entity-list

isthelist of defined entities.

Syntax Extension
DOUBLE PRECISION name [/clist/] [,name] [/clist/]...

name
is the symbolic name of avariable, array, or an array declarator (see the DIMENSION
statement for an explanation of array declarators).

clist
isalist of constants that initialize the data, asin a DATA statement.

Description

Type declaration statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type
of asymbol may be explicitly declared only once. It is established by type declaration statement,
IMPLICIT statement or by predefined typing rules. Explicit declaration of atype overrides any
implicit declaration. An IMPLICIT statement overrides predefined typing rules.

The default size of aDOUBLE PRECISION variable is 8 bytes, with or without the -r8 option.

Example

DOUBLE PRECISION PLONG

3.9. ENCODE

The ENCODE statement transfers data between variables or arraysin internal storage and
translates that data from internal to character form, according to format specifiers. Similar results
can be accomplished using internal files with formatted sequential WRITE statements.

F77 extension

PGI Fortran Reference Guide 47

Fortran Statements

Syntax
ENCODE (c,f,b[,IOSTAT=ios] [,ERR=errs]) [list]

c
is an integer expression specifying the number of bytesinvolved in translation.

is the format-specifier.

b
isascalar or array reference for the buffer area receiving formatted data (characters).

ios
isan integer scalar memory reference which is the input/output status specifier: if thisis
included, ios becomes defined with zero if no error condition exists or a positive integer when
thereis an error condition.

errs
an error specifier which takes the form of a statement label of an executable statement in the
same program. If an error condition occurs execution continues with the statement specified
by errs.

list
alist of output items.

Non-character Format-specifier

If aformat-specifier is avariable which is neither CHARACTER nor asimple INTEGER
variable, the compiler acceptsit and treatsit asif the contents were character. For example, below
sum is treated as a format descriptor:

real sum
sum = 4h ()
accept sum

and is roughly equivalent to

character*4 ch
ch = "'()"'
accept ch

See Also

READ, PRINT

3.10. END MAP

The END MAP statement terminates a M AP declaration.

F77 extension

PGI Fortran Reference Guide 48

Syntax

END MAP

Description

For more information, refer to the M AP statement.

Example

MAP ! Structure for a customer
INTEGER*4 acct cust

REAL*4 credit amt
CHARACTER*8 due date

END MAP

3.11. END STRUCTURE

The END STRUCTURE statement terminates a STRUCTURE declaration.

F77 extension

Syntax

END STRUCTURE

Description

For more information, refer to the STRUCTURE statement.

3.12. END UNION

The END UNION statement terminates a UNION declaration.

F77 extension

Syntax

END UNION

Description

For more information, refer to the UNION statement.

PGI Fortran Reference Guide

Fortran Statements

49

Fortran Statements

3.13. INCLUDE

The INCLUDE statement directs the compiler to start reading from another file.

The INCLUDE statement is used for FORTRAN 77. There is no support for VAX/VMS text libraries or the
module_name pathname qualifier that exists in the VAX/VMS version of the INCLUDE statement.

F77 extension

Syntax

INCLUDE 'filename [/[NO]JLIST]'
INCLUDE "filename [/[NOJLIST]"

The following rules apply to the INCLUDE statement:

» TheINCLUDE statement may be nested to adepth of 20 and can appear anywhere within a
program unit as long as Fortran's statement-ordering restrictions are not violated.

» Youcanusethe qualifiers/LIST and /NOLIST to control whether the includefileis
expanded in thelisting file (if generated).

There is no support for VAX/VMS text libraries or the module_name pathname qualifier that exists in
the VAX/VMS version of the INCLUDE statement.

» Either single or double quotes may be used.

» If thefina component of the file pathnameis/LIST or INOLIST, the compiler assumesitisa
qualifier, unless an additional qualifier is supplied.
» Thefilename and the /LIST or INOLIST qualifier may be separated by blanks.

The compiler searches for the include file in the following directories:

» Each - directory specified on the command-line.

» Thedirectory containing the file that contains the INCLUDE statement (the current working
directory.)

» Thestandard include area.

Example
INCLUDE '/mypath/list /list'

Thislineincludes afile named /mypath/list and expands it in the listing file, if alisting fileis
used.

PGI Fortran Reference Guide 50

Fortran Statements

3.14. MAP

A union declaration isinitiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of
fieldsis defined by a separate map declaration. For more information on field alignment, refer to
Structures.

F77 extension

Syntax

MAP
field declaration
[field declaration]

.[field_declaration]
END MAP
field_declaration
isastructure declaration or RECORD statement contained within a union declaration, aunion
declaration contained within a union declaration, or the declaration of atyped datafield within
aunion.

Description

Data can be initialized in field declaration statements in union declarations. However, it isillegal
to initialize multiple map declarationsin asingle union.

The size of the shared areafor a union declaration is the size of the largest map defined for that
union. The size of amap is the sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarationsis similar to using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language
C. The main difference is that the language C requires one to associate a name with each map
(union). Fortran field names must be unique within the same declaration nesting level of maps.

Example

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each
element of the recarr array would be the size of typetag (4 bytes) plusthe size of the largest MAP
(the employee map at 24 bytes).

STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map
UNION

MAP ! Structure for an employee

PGI Fortran Reference Guide 51

Fortran Statements

CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct cust
REAL*4 credit amt
CHARACTER*8 due date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct supp
REAL*4 debit amt
BYTE num items
BYTE items (12) ! Items supplied
END MAP
END UNION
END STRUCTURE
RECORD /account/ recarr (1000)

3.15. POINTER (Cray)

The POINTER statement is an extension to FORTRAN 77. It declares a scalar variable to be a
pointer variable (of type INTEGER), and another variable to be its pointer-based variable.

F77 extension

Syntax
POINTER (pl, v1) [, (p2, v2) ...]

vland v2
are pointer-based variables. A pointer-based variable can be of any type, including
STRUCTURE. A pointer-based variable can be dimensioned in a separate type, in a
DIMENSION statement, or in the POINTER statement. The dimension expression may be
adjustable, where the rules for adjustable dummy arrays regarding any variables which appear
in the dimension declarators apply.

pland p2
are the pointer variables corresponding to v1 and v2. A pointer variable may not be an array.
The pointer is an integer variable containing the address of a pointer-based variable. The
storage located by the pointer variable is defined by the pointer-based variable (for example,
array, datatype, etc.). A reference to a pointer-based variable appears in Fortran statements
like anormal variable reference (for example, alocal variable, a COMMON block variable,
or adummy variable). When the based variableis referenced, the address to which it refersis
always taken from its associated pointer (that is, its pointer variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defined.
The pointer is defined in one of the following ways:

» By assigning the value of the LOC function.
» By assigning avalue defined in terms of another pointer variable.

PGI Fortran Reference Guide 52

Fortran Statements

» By dynamically allocating a memory areafor the based variable. If a pointer-based variable
isdynamically allocated, it may also be freed.

Example

REAL XC(10)
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5))

P = LOC(IC)

I =20 ! IC gets 0

P = LOC (XC)

QO =P + 20 same as LOC (XC(6))
X(1l) =0 XC(6) gets O

|
g

ALLOCATE (X) ! Q locates a dynamically
! allocated memory area

Restrictions
The following restrictions apply to the POINTER statement:

» No storage is allocated when a pointer-based variable is declared.
» If apointer-based variable is referenced, its pointer variable is assumed to be defined.

» A pointer-based variable may not appear in the argument list of a SUBROUTINE or
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SAVE statements.

» A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION
subprogram. If a pointer-based variable is an adjustable array, it is assumed that the
variables in the dimension declarator(s) are defined with an integer value at the time
the SUBROUTINE or FUNCTION iscalled. For avariable which appears in a pointer-
based variable's adjustable declarator, modifying its value during the execution of the
SUBROUTINE or FUNCTION does not modify the bounds of the dimensions of the pointer-
based array.

» A pointer-based variable is assumed not to overlap with another pointer-based variable.

3.16. PROTECTED

The PROTECTED statement protects a module variable against modification from outside the
module in which it was declared.

F2003

Syntax

PROTECTED [::], name [, name]

PGI Fortran Reference Guide 53

Fortran Statements

Description

Variables with the PROTECTED attribute may only be modified within the defining module.
Ouitside of that module they are not allowed to appear in any variable definition context, that is,
on the left-hand-side of an assignment statement.

This statement alows the values of variables of amodule to be generally available without
relinquishing control over their modification.

Examples

Inthe following module, thecm 2 inchand in 2 cm variables are protected so that they
cannot be changed outside the CONVERT_FORMULA module. The PROTECTED attribute
allows users of this module to read the measurements in either centimeters or inches, but the
variables can only be changed viathe provided subroutines which ensure that both values agree.

MODULE COVERT FORMULA
REAL, PROTECTED :: in 2 cm = 2.54, cm 2 in = 0.39
CONTAINS
SUBROUTINE set metric(new_value cm)

END SUBROUTINE
SUBROUTINE set english(new value in)

END SUBROUTINE
END MODULE

3.17.RECORD

The RECORD statement, a VA X Fortran extension, defines a user-defined aggregate data item.

F77 extension

Syntax
RECORD /structure name/record namelist [,/structure name/record namelist]

.[, }structure_name/record_namelist]
END RECORD
structure_name
is the name of a previously declared structure.
record_namelist
isalist of one or more variable or array names separated by commas.

PGI Fortran Reference Guide 54

Fortran Statements

Description

Y ou create memory storage for arecord by specifying a structure name in the RECORD
statement. Y ou define the field valuesin arecord either by defining them in the structure
declaration or by assigning them with executable code.

Y ou can access individual fieldsin arecord by combining the parent record name, aperiod (.),
and the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed dataitem (for example, INTEGER), while an
aggregate reference means a reference that resolvesto a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with
the exception of the COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements.
Aggregate references may only appear in aggregate assignment statements, unformatted |/O
statements, and as parameters to subprograms.

Records are allowed in COMMON and DIMENSION statements.

Example

STRUCTURE /PERSON/ ! Declare a structure defining a person
INTEGER ID

LOGICAL LIVING

CHARACTER*5 FIRST, LAST, MIDDLE

INTEGER AGE
END STRUCTURE

! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.
RECORD /PERSON/ POPULATION(2), ME

ME.AGE = 34 ! Assign values for the variable me

ME.LIVING = .TRUE. ! to some of the fields.
ME.FIRST = 'Steve'

ME.ID = 542124822

POPULATION (1) .LAST = 'Jones'

! Assign the "LAST" field of

! element 1 of array population.
POPULATION (2) = ME ! Assign all the values of record

|

"ME" to the record population (2)

3.18. REDIMENSION

The REDIMENSION statement, a PGF77 extension to FORTRAN 77, dynamically definesthe
bounds of a deferred-shape array. After aREDIMENSION statement, the bounds of the array
become those supplied in the statement, until another such statement is encountered.

F77 extension

Syntax

REDIMENSION name ([lb:Jubl[, [lb:]Jub]l...) [,name([lb:]Jub[, [1lb:Jub]l...)]...

PGI Fortran Reference Guide 55

Fortran Statements

Where:

name
is the symbolic name of an array.

[Ib:]ub
isadimension declarator specifying the bounds for a dimension (the lower bound Ib and the
upper bound ub). Ib and ub must be integers with ub greater than Ib. The lower bound 1b is
optional; if it isnot specified, it is assumed to be 1. The number of dimension declarations
must be the same as the number of dimensionsin the array.

Example

REAL A(:, :)

POINTER (P, A)

P = malloc(1l2 * 10 * 4)
REDIMENSION A (12, 10)
A(3, 4) = 33.

3.19. RETURN

The RETURN statement causes areturn to the statement following a CALL whenusedin a
subroutine, and returns to the relevant arithmetic expression when used in a function.

F77

Syntax

RETURN

Alternate RETURN

(Obsolescent) The alternate RETURN statement is obsolescent for HPF and Fortran 90/95. Use
the CA SE statement where possible in new or updated code. The alternate RETURN statement
takes the following form:

RETURN expression

expression
expression is converted to integer if necessary (expression may be of type integer or real). If
the value of expression is greater than or equal to 1 and less than or equal to the number of
asterisks in the SUBROUTINE or subroutine ENTRY statement then the value of expression
identifies the nth asterisk in the actual argument list and control isreturned to that statement.

Example
SUBROUTINE FIX (A,B,*,*,C)
40 IF (T) 50, 60, 70
50 RETURN
60 RETURN 1
70 RETURN 2

PGI Fortran Reference Guide 56

Fortran Statements

END
PROGRAM FIXIT
CALL FIX (X, Y, *100, *200, S)

WRITE(*,5) X, S ! Arrive here if (T) < O
STOP

100 WRITE (*, 10) X, Y ! Arrive here if (T) = 0
STOP

200 WRITE (*,20) Y, S ! Arrive here if (T) > 0

3.20. STRUCTURE

The STRUCTURE statement, aVAX extension to FORTRAN 77, defines an aggregate data type.

F77 VAX extension

Syntax

STRUCTURE [/structure name/][field namelist]
field declaration
[field declaration]

.[field_declaration]

END STRUCTURE

structure_name
isunique and is used both to identify the structure and to allow its use in subsequent RECORD
statements.

field_namelist
isalist of fields having the structure of the associated structure declaration. A field_namelist
is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data declarations, union
declarations or unnamed field declarations.

Description

Fields within structures conform to machine-dependent alignment requirements. Alignment of
fields also provides a C-like "struct” building capability and allows convenient inter-language
communications. Note that aligning of structure fieldsis not supported by VAX/VMS Fortran.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict.
Also, because records use periods to separate fields, it is not legal to use relational operators
(for example, .EQ., .XOR.), logical constants (.TRUE. or .FALSE.), or logical expressions
(\AAND., .NOT., .OR.) asfield names in structure declarations.

Fieldsin astructure are aligned as required by hardware and a structure's storage requirements are
therefore machine-dependent. Note that VAX/VMS Fortran does no padding. Because explicit

PGI Fortran Reference Guide 57

Fortran Statements

padding of recordsis not necessary, the compiler recognizes the %FILL intrinsic, but performs no
action in response toit.

Datainitialization can occur for the individual fields.
The UNION and MAP statements are supported.

The following is an example of record and structure usage.
STRUCTURE /account/

INTEGER typetag ! Tag to determine defined map

UNION

MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number

REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer
INTEGER*4 acct cust
REAL*4 credit amt
CHARACTER*8 due date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct supp
REAL*4 debit amt
BYTE num items
BYTE items (12) ! Ttems supplied
END MAP
END UNION
END STRUCTURE
RECORD /account/ recarr (1000)

3.21. UNION

A UNION declaration, a DEC extension to FORTRAN 77, is amulti-statement declaration
defining a data area that can be shared intermittently during program execution by one or more
fields or groups of fields. It declares groups of fields that share a common location within a
structure. Each group of fields within a union declaration is declared by a map declaration, with
one or more fields per map declaration.

Union declarations are used when one wants to use the same area of memory to aternately
contain two or more groups of fields. Whenever one of the fields declared by a union declaration
isreferenced in a program, that field and any other fieldsin its map declaration become defined.
Then, when afield in one of the other map declarations in the union declaration is referenced,
the fields in that map declaration become defined, superseding the fields that were previously
defined.

A union declaration isinitiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields
is defined by a separate map declaration. The format of a UNION statement is as follows:

F77 extension

PGI Fortran Reference Guide 58

Fortran Statements

Syntax

UNION
map declaration
[map declaration]

[map declaration]
END UNION
The format of the map_declaration is as follows:

MAP
field declaration
[field declaration]

i%ield_declaration]
END MAP
field_declaration
where field declaration is a structure declaration or RECORD statement contained within a
union declaration, a union declaration contained within a union declaration, or the declaration
of atyped data field within aunion.

Description

Data can beinitialized in field declaration statements in union declarations. Note, however, it is
illegal to initialize multiple map declarations in asingle union.

The size of the shared areafor a union declaration is the size of the largest map defined for that
union. The size of amap is the sum of the sizes of the field(s) declared within it plus the space
reserved for alignment purposes.

Manipulating data using union declarations is similar to using EQUIVALENCE statements.
However, union declarations are probably more similar to union declarations for the language
C. The main difference is that the language C requires one to associate a name with each map
(union). Fortran field names must be unique within the same declaration nesting level of maps.

Thefollowing is an example of RECORD, STRUCTURE and UNION usage. The size of each
element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP

(the employee map at 24 bytes).
STRUCTURE /account/
INTEGER typetag ! Tag to determine defined map.
UNION
MAP ! Structure for an employee
CHARACTER*12 ssn ! Social Security Number
REAL*4 salary
CHARACTER*8 empdate ! Employment date
END MAP
MAP ! Structure for a customer

INTEGER*4 acct cust
REAL*4 credit amt
CHARACTER*8 due date
END MAP
MAP ! Structure for a supplier
INTEGER*4 acct supp
REAL*4 debit amt
BYTE num items

PGI Fortran Reference Guide 59

Fortran Statements

BYTE items (12) ! Ttems supplied
END MAP

END UNION

END STRUCTURE

RECORD /account/ recarr (1000)

3.22. VOLATILE

The VOLATILE statement inhibits all optimizations on the variables, arrays and common blocks
that it identifies. The VOLATILE attribute, added in Fortran 2003, is used in atype declaration
Statement.

F77 extension (statement)

F2003 (attribute)

Syntax

Volatile Attribute

datatype, volatile :: var name
OR

datatype :: var name

volatile :: var name

Volatile Statement

VOLATILE nitem [, nitem ...]
nitem

isthe name of avariable, an array, or acommon block enclosed in slashes.
Description

Being volatile indicates to the compiler that, at any time, the variable might change or be
examined from outside the Fortran program. The impact on the programmer is that anytime
avolatile variable is referenced, the value must be loaded from memory. Furthermore, any
assignment to the volatile variable must be written to memory.

If nitem names a common block, all members of the block are volatile. The volatile attribute of a
variable isinherited by any direct or indirect equivalences, as shown in the example.

Volatile Attribute Example

The following example declares both the integer variable xyz and the real variable abc to be
voldtile.

PGI Fortran Reference Guide 60

Fortran Statements

integer, volatile :: xyz
real :: abc
volatile :: abc

Volatile Statement Example

COMMON /COM/ C1, C2

VOLATILE /COM/, DIR ! /COM/ and DIR are volatile
EQUIVALENCE (DIR, X) ! X is volatile
EQUIVALENCE (X, Y) 'Y is volatile

3.23. WAIT

Performs await operation for specified pending asynchronous data transfer operations.

F2003

Syntax

WAIT (wait specs list)

wait specs list canincludeany of the following specifiers:

UNIT =] file-unit-number
A file-unit-number must be specified. If the optional characters UNIT= are omitted, the file-
unit-number isthe first item in the wait-spec-list.

END = label

label must be the statement label of a branch target statement that appears in the same
scoping unit asthe WAIT statement.

END= specifier has no effect if the pending data transfer operation is not a READ.
EOR = label

label must be the statement label of a branch target statement that appears in the same
scoping unit asthe WAIT statement.

EOR= specifier has no effect if the pending data transfer operation is not a nonadvancing
READ.

ERR = label
label must be the statement label of a branch target statement that appears in the same
scoping unit asthe WAIT statement.

ID =scalar_in_var
scalar in var istheidentifier of apending datatransfer operation for the specified unit.

» If the ID= specifier appears, await operation for the specified data transfer operation is
performed.

» If the ID= specifier is omitted, wait operations for al pending data transfers for the
specified unit are performed.

PGI Fortran Reference Guide 61

Fortran Statements

IOM SG = iomsg-var
iomsg-var isan|/O message variable.
IOSTAT =scalar-int-var
scalar in var istheidentifier of apending datatransfer operation for the specified unit.

For more information on IOSTAT, ERR=, EOR=, END=, and |OM SG=, refer to the READ and
WRITE statements.

Description

This statement performs await operation for specified pending asynchronous data transfer
operations.

The CLOSE, INQUIRE, and file positioning statements may also perform wait operations.

Execution of aWAIT statement specifying a unit that does not exist, has no file connected to

it, or that was not opened for asynchronous input/output is permitted, provided that the WAIT
statement has no 1D= specifier. Thistype of WAIT statement does not cause an error or end-of-
file condition to occur.

n No specifier shall appear more than once in a given wait-spec-list.

Examples

INTEGER SCORE (30)
CHARACTER GRADE (30)
WHERE (SCORE > 60)
GRADE = 'P'

ELSE WHERE

GRADE = 'F'

END WHERE

PGI Fortran Reference Guide

62

Chapter 4.
FORTRAN ARRAYS

Fortran arrays are any object with the dimension attribute. In Fortran 90/95, arrays may be very
different from arraysin older versions of Fortran. Arrays can have values assigned as awhole
without specifying operations on individual array elements, and array sections can be accessed.
Also, allocatable arrays that are created dynamically are available as part of the Fortran 90/95
standard. This section describes some of the features of Fortran 90/95 arrays.

The following exampleillustrates valid array operations.

REAL(10,10) A,B,C

A 12 !Assign 12 to all elements of A

B 3 !Assign 3 to all elements of B

C A + B !Add each element of A to each of B

4.1. Array Types

Fortran supports four types of arrays: explicit-shape arrays, assumed-shape arrays, deferred-shape
arrays and assumed-size arrays. Both explicit-shape arrays and deferred shape arrays are valid

in amain program. Assumed shape arrays and assumed size arrays are only valid for arrays used
as dummy arguments. Deferred shape arrays, where the storage for the array is allocated during
execution, must be declared with either the ALLOCATABLE or POINTER attributes.

Every array has properties of type rank, shape and size. The extent of an array’sdimension is the
number of elementsin the dimension. The array rank is the number of dimensionsin the array, up
to amaximum of seven. The shape is the vector representing the extents for all dimensions. The
sizeisthe product of the extents. For some types of arrays, al of these properties are determined
when the array is declared. For other types of arrays, some of these properties are determined
when the array is allocated or when a procedure using the array is entered. For arrays that are
dummy arguments, there are several special cases.

Allocatable arrays are arrays that are declared but for which no storage is allocated until an
allocate statement is executed when the program