[Compilers and Tools

=2

_,Z.

TABLE OF CONTENTS

o 1 2T TSP Xii
INTENAEA AUIBINCE. ...ttt bbb R bbb bbbttt Xii
00 o10 41131 = (o TSP Xii
Compatibility and Conformance 0 StaNAArdS...........cccocueviieiiciiccr et Xii
OFGANIZALION. ...ttt bbb bbb xiii
CONVEINTIONS. ...t et eseesees st es e s s e s8Rt Xiv
TEIMNINOIOGY ...t vvevreeeieteeei ettt bbbt Xiv
RElAtEA PUDIICALIONS. ..ot XV

Chapter 1.Getting StArted...........oeceeceieininirre s s a e e p e e e R R nE e 1
1.1, DEfINIEION OF TEIMS. ...cviuiieetcice sttt e st b bt 1
1.2. Building Applications fOr DEDUG.........coevuiuiiieieiitieiieisee ettt 2

1.2.1. Debugging OptiMIZEd COGE.......c.curireiierieiieire e 2
1.2.2. Building for DEbUG 0N WINAOWS........c.ccviiiiiieieiieieiieiseec ettt 2
G 0Tl T =T oY ST 2
1.3.1. Command Line INErface (CLI).......ccovieuoiiriieieisicerie ettt 2
1.3.2. GraphiCal USEr INEIACE.cu ettt ettt 2
1.4. Co-installation REQUIFEMENLS.........c.ceiiicreicicrie ettt e b bbb bbb 3
1.4.1. Java ViRl MACKINE.ttt ettt 3
L 1o T o TP 3
1.5, SHAM DEDUGGING. ...t vttt 4
1.6, PrOGIamM LOBM........cuuiuereiiieeseiiieiee ittt 5
1.7 INHAIZATON FIlES..... ettt ee e s ettt st 5
1.8, Program ArCHITBCIUNE. i 5

Chapter 2.The Graphical User INtIfaCe.........ccccecrcrenrmmnrirrrreresese s s ssssssssssssssssssanssesenes 6
2.1, MaIN COMPONENES......cvueierieereereeeseeeeeeseeee s et sese bttt e b s e b e bbb bbb e E b e bbb bbbt n bbb 6
2.2, SOUICE WINAOW.ovuieireiieiseiiesiseesese st sss st sttt ss s8££ttt 7

2.2.1. Source and ASSEMDIY DISPIAYS.........ceurirrriuriieieiiteiieireiei ettt 8
2.2.2. 50Urce WIiNdOW COontEXt MENU..........euiuriieiiirieiseiece st 8
B2 TR 1 =1 2 T oo o OSSP 9
2.3, BUONS. ...t 9
2.3.2. DIrOP-DOWN LISES......c.cueeiiceireeieseeesnei ittt ese et ees et e et s et en s ennnt s 10
2.4, Program /O WINAOW.........ceuieuriiieiriieisieiesse sttt sss st ss e s ss s s st st st ssses s st s ansesessnsessanes 10
2.5. Debug INfOrMatIoN TaDS..........cueurieieieiest ettt 11
2.5.1. COMMANG TaD.....cocuiiiieiieieetce ettt s e ses et s et b bbbttt nne s 11
2.5.2. BEVENES TAD..... ettt ARt 12
2.5.3. GrOUPS TaD......ceeereecieeetseieeet ettt bbb 12
2.5.4. CONNECHONS TaD.......cvuiuiieireiiiieiscicie ettt bbbttt b bbb s s st s e 13
2.5.5. Call STACK TaD.....ceeueeiieeriieeririeieirieieere ettt nes bttt n e 14
2.5.6. LOCAIS TaD.....c. ettt bbbt 14
2.5.7. MEMOTY TAD....oerieiretieietee et 15

PGI Debugger User Guide i

2.5.8. MPI MESSAGES TaD.....c.cuiiiiiiiiiiicicicie ettt ettt ettt bbb en ettt s s 16

2.5.9. ProCs & Thraas Tab........oc ettt ettt ettt 16
2.5.10. REGISIETS TaAD......cuiiiieiiiciiisicie sttt bbb s bbbt n et bt 17
2511, SHAIUS TaD ..ttt 18
T 1 1Y TV 7 TSP 19
2.6.1. Flle MENU. ..ot R bbbttt 19
2.8.2. EQit MBNUL ..ottt 19
2.6.3. VIBW MBNU. ...ttt bbbttt 20
2.6.4. CONNECHONS IMENUL.....ovuiieeieecieeceets ettt ea et na st s et sseneeesnis 21
2.6.5. DEDUG MENU.....oiiiiiicicteieete sttt b bbbt e e ARttt b bt s bbbt n s 21
2.6.8. HEID MEBNU. ...ttt ettt R et n s 22
Chapter 3.Command LiNe OPtioNS.........crcererenrenssnesensssesessssesess s ssessessssessessssessessssessessssessessssessesssssssesssssssesssssssens 23
3.1, Command-Ling OPtIONS SYNEAX.........curiueriurireiieiieieiieirte ettt 23
3.2, COMMANG-LINE OPHONS.....ceviieiiiisiieiiete ittt sttt st s e b bbb st n b s sns s enas 23
3.3. Command-Line Options for MPI DEDUGGING.........c.ev vt 24
T 1@ I =T =T o] TSP 24
Chapter 4.Command LANQUAQGE.........cecrererermmrmmmsmsmssssesesessssssssssssssesessssssssssssssssssssssessssssssssssssssssssssssssssssssssssssesessssasasssns 25
4.1, COMMANG OVEIVIEW.......cieeieeiseseieisisets s sess s iees et e e et se st sese st e e s ee s s sttt es e s s et s et s e sesen 25
4,11, COMMEANG SYNEAX....0ietuitriieiiieiieiseies ettt ettt ettt ettt bbbt b bt s bbbt b s 25
A 0T 411 = 4T oo LT3R 25
4.2, CONSIANTS. ...ttt s8R R ARt 26
4.3, SYMDOIS ...ttt R 26
4.4, SCOPE RUIES........oocvieecieiiete ettt b e bbb bbb st bbbt bbbt n st a s 26
4.5, REJISIET SYMDOIS. ...ttt e bbb 26
4.6. SOUICE COUE LOCAIONS......cvuivrvriircisirieiicisiie ittt 27
4.7, LEXICAI BIOCKS. ..ottt ettt e8RSttt 27
4.8, SHAIEMENES. .. .ecviiieeicieiri ettt b bbbt R SRRttt ne e 28
4.9, EVENES ..ottt h R e R SRR AR £ R bR E b s R s 29
e I Y L 00T 144 T o TP 29
4.9.2. EVENt COMMENG ACHON.oivrieireirieeiieiieseseises ettt s s s ss bbb 30
410, EXPIESSIONS.....cvucvereerieireeeeees et es st ses s es s8R ARt 31
BT, CHIHC. ettt 32
4.11.1. ComMANG-LiNE DEDUGGING. ... cvuvvereeereereeireieeseseeeieeseeeesesee et ses e eb s bbbt 33
4.11.2. GUI DEDUGGING. ...ttt ettt bbb bbb s bbb bbb n s 33
4.11.3. MPI DEDUGGING. ... cverereeeseiteeesetetee ettt bbb bbb bbb 33
Chapter 5.COMMANT SUMMAIY.........oreorererresseresressesessesesessessssessessssessessssessessssessessssessessssessessssessessssessessssessessssessessssessenes 34
5.1. Notation Used in COMMANG SECHONS.........cururieeericieiriees ettt 34
5.2, COMMANG SUMMAIY.......ciieiiiiiiiriieeisieress st ss st b st es st b b s s b sn st e b s st s e bbbt s s et b en st enans 34
Chapter 6.Assembly-Level DEDUGQING........ccovurerimrrenessrisiss i s s s a s 46
6.1. Assembly-Level Debugging OVEIVIEW...........c it 46
6.1.1. Assembly-Level Debugging 0N WINAOWS.........c.oceuririuririeirneieire et seseen 46
6.1.2. Assembly-Level Debugging With FOMran...........coviiinir s 47
6.1.3. Assembly-Level Debugging With C. ..o 47

PGI Debugger User Guide iii

6.1.4. Assembly-Level Debugging Using the PGDBG GUL..........ccceviiiiniieiricerieie e 47

6.1.5. Assembly-Level Debugging USiNg the PGDBG CLLI.........coivriiiiiriiiriirisisseeseseeeesesseeesssseeessseenes 47
6.2, SSE REGISIEr SYMDOIS.......cviviiieiiiciiisiiceiie ettt na st 48
Chapter 7.Source-Level DEDUGQING......ccourmrmrrmrrreresesssssssssssssssesese s ssssssssssesesssesesesssssssssssns 50
7.1, DEDUGGING FOMIAN. ..ottt 50
A O R = T /o =T TSRO 50
7012, ATTAYS. ..ottt bbb £ b £ E R bR R bR bR bbb 50
71,3, OPEIAIOIS.....vecvviecteticte ettt bbb bttt b bbb bRt bt b bR bbbt bbbttt b tns 50
7.1.4. Name of the Main ROULINE..........ccrirceeee et 51
7.1.5. COMMON BIOCKS.cvveirieireisieireiseietie ettt st eb bbbt 51
71,6, INTEIMNAI PrOCEAUIES. ... ettt se ettt ne b s st en st esnnnas 51
T07. MOTUIES.....ooee et 8 Rt 52
7.1.8. MOAUIE PIOCEAUIES........ceeeeieeieeeeireete sttt s e ees ettt ee s s et ees et snseen 53
0 1= o 10T o Yo TP 53
7.2.1. Calling CH+ INStANCE MENOS........c.eeriieciee et 54
Chapter 8.Platform-Specific FRAtUIES..........ococirerrnirissisrsis s s ses 55
8.1. Pathname CONVENTIONS..........euiurireiieriseiiessseisseseseessesss et sss st ss e s s ss s ss s b s bbb st ns s 55
8.2. Debugging With COre FilES.........cuiiiiiiiiiciirie et 55
8.3, SIGNAIS. .. .eveceereect ettt 57
8.3.1. Signals Used Internally by PGDBG..........ccoririmiuieriiiiieriiies e 57
8.3.2. Signals USed Dy LINUX LIDIATES.criririiririiiriiriciscieeiseiseisessee st sss ettt sss st ss st ssesssnes 57
Chapter 9.Parallel Debugging Overview
9.1. Overview of Parallel Debugging Capability...........ccccvviiiriieiieieiecese e 58
9.1.1. Graphical Presentation of Threads and PrOCESSES........ccrueurimrurireieirireeereeieeseeis e eseesenes 58
9.2. Basic Process and Thread NamiNg.........ccocerriiiiiiieeeesssisiss et ss s sesesesessssssens 58
9.3. Thread and Process Grouping and NAMING. ... 59
9.3.1. PGDBG DEDUG MOUES.......c.uceriiiieieiiieieiseieietsetei ettt ettt 59
9.3.2. ThreadS-0Nly DEDUGGING. .. . cueeeurueerereerereretrereieereseeeteeseeeeses e seseesesese s et ee s seaesee s ee e e b ees b e s nese s s et eeessesesasseseens 60
9.3.3. ProCesS-0Nly DEDUGGING. cuvreurierereiiereieieineeieesee ettt ettt 60
9.3.4. MUILIEVE] DEDUGGING. ... ceeviereirireieireietr sttt bbbttt 60
9.4, PrOCESS/TRIEAU SEIS.....ucuiieeieeieieiietr sttt ettt ettt ne e r s 61
94,1, NAMEA P/ESEES... ettt bbbt a bbb bbb bbb bbbttt st b nas 61
0.4.2. PI-SEE NOTALION. ...t 61
9.4.3. DYNAmMIC VS. STAtIC P/-SEES......cuciiirciicteiets ettt 62
9.4.4. CUITENt VS. PIEfIX PI-SEL....e. ettt 63
9.4.5. P/=SEE COMMANGS......c.coiieviiriiiicie ittt b st bbb s bbb bbbttt st s nais 63
9.4.6. Using Process/Thread Sets in the GUL.........c.ociiiiniieeee e 64
9.4.6.1. Create @ PIESBL. .ttt 65
0.4.6.2. SEIECE @ PI-SBL... ettt 66
9.4.6.3. MOIY @ PHSEE....ovuieiieicesee ettt 66
9.4.6.4. REMOVE @ P/-SBL.....viitiiiiteece ettt ettt bbb s bbb bbbt 66
047, PIESEE USBGE. . .euveeiiiie ettt R 66
9.5, COMMEANG SEL.......oviiiiiieiciete sttt bbbttt 67

PGI Debugger User Guide iv

9.5.1. Process LEVEl COMMEANGS..........ccciuiririieisisietetetee sttt ettt sttt sttt bt a e es sttt ebess s et s et et ese s st st taterens 67

9.5.2. Thread Level COMMEANGS.........ccruriieeirieieere ettt ees sttt ses et e e eee et s s e e se e s et ens et esnenen 67
0.5.3. GlODAI COMMEANGS.......cuuieiireiriirireiiteereieises et bbb bbbttt 68
9.6. Process and Thread CONMIOL............ceurieirer ettt 69
9.7. Configurable S0P MOGE.......c.ceriiiririiieeee bbb bbb bbbttt 69
9.8. Configurable Wait IMOGE.........c.uuririuierieiriirieisiie ettt sttt 70
0.9, SHAUS MESSAGES.eucveeireieiiei ettt bbbt 72
9.10. The PGDBG COMMANG PIOMPL.........coeiiiriiiiiietiicie ettt st st b bbb 73
LI B T 1= YT TR 73
9.12. Parallel STAEMENTS.c..cuiieieiriieieisce ettt bbbttt 74
9.12.1. Parallel Compound/BIOCK STAtEMENLS..........ceuiiuiierieerreice ettt 74
9.12.2. Parallel If; EISE SEAtEMENTS.......c..ciiiirieiierces sttt 75
9.12.3. Parallel While Stat@mMENTS..........ooceiiceeee ettt 75
0.12.4. REtUMN SEAIBMENTS. ..ot 75
Chapter 10.Parallel Debugging With OPENMP...........coo i 76
10.1. OpenMP and Multi-thread SUPPOM.........cvv bbb 76
10.2. Multi-thread and OpenMP DEDUGGING........cuovrrrivriierieiitieieissieieissee st ettt b st b st ss st enns 76
10.3. Debugging OpenMP Private Data..........cceuriieiiiriieiieirieieisceeisce ettt 77
Chapter 11.Parallel Debugging With MPL............ccooeieirmmmmmmrrmsesessssssssssssssss s ssssssssssssesessssssssssssssssssssesesssssssssens 80
11.1. MPI and MuUlti-ProCess SUPPOIL..........c.oviuierieiiriereiseseiee ettt 80
11,20 IMPE ON LINMUX. 1ttt £ttt 80
11,3, MPLON OS Xiioiiiiieiitsteittet ettt bbbt bbbttt b bbbttt n et 81
114 MPL ON WINAOWS.......eeetiiceee et bbb bbb 81
11.5. Deprecated Support for MPICH1, MPICH2, MVAPICHT ... 81
11.6. Building an MPI Application for DEDUGGING.......c.cvvvevriireiiieieiiesceseie sttt ssa e aes 81
11.7. The MPI LaUNCH PrOGraM.......c.cuiuiiieiiiieieieiieieeeseiee ettt bbbt 81
11.7.1. Launch Debugging Using the Connection Tab............ccoeurririnnieineneiene e 81
11.7.2. Launch Debugging From the CommMand LiNE...........coieurrrrienniiencees e 82
1173, MPICH. ...ttt ettt et b bbbt b bbbt ns 82
1174 IMS-MPLL.cse ettt £ £ £t E bbbttt 82
1175, IMVAPICHZ......c..ceeoee sttt bbb bbb bbbt b bbbt 83
117,68, OPEN MPL...eieiets ettt 83
T17.7. SGI MPLL.cseeieeee ettt ettt ettt ettt E bbbt b ettt ettt 83
11.8. PrOCESS CONMIOL......euivieircicieict ettt ettt s s8Rt s b st 84
11.9. ProCess SYNCIIONIZALION.cvueuieireiiirieiiteeeitt et bbb 85
11.10. MPI MESSAGE QUEBUES.......ccvuviieirieiieisetseieiet sttt ettt ettt 85
I 1 T o 3PP 85
11.12. Use halt instead Of CHIHC.........ooier s 86
1113, SSH @NA RSH.....oiiiiiicii ettt 86
1114, USING N8 CLL.oitiieiiiee sttt bbb bbbttt 87
11141, SEHNG DISPLAY ..ottt bbbt 87
11142, USING CONINUE.......uciiieiriieeirce ettt 87
Chapter 12.Parallel Debugging of Hybrid Applications..........ccceecrcrenmresmmrnsnsnsnesessssss s ssssssssssssssssesessssssass 88

PGI Debugger User Guide v

12.1. PGDBG Multilevel DeDUG MOGE...........c.covieiiiriiriineeceisesese et 88

12.2. MUILHEVE] DEDUGGING. ... cvreuerireiseectis et 88
Chapter 13.Command RefErENCE.........ccuireriirreerrerssse s e e p s 90
13.1. Notation Used in Command SECHONS...........cccccviiiiiicciciitee sttt 90
13.2. PrOCESS CONIIOL......coiiiiicictctee ettt bbbt b bbbt ee bbb bbbt s s s bbbt bbans 91
13,20, AHACK. ... bbb bbbttt st s e aeae b e 9N
13022, CONE.c.etii ettt ettt b bbb bbb e ettt b bbbttt n A A bbb bbb s e st et e b et ettt bt e s e aeteteta 9N
13.2.3. ABDUG. ..ttt 91
13,24, ABLACN. ...t et b bbb bbb bbb bt s et bbbt e 91
13.2.5. Nl ..o bbb bbb bbb bbbt bbbt 91
13,26, 10AG.. ...ttt b s e e R bbb b bbb s e st b et et ettt b s e e e ae bt tas 92
13.2.7. MEXL ottt a bR R R b SRR R bbb b bR bbbt et tnn 92
13,28, NEXH...etieeieeee et b et bbbt e A bbbt et b e e AR b bbbt b s s e e 92

LI TR o] oo TSP 92
13,210, PIOCS...ciiieieceetete ettt ettt ettt bbbt s bbbt e b s b e e s e R bbb bbb AR AR A bbb s e a bbbt b e 92

L 3572 TSP 92
13,2012, TEIUN ottt a bbb b bbb e e ARt b bbb bt s e A e ARt bbb bR e e Rt A et e b bt s s s e e aeaeretetas 92
13,203, TUN ettt ettt et et b bbbt e A A bbb bbb s AR bbb bbbt s a e bbbt ettt en e 92
131214, SBEAIGS . ettt R bRttt 93
1320, Bttt R SRR RS R 93
13,218, SEEPi. vttt b ARt b bbb A bbb bbbt bt b s e 93

I T I (=T o TP 93
T B T/ 0TRSO 93
132,10, SYNClueiieiieeiee ettt 93
13.2.20. thrEAM.......ceciieeeicece ettt bRt bt n ettt nas 94
13.2.270. TNMBAUS.... ..ttt ettt bbb bbb bbb bbb bbbt bbb s e s aenebetas %4
130222, Wal.. vttt ettt bbbttt a bbb bbb e R R bbbttt n s et et et ettt bt en s naeaetetas 94
13.3. ProCeSS-TIIEAA SEIS......cucviviiiieiiiiiiieee ettt ettt bbbt bbb b et en et ettt bbb 94
13,30, ABISEL.....ii bbb bbb bbb bR bbbt ettt n bbbt 94
13.3.2. FOCUS ...ttt ettt ettt bbb b bbb bbb bbbttt e bbb At bbb st b s b b st snaas 94
13,33, UNAETSEL......cecececee ettt e a bbb b bbb et bbbttt e e st ettt b 94
13,314, VIBWSEL.. ..ottt bbbttt R R b bbb e e e R ARt ettt senen e nenetenas 94
13,35, WHICRSELS......vtevii ettt ettt bbbt et b bbb bbbttt ettt b 95
134, VNS .ot R AR bbb e AR ARt e R R b bbbt e e n et et ee 95
13140, DIBAK.... vttt bbbt et b bbbt bbb bR bbb bbbt e e R et et et bbb b s s e netetis 95
1314.2. BIEAKI......cviveiiecvicet ettt b bbb bR bR bbb bR R bbb bbb s 96
1314.3. DIBAKS.......ceieiecectctet ettt bbbt b bbbt R bbb b bbb s e AR A bbbttt e s e a bbbt banas 96
13144, CACN.....coicce bR AR ARt et bbb bR s nas 96
13145, ClBAN ...t a R b bbb b b s R AR A ettt s s e e e ae bbbt b e 97
1346, GEIBLE........o ettt b bbb bbb Rt bbbt ettt e s e ae bt tas 97
1347, ISADIE.......cocoiecvicic et e b e bt bbb e bbb bbb bbbt bbbttt an s tns 97
138, 0. ettt b bbbt b At A bbbttt s e e R bbbt bbb e rers 97
1314.9. 00ttt b bbb a bbb b s bbbt bbb bbbttt n e tens 97

PGI Debugger User Guide vi

L LT 0= o] [RO 98

I T R 117 (o OO 98
13.4.12. AWALCADOMN.o bbbt 98
13.4.13. NWALCATEA. ...ttt ettt 98
131414, IGNOTE. ...ttt s bR R R 98
131415, SEALUS. ... e R R bbbttt 99
131418, SHOP ettt R RS R R R bbb 99
131407 SHOPie vttt bbbt 99
I T T - To T 99
131419, fTACRI. .. ettt bbbt 100
I T - oS 100
134,270, HFACKI. vttt 100
LT V131171 100
131423, UNDTAKI ... vovvveisiciiei ettt bbb 100
134,24, WALCN......cviveeiee et 100
1314.25. WALCKI.....cucviiecieiictsiet ettt ettt R RSt Rttt s nnes 101
134,268, WHEN....o.ciitce ettt bbbttt 101
131427, WHBNI. ..ottt bbb bbb bR bbbt 101
13.5. PrOGram LOCAHONS.cuevrierieeriiei ettt sttt bbbt 102
TR T R 11O 102
1352, Bl RS R Rt 102
I TR TR 0117 T~ T 102
13,54, B ... AR 102
L TR T T 1 PO 102
1358, TINES..eeteece et 102
I TR T 11 PO 103
L TR R 1 TP 103
13.5.9. STACKAUMIP. ..ottt bbbt b bbb e e bbbt b s b e st b bbb 103
13.5.10. SEACKITACE. ... vveviecieiri ettt ettt 103
13 01T WNBIE. bR R bR b £t b ettt 103
135,12, L e AR bbb bbbttt 104
L T T 1 T OO 104
13.6. Printing Variables and EXPrESSIONS.........cccriiuierireiieieseireeseseiseeseses e st nen 104
T T T o 0| PSPPSR 104
1382, PHINHE ...ttt R R bbbt 105
13183 BSCHiuvurerreiiieeieiseiei ettt bbbt 105
I T2] T 106
1385, GBC. ..ttt R £ R R Rt 106
1316.8. ISPIAY. ... ettt ettt R SR e Rkttt ee e 106
T T 1T TSP 106
1388, OCT. ettt R R R ARt 106
1389, SHTING vttt R Rt 106
1316, 10, UNGISPIAY ... eeeercetieiete ettt s bbbttt 106

PGI Debugger User Guide vii

370, @SSIGN. ..ttt 106
1372, LR 107
13.7.3. AECIAMALION.cvvveie et b bbbttt ettt s s a et bee 107
1374 BN .o R 108
13,75, IVAL ot h b e bbb e bRt bbb bbbt bbb et 108
T A T 7 OO 108
13,77 SBE e bbb h A bbb bbbt bbb bbbttt 108
13,78, SIZEOM.... .ottt bbbt b bbb bbb e st bbbt b bt s e ettt 108
LT T 1/ o =TT 108
I TR TS oo o= 109
1381 ClASS. bbbt 109
13,82, ClaSSES.... ottt b bbb bbbt a A bbb bbb e et b bbbt b s s s aetetas 109
13,83, BCIS. .. 109
13,84, AOWN.....oiece ettt ettt ettt e e ettt bbb bbb s s b s en et sttt et b en et et st ban st s nans 109
13,80, BNB ...t b ettt a bbb bbbt et a et bbbt et s s 110
13,88, flBS . uietictet ettt bbb bbb a bbb a bbb bbb bt n ettt b a b enas 110
1387, GIODAL.. ..ottt bbbt bbb bbbt bttt nr e 110
13,88, NAIMES.......oi it b e R AR b bbb s et a ettt n s e s 110
13,80, SCOPE. ... vueeerteie ettt bbb bbb f e E R E bR E bR bbbt 110
13,810, UP.uiititeiieeteiete ettt et ettt b bbb R bbb bR b bR A bR b bR a bbbt e b bt 110
13,811 WRBIEIS ...ttt bbbt b bbb bbbt b bbb b et et ettt bans 110
13,812, WHICH. ...t bbb bbb s bbbt nais 110
13,9, REGISIET ACCESS. ... vuvivieeseeee ettt bbb bbb 11
LT T R o TP ORUPRTTP 111
13002, Pttt ettt ettt ettt b et ee At st et s A en s b s e et s en bt s bbbt b en bt enae bt st s en e tnas 111
13,03, TS ottt R R R 111
13,94, TEEAUAI........cecececececc ettt bbb bbbttt bbb ee s aeae b bt 1M1
130D, P ittt bbb bbb bbbt bbbttt 111
13.10. MEMOTY ACCESS.veereeirieeieirtseteires ettt sttt b ettt st s bRt R bbbttt eb et 11
13101, CrBAG.... .ottt bbbttt b bbb bbb a b bbbt s ettt et bbbt s s s e tetas 111
13.10.2. ArBAG..... ettt ettt bbbt bbb b bR bbbt n et s bbb s nais 112
13.10.3. AUITIP. .ottt st 112
131014, fTEAU.......cecvieceei ettt e s bbb bbb bbb bbbttt bbbt b 113
13.10.5. IMBAM. ittt bbb et b bbb bbb e A A bbb bbb e e e ARt e bbbt s s s e aeaetis 113
LT 0T TR 1T o TP TP PRSP 113
L T 0 1110 o [0 oSO 113
13,1008, STBAG. ettt 113
1310, CONVEISIONS.......viiceeectctcte ettt b bbbt bbb bbb bbb s e e e e s e st e b et et bbb s ee e AR b et b et et ettt s s e na et ettt banas 113
T 0 R To Lo OO 113
13112, FUNCHON. ...ttt ettt ettt b e s b bbbt bbb bbb bbbt s st bbb s et s aes 113
I T B S T 11T 114
13012, TAIGEL. .. R R R R Rt n e 114

PGI Debugger User Guide viii

S 1700 TR +To =Yt TR 114

13122, QISCOMNECL.... ..ottt b bbb bbb bbbt et bbb s s a bbbt et b b ss s nns 114
13.12.3. NMALIVE.ceececte ettt bbbttt 114
13,13, MISCEIIANEOUS.........veii ettt bbbttt et bbbt s bbbt b b b s bttt et s s 114
T T TR 3T 115
13.13.2. IMBCIOMY... .ottt bbbt 115
13,133, DBID ettt bR bR bbbt 115
13,134, DESTONY .ottt 115
13,435, JANGUAGE ...ttt 116
130138, 100 vttt b AR bbb bbb bbb bbbttt et 116
T T A 4o SR 116
TR X 0 TR oo =T ST 116
TR T TR =107 OO 118
131310, SCIPE ..ttt a bbbt R b ARt st b e 118
131300, SBIENV ..ttt bbbt a bbb bbbttt et s 118
13,1312, SNEIL...oeee bbbttt 118
TR I T T o PP TR T TP 119
131314, SOUICE.....cuivieceevetete ittt ettt ettt ettt bbbt e s a bbbt b b st e e s s b e b et et bbb es s e e s bt ebebebebes s s e e en 119
13,1315, UNGHAS. .. c.cecvvteict ettt b bbb bbb et ettt et n e aetetenas 119
13,1318, USE..uruvrieeieeiitecseesste st s st s bbbt R bR AR AR 119

PGI Debugger User Guide ix

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23

Figure 24

LIST OF FIGURES

Local DebUGQing LICENSINGc.vueviuriieieiriieieireiee ettt 4
Remote DEbUGGING LICENSINGc.vuvieiieieireieieistie ettt bbb 4
Default Appearance of PGDBG GUIcocoiciriiieceiesse ettt st 6
SOUMCE WINAOW ...ttt bbb 7
CONEEXE MEBNU ..t bbb bbb 9
BULONS 0N TOOIDAT ...t 9
Drop-DOWN LiStS 0N TOOIDATcccuriieeerieerireeieircres ettt ses et e st ense s nseens 10
Program 1O WINAOWeuiuiuiiieiieirieeeiee e s e 11
COMMANG TAD ...ttt 12
BVENES TAD ..o bbbt 12
GIOUPS TAD coiviiceiece ettt b et bbbt b bbbt bbb 13
CONNECHONS TAD ..ottt 13
Call SEACK TaD ...vvvveeieieeii it bbb 14
Call Stack Outside CUIMENT FIAMEc..c.cuiicieieieiiecscietseiee ettt bbbt 14
LOCEIS TAD ...ttt 15
MEMOTY TAD ..ot bbbt 15
Memory Tab in Decimal FOMMALcociieiirieereeee et 16
MPI MESSAGES TaD ...ttt 16
Process (Thread) Grid Tabc.ccevceiicieicee ettt st bbbt 17
General PUMPOSE REGISIELSc.cvucuiiiiiiieiicreseice ettt bbb bbbt st 18
SHALUS TAD .o 19
GIOUPS TaD ..ottt ettt e et bbb s bt s et bttt e s bbbt s bt n bt st b en e tnas 65
Process/Thread Group DIialog BOXc.cueuuriiriiiniinieinieieisee ettt 66
OpenMP Private Data in PGDBG GUI ...ttt sesseseen 79

PGI Debugger User Guide X

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

LIST OF TABLES

Colors Describing Thread STAtec.ovviuririirirec bbb 17
PGDBG OPEIAOTScvuvreeceiretreieesetsereeseeseseeseeseseesee s eb s ea s eb st e s b8 s b s bbb s et 32
PGDBG COMMEANGScouivuierieeirieeieieiessee st 34
PGDBG DEDUG MOUESoucviiiieiicteie ettt sttt bbb 59
Thread IDs in Threads-only DebUG MOGEovuiueeiieiririicieces et 60
Process IDs in Process-only DEDUG MOTE ..ot 60
Thread IDs in Multilevel DEDUG MOUEc.coviiieieireieieree e 61
o7 ST A 0 411 2= o TP 63
PGDBG Parallel COMMANGSc..cuiieiiiiieieireieiei ettt 67
PGDBG StOP MOUEScovueuiririeireiciiseiee ettt 69
PGDBG Walit MOGES ...ttt 70
PGDBG Walit BENAVIOT ...ttt 7
PGDBG StatUS MESSAGESvvvuieiriirieireisiesiseisissietssss ettt ss et sss sttt 72
Thread State Is DeSCribed USING COlOTciuiiiiirieiireeisieeisese sttt ssesees 77
PYIENY COMMENGSvuevireeiteeseeetees ettt bbb bbb bbb bbb bbb 116

PGI Debugger User Guide Xi

PREFACE

This guide describes how to use the PGDBG debugger to debug serial and parallel applications
built with The Portland Group (PGI) Fortran, C, and C™ compilersfor X86, AMD64 and Intel 64
processor-based systems. It contains information about how to use PGDBG, as well as detailed
reference information on commands and its graphical interface.

Intended Audience

This guide isintended for application programmers, scientists and engineers proficient in
programming with the Fortran, C, and/or C** languages. The PGI tools are available on a variety
of operating systems for the X86, AMD64, and Intel 64 hardware platforms. This guide assumes
familiarity with basic operating system usage.

Documentation

PGI Documentation isinstalled with every release. The latest version of PGDBG documentation
is also available at www.pgroup.com/docs.htm. For frequently asked PGDBG questions and
answers, refer to www.pgroup.com/fag/index.htm.

Compatibility and Conformance to Standards

The PGI compilers and tools run on avariety of systems. They produce and/or process code

that conforms to the ANSI standards for FORTRAN 77, Fortran 95, Fortran 2003, C, and C*

* and includes extensions from MIL-STD-1753, VAX/VMS Fortran, IBM/V'S Fortran, SGI
Fortran, Cray Fortran, and K&R C. PGF77, PGFORTRAN, PGCC ANSI C, and PGCPP

support parallelization extensions based on the OpenMP 3.0 standard. PGHPF supports data
paralel extensions based on the High Performance Fortran defacto standard. The PGI Fortran
Reference Manual describes Fortran statements and extensions as implemented in the PGI Fortran
compilers.

PGDBG supports debugging of serial, multi-threaded, parallel OpenMP, parallel MPI and multi-
process multi-threaded hybrid MPI programs compiled with PGI compilers.

For further information, refer to the following:
» American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

PGI Debugger User Guide Xii

www.pgroup.com/docs.htm
www.pgroup.com/faq/index.htm

Preface

» American National Standard Programming Language C, ANSI X3.159-1989.

» ISO/MEC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999
(C99).

» ISO/EC 1539:1991, Information technology — Programming Languages — Fortran, Geneva,
1991 (Fortran 90).

» ISO/IEC 1539:1997, Information technology — Programming Languages — Fortran, Geneva,
1997 (Fortran 95).

» High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston,
Texas (1993), http://www.crpc.rice.edu/HPFF.

» High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston,
Texas (1997), http://www.crpc.rice.edu/HPFF.

» OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.

» Programmingin VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-4119.

» Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

» HPDF Standard (High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/
intro.html

Organization

The PGDBG Debugger Manual contains these thirteen sections that describe PGDBG, a symbolic
debugger for Fortran, C, C™" and assembly language programs.

Getting Started
contains information on how to start using the debugger, including a description of how to
build a program for debug and how to invoke PGDBG.
The Graphical User Interface
describes how to use the PGDBG graphical user interface (GUI).
Command Line Options
describes the PGDBG command-line options.
Command Language
provides detailed information about the PGDBG command language, which can be used from
the command-line user interface or from the Command tab of the graphical user interface.
Command Summary
provides a brief summary table of the PGDBG debugger commands with a brief description of
the command as well as information about the category of command use.
Assembly-L evel Debugging
contains information on assembly-level debugging; basic debugger operations, commands,
and features that are useful for debugging assembly code; and how to access registers.
Sourec-L evel Debugging
contains information on language-specific issues related to source debugging.
Platfor m-Specific Features
contains platform-specific information as it relates to debugging.
Parallel Debugging Overview
contains an overview of the parallel debugging capabilities of PGDBG.

PGI Debugger User Guide xiii

http://www.crpc.rice.edu/HPFF
http://www.crpc.rice.edu/HPFF
http://www.openmp.org
http://www.ptools.org/hpdf/draft/intro.html
http://www.ptools.org/hpdf/draft/intro.html

Preface

Parallel Debugging with OpenM P
describes the parallel debugging capabilities of PGDBG and how to use them with OpenMP.
Parallel Debugging with MPI
describes the parallel debugging capabilities of PGDBG and how to use them with MPI.
Parallel Debugging of Hybred Applications
describes the parallel debugging capabilities of PGDBG and how to use them with hybrid
applications.
Command Reference
provides reference information about each of the PGDBG commands, organized by area of
use.

Conventions

This guide uses the following conventions:
italic
is used for emphasis.
Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.
Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this case item1 is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.
filename...
élipsisindicate arepetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.
FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.
CIC++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux, OS
X, and Windows operating systems on a variety of x86-compatible processors. There are awide
variety of releases and distributions of each of these types of operating systems.

Terminology

If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms
which you can access at www.pgroup.com/support/definitions.htm

PGI Debugger User Guide Xiv

www.pgroup.com/support/definitions.htm

Preface

Related Publications

The following documents contain additional information related to the X 86 architecture and the
compilers and tools available from The Portland Group.

>

v

v v VY

PGI Fortran Reference Manual describesthe FORTRAN 77, Fortran 90/95, Fortran 2003,
and HPF statements, data types, input/output format specifiers, and additional reference
material related to the use of PGI Fortran compilers.

System V Application Binary Interface Processor Supplement by AT& T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).
Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

The C Programming Language by Kernighan and Ritchie (Prentice Hall).

C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

The Annotated C** Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT& T Bell
Laboratories, Inc. (Addison-Wesley Publishing Co., 1990)

PGI Compiler User’s Guide, PGl Reference Manual, PGl Release Notes, FAQ, Tutorials,
http://www.pgroup.com/

MPI-CH http://www.unix.mcs.anl.gov/M Pl/mpich/
OpenMP http://www.openmp.org

PGI Debugger User Guide

XV

http://www.pgroup.com/
http://www.unix.mcs.anl.gov/MPI/mpich/
http://www.openmp.org

Preface

PGI Debugger User Guide XVi

Chapter 1.
GETTING STARTED

PGDBG is a symbolic debugger for Fortran, C, C** and assembly language programs. It provides
debugger features, such as execution control using breakpoints, single-stepping, and examination
and modification of application variables, memory locations, and registers.

PGDBG supports debugging of certain types of parallel applications:

» Multi-threaded and OpenM P applications.

» MPI applications.

» Hybrid applications, which use multiple threads or OpenMP as well as multiple MPI
processes.

Multi-threaded and OpenM P applications may be run using more threads than the available
number of CPUs, and MPI applications may allocate more than one process to a cluster node.
PGDBG supports debugging the listed types of applications regardless of how well the number
of threads match the number of CPUs or how well the number of processes match the number of
cluster nodes.

1.1. Definition of Terms

Throughout this manual we use several debugging-specific terms. The programis the executable
being debugged. The platformis the combination of the operating system and processors(s) on
which the program runs. The program architecture is the platform for which the program was
built, which may be different from the platform on which the program runs, such as a 32-hit
program running on a 64-bit platform

Remote debugging introduces a few more terms. Remote debugging is the process of running
the debugger on one system (the client) and using it to debug a program running on a different
system (the server). Local debugging, by contrast, occurs when the debugger and program

are running on the same system. A connection is the set of information the debugger needs to
begin debugging a program. This information aways includes the program name and whether
debugging will belocal or remote.

Additional terms are defined as heeded. Terminology specific to paralel debugging isintroduced
in Parallel Debugging Overview.

PGI Debugger User Guide 1

Getting Started

1.2. Building Applications for Debug

To build a program for debug, compile with the —g option. With this option, the compiler
generates information about the symbols and source filesin the program and includes it in the
executable file. The option —g also sets the compiler optimization to level zero (no optimization)
unless you specify optimization options such as -0, —fast, or —-fastsse onthe command
line. Optimization options take effect whether they are listed before or after —g on the command
line.

1.2.1. Debugging Optimized Code

Programs built with —g and optimization levels higher than —00 can be debugged, but due to
transformations made to the program during optimization, source-level debugging may not

be reliable. Assembly-level debugging (e.g., accessing registers, viewing assembly code, etc.)
isreliable, even with optimized code. Programs built without —g can be debugged; however,
information about types, local variables, arguments and source file line numbers are not available.
For more information on assembly-level debugging, refer to Assembly-Level Debugging.

In programs built with both —g and optimization levels higher than —00, some optimizations
may be disabled or otherwise affected by the —g option, possibly changing the program behavior.
An dternative option, —gopt, can be used to build programs with full debugging information,
but without modifying program optimizations. Unlike —g, the —gopt option does not set the
optimization to level zero.

1.2.2. Building for Debug on Windows

To build an application for debug on Windows platforms, applications must be linked with the —
g option as well as compiled with —g. This process results in the generation of debug information
storedina‘.dwt’ fileanda‘.pdb’ file. The PGI compiler driver should always be used to link
applications; except for special circumstances, the linker should not be invoked directly.

1.3. User Interfaces

PGDBG includes both a command-line interface (CLI) and agraphical user interface (GUI).

1.3.1. Command Line Interface (CLI)

Text commands are entered one line at a time through the command-line interface. A number of
command-line options can be used when launching PGDBG.

For information on these options and how they are interpreted, refer to Command Line Options,
Command Language, and Command Reference.

1.3.2. Graphical User Interface

The GUI, the default user interface, supports command entry through a point-and-click interface,
aview of source and assembly code, afull command-line interface panel, and severa other

PGI Debugger User Guide 2

Getting Started

graphical elements and features. There may be minor variations in the appearance of the PGDBG
GUI from system to system, depending on the type of display hardware available, the settings for
various defaults and the window manager used. Except for differences caused by those factors,
the basic interface remains the same across all systems.

For more information on the PGDBG GUI, refer to The Graphical User Interface.

1.4. Co-installation Requirements

There are co-installation requirements for PGDBG.

1.4.1. Java Virtual Machine

The PGDBG GUI depends on the Java Virtual Machine (JVM) which is part of the Java Runtime
Environment (JRE). PGDBG requires that the JRE be a specific minimum version or above.

Command-line mode debugging does not require the JRE.

Linux and OS X

When PGI softwareisinstalled on Linux or OS X, the version of Javarequired by the debugger is
asoinstaled. PGDBG usesthis version of Java by default. Y ou can override this behavior in two
ways. set your PATH to include a different version of Java; or, set the PGI_JAVA environment
variable to the full path of the Java executable. The following example uses a bash command to
set PGI_JAVA:

$ export PGI_JAVA=/home/myuser/myjava/bin/java

Windows

If an appropriately-versioned JRE is not aready on your Windows system, the PGl software
installation process installs it for you. The PGI command shell and Start menu links are
automatically configured to use the JRE. If you choose to skip the JRE-installation step or want
to use adifferent version of Javato run the debugger, then set your PATH to include the Java
bin directory or use the PGI_JAV A environment variable to specify the full path to the java
executable.

The command-line mode debugger does not require the JRE.

1.4.2. Licensing

Thetype of licensing required depends on whether the program to be debugged is running on the
same system as PGDBG isinstalled or on a different, remote system.

Local Debugging Licensing

Figure 1 illustrates debugging in which the program to be debugged is running on the same
system as PGDBG isinstalled, i.e., local debugging. For local debugging, the PGI License Keys
associated with the debugger are al you need.

PGI Debugger User Guide 3

Getting Started

Linux
08X
Windows

PGI License Keys
Figure 1 Local Debugging Licensing

Remote Debugging Licensing

Figure 2 illustrates debugging in which the program to be debugged is running on the system
other than the one on which PGDBG isinstalled, i.e., remote debugging.

Linux
0osX
Windows

Freely Available
PGl License

PGI License Keys

Figure 2 Remote Debugging Licensing

For remote debugging, PGl Workstation, PGI Server, or PGI CDK must be installed on the
remote system with valid license keys in place. Further, the remote system must be a Linux
system.

1.5. Start Debugging

Y ou can start debugging a program right away by launching PGDBG and giving it the program
name. For example, to load your program into the debugger, launch PGDBG in this way.
$ pgdbg your program

Now you are ready to set breakpoints and start debugging.

PGI Debugger User Guide 4

Getting Started

Y ou can also launch PGDBG without a program. Once the debugger is up, use the Connections
tab to specify the program to debug. To load the specified program into the debugger, use the
Connections tab's Open button.

1.6. Program Load

When PGDBG loads a program, it reads symbol information from the executable file and then
loads the application into memory. For large applications this process can take a few moments.

1.7. Initialization Files

Aninitialization file can be useful for defining common aliases, setting breakpoints, and for other
startup commands. If an initialization file named . pgdbgrc existsin the current directory or

in your home directory, as defined by the environment variable HOME, PGDBG opensthisfile
when it starts up and executes the commandsin it.

If aninitialization fileis found in the current directory, then the initialization file in the home
directory, if thereisone, isignored. However, a script command placed in the initialization
file can be used to execute the initialization file in the home directory or any other file.

1.8. Program Architecture

PGDBG supports debugging both 32-bit and 64-bit programs. PGDBG automatically determines
the architecture of the program and configures itself accordingly.

PGI Debugger User Guide 5

Chapter 2.
THE GRAPHICAL USER INTERFACE

The default user interface used by PGDBG is agraphical user interface or GUI. There may be
minor variations in the appearance of the PGDBG GUI from host to host, depending on the type
of display hardware available, the settings for various defaults and the window manager used.
Except for differences caused by those factors, the basic interface remains the same across all
systems.

2.1. Main Components

Menu Bar
%E«oﬁs-mwm Y =
File Egt View Connections Debug Help
Toolbar—| » @ 11 & “2[3 3 <& CurrentProcess: Apply: Display: File: I
oe.90 Pre
(1 vroveem omos -
nteger
s
.
5
‘
2
Source SoMp
Window s prin
10 end
\l 2 2 wput[” [Enmter | [clear
(] _command iwts Groups Cormctions Call Stack | Locals. | Momory MPi Messages Procs & Thieads | Registers - Status
\.connomonl_j 1:,,,".«,.. beteult (active) | | Open || Close
etauit !- Local . Remote Attach (| Core [MPI
[‘General - =
| Program c:\esp\cestionn
| Program Ngsf
Debug < (
Information | Eovironment |
Tabs
|
\ (] B
& Connected: Default Host win7-03.pgi.net =
[———

V\

Status Message Area

Figure 3 Default Appearance of PGDBG GUI

Figure 3 shows the PGDBG GUI asit appears when PGDBG isinvoked for the first time.

PGI Debugger User Guide 6

The Graphical User Interface

The GUI can be resized according to the conventions of the underlying window manager.
Changes in window size and other settings are saved and used in subsequent invocations of
PGDBG. To prevent changes to the default settings from being saved, uncheck the Save Settings
on Exit item on the Edit menu.

Astheillustration shows, the GUI is divided into several areas: the menu bar, main toolbar,
source window, program I/O window, and debug information tabs.

The source window and all of the debug information tabs are dockable tabs. A dockable tab can
be separated from the main window by either double-clicking the tab or dragging the tab off the
main window. To return the tab to the main window, double-click it again or drag it back onto
the main window. Y ou can change the placement of any dockable tab by dragging it from one
location to another. Right-click on a dockable tab to bring up a context menu with additional
options, including and option to close the tab. To reopen a closed tab, use the View menu. To
return the GUI toits original state, use the Edit menu's Restore Default Settings... option.

The following sections explain the parts of the GUI and how they are used in a debug session.

2.2. Source Window

The source window, illustrated in Figure 4, displays the source code for the current location. Use
the source window to control the debug session, step through source files, set breakpoints, and
browse source code.

omp.foo

1 program cmp private data

2 integer array(S)

3 call omp set num threads (1)
4 !FoMP DARALLEL DO

5 do i=1,5

6 arrayi(i) = 1i

7

g

9

enddo
fF0ME END PARALLEL DO
print ¥, array
10 end
11

4| i [v

Figure 4 Source Window

The source window contains a number of visual aids that allow you to know more about the
execution of your code. The following sections describe these features.

PGI Debugger User Guide 7

The Graphical User Interface

2.2.1. Source and Assembly Displays

Source code debugging is the default unless source information is unavailable in which case
debugging will be shown using disassembly. When debugging in source code, use the View

| Show Assembly menu option to switch to assembly-level debugging. When disassembly is
shown, use options on the View menu to toggle on or off the display of source code, assembly
addresses, and bytecode. Source or assembly is always shown for the current process or thread.

Source code line numbers are shown, when known, in their own column to the left of the source
or assembly display. A grayed-out line number indicates a non-executable source line. Some
examples of non-executable source lines are comments, non-applicable preprocessed code,
some routine prologues, and some variable declarations. Non-executable source lines can al'so
exist for otherwise executable code when a program is compiled at certain optimization levels.
Breakpoints and other events cannot be set on non-executable lines.

To the left of the line numbers is another column called the gutter. The gutter is where the
program counter and debug events like breakpoints are shown. The program counter is
represented by a blue arrow and shows where program execution is during a debug session.
Breakpoints can be set on executable source lines and any assembly line just by clicking in
the gutter. A red sphere will appear at the line where the breakpoint was set. Click on any red
breakpoint sphere to deleteiit.

2.2.2. Source Window Context Menu

The source window supports a context menu that provides convenient access to commonly used
features. Right-click in the source window to bring up this context menu. If text is selected when
the context menu opens, the selection is used by the context menu options.

Inthe examplein Figure 5, thevariable array (i) ishighlighted and the context menu is set to
print its value as a decimal integer:

PGI Debugger User Guide 8

The Graphical User Interface

omp. o0
1 program omp private data |~
z integer array(g)
3 call omp set nun threads(4)
4 'FOMP PARALLEL DO
5 do i=1,8 Print
:)] array(i) = LN
7 enddo Frint Qptions ¥ Print *
g MFOMP END DARAT Type of String _
9 print *, arrs "
Break In Bin
10 end =
11 Find Routing | Qct
Call Eoutine | Hex
Copy Lec
Select Al ASCIl
Falding p| Adar
E
1| i | [v

Figure 5 Context Menu

The context menu in Figure 5 provides shortcuts to the Type Of, the Break In, Find Routine...,
and Call Routine menu options.

2.3. Main Toolbar

PGDBG's main toolbar contains several buttons and four drop-down lists.

2.3.1. Buttons

Stop Restart Step Display

Debugging Qver Current
Location
=tart Staop Step Step
Debugging |Program Into Cut
P B O HE|EE

Figure 6 Buttons on Toolbar

Most of the buttons on the main toolbar have corresponding entries on the Debug menu. The
functionality invoked from the toolbar is the same as that achieved by selecting the menu item.
Refer to the "Debug Menu" descriptions for details on how Start Debugging (Continue), Stop
Debugging, Stop Program, Restart, Step Into, Step Over, Step Out, and Display Current Location
work.

PGI Debugger User Guide 9

The Graphical User Interface

2.3.2. Drop-Down Lists

Asillustrated in Figure 7, the main toolbar contains four drop-down lists. A drop-down list
displays information while also offering an opportunity to change the displayed information if
other choices are available. When no or one choice is available, a drop-down list is grayed-out.
When more than one choice is avail able, the drop-down arrow in the component can be clicked to
display the available choices.

Current Thread: [0 |~ | Apply: [Au v] Display: [Au ~| File:|

Figure 7 Drop-Down Lists on Toolbar

Current Processor Current Thread

Thefirst drop-down list displays the current process or current thread. The list’s label changes
depending on whether processes or threads are described. When more than one process or
thread is available, use this drop-down list to specify which process or thread should be the
current one. The current process or thread controls the contents of the source and disassembly
display tabs. The function of this drop-down list is the same as that of the Procs & Threads tab
in the debug information tabs.

Apply

The second drop-down list is labeled Apply. The selection in the Apply drop-down determines
the set of processes and threads to which action commands are applied. Action commands

are those that control program execution and include, for example, cont, step, next, and
break. By default, action commands are applied to al processes and threads. When more
than one process or thread exists, you have additional optionsin this drop-down list from
which to choose. The Current Group option designates the process and thread group selected
in the Groups tab, and the Current Process and Current Thread options designate the process
or thread selected in the Current Process or Current Thread drop-down.

Display

The third drop-down list is labeled Display. The selection in the Display drop-down
determines the set of processes and threads to which data display commands are applied.
Data display commands are those that print the values of expressions and program state and
include, for example, print, names, regs and stack. The optionsin the Display drop-
down are the same as those in the Apply drop-down but can be changed independently.

File

The fourth drop-down list is labeled File. It displays the source file that contains the current
target location. It can be used to select another file for viewing in the source window.

2.4. Program I/O Window

Program output is displayed in the Program | O tab’s central window. Program input is entered
into thistab’s Input field.

PGI Debugger User Guide 10

The Graphical User Interface

Program 10

[b

-

4] [»]

Input: [][Enter] | Clear]

Figure 8 Program I/O Window

2.5. Debug Information Tabs

Debug information tabs take up the lower half of the PGDBG GUI. Each of these tabs provides a
particular function or view of debug information. The following sections discuss the tabs as they
appear from left-to-right in the GUI’ s default configuration.

2.5.1. Command Tab

The Command tab provides an interface in which to use the PGDBG command language.
Commands entered in this panel are executed and the results are displayed there.

PGI Debugger User Guide 1

The Graphical User Interface

Command

Loaded: C:/Windows/system32/MSCIF.dll

Loaded: C:/Windows/syscem32/flclib.dll

{[1] Hew Thread)

{[2] Hew Thread)

{[3] Hew Thread)

[0] Breakpoint at 0x140001220, function omp private data, file omp.f%0, line &
E1°H array{i) = i

pgdbg [all] 0> print i
1 —
pgdbg [all] 0> princ array(i)
0
pgdbg [all] 0> next

[O0] Stopped at Ox140001234, function omp_private data, file omp.f90, line 7
#7: enddo

| 4

pgdb; [all] 0>
4] I [Tl

Figure 9 Command Tab

Using thistab is much like interacting with the debugger in text mode; the same list of commands
is supported. For acomplete list of commands, refer to Command Summary.

2.5.2. Events Tab

The Eventstab displays the current set of events held by the debugger. Eventsinclude
breakpoints and watchpoints, as shown in the following illustration.

Events

[»

1: break ™c:/tmp/test/omp.f90"86 [all]

Z2: break "c:/tmp/test/omp.f90"86 if(i>4) [all]
3: watch array at "c:/tmp/test/omp.f20"8% [0]

[4]]

1] [»]

Figure 10 Events Tab
2.5.3. Groups Tab

The Groups tab displays the current set of user-defined groups of processes and threads. The
group selected (highlighted) in the Groups tab defines the Current Group as used by the Apply
and Display drop-down lists. In the following illustration, the ‘evens’ group is the Current Group.

PGI Debugger User Guide 12

The Graphical User Interface

Groups
Group Name Composition
all [%.%]
VEens [*.0,*.2]
odds [*ad %3]

[Add...]| Modify...][Remove...]

Figure 11 Groups Tab

To change the set of defined groups use the Add..., Modify..., and Remove... buttons on the
Groups tab.

A defined group of processes and threads is also known as a process/thread-set or p/t-set. For more
information on p/t-sets, refer to Process/Thread Sets in Parallel Debugging Overview.

2.5.4. Connections Tab

A connection is the set of information the debugger needs to begin debugging a program. The
Connections tab provides the interface to specifying information for a particular connection,
and allows you to create and save multiple connections. Saved connections persist from one
invocation of the debugger to the next. When you launch PGDBG, the Default connection is

created for you. If you launched the debugger with an executable, the Program field isfilled in for
youl.

Connections

Connections cnnnecﬂun[ne:aun (active)] [Open J[Close]
Default’ | g Local C Remote LIAttach [Core LI MPI
-General =
Program [C:\tmp\teszwmp.exe &
Program Args[]
Envimnment[]
< i i

Figure 12 Connections Tab

PGI Debugger User Guide 13

The Graphical User Interface

Fields required by the debugger for program launch are bold. Fields not applicable to the current
configuration options are grayed-out. To display atooltip describing the use of afield, hover over
its name.

Use the Connections menu to manage your connections.

2.5.5. Call Stack Tab

The Call Stack tab displays the current call stack. A blue arrow indicates the current stack frame.

Call Stack
h';} 0 aub5 line 33 in subs.f30 0x1400011£d -

1l subd line 27 in subs.f30 0x1400011e2

2 aub3 line 21 in subs.f%0 0x1400011c2

3 saub2 line 15 in subs.f30 0x140001182

4 subl line 9 in subs.f£%0 0x140001182

5 prog line 3 in suba.f%0 0x140001158

=

1] [#]

Figure 13 Call Stack Tab

Double-click in any call frame to move the debugging scope to that frame. A hollow arrow is
used to indicate when the debug scope is in aframe other than the current frame.

Call Stack
=» 0 sub5 line 33 in subs.f£30 0x1400011£d -
1 subd line 27 in subs.f90 0x1400011e2
or 2 sub3 line 21 in subs.fi0 0x1400011c2
3 gub2 line 15 in subs.f90 0x1400011a2
4 gubl line 9 in subs.f£90 0x140001182
5 prog line 3 in subs.f%0 0x140001158
~
1] [»]

Figure 14 Call Stack Outside Current Frame

Y ou can also navigate the call stack using the Up and Down options on the Debug menu.

2.5.6. Locals Tab

The Locals tab displays the current set of local variables and each of their values.

PGI Debugger User Guide 14

The Graphical User Interface

Call Stack Locals | Memory | MPI Messages | Procs & Threads | Registers | Status
a
i=11
o= 22
k= 33 =
x = 50.5
v = 60.599998
=10 N
~
a [+

Figure 15 Locals Tab
2.5.7. Memory Tab

The Memory tab displays aregion of memory starting with a provided Address which can be
amemory address or a symbol name. One element of memory is displayed by default, but this
amount can be changed viathe Count field. Figure 16 illustrates this process.

Call 5tack Locals Memory | MPI Messages| Procs & Threads | Registers | Status

FY

Ox004R828C0: 21
Ox004R28C4: 16
0x004R228CE: b =
Ox004R28CC: 0O

Ox004228D0: O

-

‘| ¥

Figure 16 Memory Tab

The default display format for memory is hexadecimal. The display format can be changed
by providing a printf-like format descriptor in the Format field. A detailed description of the
supported format strings is available in Memory Accessin Command Reference.

PGI Debugger User Guide 15

The Graphical User Interface

Call 5tack | Lecals | Memory | MPl Messages | Procs & Threads | Registers| Status

Address: | 0x42238C0 Count: |5 | Fnrmat:|%d

T Fa
Ox004R28C0:1 33 | «—Notice these are now decimal -
0x004R28C4:) 22 rather than hexadecimal values Decima
Ox004A28CE:| 11 Format =
Ox0048280C0:) 0
0x00482800:) 0 |

-

q] [

Figure 17 Memory Tab in Decimal Format

2.5.8. MPI Messages Tab
The MPI Messages tab provides alisting of the MPI message queues asillustration in Figure 18.

Call Stack | Locals | Memory | MPI Messages | Procs & Threads | Registers | Status

[»

[©7 mgdump =

MPI_COMM_WORLD -
Comm_size 4 |
Comm_rarlk 0]

Fending sends: nane

Fending receiwves: nane

Inexpected messages: nane

MPI_COMM_SELF

Comm_s1izZe 1
Comm_rarlk, o]
Fending sends: nane
Fending receiwves: nane
Inexpected messages: nane
[
1] I

Figure 18 MPI Messages Tab

M essage queue information applies only to MPI applications. When debugging a non-MPI
application, thistab is empty. Additionally, message queue information is not supported by
Microsoft MPI so this tab contains no data on Windows.

2.5.9. Procs & Threads Tab

The Procs & Threads tab provides agraphical display of the processes and threadsin a debug
session.

The Process Grid in Figure 19 has four processes. The thicker border around process O indicates
that it isthe current process; its threads are represented pictorially. Thread 0.0, as the current

PGI Debugger User Guide 16

The Graphical User Interface

thread of the current process, has the thickest border. Clicking on any process or thread in this
grid changes that process or thread to be the current process or thread.

Call 5tack Locals Memory | MPl Messages | Procs & Threads | Registers | Status

O« [} ||:|

Figure 19 Process (Thread) Grid Tab

Use the dlider at the bottom of the grid to zoom in and out.

The color of each element indicates the state of that process or thread. For alist of colors and
states, refer to Table 1.

Table 1 Colors Describing Thread State

Option Description

Stopped Red
Signaled Blue
Running Green
Terminated Black

2.5.10. Registers Tab

The target machin€’ s architecture determines the number and type of system registers. Registers
are organized into groups based on their type and function. Each register group isdisplayed in its
own tab contained in the Registers tab. Registers and their values are displayed in atable. Values
are shown for all the threads of the currently selected process.

In Figure 20, the General Purpose registers are shown for threads 0-3 of process 0.

PGI Debugger User Guide 17

The Graphical User Interface

Call Stack | Locals | Memory @ MPI Messages | Procs & Threads | Registers | Status
GP | FLAGS | X87 | XMM | MXCSR
Format; | hex 64 3 Mode: |
B0 Ta T1 T2 T3
rax 0x2 Ox2 Ox2 Ox2 |~
rbx 0x2E3150 0x2E3150 0x2E3150 0x2E3150
rcx 0x0 Ox2 Oxd Oxé
rdx 0x0 0x0 0x0 0x0
rdi 0xl Oxl Oxl 0xl
rai 0x0 0x0 0x0 0x0| =
rbp O0x12FF30 0x12FF30 0x12FF30 O0x12FF30
rsp O0x12FCED 0x250FCEO 0x2D0OFCED 0x350FCED
rf 0x8 0x8 0x8 0x8
rg 0x40 0x250FERO 0x2D0OFERD 0x350FERD
rld 0x0 0x0 0x0 0x0f—
rll 0x140001175 0x1460001175 0x140001175 0x140001175
rlz 0x0 0x0 0x0 0x0
rl3 0x0 0x0 0x0 0x0
rld 0x0 0x0 0x0 0x0
rls 0x0 0x0 0x0 0x0|+|
1| »

Figure 20 General Purpose Registers

The valuesin the registers table are updated each time the program stops. Vaues that change
from one stopping point to the next are highlighted in yellow.

Register values can be displayed in a variety of formats. The formatting choices provided for each
register group depends on the type of registers in the group and whether the current operating
system is 64- or 32-bit. Use the Format drop-down list to change the displayed format.

Vector registers, such asXMM and YMM registers, can be displayed in both scalar and vector
modes. Change the Mode drop-down list to switch between these two modes.

2.5.11. Status Tab

The Status tab provides atext summary of the status of the program being debugged. The state
and location of each thread of each processis shown. In Figure 21, each of four processes has two
threads.

PGI Debugger User Guide 18

The Graphical User Interface

Call 5tack | Locals | Memory | MPI Messages | Procs & Threads | Registers | Status

F
0 D BID STATE 5IG/CODE LOCATION
=» 0 5792 Stopped TRLE prog line: "mpi.£90"@ll address: Ox140001179
1 3432 Stopped STOP HtWaitForMultipleCkjects address: 0x774D046R
1 D BID STATE 5IG/CODE LOCRTICH
=» 0 D288 Stopped TRAF prog line: "mpi.£90"@ll address: Ox140001179
1 2696 Stopped STOP NtWaitForMultiplelbjects address: Ox774D046R |
2 D BID STATE 5IG/CODE LOCATICH -
=> 0 4772 Stopped TELF prog line: "mpi.f£90"@ll address: Ox140001179
1 D228 Stopped STOF HtWaitForMultiplelbjects address: 0x774D046R
3 D BID STATE 3IG/CODE LOCATION
=» 0 5608 Stopped TIEAF prog line: "mpi.f£90"@ll address: Ox140001179
1 4568 Stopped S5TIOP HtWaitForMultipleObjects address: 0x774D046R
|
1] ¥

Figure 21 Status Tab

2.6. Menu Bar

The main menu bar contains these menus: File, Edit, View, Connections, Debug and Help. This
section describes these menus and their contents.

Y ou can navigate the menus using the mouse or the system’s mouseless modifier (typically

the Alt key). Use the mouseless modifier together with a menu’s mnemonic, usually asingle
character, to select amenu and then a menu item. Menu mnemonics are indicated with an
underscore. For example, the File menu appears as File which indicates that ‘F' is the mnemonic.

Keyboard shortcuts, such as Ctrl+V for Edit | Paste, are available for some actions. Where a
keyboard shortcut is available, it is shown in the GUI on the menu next to the menu item.

Menu items that contain an ellipsis (...) launch adialog box to assist in performing the menu’s
action.

2.6.1. File Menu
Exit
End the current debug session and close all windows.

2.6.2. Edit Menu

Copy
Copy selected text to the system’s clipboard.
Paste
Paste selected text to the system’s clipboard.
Find
Perform a string search in the current source window.

PGI Debugger User Guide 19

The Graphical User Interface

Find Routine...
Find aroutine. If symbol and source information is available for the specified routine, the
routine is displayed in the source panel.

Restore Default Settings
Restore the GUI’ s various settings to their initial default state illustrated in Default
Appearance of PGDBG GUI.

Revert to Saved Settings
Restore the GUI to the state that it was in at the start of the debug session.

Save Settings on Exit
By default, PGDBG saves the state (size and settings) of the GUI on exit on a per-system
basis. To prevent settings from being saved from one invocation of PGDBG to another,
uncheck this option. This option must be unchecked prior to every exit since PGDBG aways
defaults to saving the GUI state.

2.6.3. View Menu

Use the View menu to customize PGDBG' s display of tabs, source code, and assembly. Some of
the items on this menu contain a check box next to the name of atab.

» When the check box is checked, thetab isvisible.
» When the check box is not checked, the tab is hidden.

View menu items that correspond to tabs include Call Stack, Command, Connections, Events,
Groups, Locals, Memory, MPI Messages, Procs & Threads, Program 1/0, Source, and Status.

Show Assembly/ Show Source
Toggle (turn on or off) the display of assembly code during a debug session. Source code can
be shown only when source information is available.

Disable/Enable Syntax Coloring
Toggle syntax coloring of source code.

Hide Source in Assembly/Add Sourceto Assembly
When assembly code is shown, toggle the display of source code (when available).

Hide Addresses/Show Addresses
When assembly code is shown, toggle the display of assembly addresses.

Show Bytecode/Hide Bytecode
When assembly code is shown, toggle the display of assembly bytecode.

Registers
The Registers menu item opens a submenu containing items representing every subtab on the
Registers tab. Recall that each subtab represents a register group and the set of register groups
is system and architecture dependent. Use the Registers submenu to hide or show tabs for
register groups. Use the Show Selected item to hide or show the Registers tab itself.

Font...
Use the font chooser dialog box to select the font and size used in the source window and
debug information tabs. The default font is named monospace and the default sizeis 12.

Show Tool Tips
Tool tips are small temporary messages that pop up when the mouse pointer hovers over
acomponent in the GUI. They provide additional information on the functionality of a
component. Tooal tips are enabled by default. Uncheck the Show Tools Tips option to prevent
them from popping up.

PGI Debugger User Guide 20

The Graphical User Interface

Reload Source
Update the source window.

2.6.4. Connections Menu

Use the items under this menu to manage the connections displayed in the Connections list on the
Connections tab.

Connect Default
Open the currently displayed connection. When the debugger starts, this connection is named
‘Default.” When a different connection is selected, the name of this menu option changesto
reflect the name of the selected connection. This menu option works the same way that the
Open button on the Connections tab works.

New
Create anew connection.

Save
Save changes to al the connections.

Save As
Save the selected connection as a new connection.

Rename
Change the name of the selected connection.

Delete
Delete the selected connection.

2.6.5. Debug Menu

The items under this menu control the execution of the program.

Go
Run or continue running the program.

Stop Program
Stop the running program. This action halts the running processes or threads. For more
information, refer to the halt command.

Stop Debugging
Stop debugging the program.

Restart Program
Start the program from the beginning.

Step
Continue and stop after executing one source line or one assembly-level instruction depending
on whether source or assembly is displayed. Step steps into called routines. For more
information, refer to the step and stepi commands.

Next
Continue and stop after executing one source line or one assembly-level instruction depending
on whether source or assembly is displayed. Next steps over called routines. For more
information, refer to the next and nexti commands.

Step Out
Continue and stop after returning to the caller of the current routine. For more information,
refer to the stepout command.

Set Breakpoint...
Set a breakpoint at the first executable source line in the specified routine.

PGI Debugger User Guide 21

The Graphical User Interface

Call Routine
Specify aroutineto call. For more information, refer to the call command.

Display Current Location
Display the current program location in the Source panel. For more information, refer to the
arrive command.

Up
Enter the scope of the routine up one level in the call stack. For more information, refer to the
up command.

Down
Enter the scope of the routine down one level in the call stack. For more information, refer to
the down command.

Custom
Opens a separate window where you can enter avariety of debugger commands.

2.6.6. Help Menu

Debugger Guide

Launch your system’s PDF reader to view the PGDBG Debugger Guide (this document).
About PGDBG

This option displays a dialog box with version and copyright information on PGDBG. It also
contains sales and support points of contact.

PGI Debugger User Guide 22

Chapter 3.
COMMAND LINE OPTIONS

PGDBG accepts a variety of options when the debugger isinvoked from the command line. This
section describes these options and how they can be used.

3.1. Command-Line Options Syntax

pgdbg arguments program argl arg? ... argn

The optional arguments may be any of the command-line arguments described in this chapter.
The program parameter is the name of the executable file being debugged. The optional
arguments argl arg2 ... argn are the command-line arguments to the program.

3.2. Command-Line Options

-attach <pid>
Attach to arunning process with the process ID <pid>.
-c <pgdbg_cmd>
Execute the debugger command pgdbg_cmd before executing the commands in the startup
file.
-cd <workdir>
Sets the working directory to the specified directory.
-cor e <corefile>
Analyze the core dump named corefile. [Linux only]
—help
Display alist of command-line arguments (thislist).
—dryrun
Display commands that would be executed without executing them.
-l <directory>
Add <directory> to the list of directories that PGDBG uses to search for source files. You can
use this option multiple times to add multiple directories to the search path.
—arg, <javaarg>
Pass specified argument(s) (separated by commas) to java, e.g. -jarg,-Xmx256m.
—java <jrepath>
Add ajrepath directory to the VM search path. Multiple '-java options are allowed.

PGI Debugger User Guide 23

Command Line Options

—-nomin
Do not minimize the PGDBG console shell on startup. [Windows only]
—s<pgdbg_script>
Runs the provided debugger command script instead of the configuration file: pgdbgrc
[Linux,0SX] or pgdbg rc [Windows].
—show
Print debugger configuration information.
—text
Run the debugger using a command-line interface (CLI). The default is for the debugger to
launch in graphical user interface (GUI) mode.
-V
Display the version of PGDBG being run.
-V
Enable verbose output; display commands asthey are run.

3.3. Command-Line Options for MPI Debugging

—mpi[=<launcher_path>
Debug an MPI program. Here the term launcher means the MPI launch program. The
debugger usesmpiexec as the default launcher. If the location of the launcher in your MPI
distribution is not in your PATH environment variable, you must provide the debugger with
the full path to the launcher, including the name of the launch tool itself. If the location of the
launcher isin your PATH, then you just need to provide the name of the launcher, and then
only if the launcher is not mpiexec.

—sgimpi[=<launcher_path>]
Debug an SGI MPI (MPT) program. The debugger usesmpirun as the default launcher for
SGI MPI debugging. If the location of mpirun in your instalation of SGI MPI is not in your
PATH environment variable, you must provide the debugger with the full path to mpirun,
including the name mpirun itself. If thelocation of mpirun isin your PATH, then you can
use —sgimpi without a sub-option.

—program_args
Pass subsequent arguments to the program under debug; required when passing program
arguments to an MPI program.

—pgser v[=<pgserv_path>]
[Optional] Specify path for pgserv, the per-node debug agent.

3.4. 1/0 Redirection

The command shell interprets any 1/0O redirection specified on the PGDBG command line. For a
description of how to redirect I/O using the run command, refer to Process Control.

PGI Debugger User Guide 24

Chapter 4.
COMMAND LANGUAGE

PGDBG supports a command language that is capable of evaluating complex expressions. The
command language is composed of commands, constants, symbols, locations, expressions, and
statements.

Y ou can use the command language by invoking the PGDBG command-line interface with the —
text option, or in the Command tab of the PGDBG graphical user interface, as described in The
Graphical User Interface.

4.1. Command Overview

Commands are named operations, which take zero or more arguments and perform some action.
Commands may also return values that may be used in expressions or as arguments to other
commands.

4.1.1. Command Syntax
Commands are entered one line at atime.

» Linesare delimited by a carriage return.
» Eachline must consist of acommand and its arguments, if any.
» You can place multiple commands on asingle line by using the semi-colon (;) as adelimiter.

4.1.2. Command Modes

There are two command modes: pgi and dbx.

» Thepgi command mode maintains the original PGDBG command interface.
» In dbx mode, the debugger uses commands compatible with the Unix-based dbx debugger.

PGI and dbx commands are available in both command modes, but some command behavior may
be dightly different depending on the mode. The mode can be set while the debugger is running
by using the pgienv command.

PGI Debugger User Guide 25

Command Language

4.2. Constants

PGDBG supports C language style integer (hex, octal and decimal), floating point, character, and
string constants.

4.3. Symbols

PGDBG uses the symbolic information contained in the executable object file to create a symbol
table for the target program. The symbol table contains symbols to represent source files,
subroutines, types (including structure, union, pointer, array, and enumeration types), variables,
and arguments. The PGDBG command-line interface is case-sensitive with respect to symbol
names; a symbol name on the command line must match the name as it appearsin the object file.

4.4. Scope Rules

Since several symbolsin asingle application may have the same name, scope rules are used to
bind program identifiers to symbols in the symbol table. PGDBG uses the concept of a search
scope for looking up identifiers. The search scope represents a subroutine, a source file, or global
scope. When the user enters aname, PGDBG first tries to find the symbol in the search scope.

If the symbol is not found, the containing scope (source file or global) is searched, and so forth,
until either the symbol islocated or the global scope is searched and the symbol is not found.

Normally, the search scope is the same as the current scope, which is the subroutine where
execution is currently stopped. The current scope and the search scope are both set to the current
subroutine each time execution of the program stops. However, you can use the enter command
to change the search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if fisa
routine with alocal variablei, then:
fei

represents the variablei local to f. Identifiers at file scope can be specified using the quoted file
name with this operator. The following example represents the variable i defined in file xyz . c.

"xyz.c"@1i

4.5. Register Symbols

To provide access to the system registers, PGDBG maintains symbols for them. Register names
generally begin with $ to avoid conflicts with program identifiers. Each register symbol has a
default type associated with it, and registers are treated like global variables of that type, except
that their address may not be taken. For more information on register symbols, refer to SSE
Register Symbols.

PGI Debugger User Guide 26

Command Language

4.6. Source Code Locations

Some commands must refer to source code locations. Source file names must be enclosed in
double quotes. Source lines are indicated by number, and may be qualified by a quoted filename
using the scope qualifier operator. Further, arange of linesisindicated using the range operator

Here are some examples:

break 37 sets a breakpoint at line 37 of the current source file.
break "xyz.c"@37 sets a breakpoint at line 37 of the source file xyz.c.
list 3:13

lists lines 3 through 13 of the current file.

list "xyz.c"@3:13 lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these commands,
it is not always obvious whether a numeric constant should be interpreted as aline number or
an address. The description for these commands says which interpretation is used. However,
PGDBG provides commands to convert from source line to address and vice versa. The 1ine
command converts an address to aline, and the addr command converts aline number to an
address.

Here are some examples:

line 37 means “line 37"

addr 0x1000 means "address 0x1000"

addr {line 37} means "the address associated with line 37"

line {addr 0x1000} means "the line associated with address 0x1000"

4.7. Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction contained
by alexical block is used to indicate the start scope of the lexical block.

In the following example, there are two variables named var. Oneis declared in function main,
and the other is declared in the lexical block starting at line 5. The lexical block has the unique
name "lex.c"@main@5. The variable var declared in "lex.c" @main@?5 has the unique name
"lex.c" @main@5@var. The output of the whereis command that follows shows how these
identifiers can be distinguished.

PGI Debugger User Guide 27

Command Language

lex.c:

1 main ()

2 |

3 int var = 0;

4 {

5 int var = 1;

6 printf ("var %d/n",var);
7 }

8 printf ("var %d/n",var)

9 1}

pgdbg> n

Stopped at 0x8048b10, function main, file
/home /demo/pgdbg/ctest/lex.c,

line 6

#6: printf ("var %d/n",var);

pgdbg> print var
1

pgdbg> which var
"lex.c"@main@5@var

pgdbg> whereis var
variable: "lex.c"@main@var
variable: "lex.c"@main@5@var

pgdbg> names "lex.c"@main@5
var = 1

4 8. Statements

Although PGDBG command-line input is processed one line at atime, statement constructs
allow multiple commands per line, as well as conditional and iterative execution. The statement
constructs roughly correspond to the analogous C language constructs. Statements may be of the
following forms.

» Smple Satement: A command and its arguments. For example;
print i

» Block Statement: One or more statements separated by semicolons and enclosed in curly
braces. Note: these may only be used as arguments to commands or aspart of 1 f or while
statements. For example:
if(i>1) {print i; step }

» If Satement: The keyword if, followed by a parenthesized expression, followed by a block
statement, followed by zero or moreelse if clauses, and at most one else clause. For
example:
if(i>j) {print i} else if (i<j) {print j} else {print "i==j"}

» While Statement: The keyword while, followed by a parenthesized expression, followed by a
block statement. For example:
while (1i==0) {next}

Multiple statements may appear on aline separated by a semicolon. The following example sets
breakpoints in routines main and xyz, continues, and prints the new current location.

break main; break xyz; cont; where

PGI Debugger User Guide 28

Command Language

However, since the where command does not wait until the program has halted, this statement
displaysthe call stack at some arbitrary execution point in the program. To control when the call
stack is printed, insert await command, as shown in this example:

break main; break xyz; cont; wait; where

n Any value returned by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. For more information, refer
to Parallel Statements.

4.9. Events

Breakpoints, watchpoints, and other mechanisms used to define the response to certain conditions
are collectively caled events.

» Anevent isdefined by the conditions under which the event occurs and by the action taken
when the event occurs.

» A breakpoint occurs when execution reaches a particular address.
The default action for a breakpoint is simply to halt execution and prompt the user for
commands.

» A watchpoint occurs when the value of an expression changes.

» A hardware watchpoint occurs when the specified memory location is accessed or modified.

4.9.1. Event Commands

PGDBG supports six basic commands for defining events. Each command takes a required
argument and may also take one or more optional arguments. The basic commands are break,
watch, hwatch, trace, track, and do.

Event Command Descriptions

» Thebreak command takes an argument specifying a breakpoint location. Execution stops
when that location is reached.

» Thewatch command takes an expression argument. Execution stops and the new valueis
printed when the value of the expression changes.

» Thehwatch command takes a data address argument, which can be either an identifier or a
variable name. Execution stops when memory at that address is written.

» The trace command activates source line tracing, as specified by the arguments you
supply.

» The track command islike watch except that execution continues after the new valueis
printed.

» Thedo command takes alist of commands as an argument. The commands are executed
whenever the event occurs.

PGI Debugger User Guide 29

Command Language

Event Command Arguments

The six event commands share a common set of optional arguments. The optional arguments
provide the ability to make the event definition more specific. They are:

at line

Event occurs at indicated line.
at addr

Event occurs at indicated address.
in routine

Event occurs throughout indicated routine.
if (condition)

Event occurs only when condition is true.
do {commands}

When event occurs, execute commands.

The optional arguments may appear in any order after the required argument and should not be
delimited by commas.

Event Command Examples
Here are some event definition examples:
watch 1 at 37 if(y>1)
executed and the value of y is greater than 1.
€l Uprilaie szl i i This event definition says that at each line in the routine f print the value of
XyZ.

break funcl if (i==37)

oo lpeint o271 eiaek) This event definition says to print the value of a[37] and do a stack trace

when i is equal to 37 in routine func1.

4.9.2. Event Command Action

It is useful to know when events take place.

» Event commands that do not explicitly define alocation occur at each source linein the
program. Here are some examples:

do {where} prints the current location at the start of each source line.

trace a.b prints the value of a.b each time the value has changed.

track a.b prints the value of a.b at the start of each source line if the value has
changed.

Events that occur at every line can be useful, but they can make program execution very slow.
Restricting an event to a particular address minimizes the impact on program execution speed, and
restricting an event that occurs at every line to a single routine causes execution to be slowed only
when that routine is executed.

PGI Debugger User Guide

This event definition says to stop and print the value of i whenever line 37 is

30

Command Language

PGDBG supports instruction-level versions of several commands, such asbreaki, watchi,
tracei, tracki, and doi. The basic differencein the instruction-level version is that these
commands interpret integers as addresses rather than line numbers, and events occur at each
instruction rather than at each line.

When multiple events occur at the same location, all event actions are taken before the
prompt for input. Defining event actions that resume execution is allowed but discouraged,
since continuing execution may prevent or defer other event actions.

For example, the following syntax creates an ambiguous situation:

break 37 do {continue}

break 37 do {print i}

With this sequence, it is not clear whether i will ever be printed.
Events only occur after the continue and run commands. They areignored by step,
next, call, and other commands.

Identifiers and line numbersin events are bound to the current scope when the event is
defined.

For example, the following command sets a breakpoint at line 37 in the current file.
break 37

The following command tracks the value of whatever variable i is currently in scope.

track i

If i isalocal variable, then it iswise to add alocation modifier (at or in) to restrict the event
to ascope where i isdefined. Scope qualifiers can also specify lines or variables that are

not currently in scope. Events can be parallelized across multiple threads of execution. See
Parallel Eventsfor details.

4.10. Expressions

The debugger supports evaluation of expressions composed of constants, identifiers, commands
that return values, and operators.

The following rules apply:

>

To use avalue returned by acommand in an expression, the command and arguments must
be enclosed in curly braces.

For example, the following command invokes the pe command to compute the current
address, adds 8 to it, and sets a breakpoint at that address.

breaki {pc}+8

Similarly, the following command compares the start address of the current routine with the
start address of routine xyz. It printsthe value 1 if they are equal and O if they are not.
print {addr {func}}=={addr xyz}

The @ operator, introduced previously, may be used as a scope qudifier. Its precedenceis
the same as the C language field selection operators"." and "->" .

PGDBG recognizes arange operator ":" which indicates array sub-ranges or source line
ranges. The precedence of "' is between '||' and '=".

PGI Debugger User Guide 31

Command Language

Here are afew examples that use the range operator:

print a[1:10] prints elements 1 through 10 of the array a.
list 5:10 lists source lines 5 through 10.
list "xyz.c"@5:10 lists lines 5 through 10 in file xyz.c.

The general format for the range operator is[1o : hi : step] where:

lo is the array or range lower bound for this expression.
hi is the array or range upper bound for this expression.
step is the step size between elements.

An expression can be evaluated across many threads of execution by using a prefix p/t-set.
For more details, refer to Current vs. Prefix p/t sets.

Table 2 shows the C language operators that PGDBG supports. The PGDBG operator precedence
isthe same asin the C language.

Table 2 PGDBG Operators

Operator Description Operator Description
* indirection <= less than or equal
direct field selection >= greater than or equal
-> indirect field selection I= not equal
[C/ C*" array index 8& logical and
() routine call 1 logical or
& address of ! logical not
+ add | bitwise or
(type) cast & bitwise and
subtract ~ bitwise not
/ divide A bitwise exclusive or
* multiply () FORTRAN array index
= assignment % FORTRAN field selector
== comparison << left shift
>> right shift

4.11. Ctrl+C

The effect of Ctrl+C is different when debugging using the command-line interface or the GUI,
and when debugging serial or parallel code.

PGI Debugger User Guide 32

Command Language

4.11.1. Command-Line Debugging

If the program is not running, Ctrl+C can be used to interrupt long-running PGDBG commands.
For example, a command requesting disassembly of thousands of instructions might run for a
long time, and it can be interrupted by Ctrl+C. In such cases the program is not affected.

If the program is running, entering Ctrl+C at the PGDBG command prompt halts execution of the
program. Thisis useful in cases where the program ‘hangs due to an infinite loop or deadlock.

Sending Ctrl+C, also known as SIGINT, to a program whileit isin the middle of initializing
its threads, by calling omp_set num_threads() or entering a parallel region, may kill some of
the threadsif the signal is sent before each thread is fully initialized. Avoid sending SIGINT in
these situations. Note that when the number of threads employed by a program is large, thread
initialization may take awhile.

4.11.2. GUI Debugging

If the program is running, entering Ctrl+C in the Input field of the Program 1O tab sends SIGINT
to the program.

4.11.3. MPI Debugging

Sending Ctrl+C to arunning MPICH1 program, support for which is now deprecated, is not
recommended. For details, refer to Use halt instead of Ctrl+C. Use the PGDBG halt command
as an aternative to sending Ctrl+C to arunning program. The PGDBG command prompt must be
available in order to issue ahalt command. The PGDBG command prompt is available while
threads are running if pgienv threadwait none iSSet.

As described in Using Continue, when debugging an MPI job via the following command,
PGDBG spawns the job in a manner that prevents consol e-generated interrupts from directly
reaching the MPI launcher or any of the MPI processes.

$ pgdbg -mpi ...

In this case, typing Ctrl+C only interrupts PGDBG, leaving the MPI processes running. When
PGDBG' s thread wait mode is not set to none, you can halt the MPI job after using Ctrl+C by
entering PGDBG' shalt command, even if no PGDBG prompt is generated.

PGI Debugger User Guide 33

Chapter 5.
COMMAND SUMMARY

This chapter contains a brief summary of the PGDBG debugger commands. For a detailed
description of each command, grouped by category of use, refer to Command Reference.

If you are viewing an online version of this manual, you can select the hyperlink under the
selection category to jump to that section in the manual.

5.1. Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments,
when the command accepts one.

» Command names may be abbreviated by omitting the portion of the command name
enclosed in brackets ([]).

» Argument names are chosen to indicate what kind of argument is expected.

» Arguments enclosed in brackets([]) are optional.

» Two or more arguments separated by avertical line (]) indicate that any one of the arguments
is acceptable.

» Andlipsis(...) indicates an arbitrarily long list of arguments.

» Other punctuation (commas, quotes, etc.) should be entered as shown.

For example, the following syntax indicates that the command 1ist may be abbreviated to 1is,
and that it can be invoked without any arguments or with one of the following arguments: an
integer count, aline range, aroutine name, or aline and a count.

lis[t] [count | lo:hi | routine | line,count]

5.2. Command Summary
Table 3 PGDBG Commands

Arguments Category

ad[dr] [n|line n | routine | var | arg | Conversions

PGI Debugger User Guide 34

Arguments

Creates an address conversion under certain conditions.

Command Summary

Category

[dir]

Change to the SHOME directory or to the specified directory dir.

alfias] [name [string]] Miscellaneous
Create or print aliases.
args Process Control
Print the current program arguments.
arrifve] Program Locations
Print location information for the current location.
asclii] exp [,...exp] Printing Variables and
Expressions
Evaluate and print as an ascii character.
asfsign] var=exp Symbols and Expressions
Set variable va r to the value of the expression e xp.
attfach] pid [exe] Process Control
Attach to a running process with process ID pid. Use e xe to specify
the absolute path of the executable file.
bin exp [...exp] Printing Variables and
Expressions
Evaluate and print the expressions. Integer values are printed in base 2.
blreak] lline | routine] [if (condition)] [do {commands}] Events
When arguments are specified, sets a breakpoint at the indicated
line or routine. When no arguments are specified, prints the current
breakpoints.
breaki [addr | routine] [if (condition)] [do {commands}] Events
When arguments are specified, sets a breakpoint at the indicated
address or routine. When no arguments are specified, prints the current
breakpoints.
breaks Events
Displays all the existing breakpoints
call routine [(exp,...)] Symbols and Expressions
Call the named routine.
catch [number [,number...]] Events
With arguments, catches the specified signals and runs the program
as though the signal was not sent. With no arguments, prints the list of
signals being caught.
cd Program Locations

PGI Debugger User Guide

35

Command Summary

Arguments Category
CIaS[S] [class] SCOpe
Return the current class or enter the scope of the specified c1ass.
classe[s] Target
Print the C++ class names.
clear [all | routine | line | addr {addr}] Events
With arguments, clears the indicated breakpoints. When no arguments
are specified, this command clears all breakpoints at the current
location.
confnect] [-t name [args] | -d path [args] | -f file [name [args]]] Target
Prints the current connection and the list of possible connection targets.
clont] Process Control
Continue execution from the current location.
crlead] addr Memory Access
Fetch and return an 8-bit signed integer (character) from the specified
address
defbug] [target [arg?1 _ argn]] Process Control
Load the specified program with optional command-line arguments.
dec exp [...exp] Printing Variables and
Expressions
Evaluate and print the expressions. Integer values are printed in
decimal.
declfaration] name Symbols and Expressions
Print the declaration for the symbol based on its type according to the
symbol table.
decls [routine | "sourcefile" | {global}] Scope
Print the declarations of all identifiers defined in the indicated scope. If
no scope is given, print the declarations for global scope.
defset name [p/t-set] Process-Thread Sets
Assign a name to a process/thread set. Define a named set.
dellete] event-number | all | O | event-number [,.event-number.] Events
Delete the event event —number or all events (delete 0 is the
same as delete all). Multiple event numbers can be supplied if they
are separated by commas. Use de 1 e t e without arguments to list
events by event-number.
detfach] Process Control

Detach from the current running process.

PGI Debugger User Guide

36

Arguments

Command Summary

Category

dirfectory] [pathname] Miscellaneous
Add the directory pathname to the search path for source files. If no
argument is specified, the currently defined directories are printed.
disabfle] event-number | all Printing Variables and
Expressions
With arguments, disables the event event —number orall
events. When no arguments are specified, prints both enabled and
disabled events by event-number.
disfasm] [count | lo:hi | routine | addr, count] Program Locations
Disassemble memory. If no argument is given, disassemble four
instructions starting at the current address.
discfonnect] Events
Close connection to target.
display [exp [,...exp]] Printing Variables and
Expressions
With one or more arguments, print expression e X at every
breakpoint. Without arguments, list the expressions for PGDBG to
automatically display at breakpoints.
do {commands} [at line | in routine] [if (condition)] Events
Define a do event. Without the optional arguments a t or in, the
commands are executed at each line in the program.
doi {commands} [at addr | in routine] [if (condition)] Events
Define a do 1 event. If neither the at or in argument is specified,
then the commands are executed at each instruction in the program.
down [number] Scope
Enter scope of routine down one level or number levels on the call
stack.
drfead] addr Memory Access
Fetch and return a 64-bit double from the specified address
dufmp] [addr [,count [,format]]] Memory Access
Dump the contents of a region of memory. The output is formatted
according to a printf-like format descriptor.
edit [filename | routine] Program Locations
Edit the specified file or file containing the subroutine. If no argument is
supplied, edit the current file starting at the current location(Command-
line interface only).
enabfle] [event-number | all] Events

PGI Debugger User Guide

37

Arguments

With arguments, this command enables the event event -
number or all events. When no arguments are specified, prints both
enabled and disabled events by event-number.

Command Summary

Category

enfter] [routine | "sourcefile" | global] Scope
Set the search scope to be the indicated symbol, which may be a
subroutine, source file or global. Using no argument is the same as
using global.

entrfy] [routine] Symbols and Expressions
Return the address of the first executable statement in the program or
specified subroutine.

fille] [flename] Program Locations
Change the source file to the file filename and change the scope
accordingly. With no argument, print the current file.

files Scope
Return the list of known source files used to create the executable file.

focus [p/t-sef] Process-Thread Sets
Set the target process/thread set for commands. Subsequent
commands are applied to the members of this set by default.

fp Register Access
Return the current value of the frame pointer.

frlead] addr Memory Access
Fetch and print a 32-bit float from the specified address.

funcftion] [addr | line] Conversions
Return a subroutine symbol. If no argument is specified, return the
current routine.

globfal] Scope
Return a symbol representing global scope.

halt [command] Process Control
Halt the running process or thread.

heflp] [command] Miscellaneous
If no argument is specified, print a brief summary of all the commands. If
a command name is specified, print more detailed information about
the use of that command.

hex exp [...exp] Printing Variables and

Expressions

Evaluate and print expressions as hexadecimal integers.

hifstory] [num] Miscellaneous

PGI Debugger User Guide

38

Arguments

List the most recently executed commands. With the num argument,
resize the history list to hold num commands.

Command Summary

Category

hwatch

addr | var [if (condition)] [do {commands}]

Define a hardware watchpoint.

Events

hwatchb[oth]

addr | var [if (condition)] [do {commands}]

Define a hardware read/write watchpoint.

Events

hwatchr[ead]

addr | var [if (condition)] [do {commands}]

Define a hardware read watchpoint

Events

ignore

[number [,number...]]

Ignore the specified signals and do not deliver them to the program.
When no arguments are specified, prints the list of signals being
ignored.

Events

irfead]

addr

Fetch and print a signed integer from the specified address.

Memory Access

language

Print the name of the language of the current file.

Miscellaneous

linfe]

[n | routine | addr]

Create a source line conversion. If no argument is given, return the
current source line.

Conversions

lines

[routine]

Print the lines table for the specified routine. If no argument is specified,
prints the lines table for the current routine.

Program Locations

lisft]

[count | line,count | lo:hi | routine]

With no argument, list 10 lines centered at the current source line. If an
argument is specified, list lines based on information requested.

Program Locations

lofad]

[prog [args]]

Without options, print the name and arguments of the program being
debugged. With arguments, invoke the debugger using the specified
program and program arguments, if any.

Process Control

log

filename

Keep a log of all commands entered by the user and store it in the
named file.

Miscellaneous

Irfead]

addr

Fetch and print an address from the specified address.

Memory Access

PGI Debugger User Guide

39

Arguments

Command Summary

Category

Ivfal] expr Symbols and Expressions
Return the Ivalue of the expression expr.
mgq[dump] Memory Access
Dump MPI message queue information for the current process.
hames [routine | "sourcefile" | {global}] Scope
Print the names of all identifiers defined in the indicated scope. If no
scope is specified, use the search scope.
natfive] [command] Target
Without arguments, print a list of the available target commands. With a
command argument, send the native command directory to the target.
nfext] [count] Process Control
Stop after executing one or count source line(s) in the current
subroutine.
nexti [count] Process Control
Stop after executing one or count instruction(s) in the current subroutine.
noplrint] exp Miscellaneous
Evaluate the expression but do not print the result.
oct exp [...exp] Printing Variables and
Expressions
Evaluate and print expressions as octal integers.
pc Register Access
Return the current program address.
pgienv [command] Miscellaneous
Define the debugger environment. With no arguments, display the
debugger settings.
plrint] exp1 [,...expn] Printing Variables and
Expressions
Evaluate and print one or more expressions.
Expressions
Print expressions in the format indicated by the format string.
proc [id] Process Control
Set the current process to the process identified by id. When issued
with no argument, lists the location of the current thread of the current
process in the current program.
procs Process Control

PGI Debugger User Guide

40

Command Summary

Arguments Category

Print the status of all active processes, listing each process by its logical
process ID.

pwd Program Locations
Print the current working directory.

qluit] Process Control
Terminate the debugging session.

regs regs [-info] [-grp=grp1[,grp2...]] [-fmt=fmt1[,fmt2...]] [-mode=vector| Register Access
scalar]

Print a formatted display of the names and values of registers. Specify
the register group(s) with the —g rp option and formatting with the —
fmt option. Use —1info to see alisting of available register groups
and formats.

rep[eat] [first, last] | [first: last:n] | [num] | [-num] Miscellaneous

Repeat the execution of one or more previous history list commands.

rerfun] [arg0 arg1 ... argn] [< inputfile] [[> | >& | >> | >>&] outputfile] Process Control

Like the run command with one exception: if no args are specified with
rerun, then no args are used when the program is launched.

retfaddr] Register Access
Return the current return address.

rufn] [arg0 arg1 ... argn] [< inputfile] [> outputfile] Process Control

Execute program from the beginning. If arguments arg0, arg1, and so
on are specified, they are set up as the command-line arguments of the
program. Otherwise, the arguments for the previous run command are
used.

rvfal] expr Symbols and Expressions

Return the rvalue of the expression expr.

scofpe] Scope
Return a symbol for the search scope.

scrfipt] filename Miscellaneous

Open the indicated file and execute the contents as though they were
entered as commands. If you use~ before the filename, it is expanded to
the value of the environment variable HOME.

set var = exp Symbols and Expressions

Set variable var to the value of expression.

setargs [arg1 , arg2, ... argn] Process Control

Set program arguments to be used by the current program.

setenv name [value] Miscellaneous

PGI Debugger User Guide 41

Arguments

Print value of environment variable name. With a specified value, set
name to value.

Command Summary

Category

shlell] [arg0 , arg1, ... argn] Miscellaneous
Fork a shell (defined by $SHELL) and give it the indicated arguments
(the default shell is sh). Without arguments, invokes an interactive shell,
and executes until a "*D" is entered.

sizfeof] name Symbols and Expressions
Return the size, in bytes, of the variable type name; or, if the name
refers to a routine, returns the size in bytes of the subroutine.

slefep] [time] Miscellaneous
Pause for time seconds. If no time is specified, pause for one second.

soufrce] filename Miscellaneous
Open the indicated file and execute the contents as though they were
entered as commands. If you use ~ before the filename, it is expanded
to the value of $HOME.

sp Register Access
Return the current stack pointer address.

srfead] addr Memory Access
Fetch and print a short signed integer from the specified address.

stackd[ump] [count] Program Locations
Print a formatted dump of the call stack. This command displays a hex
dump of the stack frame for each active subroutine.

stackftrace] [count] Program Locations
Print the call stack. For each active subroutine print the subroutine
name, source file, line number, and current address, provided that this
information is available.

statfus] Events
Display all the event definitions, including an event number by which the
event can be identified.

sftep] [count | up] Process Control
Step into the current subroutine and stop after executing one or count
source line(s). If the up argument is specified, stops execution after
stepping out of the current subroutine.

stepi [count | up] Process Control

Step into the current subroutine and stop after executing one or count
source line(s). If the up argument is specified, stops execution after
stepping out of the current subroutine.

PGI Debugger User Guide

42

Command Summary

Arguments Category

stepofut] Process Control
Stop after returning to the caller of the current subroutine.

stop [at line | in routine] [var] [if (condition)] [do {commands}] Events

Set a breakpoint at the indicated subroutine or line. Break when the
value of the indicated variable var changes.

stopi [at addr | in routine] [var] [if (condition)] [do {commands}] Events

Set a breakpoint at the indicated address or subroutine. Break when the
value of the indicated variable var changes.

strfing] exp [...exp] E)r(i;:?sgSi\(/;rsiables and

Evaluate and print expressions as null-terminated character strings, up
to a maximum of 70 characters.

sync [routine | line] Process Control

Advance the current process/thread to a specific program location,
ignoring any user-defined events.

synci [routine | addr] Process Control

Advance the current process/thread to a specific program location,
ignoring any user-defined events.

thread [number] Process Control

Set the current thread to the thread identified by number; where number
is a logical thread ID in the current process’ active thread list. When
issued with no argument, list the current program location of the
currently active thread.

threads Process Control
Prints the status of all active threads, grouped by process.

trace [at line | in routine] [var | routine] [if (condition)] do {commands} Events

Activates source line tracing as specified by the arguments supplied.

tracei [at addr | in routine] [var] [if (condition)] do {commands} Events

Activates instruction tracing as specified by the arguments supplied.

track expression [at line | in routine] [if (condition)] [do {commands}] Events

Define a track event.

tracki expression [at addr | in routine] [if (condition)] [do {commands}] Events

Define an assembly-level track event.

type expr Symbols and Expressions

Return the type of the expression.

PGI Debugger User Guide 43

unalfias]

Arguments

name

Remove the alias definition for name, if one exists.

Command Summary

Category

Miscellaneous

unbfreak]

line | routine | all

Remove a breakpoint from the statement line or subroutine, or remove
all breakpoints.

Events

unbreaki

addr | routine | all

Remove a breakpoint from the address addr or the subroutine, or
remove all breakpoints.

Events

undefset

[name | -all]

Remove a previously defined process/thread set from the list of process/
thread sets

Process-Thread Sets

undisplay

[all]0]exp]

Remove all expressions specified by previous display commands. With
an argument or several arguments, remove the expression exp from the
list of display expressions.

Printing Variables and
Expressions

ulp]

[number]

Move up one level or number levels on the call stack.

Scope

use

[dir]

Print the current list of directories or add dir to the list of directories to
search. If the first character in pathname is ~, the value of HOME is
substituted for this character.

Miscellaneous

viewset

name

List the members of a process/thread set that currently exist as active
threads or list defined p/t-sets.

Process-Thread Sets

wait

[any | all | none]

Inserts explicit wait points in a command stream.

Process Control

waltch]

expression [at line | in routine] [if (condition)] [do {commands}]

Define a watch event. The given expression is evaluated, and
subsequently, each time the value of the expression changes, the
program stops and the new value is printed.

Events

watchi

expression [at addr | in routine] [if(condition)] [do {commands}]

Define an assembly-level watch event

Events

whatis

[name]

PGI Debugger User Guide

Symbols and Expressions

44

Command Summary

Arguments Category

With no arguments, prints the declaration for the current subroutine.
With argument name, prints the declaration for the symbol name.

when [at line | in routine] [if (condition)] do {commands} Events

Execute commands at every line in the program, at a specified line in
the program or in the specified subroutine.

wheni [at addr | in routine] [if(condition)] do {commands} Events

Execute commands at each address in the program. If an address
is specified, the commands are executed each time the address is
reached.

wlhere] [count] Program Locations

Print the call stack. For each active subroutine print the subroutine
name, subroutine arguments, source file, line number, and current
address, provided that this information is available.

whereis name Symbols and Expressions

Print all declarations for name.

which name Scope

Print full scope qualification of symbol name.

whichsets [plt-set] Process-Thread Sets

List all defined p/t-sets to which the members of a process/thread set
belong.

/ / [string] / Program Locations

Search forward for the specified string of characters in the current
source file.

? ?[string] ? Program Locations

Search backward for the specified string of characters in the current
source file.

! History modification Miscellaneous

Executes a command from the command history list. The command
executed depends on the information that follows the !.

History modification Miscellaneous

Quick history command substitution *old*new”<modifier> this is
equivalent to !:s/old/new/

PGI Debugger User Guide 45

Chapter 6.
ASSEMBLY-LEVEL DEBUGGING

This chapter provides information about PGDBG assembly-level debugging, including an
overview about what to expect if you are using assembly-level debugging or if you did not
compile your program for debugging.

6.1. Assembly-Level Debugging Overview

PGDBG supports debugging regardless of how a program was compiled. In other words, PGDBG
does not require that the program under debug be compiled with debugging information, such
asusing —g. It can debug code that is lacking debug information, but because it is missing
information about symbols and line numbers, it can only access the program at the assembly
level. PGDBG also supports debugging at the assembly level if debug symbols are available.

Asdescribed in Building Applications for Debug, the richest debugging experience is available
when the program is compiled using —g or —gopt with no optimization. When a program is
compiled at higher levels of optimization, less information about source-level symbols and line
numbersis available, even if the program was compiled with —g or —gopt. In such cases, if you
want to find the source of a problem without rebuilding the program, you may need to debug at
the assembly level.

If aprogram has been "stripped" of all symbols, either by the linker or a separate utility, then
debugging will be at the assembly level. PGDBG is only able to examine or control the program
in terms of memory addresses and registers.

6.1.1. Assembly-Level Debugging on Windows

When applications are built without —g on Windows systems, the resulting binary, the . exe
file, does not contain any symbol information. The Microsoft linker stores symbol information
in aprogram database, a . pdb file. To generate a . pdb file using the PGI compiler drivers, you
must use —g during the link step. Y ou can do this even if you did not use —g during the compile
step. Having this . pdb file available provides PGDBG with enough symbol information to map
addresses to routine names.

PGI Debugger User Guide 46

Assembly-Level Debugging

6.1.2. Assembly-Level Debugging with Fortran

To refer to Fortran symbol names when debugging at the assembly level, you must translate
names so these match the calling convention in use by the compiler. For code compiled by the
PGI compilers, in most cases this means translating Fortran names to lower case and appending
an underscore. For example, aroutine that appearsin the source code as "vADD" would be
referred to in the debugger as"vadd ".

On 32-bit Windows systems there are alternative calling conventions. The one described above
matches the convention used when the compiler isinvoked with -Miface=unix (previously -
Munix). For details of other 32-bit Windows calling conventions, refer to the PGI Compiler
User's Guide.

Name translation is only necessary for assembly-level debugging. When debugging at the source level, you
may refer to symbol names as they appear in the source.

A specia symbol, MAIN |, iscreated by PGFORTRAN to refer to the main program.
PGFORTRAN generates this special symbol whether or not there isa PROGRAM statement.
One way to run to the beginning of a Fortran program isto set a breakpoint on MAIN , then run.

6.1.3. Assembly-Level Debugging with C++

C™" symbol names are "mangled" names. For the names of C™ methods, the names are modified
to include not only the name as it appears in the source code, but information about the enclosing
class hierarchy, argument and return types, and other information. The names are long and
arcane. At the source level these names are translated by PGDBG to the names as they appear in
the source. At the assembly level, these names are in the mangled form. Trandation is not easy
and not recommended. If you have no other aternative, you can find information about name
mangling in the PGl Compiler User's Guide.

6.1.4. Assembly-Level Debugging Using the PGDBG GUI

This section describes some basic operations for assembly-level debugging using the PGDBG
GUI. If you encounter themessage “;Can’t find main function compiled -g” on
startup, assembly-level debugging is required.

To get into a program in this situation, you can select the Debug | Set Breakpoint... menu option.
For example, to stop at program entry, in Fortran you could enter MAIN in response to the
dialog query, whilein C or C™* you could enter main.

PGDBG debug information tabs that are useful in assembly-level debugging include the Call
Stack, Memory, and Register tabs. Disassembly is automatically shown in the source pane when
source files are available. Y ou can aso switch from source to disassembly debugging by selecting
the View | Show Assembly menu option.

6.1.5. Assembly-Level Debugging Using the PGDBG CLI

This section describes some basic operations for assembly-level debugging using the PGDBG
command-line interface. When you invoke the PGDBG CLI and are presented with a message

PGI Debugger User Guide 47

Assembly-Level Debugging

telling you that PGDBG "Can't find main function compiled -g",assembly-level
debugging is required.

To get into the program, you can set a breakpoint at a named routine. To stop at program entry,
for example, in Fortran you could use
pgdbg> break MAIN

and in C/ C** you could use
pgdbg> Dbreak main

Some useful commands for assembly-level debugging using the PGDBG command-line interface
include:

run

run the program from the beginning
cont

continue program execution from the current point
nexti

single-step one instruction, stepping over calls
stepi

single-step one instruction, stepping into calls
breaki

set abreakpoint at a given address
regs

display the registers
print $<regname>

display the value of the specified register

For more information on register names, refer to SSE Register Symbols.
dump

dump memory locations
stacktrace

display the current call stack.
stackdump

display the current call stack.

6.2. SSE Register Symbols

X64 processors and x86 processors starting with Pentium 111 provide SSE (Streaming SIMD
Enhancements) registers and a SIMD floating-point control/status register.

Each SSE register may contain four 32-bit single-precision or two 64-bit floating-point values.
The PGDBG regs command reports these values individually in both hexadecimal and floating-

PGI Debugger User Guide 48

Assembly-Level Debugging

point format. PGDBG provides command notation to refer to these values individually or al
together.

The component values of each SSE register can be accessed using the same syntax that is used for
array subscripting. Pictorially, the SSE registers can be thought of as follows:

[32-bit]
127 9695 6463 3231 0
$xmm0O[3] $xmm0[2] $xmmO[1] $xmm0[0]
$xmm1[3] $xmm1[2] $xmm1[1] $xmm1[0]
$xmm2[3] $xmm2[2] $xmm2[1] $xmm2[0]

To access $xmm0[3], the 32-bit single-precision floating point value that occupies bits 96 — 127
of SSE register 0, use the following PGDBG command:
pgdbg> print S$xmmO0[3]

To set $xmm2[0] to the value of $xmm3[2], use the following PGDBG command:
pgdbg> set $xmm2[0] = $xmm3[2]

[64-bit]
127 6463 0
$xmm0d[1] $xmm0d[0]
$xmm1d[1] $xmm1d[0]
$xmm2d[1] $xmm2d[0]

To access the 64-bit floating point values in xmmoO, append the character 'd’ (for double
precision) to the register name and subscript as usual, asillustrated in the following commands:
pgdbg> print $xmm0d[0]
pgdbg> print $xmm0d[1]
In most cases, PGDBG detects when the target environment supports SSE registers. In the

event PGDBG does not allow access to SSE registers on a system that should have them, set the
PGDBG_SSE environment variable to on to enable SSE support.

PGI Debugger User Guide 49

Chapter 7.
SOURCE-LEVEL DEBUGGING

This section describes source-level debugging, including debugging Fortran and C™.

7.1. Debugging Fortran

7.1.1. Fortran Types

PGDBG displays Fortran type declarations using Fortran type names. The only exception is
Fortran character types, which are treated as arrays of the C type char.

7.1.2. Arrays

Fortran array subscripts and ranges are accessed using the Fortran language syntax convention,
denoting subscripts with parentheses and ranges with colons.

PGI compilersfor the linux86-64 platform (AMDG64 or Intel 64) support large arrays (arrays with
an aggregate size greater than 2GB). Y ou can enable large array support by compiling using these
options.-mcmodel=medium -Mlarge arrays.PGDBG providesfull support for large
arrays and large subscripts.

PGDBG supports arrays with non-default lower bounds. Access to such arrays uses the same
subscripts that are used in the program.

PGDBG also supports adjustable arrays. Access to adjustable arrays may use the same
subscripting that is used in the program.

7.1.3. Operators

In general, PGDBG uses C language style operators in expressions and supports the Fortran
array index selector “()” and the Fortran field selector “%” for derived types. However, .eq.,

PGI Debugger User Guide 50

Source-Level Debugging

.ne., and so forth are not supported. Y ou must use the analogous C operators ==, I=, and so on,
instead.

The precedence of operators matches the C language, which may in some cases be different than that
used in Fortran.

See PGDBG Commands for a complete list of operators and their definition.

7.1.4. Name of the Main Routine

If aPROGRAM statement is used, the name of the main routine is the name in the program
statement. Y ou can always use the following command to set a breakpoint at the start of the main
routine.

break MAIN

7.1.5. Common Blocks

Each subprogram that defines a common block has alocal static variable symbol to define

the common. The address of the variable is the address of the common block. The type of the
variable is alocally-defined structure type with fields defined for each element of the common
block. The name of the variable is the common block name, if the common block has a name, or
BLNK otherwise.

For each member of the common block, alocal static variable is declared which represents the
common block variable. Thus given declarations:

common /xyz/ a, b
integer a
integer b

then the entire common block can be printed out using,

print xyz

Individual elements can be accessed by name. For example:,
print a, b

7.1.6. Internal Procedures

To unambiguously reference an internal procedure, qualify its name with the name of its host
using the scoping operator @.

PGI Debugger User Guide 51

Source-Level Debugging

For example:

subroutine subl ()
call internal proc ()

contains
subroutine internal proc ()
print *, "internal proc in subl"

end subroutine internal proc
end subroutine

subroutine sub2 ()
call internal proc ()

contains
subroutine internal proc ()
print *, "internal proc in sub2"

end subroutine internal proc
end subroutine

program main
call subl ()
call sub2 ()
end program

pgdbg> whereis internal proc
function: "/path/ip.£f90"@subl@internal proc
function: "/path/ip.£90"@sub2@internal proc

pgdbg> break subl@internal proc
(1)breakpoint set at: internal proc line: "ip.£f90"@5 address: 0x401E3C 1

pgdbg> break sub2@internal proc
(2)breakpoint set at: internal proc line: "ip.f90"@13 address: 0x401EEC 2

7.1.7. Modules

A member of a Fortran 90 module can be accessed during debugging.

module mod

integer iMod
end module
subroutine useMod ()

use mod

iMod = 1000
end subroutine
program main

call useMod()
end program

» If the moduleisin the current scope, no qualification is required to access the modul€e's
members.

pgdbg> b useMod
(1) breakpoint set at: usemod line: "modv.f90"@7 address: 0x401CC4
1

Breakpoint at 0x401CC4, function usemod, file modv.f90, line 7
#7: iMod = 1000

pgdbg> p iMod
0

PGI Debugger User Guide 52

Source-Level Debugging

» If the moduleis not in the current scope, use the scoping operator @ to qualify the member's

name.

Breakpoint at 0x401CF0O, function main, file modv.£f90,

#11: call useMod ()

pgdbg> p iMod
"iMod" is not defined in the current scope

pgdbg> p mod@iMod
0

7.1.8. Module Procedures

line 11

A module procedure is a subroutine contained within a module. A module procedure itself can
contain internal procedures. The scoping operator @ can be used when working with these types

of subprograms to prevent ambiguity.

module mod
contains
subroutine mod procl ()
call internal proc()

contains
subroutine internal proc/()
print *, "internal proc in mod procl"

end subroutine

end subroutine

subroutine mod proc2 ()
call internal proc()
contains
subroutine internal proc()

print *, "internal proc in mod proc2"

end subroutine

end subroutine

end module

program main
use mod
call mod procl
call mod proc2
end program

pgdbg> whereis internal proc

function: "/path/modp.£90"@modEmod procl@internal proc
function: "/path/modp.£90"@mod@mod proc2@internal proc

pgdbg> break mod@mod procl@internal proc

(1)breakpoint set at: internal proc line: "modp.f90"@7 address:

1
pgdbg> break mod@mod proc2@internal proc

0x401E3C

(2)breakpoint set at: internal proc line: "modp.f90"@14 address: 0x401EEC

2

7.2. Debugging C++

PGI Debugger User Guide

53

Source-Level Debugging

7.2.1. Calling C++ Instance Methods

To usethe call command to call aC*™ instance method, the object must be explicitly passed as
the first parameter to the call. For example, suppose you were given the following definition of
class Person and the appropriate implementation of its methods:

class Person
{
public:
char name[10];
Person (char * inName) ;
void print();

}i
int main ()

Person * pierre;
pierre = new Person ("Pierre");
pierre->print () ;
return 0;
}
Call theinstance method print on object pierre asfollows:

pgdbg> call Person::print (pierre)

Notice that pierre must be explicitly passed into the method because it isthe this pointer.
Y ou can also specify the class name to remove ambiguity.

PGI Debugger User Guide 54

Chapter 8.
PLATFORM-SPECIFIC FEATURES

This section describes the PGDBG features that are specific to particular platforms, such as
pathname conventions, debugging with core files, and signals.

8.1. Pathname Conventions

PGDBG uses the forward dlash character (/) internally as the path component separator on all
platforms. The backsash (\) is used as the escape character in the PGDBG command language.

On Windows systems, use backslash as the path component separator in the fields of the
Connections tab. Use the forward slash as the path component separator when using a debugger
command in the Command tab or in the CLI. The forward slash separator convention is till in
effect when using adrive letter to specify afull path. For example, to add the Windows pathname
C:/Temp/src tothelist of searched source directories, use the command:

pgdbg> dir C:/Temp/src

To set abreakpoint at line 10 of the source file specified by the relative path sub1\main.c, use

this command:
pgdbg> break "subl/main.c":10

8.2. Debugging with Core Files

PGDBG supports debugging of core files on Linux platforms. In the GUI, select the Core option
on the Connections tab to enable core file debugging. Fill in the Program and Core File fields and
open the connection to load the corefile.

Y ou can aso launch PGDBG for core file debugging from the command line. To do this, use the
following options:

$ pgdbg -core coreFileName programName

Corefiles (or core dumps) are generated when a program encounters an exception or fault.
For example, one common exception is the segmentation violation, which can be caused by
referencing an invalid memory address. The memory and register states of the program are
written into a core file so that they can be examined by a debugger.

PGI Debugger User Guide 55

Platform-Specific Features

The shell environment in which the application runs must be set up to alow corefile creation. On
many systems, the default user setting ul imit does not allow core file creation.

Check theulimit asfollows:
For sh/bash users:

$ ulimit -c

For csh/tcsh users:

[

% limit coredumpsize

If the core file size limit is zero or something too small for the application, it can be set to
unlimited as follows:

For sh/bash users:

$ ulimit -c unlimited

For csh/tcsh users:

[

% limit coredumpsize unlimited

See the Linux shell documentation for more details. Some versions of Linux provide system-wide
limits on core file creation.

The core fileis normally written into the current directory of the faulting application. It is usually
named core or core.pid where pidisthe process D of the faulting thread. If the shell
environment is set correctly and a core file is not generated in the expected location, the system
core dump policy may require configuration by a system administrator.

Different versions of Linux handle core dumping slightly differently. The state of all process
threads are written to the core file in most modern implementations of Linux. In some new
versions of Linux, if more than one thread faults, then each thread’ s state is written to separate
corefilesusing the core . pid file naming convention previously described. In older versions of
Linux, only one faulting thread is written to the corefile.

If aprogram uses dynamically shared objects (i.e., shared libraries named lib*.so0), as most
programs on Linux do, then accurate core file debugging requires that the program be debugged
on the system where the core file was created. Otherwise, slight differencesin the version of
ashared library or the dynamic linker can cause erroneous information to be presented by the
debugger. Sometimes a core file can be debugged successfully on a different system, particularly
on more modern Linux systems, but you should take care when attempting this.

When debugging core files, PGDBG:

v

Supports al non-control commands.

» Performs any command that does not cause the program to run.

» Generates an error message in PGDBG for any command that causes the program to run.
» May provide the status of multiple threads, depending on the type of core file created.

PGDBG does not support multi-process core file debugging.

PGI Debugger User Guide 56

Platform-Specific Features

8.3. Signals

PGDBG intercepts all signals sent to any of the threads in a multi-threaded program and passes
them on according to that signal's disposition as maintained by PGDBG (see the catch and
ignore commands), except for signals that cannot be intercepted or signals used internally by
PGDBG.

8.3.1. Signals Used Internally by PGDBG

SIGTRAP and SIGSTOP are used by Linux for communication of application eventsto PGDBG.
Management of these signalsisinternal to PGDBG. Changing the disposition of these signalsin
PGDBG (viacatch and ignore) resultsin undefined behavior.

8.3.2. Signals Used by Linux Libraries

Some Linux thread libraries use SIGRT1 and SIGRT3 to communicate among threads internally.
Other Linux thread libraries, on systems that do not have support for real-time signalsin the
kernel, use SIGUSR1 and SIGUSR2. Changing the disposition of these signalsin PGDBG (via
catch and ignore) resultsin undefined behavior.

Target applications compiled with the options -pg or -Mprof=t ime generate numerous
SIGPROF signals. Although SIGPROF can be handled by PGDBG viathe ignore command,
debugging of applications built for sample-based profiling is not recommended.

PGI Debugger User Guide 57

Chapter 9.
PARALLEL DEBUGGING OVERVIEW

This section provides an overview of how to use PGDBG to debug parallel applications. It
includes important definitions and background information on how PGDBG represents processes
and threads.

9.1. Overview of Parallel Debugging Capability

PGDBG is aparallel application debugger capable of debugging multi-process MPI applications,
multi-thread and OpenM P applications, and hybrid multi-thread/multi-process applications that
use MPI to communicate between multi-threaded or OpenM P processes.

For specific information on multi-thread and OpenM P debugging, refer to Parallel Debugging
with OpenMP.

For specific information on multi-process MPI debugging, refer to Parallel Debugging with MPI.

9.1.1. Graphical Presentation of Threads and Processes

PGDBG graphical user interface components that provide support for parallelism are described in
detail in The Graphical User Interface.

9.2. Basic Process and Thread Naming

Because PGDBG can debug multi-threaded, multi-process, and hybrid multi-threaded/multi-
process applications, it provides a convention for uniquely identifying each thread in each
process. This section gives a brief overview of this naming convention and how it is used to
provide adequate background for the subsegquent sections. A more detailed discussion of this
convention, including advanced techniques for applying it, is provided in Thread and Process
Grouping and Naming.

PGDBG identifies threads in an OpenMP application using the OpenMP thread 1Ds. Otherwise,
PGDBG assigns arhitrary |Dsto threads, starting at zero and incrementing in order of thread
creation.

PGI Debugger User Guide 58

Parallel Debugging Overview

PGDBG identifies processes in an MPI application using MPI rank (in communicator
MPI_COMM_WORLD). Otherwise, PGDBG assigns arbitrary 1Ds to processes; starting at zero
and incrementing in order of process creation. Process |Ds are unique across all active processes.

In a multi-threaded/multi-process application, each thread can be uniquely identified across all
processes by prefixing its thread |D with the process ID of its parent process. For example, thread
1.4 identifies the thread with ID 4 in the process with ID 1.

An OpenMP application logically runs as a collection of threads with a single process, process 0,
asthe parent process. In this context, athread is uniquely identified by its thread ID. The process
ID prefix isimplicit and optional. For more information on debugging threads, refer to Thread-
only Debugging.

An MPI program logically runs as a collection of processes, each made up of asingle thread of
execution. Thread 0 isimplicit to each MPI process. A process ID uniquely identifies a particular
process, and thread ID isimplicit and optional. For more information on process debugging, refer
to Process-only Debugging.

A hybrid, or multilevel, MPI/OpenMP program requires the use of both process and thread IDs
to uniquely identify a particular thread. For more information on multilevel debugging, refer to
Multilevel Debugging.

A seria program runs as a single thread of execution, thread 0, belonging to a single process,
process 0. The use of thread IDs and process IDs is allowed but unnecessary.

9.3. Thread and Process Grouping and Naming

This section describes how to name a single thread, how to group threads and processes into sets,
and how to apply PGDBG commands to groups of processes and threads.

9.3.1. PGDBG Debug Modes

PGDBG can operate in four debug modes. The mode determines a short form for uniquely
naming threads and processes. The debug mode is set automatically or by the pgienv mode
command.

Table 4 PGDBG Debug Modes

Debug Mode Program Characterization

Serial A single thread of execution

Threads-only A single process, multiple threads of execution

Process-only Multiple processes, each process made up of a single thread of execution
Multilevel Multiple processes, at least one process employing multiple threads of execution

PGDBG initially operates in serial mode reflecting asingle thread of execution. Thread IDs can
be ignored in serial debug mode since there is only a single thread of execution.

The PGDBG prompt displays the ID of the current thread according to the current debug mode.
For a description of the PGDBG prompt, refer to The PGDBG Command Prompt.

PGI Debugger User Guide 59

Parallel Debugging Overview

The debug mode can be changed at any time during a debug session.

To change debug mode manually, use the pgienv command.
pgienv mode [serial|thread|process|multilevel]
9.3.2. Threads-only Debugging

Enter threads-only mode to debug a program with a single multi-threaded process. As a
convenience the process ID portion can be omitted. PGDBG automatically enters threads-only
debug mode from serial debug mode when it detects and attaches to new threads.

Table 5 Thread IDs in Threads-only Debug Mode

1 Thread 1 of process 0 (*. 1)
w All threads of process 0 (*. *)
0.7 Thread 7 of process 0 (multilevel names are valid in threads-only mode)

In threads-only debug mode, status and error messages are prefixed with thread 1Ds depending on
context.

9.3.3. Process-only Debugging

Enter process-only mode to debug an application consisting of single-threaded processes. Asa
convenience, the thread 1D portion can be omitted. PGDBG automatically enters process-only
debug mode from serial debug mode when multiple processes are detected.

Table 6 Process IDs in Process-only Debug Mode

0 All threads of process 0 (0.*)
& All threads of all processes (*.*)
1.0 Thread 0 of process 1 (multilevel names are valid in process-only mode)

In process-only debug mode, status and error messages are prefixed with process | Ds depending
on context.

9.3.4. Multilevel Debugging

The name of athread in multilevel debug mode isthe thread ID prefixed with its parent process
ID. Thisforms a unique name for each thread across all processes. This naming schemeisvalid
in all debug modes. PGDBG changes automatically to multilevel debug mode when at least one
MPI process creates multiple threads.

PGI Debugger User Guide 60

Parallel Debugging Overview

Table 7 Thread IDs in Multilevel Debug Mode

0.1 Thread 1 of process 0
0.* All threads of process 0
= All threads of all processes

In multilevel debugging, mode status and error messages are prefixed with process/thread IDs
depending on context.

9.4. Process/Thread Sets

Y ou use a process/thread set (p/t-set) to restrict a debugger command to apply to a particular
set of threads. A p/t-set is aset of threads drawn from all threads of all processes in the target
program. Use p/t-set notation to define a p/t-set.

9.4.1. Named p/t-sets

In the following sections, you will notice frequent references to three named p/t-sets:

» Thetarget p/t-set isthe set of processes and threads to which a debugger command is
applied. Thetarget p/t-set isinitially defined by the debugger to be the set [all] which
describes all threads of all processes.

» A prefix p/t-set is defined when p/t-set notation is used to prefix a debugger command. For
the prefixed command, the target p/t-set is the prefix p/t-set.

» Thecurrent p/t-set isthe p/t set currently set in the PGDBG environment. Y ou can use the
focus command to define the current p/t-set. Unless a prefix p/t-set overridesit, the current
p/t set is used as the target p/t-set.

9.4.2. plt-set Notation

The following rules describe how to use and construct p/t-sets:

Use a prefix p/t-set with a simple command:

[p/t-set prefix] command parmO, parml, ...

Use a prefix p/t-set with a compound command:

[p/t-set prefix] simple-command [;simple-command ...]
p/t-id:

{integer|*}.{integer|*}

Use p/t-id optional notation when process-only or threads-only debugging is in effect. For more
information, refer to the pgienv command.

p/t-range:
p/t-id:p/t-id

p/t-list:
{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

PGI Debugger User Guide 61

Parallel Debugging Overview

p/t-set
[[!]{p/t-1list|set-name}]

p/t-sets in Threads-only Debug Mode

[0,4:6] Threads 0, 4, 5, and 6

[*] Al threads

(*.1] Thread 1. Multilevel notation is valid in threads-only mode
[*.*] All threads

p/t-sets in Process-only Debug Mode

[0,2:3] Processes 0, 2, and 3 (equivalent to [0.%,2:3.%])

[*] All processes (equivalent to [*.*])

(0] Process 0 (equivalent to [0.*])

[*.0] Process 0. Multilevel syntax is valid in process-only mode.

[0:2.7] Processes 0, 1, and 2. Multilevel syntax is valid in process-only debug mode.

p/t-sets in Multilevel Debug Mode

(0.1,0.3,0.5] Thread 1,3, and 5 of process 0

[0.7*] Al threads of process 0

[l.183] Thread 1, 2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2
[clients] All threads defined by named set clients

[1] Incomplete; invalid in multilevel debug mode

9.4.3. Dynamic vs. Static p/t-sets
The defset command can be used to define both dynamic and static p/t-sets.
Defining a Dynamic p/t-set

The members of adynamic p/t-set are those active threads described by the p/t-set at the time
that the p/t-set is used. By default, a p/t-set is dynamic. Threads and processes are created and
destroyed as the target program runs and, therefore, membership in adynamic set varies asthe
target program executes.

defset clients [*.1:3] Defines a dynamic named set ‘c 1 i ent s’ whose members are threads 1, 2, and 3
of all processes that are currently active whenever ‘c1ient s’is used. Membership
in clients changes as processes are created and destroyed.

PGI Debugger User Guide 62

Parallel Debugging Overview

Defining a Static p/t-set

Membership in astatic set is fixed when it is defined. The members of a static p/t-set are those
threads described by that p/t-set when it is defined. Usea ‘!’ to specify a static set.

defset clients [!*.1:3] | Defines a state named set‘client s’ whose members are threads 1, 2, and 3 of

those processes that are currently active at the time of the definition.

n p/t-sets defined with defset are not mode-dependent and are valid in any debug mode.

9.4.4. Current vs. Prefix p/t-set

The current p/t-set is set by the focus command. The current p/t-set is described by the debugger
prompt and depends on debug mode. For a description of the PGDBG prompt, refer to The
PGDBG Command Prompt. Y ou can use a p/t-set to prefix a command that overrides the current
p/t-set. The prefix p/t-set becomes the target p/t-set for the command. The target p/t-set defines
the set of threads that will be affected by a command.

» Inthefollowing command line, the target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont
Continue all threads in all processes

» Incontrast, aprefix p/t-set is used in the following command so that the target p/t-set isthe
prefix p/t-set, shown in this example in bold:
pgdbg [all] 0.0> [0.1:2] cont
Continue threads 1 and 2 of process 0 only

In both of the above examples, the current p/t-set is the debugger-defined set [all]. In the first
case, [al] isthe target p/t-set. In the second case, the prefix p/t-set overrides [all] and becomes the
target p/t-set. The continue command is applied to all active threadsin the target p/t-set. Also,
using a prefix p/t-set does not change the current p/t-set.

9.4.5. p/t-set Commands

Y ou can use the following commands to collect threads and processes into logical groups.

» Usedefset and undefset to manage alist of named p/t-sets.

» Use focus to set the current p/t-set.

» Useviewset to view the active members described by a particular p/t-set, or to list all the
defined p/t-sets.

» Usewhichsets to describe the p/t-sets to which a particular process/thread belongs.

Table 8 p/t-set Commands

Command Description

defset Define a named process/thread set. This set can later be referred to by name. A list of named sets is
stored by PGDBG.

focus Set the target process/thread set for commands. Subsequent commands are applied to the members of
this set by default..

PGI Debugger User Guide 63

Parallel Debugging Overview

Command Description

undefset Undefine a previously defined process/thread set. The set is removed from the list. The debugger-defined
p/t-set [all] cannot be removed.

viewset List the members of a process/thread set that currently exist as active threads, or list all the defined p/t-
sets..
whichsets List all defined p/t-sets to which the members of a process/thread set belong..

Examples of the p/t-set commands in the previous table follow.

Usedefset to definethe p/t-set initial to contain only thread O:
pgdbg [all] 0> defset initial [O0]

"initial" [0] : [O]

Usethe focus command to change the current p/t-setto initial:
pgdbg [all] 0> focus [initial]

[initial] : [O]

(0]

Advance the thread using the current p/t-set, whichisinitial:

pgdbg [initial] 0> next

Thewhichsets command shows that thread 0 is a member of two defined p/t-sets:

pgdbg [initial] 0> whichsets [initial]

Thread 0 belongs to:

all

initial

The viewset command displays all threads that are active and are members of defined p/t-sets:
pgdbg [initial] 0> viewset

"all™ [*.*] : [0.0,0.1,0.2,0.3]

"initial" [0] : [O]

Y ou can use the focus command to set the current p/t-set back to [all]:

pogdbg [initial] 0> focus [all]

[all] : [0.0,0.1,0.2,0.3]

[*.*]

The undefset command undefines theinitial p/t-set:

pgdbg [all] 0> undefset initial
p/t-set name "initial" deleted.

9.4.6. Using Process/Thread Sets in the GUI

The previous examples illustrate how to manage named p/t-sets using the command-line
interface. A similar capability is available in the PGDBG GUI. Figure 11 provides an overview of
the Groups tab.

PGI Debugger User Guide 64

Parallel Debugging Overview

Command | Events | Groups

Group Name Composition
all [*.*]

[Add...]| Modify...]| Remove...]

Figure 22 Groups Tab

The Groups tab contains a table with two columns: a Group Name column and a p/t-set
Composition column. The entries in the Composition column are the same p/t-sets used in the
command-line interface.

Using this tab you can create, select, modify and remove p/t-sets.

9.4.6.1. Create a p/t-set
To create a p/t-set in the Groups tab:

1. Click the Add button. This opens adialog box similar to the one in Figure 23.

2. Enter the name of the p/t-set in the Group Name field and enter the p/t-set in the
Composition field.

3. Click OK to add the p/t-set.

The new p/t-set appears in the Groups table. Clicking the Cancel button or closing the dialog box
aborts the operation.

PGI Debugger User Guide 65

Parallel Debugging Overview

rF__‘; Define Process/Thread Group @1
Group Name: []
Composition: []

Ak group is composed of a set of processes and threads.

Examples:

[0.1,0.2,0.3] — thread 1, 2, end 3 of proceas 0
[R-*%] — all threads of process 0
[1-2,2.1] — thread 1 of processes 1 and 2
[1:2.1] — thread 1 of processes 1 and 2

[ok]| Cancel]

L

Figure 23 Process/Thread Group Dialog Box

9.4.6.2. Select a p/t-set

To select a p/t-set, click the desired p/t-set in the table. The selected p/t-set defines the Current
Group used in the Apply and Display drop-down lists on the main toolbar.

9.4.6.3. Modify a p/t-set

To modify an existing p/t-set, select the desired group in the Group table and click the Modify...
button. Y ou see adialog box similar to that in Figure 23, except that the Group Name and
Composition fields contain the selected group’s name and p/t-set respectively. Y ou can edit the
information in these fields and click OK to save the changes.

9.4.6.4. Remove a p/t-set

To remove an existing p/t-set, select the desired item in the Groups Table and click the Remove...
button. PGDBG displays adialog box asking for confirmation of the removal request.

9.4.7. p/t-set Usage

When Current Group is selected in either the Apply or Display drop-down lists on the main
toolbar, the currently selected p/t-set in the Groups tab defines the Current Group.

PGI Debugger User Guide 66

Parallel Debugging Overview

9.5. Command Set

For the purpose of parallel debugging, the PGDBG command set is divided into three digjoint
subsets according to how each command reacts to the current p/t-set. Process level and thread
level commands can be parallelized. Global commands cannot be parallelized.

Table 9 PGDBG Parallel Commands

Commands Action

Process Level Commands Parallel by current p/t-set or prefix p/t-set
Thread Level Commands Parallel by prefix p/t-set only; current p/t-set is ignored.
Global Commands Non-parallel commands

9.5.1. Process Level Commands

The process level commands are the PGDBG control commands.

The PGDBG control commands apply to the active members of the current p/t-set by default.
A prefix set can be used to override the current p/t-set. The target p/t-set is the prefix p/t-set if
present.

cont next step stepout synci

halt nexti stepi sync wait

Apply the next command to threads 1 and 2 of process O:

pgdbg [all] 0.0> focus [0.1:2]

pgdbg [0.1:2] 0.0> next

Apply the next command to thread 3 of process 0 using a prefix p/t-set:
pgdbg [all] 0.0> [0.3] n

9.5.2. Thread Level Commands

The following commands are not concerned with the current p/t-set. When no p/t-set prefix

is used, these commands execute in the context of the current thread of the current process by
default. That is, thread level commands ignore the current p/t-set. Thread level commands can be
applied to multiple threads by using a prefix p/t-set. When a prefix p/t-set is used, the commands
in this section are executed in the context of each active thread described by the prefix p/t-set.
Thetarget p/t-set isthe prefix p/t-set if present, or the current thread (not the current p/t-set) if no
prefix p/t-set exists.

The thread level commands are;

addr do hwatch print stack
ascii doi iread regs stackdump
assign dread line retaddr string
bin dump lines rval track

PGI Debugger User Guide 67

Parallel Debugging Overview

break* entry Ival scope tracki

cread fp noprint set watch
dec fread oct sizeof watchi
decl func pc sp whatis
disasm hex pf sread where

* preakpoints and variants (stop, stopi, break, breaki): if no prefix p/t-set is specified, [all]
isused (overriding current p/t-set).

The following actions occur when a prefix p/t-set is used:

» Thethreads described by the prefix are sorted per process by thread ID in increasing order.
» The processes are sorted by process ID in increasing order, and duplicates are removed.
» The command is then applied to the threads in the resulting list in order.

Without a prefix p/t-set, the print command executes in the context of the current thread of the
current process, thread 0.0, printing rank O:

pgdbg [all] 0.0> print myrank

0

With a prefix p/t-set, the thread members of the prefix are sorted and duplicates are removed. The
print command iterates over the resulting list:

pgdbg [all] 0.0> [2:3.*%,1:2.*] print myrank
[1.0] print myrank:

%2.0] print myrank:

%2.1] print myrank:

%2.2] print myrank:

%3.0] print myrank:

?3.2] print myrank:

?3.1] print myrank:

3

9.5.3. Global Commands

The rest of the PGDBG commands ignore threads and processes, or are defined globally for all
threads across all processes. The current p/t-set and prefix p/t-set (if any) are ignored.

Thefollowing isalist of commands that are defined globally.

? defset funcs quit threads
/ delete help repeat unalias
alias directory history rerun unbreak
arrive disable ignore run undefset
breaks display log script use

call edit pgienv shell viewset
catch enable proc source wait

PGI Debugger User Guide 68

Parallel Debugging Overview

cd files procs status whereis

debug focus pwd thread whichsets

9.6. Process and Thread Control

PGDBG supports thread and process control everywhere in the program. Threads and processes
can be advanced in groups anywhere in the program.

The PGDBG control commands are:

cont next step stepout synci

halt nexti stepi sync wait

To describe those threads to be advanced, set the current p/t-set or use a prefix p/t-set.

A thread inherits the control operation of the current thread when it is created. If the current
thread single-stepsover an_mp init call (found at the beginning of every OpenMP parallel
region) using the next command, then all threads created by mp init stepinto the parallel
region asif by the next command.

A process inherits the control operation of the current process when it is created. So if the current
processreturnsfrom acall toMPI Init under the control of a cont command, the new process
does the same.

9.7. Configurable Stop Mode

PGDBG supports configuration of how threads and processes stop in relation to one another.
PGDBG defines two pgienv environment variables, threadstop and procstop, for this purpose.
PGDBG defines two stop modes, synchronous (sync) and asynchronous (async).

Table 10 PGDBG Stop Modes

Command Result

sync Synchronous stop mode; when one thread stops at a breakpoint (event), all other threads are stopped
soon after.

async Asynchronous stop mode; each thread runs independently of the other threads. One thread stopping
does not affect the behavior of another.

Thread stop mode is set using the pgienv command as follows:

pgienv threadstop [sync|async]
Process stop mode is set using the pgienv command as follows:

pgienv procstop [sync|async]

PGDBG defines the default to be asynchronous for both thread and process stop modes. When
debugging an OpenM P program, PGDBG automatically enters synchronous thread stop mode in
serial regions, and asynchronous thread stop mode in parallel regions.

PGI Debugger User Guide 69

Parallel Debugging Overview

Thepgienv environment variables threadstopconfig and procstopconfig can be set
to automatic (auto) or user defined (user) to enable or disable this behavior:

pgienv threadstopconfig [auto|user]

pgienv procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes
automatically. Automatic stop configuration is the default for both threads and processes.

9.8. Configurable Wait Mode

Wait mode describes when PGDBG accepts the next command. The wait mode is defined
in terms of the execution state of the program. Wait mode describes to the debugger which
processes/threads must be stopped before it will accept the next command.

In certain situations, it is desirable to be able to enter commands while the program is running

and not stopped at an event. The PGDBG prompt does not appear until all processes/threads are
stopped. However, a prompt may be available before all processes/threads have stopped. Pressing
<enter> at the command line brings up a prompt if it is available. The availability of the prompt is
determined by the current wait mode and any pending wait commands.

PGDBG accepts a compound statement at each prompt. Each compound statement is a sequence
of semicolon-separated commands, which are processed immediately in order.

The wait mode describes when to accept the next compound statement. PGDBG supports three
wait modes, which can be applied to processes and/or threads.

Table 11 PGDBG Wait Modes

Command Result

all The prompt is available only after all threads have stopped since the last control command.
any The prompt is available only after at least one thread has stopped since the last control command.
none The prompt is available immediately after a control command is issued.

» Thread wait mode describes which threads PGDBG waits for before accepting new
commands.

Thread wait mode is set using the pgienv command as follows:
pgienv threadwait [any|all|none]

» Process wait mode describes which processes PGDBG waits for before accepting new
commands.

Process wait mode is set using the pgienv command as follows:

pgienv procwait [any|all|none]
If process wait mode is set to none, then thread wait mode is ignored.

The PGDBG CLI defaults to:

threadwait all
procwait any

PGI Debugger User Guide 70

Parallel Debugging Overview

If the target program goes MPI parallel, then procwait ischanged to none automatically by
PGDBG.

If the target program goes thread parallel, then threadwai t is changed to none automatically
by PGDBG. The pgienv environment variable threadwaitconfig can be set to automatic
(auto) or user defined (user) to enable or disable this behavior.

pgienv threadwaitconfig [auto|user]

Selecting the user defined wait mode prevents the debugger from changing wait modes
automatically. Automatic wait mode is the default thread wait mode.

The PGDBG GUI defaults to:

threadwait none
procwait none

Setting the wait mode may be necessary when invoking the PGDBG GUI using the -s (script fil€)
option. This step ensures that the necessary threads are stopped before the next command is
processed.

PGDBG also provides await command that can be used to insert explicit wait pointsin a
command stream. wait uses the target p/t-set by default, which can be set to wait for any
combination of processes/threads. Y ou can use the wait command to insert wait points between
the commands of a compound command.

Thepgienv variables threadwait and procwait can be used to configure the behavior of
wait. For moreinformation, refer to pgienv usage in Configurable Wait Mode.

Table 12 describes the behavior of wait.
Suppose S isthe target p/t-set. In the table,

» Pistheset of al processes described by S.
» pisasingle process.

» Tistheset of al threads described by S.
» tisasinglethread.

Table 12 PGDBG Wait Behavior

Command threadwait procwait Wait Set
wait all all Wait for T
any
none
wait all any Wait for all threads in at least one p in P

none

wait any any Wiait for all tin T for at least one p in P
none none

wait all all all Wait for T
any

none

PGI Debugger User Guide 71

Parallel Debugging Overview

Command I CETTET procwait Wait Set
wait all all any Wait for all threads of at least one p in P
none
wait all any any Wait for all tin T for at least one p in P
none none
wait any all all Wait for at least one thread for each process p in P
wait any all any Wait for at least one tin T
any none
none
wait any any all Wait for at least one thread in T for each process p in P
none
wait none all all Wait for no threads
any any
none none

9.9. Status Messages

PGDBG can produce a variety of status messages during a debug session. This feature can be
useful in the CLI if the graphical aids provided by the GUI are unavailable. Use the pgienv
command to enable or disable the types of status messages produced by setting the verbose
environment variable to an integer-valued bit mask:

pgienv verbose <bitmask>

The values for the bit mask, listed in the following table, control the type of status messages
desired.

Table 13 PGDBG Status Messages

Value Type Information
0x0 Standard Disable all messages.
0x1 Standard Report status information on current process/thread only. A message is printed when

the current thread stops and when threads and processes are created and destroyed.
Standard messaging is the default and cannot be disabled.

0x2 Thread Report status information on all threads of current processes. A message is reported
each time a thread stops. If process messaging is also enabled, then a message is
reported for each thread across all processes. Otherwise, messages are reported for
threads of the current process only.

0x4 Process Report status information on all processes. A message is reported each time a process
stops. If thread messaging is also enabled, then a message is reported for each thread
across all processes. Otherwise, messages are reported for the current thread only of
each process.

PGI Debugger User Guide 72

Parallel Debugging Overview

Value Type Information
0x8 SMP Report SMP events. A message is printed when a process enters or exits a parallel
region, or when the threads synchronize. The PGDBG OpenMP handler must be
enabled.
0x16 Parallel Report process-parallel events (default).
0x32 Symbolic debug Report any errors encountered while processing symbolic debug information (e.g. ELF,
information DWARF2).

9.10. The PGDBG Command Prompt

The PGDBG command prompt reflects the current debug mode, as described in PGDBG Debug
Modes.

In serial debug mode, the PGDBG prompt looks like this:

pgdbg>

In threads-only debug mode, PGDBG displays the current p/t-set in square brackets followed by
the ID of the current thread:

pgdbg [all] 0>

Current thread is 0

In process-only debug mode, PGDBG displays the current p/t-set in square brackets followed by
the ID of the current process:

pgdbg [all] 0>

Current process is 0

In multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by the
ID of the current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>

Current thread 1.0

Thepgienv promptlen variable can be set to control the number of characters devoted to
printing the current p/t-set at the prompt.

9.11. Parallel Events

This section describes how to use a p/t-set to define an event across multiple threads and
processes. Events, such as breakpoints and watchpoints, are user-defined events. User-defined
events are thread-level commands, described in Thread Level Commands.

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to
set breakpoints on specific processes and threads. For example:

i) pgdbg [all] 0> b 15
ii) pgdbg [all] 0> [all] b 15
iii) pgdbg [all] 0> [0.1:3] b 15

(i) and (ii) are equivaent. (iii) sets abreakpoint only in threads 1,2,3 of process 0.

PGI Debugger User Guide 73

Parallel Debugging Overview

By default, all other user events are set for the current thread only. A prefix p/t-set can be used to
set user events on specific processes and threads. For example:

i) pgdbg [all] 0> watch glob

ii) pgdbg [all] 0> [*] watch glob

(i) sets awatchpoint for glob on thread 0 only. (ii) sets awatchpoint for glob on all threads that
are currently active.

When a process or thread is created, it inherits all of the breakpoints defined for the parent
process or thread. All other events must be defined explicitly after the process or thread is
created. All processes must be stopped to add, enable, or disable a user event.

Events may contain if and do clauses. For example:
pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

The breakpoint fires only if glob is non-zero. The do clause is executed if the breakpoint fires.
Theif and do clauses execute in the context of a single thread. The conditional in the if clause and
the body of the do execute in the context of a single thread, the thread that triggered the event.
The conditional definition as above can be restated as follows:

[0] if (glob!=0) {[0] set £ 0}
[1] if (glob!=0) {[1l] set £ 0}

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to non-
zero, f isbound in the context of thread 1 and itsvalueis set to 0.

Control commands can be used in do clauses, however they only apply to the current thread and
are only well defined as the last command in the do clause. For example:
pgdbg [all] 0> [*] break func if (glob!=0) do {set £ = 0; c}

If thewait command appearsin ado clause, the current thread is added to the wait set of the
current process. For example:
pgdbg [all] 0> [*] break func if (glob!=0) do {set £ = 0; c; wait}

If conditionals and do bodies cannot be parallelized with prefix p/t-sets. For example, the
following command isillegal:
pgdbg [all] 0> break func if (glob!=0) do {[*] set f = 0} ILLEGAL

The body of ado statement cannot be parallelized.

9.12. Parallel Statements

This section describes how to use a p/t-set to define a statement that executes for multiple threads
and processes.

9.12.1. Parallel Compound/Block Statements

Each command in a compound statement is executed in order. The target p/t-set is applied to all
statements in a compound statement. The following two examples (i) and (ii) are equivalent:

i) pgdbg [all] 0>[*] break main; cont; wait; print fQ@11@;i
ii) pgdbg [all] 0>[*] break main; [*]cont; [*]wait; [*]print fQ@11@;i

PGI Debugger User Guide 74

Parallel Debugging Overview

Usethewait command if subsequent commands require threads to be stopped, astheprint
command in the example does.

The threadwait and procwait environment variables do not affect how commands within
a compound statement are processed. These pgienv environment variables describe to PGDBG
under what conditions (state of program) it should accept the next (compound) statement.

9.12.2. Parallel If, Else Statements

A prefix p/t-set can be used to parallelize an if statement. An if statement executes in the context
of the current thread by default. The following example:
pagdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}

is equivaent to the following pseudo-code:

for the subset of [*] where (i==1)
break func; c; wait; for the subset of [*] where (i!=1) sync func2

9.12.3. Parallel While Statements

A prefix p/t-set can be used to parallelize awhile statement. A while statement executes in the
context of the current thread by default. The following example:
pgdbg [all] 0> [*] while (i<10) {n; wait; print i}

is equivalent to the following pseudo-code:

loop:
if the subset of [*] is the empty set
goto done

endif

for the subset [s] of [*] where (i<10)
[s]ln; [s]lwait; [slprint i;

endfor

goto loop

The while statement terminates when either the subset of the target p/t-set matching the while
condition is the empty set, or areturn statement is executed in the body of the while.

9.12.4. Return Statements

The return statement is defined only in serial context since it cannot return multiple values. When
returnisused in aparallel statement, it returns the last value evaluated.

PGI Debugger User Guide 75

Chapter 10.
PARALLEL DEBUGGING WITH OPENMP

This section provides information on how to debug OpenMP applications. Before reading this
section, review the information in Parallel Debugging Overview.

10.1. OpenMP and Multi-thread Support

PGDBG provides full control of threads in parallel regions. Commands can be applied to

all threads, a single thread, or agroup of threads. Thread identification in PGDBG uses the
native thread numbering scheme for OpenM P applications; for other types of multi-threaded
applications thread numbering is arbitrary. OpenMP private data can be accessed accurately

for each thread. PGDBG provides understandabl e status displays regarding per-thread state and
location.

Advanced features provide for configurable thread stop modes and wait modes, allowing
debugger operation that is concurrent with application execution.

10.2. Multi-thread and OpenMP Debugging

PGDBG automatically attaches to new threads as they are created during program execution.
PGDBG reports when anew thread is created and the thread 1D of the new thread is printed.

([1] New Thread)

The system ID of the freshly created thread is available through the threads command. Y ou can
use the proecs command to display information about the parent process.

PGDBG maintains a conceptual current thread. When using the PGDBG CLI, the current thread
is chosen by using the thread command.

pgdbg [all] 2> thread 3

pgdbg [all] 3>

When using the PGDBG GUI, the current thread can be selected using the Current Thread drop-
down list or by clicking in the Thread Grid. A subset of PGDBG commands known as thread-
level commands apply only to the current thread. For more information, refer to Thread Level
Commands.

PGI Debugger User Guide 76

Parallel Debugging with OpenMP

The threads command lists al threads currently employed by an active program. It displays
each thread’ s unique thread ID, system ID (OS process | D), execution state (running, stopped,
signaled, exited, or killed), signal information and reason for stopping, and the current location if
stopped or signaled. An arrow (=>) indicates the current thread. The process ID of the parent is
printed in the top left corner. The threads command does not change the current thread.

pgdbg [all] 3> threads

0 ID PID STATE SIGNAL LOCATION

=> 3 18399 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab
2 18398 Stopped SIGTRAP main line: 32 in "omp.c" address: 0x80490cf
1 18397 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab
0 18395 Stopped SIGTRAP f line: 5 in "omp.c" address: 0x8048fal

In the GUI, thread state is represented by a color in the process/thread grid.
Table 14 Thread State Is Described Using Color

Thread State Description (ofo] (o]

Stopped The thread is stopped at a breakpoint, or was directed to stop by Red
PGDBG.

Signaled The thread is stopped due to delivery of a signal. Blue

Running The thread is running. Green

Exited or Killed The thread has been killed or has exited. Black

10.3. Debugging OpenMP Private Data

PGDBG supports debugging of OpenMP private datafor all supported languages. When an object
is declared private in the context of an OpenMP parallel region, it essentially means that each
thread team has its own copy of the object. This capahility is shown in the following Fortran and
CIC™ examples, where the loop index variablei is private by defauilt.

FORTRAN example:

program omp private data

integer array(8)

call omp set num threads(2)
!'SOMP PARALLEL DO

do i=1,8

array (i) = 1i

enddo
!'SOMP END PARALLEL DO

print *, array

end

PGI Debugger User Guide 77

Parallel Debugging with OpenMP

C/ C™* example:

#include <omp.h>
int main ()
{
int i;
int array[8];
omp set num threads(2);

#pragma omp parallel
{
#pragma omp for
for (i = 0; i < 8; ++i) {
array[i] = 1i;
}
t
for (i = 0; i < 8; ++i) {
printf ("array[%d] = %d\n",i, arrayl[i]);
}
t

Compile the examples with a PGI compiler. The display of OpenMP private datain the resulting
executables as debugged by PGDBG is as follows:

pgdbg [all] 0> [*] print 1

[0] print i:

1

[1] print i:

5

The example specifies[*] for the p/t-set to execute the print command on al threads. Figure 24

shows the values for i in the PGDBG GUI using a Custom Window.

n All Threads is selected in the Context drop-down list to display the value on both threads.

PGI Debugger User Guide 78

Parallel Debugging with OpenMP

== PGDBG Custom
File Options

Commands> {p i

[sp) o]

[0] print i:
1
[1] print i:
3

[Reset][Close] All Threads : [Update][Lock |

Figure 24 OpenMP Private Data in PGDBG GUI

PGI Debugger User Guide 79

Chapter 11.
PARALLEL DEBUGGING WITH MPI

PGDBG is capable of debugging multi-process MPI and hybrid multi-thread/multi-process
applications. Hybrid applications use MPI to communicate between multi-threaded or OpenM P
processes. This section begins with ageneral overview of how to use PGDBG to debug parallel
MPI applications before detailing how to launch MPI applications under debug using the various
supported platforms and versions of MPI.

For information on compiling a program using MPI, refer to ‘Using MPI” in the PGI Compiler
User’s Guide available at www.pgroup.com/resources/docs.htm.

11.1. MPI and Multi-Process Support

PGDBG can debug MPI applications running on the local system and, on Linux, applications
distributed across a cluster. MPI applications must be started under debugger control. Process
identification uses the MPI rank within MPI_COMM_WORLD.

MPI debugging is supported on Linux, OSX, and Windows. Application debugging is supported
to amaximum of 256 processes and 64 threads per process, but may be limited by your PGI
license keys. A PGl CDK licenseis required to enable PGDBG's distributed debugging
capabilities.

11.2. MPI on Linux

PGI Workstation for Linux ships with a PGI-built version of MPICH v3. The PGI CDK
also includes MPICH v3; and, in addition, CDK users can download PGI-built versions of
MVAPICH2 and Open MPI.

PGl Workstation and CDK on Linux support SGI MPI. Any SGI MPI program configured to
build with PGI compilers can be debugged with PGDBG without any additional configuration
considerations.

PGI Debugger User Guide 80

www.pgroup.com/resources/docs.htm

Parallel Debugging with MPI

11.3. MPl on OS X

PGI products for OS X ship with a PGI-built version of MPICH v3.

11.4. MPI on Windows

PGI products on Windows ship with Microsoft’s HPC Pack 2012 SP1 MS-MPI redistributable
package; MS-MPI isinstalled by default. PGDBG can debug MS-MPI programs running locally;
cluster debugging is not supported.

11.5. Deprecated Support for MPICH1, MPICH2, MVAPICH1

PGI has deprecated support for MPICH1, MPICH2 and MVAPICHL. For instructions
on debugging an application using one of these distributions of MPI, please refer to the
documentation for release 13.10 (or prior).

11.6. Building an MPI Application for Debugging

In general, simply add —g to the compilation and linking of an MPI application to enable the
generation of debug information. Instead of invoking a compiler directly, most versions of MPI
include wrapper files (i.e., mpicc, mpif£90). That said, the PGl compilers have direct support
for some MPI distributions viathe -Mmpi option. For example, sub-optionsto —-Mmp1i are
available for MPICH, SGI, and MS-MPI.

11.7. The MPI Launch Program

In the following sections, the term launcher indicates the MPI launch program. The debugger
usesmpiexec asthe default launcher. If the location of the launcher in your MPI distribution
isnot in your PATH environment variable, you must provide the debugger with the full path to
the launcher, including the name of the launch tool itself. If the location of the launcher isin your
PATH, then you just need to provide the name of the launcher and then only if the launcher is not
mpiexec.

11.7.1. Launch Debugging Using the Connection Tab

Y ou can use PGDBG' s Connections tab to start debug sessions of programs that were built using
MPICH, MS-MPI, MVAPICH2 and Open MPI. Programs built with SGI MPI can be debugged
with the PGDBG GUI but the session must be started when the debugger is launched.

To configure an MPI debug session, first select the MPI check box near the top of the
Connections tab to enable its M PI-specific fields. Use the Command field to specify the MPI
launch program and the Arguments field to pass arguments (if any) to the MPI launch program.
The same rules discussed earlier about specifying the MPI launch program apply here as well.

PGI Debugger User Guide 81

Parallel Debugging with MPI

The examples in the following table use eight processes and afile named ‘hosts' to illustrate how
you might go about filling in the Command and Argument fields for different MPI distributions:

MPI Distribution Command Arguments

MPICH mpiexec -np 8

MS-MPI mpiexec -n8

MVAPICH2 mpirun_rsh -rsh -hostfile hosts-np 8
Open MPI mpiexec -np 8

11.7.2. Launch Debugging From the Command Line

Debugging sessions for al MPI distributions supported by PGI can be started when the debugger
is launched. The requirements of the MPI distribution itself determine the command required to
start the debugger. The debugger’ stext and graphical modes are both supported from a command
line launch.

To launch debugging of an MPICH program from the command line, use this command format:
pgdbg [-text] -mpi[:<launcher path>] <launcher args> [-program args
argl,...argn]

The launcher for MPICH v3ismpiexec. If the path to mpiexec isnot part of the PATH
environment variable, then you must specify the full path to mpiexec in the pgdbg command
line. If mpiexec isinyour PATH, you don't have to supply an argument to the -mp1 option at
al because mpiexec isthe default launcher name.

For example, to debug an MPICH program named cp i, which takes one program argument,
using four processes, use acommand like this one:

$ pgdbg -mpi -np 4 cpi -program args 11000

11.7.4. MS-MPI

MS-MPI applications can be run and debugged locally. Debugging is not supported on Windows
clusters.

To invoke the PGDBG debugger to debug an MS-MPI application locally, use this command
format:

pgdbg -mpi[=<launcher path>] <launcher args> [-program args argl,...argn]
When MS-MSPI isinstalled, it adds the location of mpiexec to the system’s PATH
environment variable so you do not need to supply an argument to the -mp1 option. If the path

tompiexec isnot part of your PATH, then you must specify the full path to mpiexec inthe
pgdbg command line.

For example, to debug an MS-MPI application named prog using four processes running on the
host system, use a command like this one:

$ pgdbg -mpi -n 4 prog.exe

PGI Debugger User Guide 82

Parallel Debugging with MPI

11.7.5. MVAPICHZ2

To launch debugging of an MV APICH2 program from the command line, use this command
format:

pgdbg [-text] -mpi=<launcher path> <launcher args> [-program args
argl,...argn]

For MVAPICHZ, the MPI launcher ismpirun rsh, SOuse -mpi:mpirun rsh.

If the pathtompirun rshisnotinyour PATH environment variable, then you must specify
the full path tompirun rsh using the -mpi option.

For example, to start debugging an MV APICH2 program called fpi using four processes and a
host file called ‘hosts' use a command like:
$ pgdbg -mpi=mpirun rsh -rsh -hostfile hosts -np 4 ./fpi

11.7.6. Open MPI

Open MPI debugging start-up is the same as MPICH debugging start-up. To launch debugging of

an Open MPI program from the command line, use this command format:

pgdbg [-text] -mpi[=<launcher path>] <launcher args> [-program args
argl,...argn]

The launcher for Open MPI ismpiexec. If the path to mpiexec isnot part of the PATH

environment variable, then you must specify the full path to mpiexec inthe pgdbg command

line. If mpiexec isinyour PATH, you don't have to supply an argument to the -mp1 option at

all because mpiexec isthe default launcher name.

For example, to debug an Open MPI program named cp i, which takes one program argument,
using four processes, use acommand like this one:
$ pgdbg —mpi -np 4 cpi -program args 11000

11.7.7. SGI MPI

Use the debugger’'s -sgimpi option instead of —-mpi when you want to debug an SGI MPI

program. Otherwise the command format for launching SGI MPI debugging is similar to that

used when debugging programs built with other distributions of MPI:

pgdbg [-text] -sgimpi[=<launcher path>] <launcher args> [-program args
argl,...argn]

The SGI MPI launch program ismpi run. You can use -sgimpi without an argument if the

location of mpirun isinyour PATH. If mpirun isnotinyour PATH, then you must specify the

full path to it, including the mpi run command, as part of the -sgimpi option.

When running or debugging an SGI MPI program, you need to include the SGI MPI lib directory
intheLD _LIBRARY_PATH environment variable.

For example, provided mpi run isin your PATH, to debug an SGI MPI program named fpi
using four processes, use acommand like:
$ pgdbg -sgimpi -np 4 fpi

PGI Debugger User Guide 83

Parallel Debugging with MPI

When an SGI MPI debugging session starts up, a number of messages are printed to the
command prompt. These messages reflect how PGDBG is setting up the session and can be safely
ignored.

Program input from stdin isdisabled when running an SGI MPI program using PGDBG.

11.8. Process Control

Here are some genera things to consider when debugging an MPI program:

» Usethe Groups tab (p/t-setsin the CLI) to focus on a set of processes. Be mindful of process
dependencies.

» For arunning process to receive a message, the sending process must be allowed to run.

» Process synchronization points, such as MPI_Barrier, do not return until all processes have
hit the sync point.

» MPI_Finalize acts as an implicit barrier except when using the now deprecated MPICH1,
where Process O returns while Processes 1 through n-1 exit.

Y ou can apply a control command, such as cont or step, to astopped process while other
processes are running. A control command applied to a running process is applied to the stopped
threads of that process and isignored by its running threads.

PGDBG automatically switches to process wait mode none as soon asit attaches to its first MPI
process. See the pgienv command and Configurable Wait Mode for details.

PGDBG automatically attaches to new MPI processes as they are created by the running MPI
application. PGDBG displays an informational message as it attaches to the freshly created
Processes.

([1] New Process)
The MPI global rank is printed with the message.

You can usethe procs command to list the host and the PID of each process by rank. The
current processisindicated by an arrow (=>). Y ou can use the proc command to change the
current process by process ID.

pgdbg [all] 0.0> proc 1; procs
Process 1: Thread 0 Stopped at 0x804a0e2, function main, file MPI.c, line 30
#30: aft=time (&aft);

ID IPID STATE THREADS HOST
0 24765 Stopped 1 local
=> 1 17890 Stopped 1 red2.wil.st.com

The execution state of a process is described in terms of the execution state of its component
threads. For a description of how thread state is represented in the GUI, refer to Thread State |s
Described Using Color.

The PGDBG command prompt displays the current process and the current thread. In the above
example, the current process was changed to process 1 by theproc 1 command and the current
thread of process 1is0; thisiswritten as 1.0:

pgdbg [all] 1.0>

For a complete description of the prompt format, refer to Process and Thread Control.

The following rules apply during a PGDBG debug session:

PGI Debugger User Guide 84

Parallel Debugging with MPI

» PGDBG maintains a conceptual current process and current thread.
» Each active process has athread set of size >=1.
» Thecurrent thread is a member of the thread set of the current process.

Certain commands, when executed, apply only to the current process or the current thread. For
more information, refer to Process Level Commands and Thread Level Commands.

The PGI license keys restrict the total number of MPI processes that can be debugged. In
addition, there are internal limits on the number of threads per process that can be debugged.

11.9. Process Synchronization

Use the PGDBG sync command to synchronize a set of processes to a particular point in the
program. The following command runs all processesto MPI_Finalize:
pgdbg [all] 0.0> sync MPI Finalize

The following command runs all threads of process 0 and process 1 to MPI_Finalize:

pgdbg [all] 0.0> [0:1.*] sync MPI Finalize

A sync command only successfully syncsthe target processesif the sync address is well defined
for each member of the target process set, and all process dependencies are satisfied. If these

conditions are not met, a member could wait forever for a message. The debugger cannot predict
if atext addressisin the path of an executing process.

11.10. MPI Message Queues

PGDBG can dump MPI message queues. When using the CLI, use the mgdump command,
described in Memory Access. When using the GUI, the message queues are displayed in the MPI
M essages debug information tab.

The following error message may appear in the MPl Messages tab or when invoking mgdump:

ERROR: MPI Message Queue library not found.
Try setting ‘PGDBG _MQS LIB OVERRIDE’environment variable
or set via the PGDBG command: pgienv mgslib <path>.

If this message is displayed, then the PGDBG MQS LIB OVERRIDE environment variable
should be set to the absolute path of 1ibtvmpich. so or another shared object that is
compatible with the version of MPI being used. The default path can also be overridden viathe
pgienv variablemgslib.

Microsoft MPI does not currently provide support for dumping message queues.

11.11. MPI Groups

PGDBG identifies each process by its MPI_COMM_WORLD rank. In general, PGDBG
currently ignores MPI groups.

PGI Debugger User Guide 85

Parallel Debugging with MPI

11.12. Use halt instead of Ctrl+C

Entering Ctrl+C from the PGDBG command line can be used to halt all running processes.
However, thisis not the preferred method to use while debugging an MPICH1 program.
(MPICHL1 support has been deprecated.) PGDBG automatically switches to process wait mode
none (pgienv procwait none) assoon asit attachesto itsfirst MPI process.

Setting pgienv procwait none allowscommands to be entered while there are running
processes, which alows the use of the halt command to stop running processes without the use
of Ctrl+C.

halt cannot interrupt a wait command. Ctrl+C must be used for this.

In MPI debugging, wai t should be used with care.

11.13. SSH and RSH

By default, PGDBG uses rsh for communication between remote PGDBG components. PGDBG
can aso use ssh for secure environments. The environment variable PGRSH should be set to
ssh or rsh to indicate the desired communication method.

If you opt to use ssh asthe mechanism for launching the remote components of PGDBG, you
may want to do some additional configuration. The default configuration of ssh canresult in
apassword prompt for each remote cluster node on which the debugger runs. Check with your
network administrator to make sure that you comply with your local security policies when
configuring ssh.

The following steps provide one way to configure SSH to eliminate this prompt. These
instructions assume $HOME is the same on all nodes of the cluster.

$ ssh-keygen -t dsa

$ eval “ssh-agent -s’

$ ssh-add

<make sure that $HOME is not group-writable>
$ cd SHOME/.ssh

$ cat id dsa.pub >> authorized keys

Then for each cluster node you use in debugging, use:

$ ssh <host>
A few things that are important related to this example are these:

» Thessh-keygen command promptsfor a passphrase that is used to authenticate to the
ssh-agent during future sessions. The passphrase can be anything you choose.

» Onceyou answer the prompts to make the initial connection, subsequent connections should
not require further prompting.

» Thessh-agent -s command is correct for sh or bash shells. For csh shells, use ssh-
agent -c.

PGI Debugger User Guide 86

Parallel Debugging with MPI

After logging out and logging back in, the ssh-agent must be restarted and reauthorized. For
example, in abash shell, thisis accomplished as follows:

$ eval “ssh-agent -s’
$ ssh-add

Y ou must enter the passphrase that was initially given to ssh-add to authenticate to the ssh-agent.

For further information, consult your ssh documentation.

11.14. Using the CLI

11.14.1. Setting DISPLAY

To use MPI debugging in text mode, be certain that the DISPLAY variable is undefined in the
shell that isinvoking mpirun. If thisvariable is set, you can undefine it by using one of the
following commands:

For sh/bash users, use this command:
S unset DISPLAY

For csh/tcsh users, use this command:
% unsetenv DISPLAY

11.14.2. Using Continue

When debugging an MPI job after invoking the PGDBG CLI with the -mpi option, each process
is stopped before the first assembly instruction in the program. Continuing execution using step
or next iSnot appropriate; instead, use the cont command.

PGI Debugger User Guide 87

Chapter 12.
PARALLEL DEBUGGING OF HYBRID

APPLICATIONS

PGDBG supports debugging hybrid multi-thread/multi-process applications that use MPI to
communicate between multi-threaded or OpenMP processes. Multi-threaded and OpenMP
applications may be run using more threads than the available number of CPUs, and MPI
applications may allocate more than one process to a cluster node. PGDBG supports debugging
the supported types of applications regardless of how well the requested number of threads
matches the number of CPUs or how well the requested number of processes matches the number
of cluster nodes.

12.1. PGDBG Multilevel Debug Mode

As described in PGDBG Debug Modes, PGDBG can operate in four debug modes. The mode
determines a short form for uniquely naming threads and processes.

The debug modeis set automatically or can be set manually using the pgienv command.

When PGDBG detects multilevel debugging, it sets the debug mode to multilevel. To manualy
set the debug mode to multilevel, use the pgienv command:
pgdbg> pgienv mode multilevel

12.2. Multilevel Debugging

The name of athread in multilevel debug mode isthe thread ID prefixed with its parent process
ID. Thisforms a unique name for each thread across all processes. This naming schemeisvalid
in all debug modes. PGDBG changes automatically to multilevel debug mode from process-only
debug mode or threads-only debug mode when at least one MPI process creates multiple threads.

PGI Debugger User Guide 88

Parallel Debugging of Hybrid Applications

Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0

0) 5 % All threads of process 0

All threads of all processes

In multilevel debug, mode status and error messages are prefixed with process/thread 1Ds
depending on context. Further, in multilevel debug mode, PGDBG displays the current p/t-set in
square brackets followed by the ID of the current thread prefixed by the ID of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

For more information on p/t sets, refer to Process/ Thread Sets.

PGI Debugger User Guide

89

Chapter 13.
COMMAND REFERENCE

This section describes the PGDBG command set in detail, grouping the commands by these
categories:

Conversions Miscellaneous Process-Thread Sets Scope

Events Printing Variables and Program Locations Symbols and Expressions
Expressings

Memory Access Process Control Register Access Target

For an alphabetical listing of al the commands, with a brief description of each, refer to the
Command Summary.

13.1. Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments,
when the command accepts one.

» Command names may be abbreviated by omitting the portion of the command name
enclosed in brackets ([]).

Argument names are italicized.

Argument names are chosen to indicate what kind of argument is expected.

Arguments enclosed in brackets ([]) are optional.

Two or more arguments separated by a vertical line (|) indicate that any one of the arguments
is acceptable.

» Andlipsis(...) indicates an arbitrarily long list of arguments.

» Other punctuation, such as commas and quotes, must be entered as shown.

vV v v VY

Syntax examples
Example 1.

lis[t] [count | lo:hi | routine | 1line,count]

This syntax indicates that the command 1ist may be abbreviated to 1is, and that it can be
invoked without any arguments or with one of the following: an integer count, aline range, a
routine name, or aline and a count.

PGI Debugger User Guide 90

Command Reference

Example 2:
attlach] pid [exe]

This syntax indicates that the command attach may be abbreviated to att, and, when invoked,
must have a process |ID argument, pid. Optionally you can specify an executablefile, exe.

13.2. Process Control

The following commands control the execution of the target program. PGDBG lets you easily
group and control multiple threads and processes. For more details, refer to Basic Process and
Thread Naming.

13.2.1. attach

attlach] pid [exe]

Attach to arunning process with process ID pid. Use exe to specify the absolute path of the
executable file. For example, attach 1234 attempts to attach to a running process whose
process ID is 1234. You may enter something likeattach 1234 /home/demo/a.out to
attach to aprocess ID 1234 called /home /demo/a . out.

PGDBG attempts to infer the arguments of the attached program. If PGDBG fails to infer the
argument list, then the program behavior is undefined if the run or rerun command is executed on
the attached process.

The stdio channel of the attached process remains at the terminal from which the program was
originally invoked.

The attach command is not supported for MPI programs.

13.2.2. cont

clont]

Continue execution from the current location.

13.2.3. debug
de[bug] [target [argl...
argn]]

Load the specified target program with optional command-line arguments.

13.2.4. detach

det[ach]

Detach from the current running process.

13.2.5. halt

halt [command]

Halt the running process or thread.

PGI Debugger User Guide 91

Command Reference

13.2.6. load

lof[ad] [program [args]]

Without arguments, Load prints the name and arguments of the program being debugged. With
arguments, load loads the specified program for debugging. Provide program arguments as
needed.

13.2.7. next

nlext] [count]

Stop after executing one source line in the current routine. This command steps over called
routines. The count argument stops execution only after executing count source lines.

13.2.8. nexti

nexti [count]

Stop after executing one instruction in the current routine. This command steps over called
routines. The count argument stops execution only after executing count instructions.

13.2.9. proc

proc [id]

Set the current process to the process identified by i d. When issued with no argument, proc lists
the location of the current thread of the current process in the current program. For information
on how processes are numbered, refer to Using the CLI.

13.2.10. procs

procs

Print the status of all active processes, listing each process by itslogical process|D.

13.2.11. quit

gluit]

Terminate the debugging session.

13.2.12. rerun

rer[un] [arg0
argl ... argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

The rerun command is the same as run with one exception: if no args are specified with
rerun, then no args are used when the program is launched.

13.2.13. run

rul[n] [arg0 argl
. argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

PGI Debugger User Guide 92

Command Reference

Execute the program from the beginning. If arguments arg0, argl, and so on are specified, they
are set up as the command-line arguments of the program. Otherwise, the arguments that were
used with the previous run command are used. Standard input and standard output for the target
program can be redirected using < or > and an input or output filename.

13.2.14. setargs

setargs [argl, arg2, ... argn]

Set program arguments for use by the run command. The rerun command does not use the
arguments specified by setargs.

13.2.15. step

s[tep] [count | count]

Stop after executing one source line. This command stepsinto called routines. The count
argument stops execution after executing count source lines. The up argument stops execution
after stepping out of the current routine (see stepout).

13.2.16. stepi

stepi [count | up]

Stop after executing one instruction. This command steps into called routines. The count
argument stops execution after executing count instructions. The up argument stops the execution
after stepping out of the current routine (see stepout).

13.2.17. stepout

stepo[ut]

Stop after returning to the caller of the current subroutine. This command sets a breakpoint

at the current return address and continues execution to that point. For this command to work
correctly, it must be possible to compute the value of the return address. Some subroutines,
particularly terminal (i.e. leaf) subroutines at higher optimization levels, may not set up a stack
frame. Executing stepout from such aroutine causes the breakpoint to be set in the caller of the
most recent routine that set up a stack frame. This command halts execution immediately upon
return to the calling subroutine.

13.2.18. sync

sylnc] line | func

Advance to the specified source location, either the specified line or the first line in the specified
function func, ignoring any user-defined events.

13.2.19. synci

synci addr | func

Advance to the specified address addr, or to the first address in the specified function func,
ignoring any user-defined events.

PGI Debugger User Guide 93

Command Reference

13.2.20. thread

thread [number]

Set the current thread to the thread identified by number; where number isalogical thread ID in
the current process’ active thread list. When issued with no argument, thread lists the current
program location of the currently active thread.

13.2.21. threads

threads

Print the status of all active threads. Threads are grouped by process. Each processislisted by its
logical process ID. Each thread islisted by itslogical thread ID.

13.2.22. wait

wait [any | all | none]

Return the PGDBG prompt only after specific processes or threads stop.

13.3. Process-Thread Sets

The following commands deal with defining and managing process thread sets. For a detailed
discussion of process-thread sets, refer to Process/Thread Sets.

13.3.1. defset

defset name [p/t-set]

Assign aname to a process/thread set. In other words, define a named set of processes/threads.
This set can then be referred to by its name. A list of named setsis stored by PGDBG.

13.3.2. focus

focus [p/t-set]

Set the target process/thread set for PGDBG commands. Subsequent commands are applied to the
members of this set by default.

13.3.3. undefset

undefset [name | -all]

Remove a previoudy defined process/thread set from the list of process/thread sets. The
debugger-defined p/t-set [all] cannot be removed.

13.3.4. viewset

viewset [name]

List the active members of the named process/thread set. If no process/thread set is given, list the
active members of all defined process/thread sets.

PGI Debugger User Guide 94

Command Reference

13.3.5. whichsets

whichsets [p/t-set]

List all defined p/t-sets to which the members of a process/thread set belong. If no process/thread
set is specified, the target process/thread set is used.

13.4. Events

The following commands deal with defining and managing events.

13.4.1. break

b[reak]

bl[reak] line [if condition)] [do {commands}]
blreak] routine [if (condition)] [do {commands}]

When no arguments are specified, the break command prints the current breakpoints. Otherwise,
set a breakpoint at the indicated line or routine. If aroutine is specified, and the routine was
compiled for debugging, then the breakpoint is set at the start of the first statement in the routine
(after the routine' s prologue code). If the routine was not compiled for debugging, then the
breakpoint is set at the first instruction of the routine, prior to any prologue code. This command
interprets integer constants as line numbers. To set a breakpoint at an address, use the addr
command to convert the constant to an address, or use the breaki command.

When a condition is specified with if, the breakpoint occurs only when the specified condition is
true. If do is specified with acommand or several commands as an argument, the command or
commands are executed when the breakpoint occurs.

The following table provides examples of using break to set breakpoints at various locations.

This break command... Sets breakpoints...

break 37 atline 37 in the current file

break "xyz.c"@37 atline 37 inthefile xyz . c

break main at the first executable line of routine main
break {addr 0xf0400608} ataddress 0x£f0400608

break {line} at the current line

break {pc} at the current address

The following command stops when routine xyz is entered only if the argument n is greater than
10.

break xyz if (xyz@n > 10)

The next command prints the value of n and performs a stack trace every time line 100 in the
current fileis reached.

break 100 do {print n; stack}

PGI Debugger User Guide 95

Command Reference

13.4.2. breaki

breaki

breaki routine [1f (condition)] [do {commands}]
breaki addr [if (condition)] [do {commands}]

When no arguments are specified, thebreaki command prints the current breakpoints.
Otherwise, this command sets a breakpoint at the indicated address addr or routine.

» If aroutineis specified, the breakpoint is set at the first address of the routine. This means
that when the program stops at this type of breakpoint the prologue code which sets up the
stack frame will not yet have been executed. As aresult, values of stack arguments may not
yet be correct.

» Integer constants are interpreted as addresses.

» To specify aline, use the lines command to convert the constant to aline number, or use the
break command.

» Theif and do arguments are interpreted in the same way as for the break command.

The following table provides examples of setting breakpoints using breaki.

This breaki command... Sets breakpoints...

breaki 0xf0400608 ataddress 0x£0400608

breaki {line 37} atline 37 in the current file

breaki "xyz.c"@37 atline 37 inthe file xyz . C

breaki main at the first executable address of routine main
breaki {line} at the current line

breaki {pc} at the current address

In the following example, when n is greater than 3, the following command stops and prints the
new value of n at address 0x6480:
breaki 0x6480 if (n>3) do {print "n=", n}

13.4.3. breaks

breaks

Display all the existing breakpoints.

13.4.4. catch

catch [sig:sig] [sig [, sig...]1]

When no arguments are specified, the catch command prints the list of signals being caught.
With the sig:sig argument, this command catches the specified range of signals. With alist

of signals, catch the signals with the specified number(s). When signals are caught, PGDBG
intercepts the signal and does not deliver it to the program. The program runs as though the signal
was never sent.

PGI Debugger User Guide 96

Command Reference

13.4.5. clear

clear [all | routine]| line | {addr addr}]

Clear one or more breakpoints. Use the all argument to clear all breakpoints. Use the routine
argument to clear all breakpoints from the first statement in the specified routine. Use the line
number argument to clear al breakpoints from the specified line number in the current source
file. Use the addr argument to clear breakpoints from the specified address addr.

When no arguments are specified, the clear command clears al breakpoints at the current
location.

13.4.6. delete

del[ete] [event-number | 0 | all | event-number [, event-number...]]
Usethe delete command without argumentsto list al defined events by their event-number.

Usethe delete command with arguments to delete events. Delete all events with all or delete
just the event with the specified event-number. Using delete 0, isthe sameasusingdelete
all.

13.4.7. disable

disab[le] [event—-number | all]

When no arguments are specified, the disable command prints both enabled and disabled
events by event number.

With arguments, this command disables the event specified by event-number or all events.
Disabling an event definition suppresses actions associated with the event, but leaves the event
defined so that it can be used later. (See the enable command.)

13.4.8. do

do {commands} [1f (condition)]
do {commands} at line [if (condition)]
do {commands} in routine [if (condition)]

Define ado event. Thiscommand is similar to watch except that instead of defining an
expression, it defines alist of commands to be executed. Without the optional arguments at or in,
the commands are executed at each line in the program.

Use at with aline number to specify the commands to be executed each time that lineis reached.
Use in with aroutine to specify the commands to be executed at each linein the routine. The
optional if argument has the same meaning that it has with the watch command. If aconditionis
specified, the do commands are executed only when the condition istrue.

13.4.9. doi

doi {commands} [if (condition)]
doi {commands} at addr [if (condition)]
doi {commands} in routine [if (condition)]

Define adoi event. Thiscommand issimilar to watchi except that instead of defining an
expression, doi definesalist of commands to be executed. If an address addr is specified,

PGI Debugger User Guide 97

Command Reference

then the commands are executed each time that the specified addressis reached. If aroutineis
specified, then the commands are executed at each instruction in the routine. If neither an address
nor aroutineis specified, then the commands are executed at each instruction in the program.
The optional if argument has the same meaning that it has in the do and watch commands. If a
condition is specified, the doi commands are executed only when the condition is true.

13.4.10. enable

enab[le] [event-number | all]

Without arguments, the enable command prints both enabled and disabled events by event
number.

With arguments, this command enables the event event-number or all events.

13.4.11. hwatch

hwatch addr | var [if (condition)] [do {commands}]

Define a hardware watchpoint. This command uses hardware support to create a watchpoint

for a particular address or variable. The event istriggered by hardware when the byte at the
given address is written. This command is only supported on systems that provide the necessary
hardware and software support.

n Only one hardware watchpoint can be defined at a time.

When the optional if argument is specified, the event action is only triggered if the expression
istrue. When the optional do argument is specified, then the commands are executed when the
event occurs.

13.4.12. hwatchboth

hwatchb[oth] addr | var [if (condition)] [do {commands}]

Define a hardware read/write watchpoint. This event istriggered by hardware when the byte

at the given address or variable is either read or written. As with hwatch, system hardware and
software support must exist for this command to be supported. The optiona if and do arguments
have the same meaning as for the hwatch command.

13.4.13. hwatchread

hwatchb[oth] addr | var [if (condition)] [do {commands}]

Define a hardware read watchpoint. This event istriggered by hardware when the byte at the
given address or variable is read. Aswith hwatch, system hardware and software support must
exist for this command to be supported. The optional if and do arguments have the same meaning
as for the hwatch command.

13.4.14. ignore

ignore [sig:sig] [sig [, sig...]]

PGI Debugger User Guide 98

Command Reference

Without arguments, the ignore command printsthe list of signals being ignored. With the
sig:sig argument, this command ignores the specified range of signals. With alist of signals, the
command ignores signals with the specified numbers.

When a particular signal number isignored, signals with that number sent to the program are not
intercepted by PGDBG; rather, the signals are delivered to the program.

For information on intercepting signals, refer to catch.

13.4.15. status

stat[us]

Display all the event definitions, including an event number by which each event can be
identified.

13.4.16. stop

stop var

stop at line [if (condition)] [do {commands}]
stop in routine [if(condition)] [do {commands}]

stop if (condition)

Break when the value of the indicated variable var changes. Use the at argument and aline to set
abreakpoint at aline number. Use the in argument and a routine name to set a breakpoint at the
first statement of the specified routine. When the if argument is used, the debugger stops when the
condition istrue.

13.4.17. stopi

stopi var

stopi at address [if (condition)][do {commands}]

stopi in routine [if (condition)][do {commands}]

stopi if (condition)

Break when the value of theindicated variable var changes. Set a breakpoint at the indicated
address or routine. Use the at argument and an address to specify an address at which to stop. Use
the in argument and a routine name to specify the first address of the specified routine at which to
stop. When the if argument is used, the debugger stops when the condition istrue.

13.4.18. trace

trace var [1f (condition)] [do {commands}]

trace routine [1f (condition)][do {commands}]

trace at line [if (condition)][do {commands}]

trace in routine [if (condition)] [do {commands}]
trace inclass class [1f (condition)] [do {commands}]

Use var to activate tracing when the value of var changes. Use routine to activate tracing when
the subprogram routine is called. Use at to display the specified line each time it is executed. Use
in to display the current line while in the specified routine. Use inclassto display the current line
while in each member function of the specified class. If acondition is specified, tracing is only
enabled if the condition evaluatesto true. The do argument defines alist of commands to execute
at each trace point.

Usethepgienv speed command to set the time in seconds between trace points. Use the clear
command to remove tracing for aline or routine.

PGI Debugger User Guide 99

Command Reference

13.4.19. tracei

tracei var [if (condition)] [do {commands}]

tracel at addr [if (condition)] [do {commands}]
traceil in routine [1f (condition)] [do {commands}]
traceil inclass class [if (condition)] [do {commands}]

Activate tracing at the instruction level. Use var to activate tracing when the value of var

changes. Use at to display the instruction at addr each time it is executed. Use in to display
memory instructions while in the subprogram routine. Use inclass to display memory instructions
while in each member function of the specified class. If acondition is specified, tracing is only
enabled if the condition evaluatesto true. The do argument defines alist of commands to execute
at each trace point.

Usethepgienv speed command to set the time in seconds between trace points. Use the clear
command to remove tracing for aline or routine.

13.4.20. track

track expression [at line | in func] [if (condition)] [do {commands}]

Define atrack event. This command is equivalent to watch except that execution resumes after
the new value of the expression is printed.

13.4.21. tracki

tracki expression [at addr | in func] [if (condition)] [do {commands}]

Define an assembly-level track event. This command is equivalent to watchi except that
execution resumes after the new value of the expression is printed.

13.4.22. unbreak

unb [reak] line | routine| all

Remove a breakpoint from the specified line or routine, or remove all breakpoints.

13.4.23. unbreaki

unbreaki addr | routine | all

Remove a breakpoint from the specified address addr or routine, or remove all breakpoints.

13.4.24. watch

wa[tch] expression

wa[tch] expression [if (condition)][do {commands}]

wa[tch] expression at line [if (condition)] [do {commands}]
wa[tch] expression in routine [if (condition)][do {commands}]

Define awatch event. The given expression is evaluated, and subsequently, each time the value of
the expression changes, the program stops and the new value of the expression is printed. If aline
is specified, the expression is only evaluated at that line. If aroutine is specified, the expression
isevaluated at each linein the routine. If no location is specified, the expression is evaluated at
each linein the program. If a condition is specified, the expression is evaluated only when the

PGI Debugger User Guide 100

Command Reference

condition istrue. If commands are specified using do, they are executed whenever the expression
is evaluated and its value changes.

The watched expression may contain local variables, although thisis not recommended unless a
routine or address is specified to ensure that the variable is only evaluated when it isin the current
scope.

n Using watchpoints indiscriminately can dramatically slow program execution.

Using the at and in arguments speeds up execution by reducing the amount of single-stepping and
expression evaluation that must be performed to watch the expression. For example:
watch i at 40

may not slow program execution noticeably, while

watch i

slows execution considerably.

13.4.25. watchi

watchi expression

watchi expression [if (condition)] [do {commands}]

watchi expression at addr [if (condition)] [do {commands}]
watchi expression in routine [if (condition)][do {commands}]

Define an assembly-level watch event. This command functions similarly to the watch command
with two exceptions: 1) the argument interprets integers as addresses rather than line numbers and
2) the expression is evaluated at every instruction rather than at every line.

This command is useful when line number information is limited, which may occur when debug
information is not available or assembly must be debugged. Using watchi causes programs to
execute more slowly than watch.

13.4.26. when

when do {commands} [if (condition)]
when at line do {commands} [1f (condition)]
when in routine do {commands} [if (condition)]

Execute commands at every line in the program, at a specified line in the program, or in the
specified routine. If an optional condition is specified, commands are executed only when the
condition evaluates to true.

13.4.27. wheni

wheni do {commands} [if (condition)]
wheni at addr do {commands} [if (condition)]
wheni in routine do {commands} [1f (condition)]

Execute commands at each address in the program. If an address addr is specified, the commands
are executed each time the address is reached. If aroutine is specified, the commands are
executed at each line in the routine. If an optional condition is specified, commands are executed
whenever the condition evaluates to true.

PGI Debugger User Guide 101

Command Reference

13.5. Program Locations

This section describes PGDBG program location commands.

13.5.1. arrive

arri[ve]

Print location information for the current location.

13.5.2. cd

cd [dir]

Change the current directory to the SHOME directory or to the specified directory dir.

13.5.3. disasm

dis[asm] [count | lo:hi | routine | addr, count]
Disassemble memory.

If no argument is given, disassemble four instructions starting at the current address. If an integer
count is given, disassemble count instructions starting at the current address. If an address range
(lo:hi) is given, disassemble the memory in the range. If aroutineis given, disassemble the entire
routine. If the routine was compiled for debugging and source code is available, the source code
isinterleaved with the disassembly. If an address addr and a count are both given, disassemble
count instructions starting at the provided address.

13.5.4. edit

edit [filename | routine]

Use the editor specified by the environment variable $EDITOR to edit afile.

If no argument is supplied, edit the current file starting at the current location. To edit a specific
file, provide the filename argument. To edit the file containing the subprogram routine, specify
the routine name.

This command is only supported in the CLI.

13.5.5. file

file [filename]

Change the source file to the file filename and change the scope accordingly. With no argument,
print the current file.

13.5.6. lines

lines [routine]

Print the lines table for the specified routine. With no argument, prints the lines table for the
current routine.

PGI Debugger User Guide 102

Command Reference

13.5.7. list

lis[t] [count | line,num | lo:hi | routine[,num]]
Provide a source listing.

By default, 1ist displaysten lines of source centered at the current source line. If acount is
given, list the specified number of lines. If aline and count are both given, start the listing of
count lines at line. If alinerange (lo:hi) is given, list the indicated source linesin the current
sourcefile. If aroutine nameis given, list the source code for the indicated routine. If a number is
specified with routine, list the first number lines of the source code for the indicated routine.

list [dbx mode]

The 1ist command works somewhat differently when PGDBG isin dbx mode.

lis[t] [line | first,last | routine | file]

By default, list displays ten lines of source centered at the current source line. If alineis
provided, the source at that lineis displayed. If arange of line numbersis provided (first,last),
lines from the first specified line to the last specified line are displayed. If aroutineis provided,
the display listing beginsin that routine. If afile nameis provided, the display listing beginsin
that file. File names must be quoted.

13.5.8. pwd

pwd

Print the current working directory.

13.5.9. stackdump

stackd[ump] [count]

Print the call stack. This command displays a hex dump of the stack frame for each active routine.
This command is an assembly-level version of the stacktrace command. If a count is specified,
display a maximum of count stack frames.

13.5.10. stacktrace

stack|[trace] [count]

Print the call stack. Print the available information for each active routine, including the routine
name, source file, line number, and current address. This command also prints the names and
values of any arguments, when available. If acount is specified, display a maximum of count
stack frames. The stacktrace and where commands are equivalent.

13.5.11. where

wlhere] [count]

Print the call stack. Print the available information for each active routine, including the routine
name, source file, line number, and current address. This command also prints the names and
values of any arguments, when available. If acount is specified, display a maximum of count
stack frames. The where and stacktrace commands are equivalent.

PGI Debugger User Guide 103

Command Reference

13.5.12.1

/
/string/

Search forward for astring of charactersin the current source file. With a specified string, search
for the next occurrence of string in the current source file.

13.5.13. 7

?string?

Search backward for a string of charactersin the current source file. Without arguments, search
for the previous occurrence of string in the current source file.

13.6. Printing Variables and Expressions

This section describes PGDBG commands used for printing and setting variables. The primary
print commands are print and printf£, described at the beginning of this section. The rest of
the commands for printing provide alternate methods for printing.

13.6.1. print

plrint] expl [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of
each line of command input. Vaues are printed in aformat appropriate to their type. For values
of structure type, each field name and value is printed. Character pointers are printed as a hex
address followed by the character string.

Character string constants print out literally using a comma-separated list. For example:

pgdbg> print "The value of i is ", 1
Printsthis:
"The value of i is", 37

The array sub-range operator (:) prints arange of an array. The following examples print elements
0 through 9 of the array a:

C/ C™'[example 1:

pgdbg> print a[0:9]
al0:4]: 01 2 3 4
a[5:9]: 56 78 9

FORTRAN example 1:

pgdbg> print a(0:9)
a(0:4): 01 2 3 4

a(5:9): 56789

Notice that the output is formatted and annotated with index information. PGDBG formats array
output into columns. For each row, the first column prints an index expression which summarizes
the elements printed in that row. Elements associated with each index expression are then printed

inorder. Thisis especialy useful when printing slices of large multidimensional arrays.

PGI Debugger User Guide 104

Command Reference

PGDBG also supports array expression strides. Below are examples for C/ C++ and FORTRAN.

C/ C** example 2:

pgdbg> print a[0:9:2]
al0:8]: 0 2 4 6 8

FORTRAN example 2:

pgdbg> print a(0:9:2)
a(0:8): 0 2 4 6 8

The print statement may be used to display members of derived typesin FORTRAN or structures
in C/ C™". Here are examples.

C/ C™" example 3:

typedef struct tt {
int a[l1l0];
}TT;
TT d

= {0
TT * p =

/1,2,3,4,5,6,7,8,9};

&d;

pgdbg> print d.a[0:9:2]
d.af[0:8:2]: 0 2 4 6 8

pgdbg> print p->a[0:9:2]
p->al[0:7:2]: 0 2 4 6

p->a[8]: 8

FORTRAN example 3:

type tt

integer, dimension(0:9) :: a
end type

type (tt) :: d

data d%a / 0, 1, 2, 3, 4, 5, 6, 7, 8, 9/

pgdbg> print d%a(0:9:2)
d%a(0:8:2): 0 2 4 6 8

13.6.2. printf

printf "format string", expr, ...expr

Print expressions in the format indicated by the format string. This command behaves like the C
library function printf. For example:

pgdbg> printf "f[%d]=%G",i,f[i]

£[3]1=3.14

Thepgienv stringlen command setsthe maximum number of characters that print with a
print command. For example, the char declaration below:

char *c="a whole bunch of chars over 1000 chars long....";

By default, theprint < command prints only thefirst 512 (default value of stringlen) bytes.
Printing of C stringsis usually terminated by the terminating null character. Thislimitisa
safeguard against unterminated C strings.

13.6.3. ascii

ascl[ii] exp [,...exp]

Evaluate and print exp as an ASCI| character. Control characters are prefixed with the '
character; for example, 3 prints as ”*c. Otherwise, values that cannot be printed as characters are
printed as integer values prefixed by “\'. For example, 250 is printed as \250.

PGI Debugger User Guide 105

Command Reference

13.6.4. bin

bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in base2.

13.6.5. dec

dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

13.6.6. display

display [exp [,...exp]]

Without arguments, list the expressions for PGDBG to automatically display at breakpoints.
With one or more arguments, print expression exp at every breakpoint. See also the undisplay
command.

13.6.7. hex

hex exp [,...exp]

Evaluate and print expressions as hexadecimal integers.

13.6.8. oct

oct exp [,...exp]

Evaluate and print expressions as octal integers.

13.6.9. string

string] exp [,...exp]

Evaluate and print expressions as null-terminated character strings. This command prints a
maximum of 70 characters.

13.6.10. undisplay

undisplay 0 | all | exp [,...exp]

Remove all expressions specified by previous display commands. With an argument or several
arguments, remove the expression exp from the list of display expressions.

13.7. Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

13.7.1. assign

as[sign] var = exp

PGI Debugger User Guide 106

Command Reference

Set variable var to the value of the expression exp. The variable can be any valid identifier
accessed properly for the current scope. For example, given aC variable declared Yint * i’,
you can use the following command to assign the value 9999 to it.

assign *i = 9999

13.7.2. call

call routine [(exp,...)]

Call the named routine. C argument passing conventions are used. Breakpoints encountered
during execution of the routine are ignored. Fortran functions and subroutines can be called, but
the argument values are passed according to C conventions. PGDBG may not always be able to
access the return value of a Fortran function if the return value is an array. In the example below,
PGDBG callsthe routine foo with four arguments:

pgdbg> call foo(l,2,3,4)

If asignal is caught during execution of the called routine, PGDBG stops the execution and asks
if you want to cancel the cal1l command. For example, suppose a command isissued to call foo
as shown above, and for some reason asignal is sent to the process while it is executing the call
to foo. Inthis case, PGDBG prints the following prompt:

PGDBG Message: Thread [0] was signalled while executing a function

reachable from the most recent PGDBG command line call to foo. Would you

like to cancel this command line call? Answering yes will revert the register
state of Thread [0] back to the state it had prior to the last call to foo
from the command line. Answering no will leave Thread [0] stopped in the call
to foo from the command line.

Please enter 'y' or 'n' >y

Command line call to foo cancelled

Answering yes to this question returns the register state of each thread back to the state they had
before invoking the cal1l command. Answering no to this question leaves each thread at the
point they were at when the signal occurred.

n Answering no to this question and continuing execution of the called routine may produce unpredictable
results.

13.7.3. declaration

decl[aration] name

Print the declaration for the symbol name based on its type according to the symbol table. The
symbol must be a variable, argument, enumeration constant, routine, structure, union, enum, or
typedef tag.

For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4]; struct
abc *c;}val;

PGI Debugger User Guide 107

Command Reference

the dec1 command provides the following output:

pgdbg> decl I
int 1

pgdbg> decl iar
int iar[10]

pgdbg> decl val
struct abc val

pgdbg> decl abc
struct abc {
int a;
char b[4];
struct abc *c;

i

13.7.4. entry

entr[y] [routine]

Return the address of the first executable statement in the program or specified routine. Thisis
the first address after the routine's prol ogue code.

13.7.5. Ival

lv[al] expr

Return the lvalue of the expression expr. The Ivalue of an expression is the value it would have
if it appeared on the left hand side of an assignment statement. Roughly speaking, an lvalueisa
location to which avalue can be assigned. This may be an address, a stack offset, or aregister.

13.7.6. rval

rv([al] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if
it appeared on the right hand side of an assignment statement. The type of the expression may be
any scalar, pointer, structure, or function type.

13.7.7. set

set var=expression

Set variable var to the value of expression. The variable can be any valid identifier accessed
properly for the current scope. For example, given aC variabledeclared int * 1, thefollowing
command could be used to assign the value 9999 to it.

pgdbg> set *i = 9999

13.7.8. sizeof

siz[eof] name

Return the size, in bytes, of the variable type name. If name refersto aroutine, sizeof returns
the size in bytes of the subprogram.

13.7.9. type

type expr

PGI Debugger User Guide 108

Command Reference

Return the type of the expression expr. The expression may contain structure reference operators
(., and ->), dereference (*), and array index ([]) expressions. For example, given the C
declarations:

int i, iar[10];
struct abc {int a; char b[4];
struct abc *c;}lval;

the type command provides the following outpuit:

pgdbg> type i

int

pgdbg> type iar
int [10]

pgdbg> type val
struct abc

pgdbg> type val.a
int

pagdbg> type val.abc->b[2]
char

pgdbg> whatis
whatis name

With no arguments, print the declaration for the current routine.

With the argument name, print the declaration for the symbol name.

13.8. Scope

The following commands deal with program scope. For a discussion of scope meaning and
conventions, refer to Scope Rules.

13.8.1. class

clas([s] [class]

Without arguments, class returns the current class. With a class argument, enter the scope of
classclass.

13.8.2. classes

classse[s]

Print the C** class names.

13.8.3. decls

decls [routine | "sourcefile" | {global}]

Print the declarations of al identifiers defined in the indicated scope. If no scopeis given, print
the declarations for the current search scope.

13.8.4. down

down [number]

Enter the scope of the routine down one level or number levels on the call stack.

PGI Debugger User Guide 109

Command Reference

13.8.5. enter

en[ter] [routine | "sourcefile" | global]

Set the search scope to be the indicated scope, which may be aroutine, file or global. Using
enter with no argument isthe sameasusing enter global.

13.8.06. files

files

Return the list of known source files used to create the executable file.

13.8.7. global

globfall]

Return a symbol representing global scope. This command is useful in combination with the
scope operator @ to specify symbols with global scope.

13.8.8. names

names [routine | "sourcefile" | global]

Print the names of all identifiers defined in the indicated scope. If no scopeis specified, use the
search scope.

13.8.9. scope

sco[pe]

Return a symbol for the search scope. The search scope is set to the current routine each time
program execution stops. It may also be set using the enter command. The search scopeis always
searched first for symbols.

13.8.10. up

up [number]

Enter the scope of the routine up one or number levels from the current routine on the call stack.

13.8.11. whereis

whereis name

Print al declarations for name.

13.8.12. which

which name

Print the full scope qualification of symbol name.

PGI Debugger User Guide 110

Command Reference

13.9. Register Access

System registers can be accessed by name. For details on referring to registersin PGDBG, refer
to Register Symbols.

13.9.1. fp

fp

Return the current value of the frame pointer.

13.9.2. pc

rc

Return the current program address.

13.9.3. regs

regs
regs -info

regs -grp=grpl[,grp2...]
regs -fmt=fmtl [, fmt2...]
regs -mode=scalar|vector

Print the names and values of registers. By default, regs prints the General Purpose registers.
Use the —grp option to specify one or more register groups, the —fmt option to specify one or
more display formats, and -mode to specify scalar or vector mode. Use the —info option to
display the register groups on the current system and the display formats available for each group.
All optional arguments with the exception of —info can be used with the others.

13.9.4. retaddr

ret [addr]

Return the current return address.

13.9.5. sp

sp

Return the current value of the stack pointer.

13.10. Memory Access

The following commands display the contents of arbitrary memory locations. For each of these
commands, the addr argument may be a variable or identifier.

13.10.1. cread

cr [ead] addr

Fetch and return an 8-bit signed integer (character) from the specified address.

PGI Debugger User Guide 111

Command Reference

13.10.2. dread

dr [ead] addr

Fetch and return a 64-bit double from the specified address.

13.10.3. dump

du[mp] address[, count|, format-string]]

This command dumps the contents of aregion of memory. The output is formatted according
to adescriptor. Starting at the indicated address, values are fetched from memory and displayed
according to the format descriptor. This process is repeated count times.

Interpretation of the format descriptor is similar to that used by printf. Format specifiers are
preceded by %.

The recognized format descriptors are for decimal, octal, hex, or unsigned:

%d, %D, %o, %0, %x, %X, %u, SU

Default size is machine dependent. The size of the item read can be modified by either inserting
'h" or 'I" before the format character to indicate half word or long word. For example, if your
machine’s default size is 32-bit, then %hd represents a 16-bit quantity. Alternatively, al, 2, or 4
after the format character can be used to specify the number of bytes to read.

Fetch and print a character.
%sc

Fetch and print afloat (lower case) or double (upper case) value using printf f, e, or g format.
%f, %F, %e, %E, %g, 3G

Fetch and print a null terminated string.
%s

Interpret the next object as a pointer to an item specified by the following format characters. The
pointed-to item is fetched and displayed.

sp
Pointer to int. Prints the address of the pointer, the value of the pointer, and the contents of the
pointed-to address, which is printed using hexadecimal format.

Spx
Fetch an instruction and disassembl e it.
%1
Display address about to be dumped.
Sw, SW
Display nothing while advancing or decrementing the current address by n bytes.
$z<n>, %Z<n>, %z<-n>, %Z<-n>
Display nothing while advancing the current address as needed to align modulo n.

%a<n>, %A<n>

Display nothing while advancing the current address as needed to align modulo n.

PGI Debugger User Guide 112

Command Reference

13.10.4. fread

fr[ead] addr

Fetch and print a 32-bit float from the specified address.

13.10.5. iread

ir[ead] addr

Fetch and print asigned integer from the specified address.

13.10.6. Iread

lr[ead] addr

Fetch and print an address from the specified address.

13.10.7. mqdump

mq [dump]

Dump MPI message queue information for the current process. For more information on
mgdump, refer to MPI Message Queues.

13.10.8. sread

sr[ead] addr

Fetch and print a short signed integer from the specified address.

13.11. Conversions

The commands in this section are useful for converting between different kinds of values. These
commands accept avariety of arguments, and return avalue of a particular kind.

13.11.1. addr

ad[dr] [n | line n | routine | var | arg |

Create an address conversion under these conditions:

» If aninteger is given, return an address with the same value.

» If alineisgiven, return the address corresponding to the start of that line.

» If aroutineisgiven, return the first address of the routine.

» If avariable or argument is given, return the address where that variable or argument is
stored.

For example,
breaki {line {addr 0x22f0}}

13.11.2. function

func[tion] [[addr...] | [line...]]

PGI Debugger User Guide 113

Command Reference

Return aroutine symbol. If no argument is specified, return the current routine. If an addressis
given, return the routine containing addr. An integer argument is interpreted as an address. If a
line is specified, return the routine containing that line.

13.11.3. line

lin[e] [n | routine | addr]

Create a source line conversion. If no argument is given, return the current source line. If an
integer nisgiven, return it asaline number. If aroutineis given, return the first line of the
routine. If an addressis given, return the line containing that address.

For example, the following command returns the line number of the specified address:
line {addr 0x22f0}

13.12. Target

The following commands are applicable to system architectures for which multiple debugging
environment targets are available. The commands in this section do not apply to the x86 or
x86-64 environments.

13.12.1. connect

con[nect]

con[nect] -t target [args]
con[nect] -d path [args]
con[nect] -f file

con[nect] -f file name [args]

Without arguments, connect prints the current connection and the list of possible connection
targets. Use -t to connect to a specific target. Use -d to connect to atarget specified by path. Use -
f to print alist of possible targets as contained in afile, or to connect to atarget selected by name
from the list defined in file. Pass configuration arguments to the target as appropriate.

13.12.2. disconnect

disc[onnect]

Close connection to the current target.

13.12.3. native

nati[ve] [command]

Without arguments native printsthelist of available target commands. Given a command
argument, native sends command directly to the target.

13.13. Miscellaneous

The following commands provide shortcuts, mechanisms for querying, customizing and
managing the PGDBG environment, and access to operating system features.

PGI Debugger User Guide 114

Command Reference

13.13.1. alias

allias] [name [string]]
Create or print aliases.

» If no arguments are given, print al the currently defined aliases.
» If just anameis given, print the alias for that name.

» If both aname and string are given, make name an alias for string. Subsequently, whenever
name is encountered it is replaced by string.

Although string may be an arbitrary string, name must not contain any space characters.

For example, the following statement creates an alias for xyz.

alias xyz print "x= ",x,"y=
cont

' Ye"z= ", 25

Now whenever xyz is typed, PGDBG responds as though the following command was typed:

print LB E ",X,"y: n,y, "o— ",Z,'
cont

13.13.2. directory

dir[ectory] [pathname]
Add the directory pathname to the search path for source files.

If no argument is specified, the currently defined directories are printed. This command assistsin
finding source code that may have been moved or is otherwise not found by the default PGDBG
search mechanisms.

For example, the following statement adds the directory morestuf £ to thelist of directories to
be searched.

dir morestuff
Now, sourcefiles stored inmorestuf £ are accessible to PGDBG.

If the first character in pathname is ~, then $HOME replaces that character.

13.13.3. help

help [command]

If no argument is specified, print a brief summary of all the commands. If acommand is
specified, print more detailed information about the use of that command.

13.13.4. history

history [num]

List the most recently executed commands. With the num argument, resize the history list to hold
num commands.

History alows severa characters for command substitution:

Il [modifier] Execute the previous command.

PGI Debugger User Guide 115

Command Reference

! num [modifier] Execute command number num.

I-num [modifier] Execute the command that is num commands from the most current command
Istring [modifier] Execute the most recent command starting with string.

1?string? [modifier] Execute the most recent command containing string.

A Command substitution. For example, ~ 0 1 d "~ new " <modifier> is equivalentto ! : s/

old/new/.
There are two possible history modifiers. To substitute the value new for the value old use:
:s/old/new/
To print the command without executing it use:
P

Use the pgienv history command to toggle whether or not the history record number is
displayed. The default valueison.

13.13.5. language

lang[uage]

Print the name of the language of the current file.

13.13.6. log

log filename

Keep alog of all commands entered by the user and store it in the named file. This command may
be used in conjunction with the script command to record and replay debug sessions.

13.13.7. noprint

nopl[rint] exp

Evaluate the expression but do not print the result.

13.13.8. pgienv

pgienv [command]

Define the debugger environment. With no arguments, display the debugger settings.

Table 15 pgienv Commands

Use this command... To do this...

help pgienv Provide help on pgienv

pgienv Display the debugger settings

pgienv dbx on Set the debugger to use dbx style commands
pgienv dbx off Set the debugger to use PGl style commands
pgienv history on Display the history record number with prompt
pgienv history off Do not display the history number with prompt

PGI Debugger User Guide 116

Command Reference

Use this command... To do this...

pgienv exe none

Ignore executable’s symbolic debug information

pgienv exe symtab

Digest executable’s native symbol table (typeless)

pgienv exe demand

Digest executable’s symbolic debug information incrementally on demand

pgienv exe force

Digest executable’s symbolic debug information when executable is loaded

pgienv solibs none

Ignore symbolic debug information from shared libraries

pgienv solibs symtab

Digest native symbol table (typeless) from each shared library

pgienv solibs demand

Digest symbolic debug information from shared libraries incrementally on demand

pgienv solibs force

Digest symbolic debug information from each shared library at load time

pgienv mode serial

Single thread of execution (implicit use of p/t-sets)

pgienv mode thread

Debug multiple threads (condensed p/t-set syntax)

pgienv mode process

Debug multiple processes (condensed p/t-set syntax)

pgienv mode multilevel

Debug multiple processes and multiple threads

pgienv omp [on|off]

Enable/Disable the PGDBG OpenMP event handler. This option is disabled by
default. The PGDBG OpenMP event handler, when enabled, sets breakpoints at the
beginning and end of each parallel region. Breakpoints are also set at each thread
synchronization point. The handler coordinates threads across parallel constructs
to maintain source level debugging. This option, when enabled, may significantly
slow down program performance. Enabling this option is recommended for localized
debugging of a particular parallel region only.

pgienv prompt <name>

Set the command-line prompt to <name>

pgienv promptlen <num>

Set maximum size of p/t-set portion of prompt

pgienv speed <secs>

Set the time in seconds <secs> between trace points

pgienv stringlen <num>

Set the maximum # of chars printed for “’char *'s’

pgienv termwidth <num>

Set the character width of the display terminal.

pgienv logfile <name>

Close logfile (if any) and open new logfile <name>

pgienv threadstop sync

When one thread stops, the rest are halted in place

pgienv threadstop async

Threads stop independently (asynchronously)

pgienv procstop sync

When one process stops, the rest are halted in place

pgienv procstop async

Processes stop independently (asynchronously)

pgienv threadstopconfig auto

For each process, debugger sets thread stopping mode to 'sync' in serial regions, and
‘async' in parallel regions

pgienv threadstopconfig user

Thread stopping mode is user defined and remains unchanged by the debugger.

pgienv procstopconfig auto

Not currently used.

pgienv procstopconfig user

Process stop mode is user defined and remains unchanged by the debugger.

pgienv threadwait none

Prompt available immediately; do not wait for running threads

pgienv threadwait any

Prompt available when at least one thread stops

pgienv threadwait all

Prompt available only after all threads have stopped

pgienv procwait none

Prompt available immediately; do not wait for running processes

PGI Debugger User Guide

17

Command Reference

Use this command... To do this...

pgienv procwait any Prompt available when at least a single process stops

pgienv procwait all Prompt available only after all processes have stopped

pgienv threadwaitconfig auto For each process, the debugger sets the thread wait mode to ‘all’ in serial regions
and ‘none’ in parallel regions. (default)

pgienv threadwaitconfig user The thread wait mode is user-defined and remains unchanged by the debugger.

pgienv mgslib default Set MPI message queue debug library by inspecting executable.

pgienv mqslib <path> Determine MPI message queue debug library to <path>.

pgienv verbose <bitmask> Choose which debug status messages to report. Accepts an integer valued bit mask

of the following values:

» 0x0 - Disable all messages.

» 0x1 - Standard messaging (default). Report status information on current
process/thread only.

> 0x2 - Thread messaging. Report status information on all threads of (current)

processes.

0x4 - Process messaging. Report status information on all processes.

0x8 - OpenMP messaging (default). Report OpenMP events.

0x10 - Parallel messaging (default). Report parallel events.

0x20 - Symbolic debug information. Report any errors encountered while
processing symbolic debug information.

» Pass 0x0 to disable all messages.

vV VvV v v

13.13.9. repeat

repleat] [first, last]
repleat] [first:last:n]
repleat] [num]
repleat] [-num]

Repeat the execution of one or more previous history list commands. Use the num argument to re-
execute the last num commands. With the first and last arguments, re-execute commands number
first to last (optionally n times).

13.13.10. script

scr[ipt] filename

Open the indicated file and execute the contents as though they were entered as commands. Use ~
before the filename in place of the environment variable $HOME.

13.13.11. setenv

setenv name | name value

Print the value of the environment variable name. With a specified value, set name to value.

13.13.12. shell

shell [arg0O, argl,... argn]

PGI Debugger User Guide 118

Command Reference

Fork ashell and give it the indicated arguments. The default shell typeis sh or defined by
$SHELL. If no arguments are specified, an interactive shell isinvoked, and executes until a Ctrl
+D isentered.

13.13.13. sleep

slelep] [time]

Pause for one second or time seconds.

13.13.14. source

soul[rce] filename

Open the indicated file and execute the contents as though they were entered as commands. Use ~
before the filename in place of the environment variable SHOME.

13.13.15. unalias

unal [ias] name

Remove the alias definition for name, if one exists.

13.13.16. use

use [dir]

Print the current list of directories or add dir to the list of directories to search. The character ~ or
environment variable SHOME can be used interchangeably.

PGI Debugger User Guide 119

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2014 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Intended Audience
	Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Terminology
	Related Publications

	Getting Started
	1.1. Definition of Terms
	1.2. Building Applications for Debug
	1.2.1. Debugging Optimized Code
	1.2.2. Building for Debug on Windows

	1.3. User Interfaces
	1.3.1. Command Line Interface (CLI)
	1.3.2. Graphical User Interface

	1.4. Co-installation Requirements
	1.4.1. Java Virtual Machine
	1.4.2. Licensing

	1.5. Start Debugging
	1.6. Program Load
	1.7. Initialization Files
	1.8. Program Architecture

	The Graphical User Interface
	2.1. Main Components
	2.2. Source Window
	2.2.1. Source and Assembly Displays
	2.2.2. Source Window Context Menu

	2.3. Main Toolbar
	2.3.1. Buttons
	2.3.2. Drop-Down Lists

	2.4. Program I/O Window
	2.5. Debug Information Tabs
	2.5.1. Command Tab
	2.5.2. Events Tab
	2.5.3. Groups Tab
	2.5.4. Connections Tab
	2.5.5. Call Stack Tab
	2.5.6. Locals Tab
	2.5.7. Memory Tab
	2.5.8. MPI Messages Tab
	2.5.9. Procs & Threads Tab
	2.5.10. Registers Tab
	2.5.11. Status Tab

	2.6. Menu Bar
	2.6.1. File Menu
	2.6.2. Edit Menu
	2.6.3. View Menu
	2.6.4. Connections Menu
	2.6.5. Debug Menu
	2.6.6. Help Menu

	Command Line Options
	3.1. Command-Line Options Syntax
	3.2. Command-Line Options
	3.3. Command-Line Options for MPI Debugging
	3.4. I/O Redirection

	Command Language
	4.1. Command Overview
	4.1.1. Command Syntax
	4.1.2. Command Modes

	4.2. Constants
	4.3. Symbols
	4.4. Scope Rules
	4.5. Register Symbols
	4.6. Source Code Locations
	4.7. Lexical Blocks
	4.8. Statements
	4.9. Events
	4.9.1. Event Commands
	4.9.2. Event Command Action

	4.10. Expressions
	4.11. Ctrl+C
	4.11.1. Command-Line Debugging
	4.11.2. GUI Debugging
	4.11.3. MPI Debugging

	Command Summary
	5.1. Notation Used in Command Sections
	5.2. Command Summary

	Assembly-Level Debugging
	6.1. Assembly-Level Debugging Overview
	6.1.1. Assembly-Level Debugging on Windows
	6.1.2. Assembly-Level Debugging with Fortran
	6.1.3. Assembly-Level Debugging with C++
	6.1.4. Assembly-Level Debugging Using the PGDBG GUI
	6.1.5. Assembly-Level Debugging Using the PGDBG CLI

	6.2. SSE Register Symbols

	Source-Level Debugging
	7.1. Debugging Fortran
	7.1.1. Fortran Types
	7.1.2. Arrays
	7.1.3. Operators
	7.1.4. Name of the Main Routine
	7.1.5. Common Blocks
	7.1.6. Internal Procedures
	7.1.7. Modules
	7.1.8. Module Procedures

	7.2. Debugging C++
	7.2.1. Calling C++ Instance Methods

	Platform-Specific Features
	8.1. Pathname Conventions
	8.2. Debugging with Core Files
	8.3. Signals
	8.3.1. Signals Used Internally by PGDBG
	8.3.2. Signals Used by Linux Libraries

	Parallel Debugging Overview
	9.1. Overview of Parallel Debugging Capability
	9.1.1. Graphical Presentation of Threads and Processes

	9.2. Basic Process and Thread Naming
	9.3. Thread and Process Grouping and Naming
	9.3.1. PGDBG Debug Modes
	9.3.2. Threads-only Debugging
	9.3.3. Process-only Debugging
	9.3.4. Multilevel Debugging

	9.4. Process/Thread Sets
	9.4.1. Named p/t-sets
	9.4.2. p/t-set Notation
	9.4.3. Dynamic vs. Static p/t-sets
	9.4.4. Current vs. Prefix p/t-set
	9.4.5. p/t-set Commands
	9.4.6. Using Process/Thread Sets in the GUI
	9.4.6.1. Create a p/t-set
	9.4.6.2. Select a p/t-set
	9.4.6.3. Modify a p/t-set
	9.4.6.4. Remove a p/t-set

	9.4.7. p/t-set Usage

	9.5. Command Set
	9.5.1. Process Level Commands
	9.5.2. Thread Level Commands
	9.5.3. Global Commands

	9.6. Process and Thread Control
	9.7. Configurable Stop Mode
	9.8. Configurable Wait Mode
	9.9. Status Messages
	9.10. The PGDBG Command Prompt
	9.11. Parallel Events
	9.12. Parallel Statements
	9.12.1. Parallel Compound/Block Statements
	9.12.2. Parallel If, Else Statements
	9.12.3. Parallel While Statements
	9.12.4. Return Statements

	Parallel Debugging with OpenMP
	10.1. OpenMP and Multi-thread Support
	10.2. Multi-thread and OpenMP Debugging
	10.3. Debugging OpenMP Private Data

	Parallel Debugging with MPI
	11.1. MPI and Multi-Process Support
	11.2. MPI on Linux
	11.3. MPI on OS X
	11.4. MPI on Windows
	11.5. Deprecated Support for MPICH1, MPICH2, MVAPICH1
	11.6. Building an MPI Application for Debugging
	11.7. The MPI Launch Program
	11.7.1. Launch Debugging Using the Connection Tab
	11.7.2. Launch Debugging From the Command Line
	11.7.3. MPICH
	11.7.4. MS-MPI
	11.7.5. MVAPICH2
	11.7.6. Open MPI
	11.7.7. SGI MPI

	11.8. Process Control
	11.9. Process Synchronization
	11.10. MPI Message Queues
	11.11. MPI Groups
	11.12. Use halt instead of Ctrl+C
	11.13. SSH and RSH
	11.14. Using the CLI
	11.14.1. Setting DISPLAY
	11.14.2. Using Continue

	Parallel Debugging of Hybrid Applications
	12.1. PGDBG Multilevel Debug Mode
	12.2. Multilevel Debugging

	Command Reference
	13.1. Notation Used in Command Sections
	13.2. Process Control
	13.2.1. attach
	13.2.2. cont
	13.2.3. debug
	13.2.4. detach
	13.2.5. halt
	13.2.6. load
	13.2.7. next
	13.2.8. nexti
	13.2.9. proc
	13.2.10. procs
	13.2.11. quit
	13.2.12. rerun
	13.2.13. run
	13.2.14. setargs
	13.2.15. step
	13.2.16. stepi
	13.2.17. stepout
	13.2.18. sync
	13.2.19. synci
	13.2.20. thread
	13.2.21. threads
	13.2.22. wait

	13.3. Process-Thread Sets
	13.3.1. defset
	13.3.2. focus
	13.3.3. undefset
	13.3.4. viewset
	13.3.5. whichsets

	13.4. Events
	13.4.1. break
	13.4.2. breaki
	13.4.3. breaks
	13.4.4. catch
	13.4.5. clear
	13.4.6. delete
	13.4.7. disable
	13.4.8. do
	13.4.9. doi
	13.4.10. enable
	13.4.11. hwatch
	13.4.12. hwatchboth
	13.4.13. hwatchread
	13.4.14. ignore
	13.4.15. status
	13.4.16. stop
	13.4.17. stopi
	13.4.18. trace
	13.4.19. tracei
	13.4.20. track
	13.4.21. tracki
	13.4.22. unbreak
	13.4.23. unbreaki
	13.4.24. watch
	13.4.25. watchi
	13.4.26. when
	13.4.27. wheni

	13.5. Program Locations
	13.5.1. arrive
	13.5.2. cd
	13.5.3. disasm
	13.5.4. edit
	13.5.5. file
	13.5.6. lines
	13.5.7. list
	13.5.8. pwd
	13.5.9. stackdump
	13.5.10. stacktrace
	13.5.11. where
	13.5.12. /
	13.5.13. ?

	13.6. Printing Variables and Expressions
	13.6.1. print
	13.6.2. printf
	13.6.3. ascii
	13.6.4. bin
	13.6.5. dec
	13.6.6. display
	13.6.7. hex
	13.6.8. oct
	13.6.9. string
	13.6.10. undisplay

	13.7. Symbols and Expressions
	13.7.1. assign
	13.7.2. call
	13.7.3. declaration
	13.7.4. entry
	13.7.5. lval
	13.7.6. rval
	13.7.7. set
	13.7.8. sizeof
	13.7.9. type

	13.8. Scope
	13.8.1. class
	13.8.2. classes
	13.8.3. decls
	13.8.4. down
	13.8.5. enter
	13.8.6. files
	13.8.7. global
	13.8.8. names
	13.8.9. scope
	13.8.10. up
	13.8.11. whereis
	13.8.12. which

	13.9. Register Access
	13.9.1. fp
	13.9.2. pc
	13.9.3. regs
	13.9.4. retaddr
	13.9.5. sp

	13.10. Memory Access
	13.10.1. cread
	13.10.2. dread
	13.10.3. dump
	13.10.4. fread
	13.10.5. iread
	13.10.6. lread
	13.10.7. mqdump
	13.10.8. sread

	13.11. Conversions
	13.11.1. addr
	13.11.2. function
	13.11.3. line

	13.12. Target
	13.12.1. connect
	13.12.2. disconnect
	13.12.3. native

	13.13. Miscellaneous
	13.13.1. alias
	13.13.2. directory
	13.13.3. help
	13.13.4. history
	13.13.5. language
	13.13.6. log
	13.13.7. noprint
	13.13.8. pgienv
	13.13.9. repeat
	13.13.10. script
	13.13.11. setenv
	13.13.12. shell
	13.13.13. sleep
	13.13.14. source
	13.13.15. unalias
	13.13.16. use

