=
S
=
=
=
S
S
20
=
=
=
=

TABLE OF CONTENTS

o 1 2T TSP Xii
AUAIENCE DESCIIPHON. ... vttt e s bbb bbb s e R sttt a st s e e st et e bbb Xii
Compatibility and Conformance t0 STANAATGS............coeeriri e Xii
OFGANIZALION.......cocvtcecveiet ettt s bbb bbb s et b et b s bbb st bbb s s bbbt bbb bbb bbb s bt nan xiii
Hardware and SOftware CONSIFAINES. ..ot Xiv
CONVENTIONS. ...t Xiv
=T 10T XV
Related PUBIICALIONS.ccveeierieieeree e XVi

Chapter 1.Getting StArted...........oeceeceieininirre s s a e e p e e e R R nE e 1
I O 1 TSRS 1
1.2, Creating @N EXAIMPIE.coiiiieiieiiirieisis ettt bbbt 2
1.3. Invoking the Command-level PGl COMPIIETS..........coeiirieiirieeineseisce st 2

1.3.1. COMMANG-NE SYNEAX...... vttt 2
1.3.2. COMMANG-NE OPHONS......c..cvirierieiieiiieei ettt 3
1.3.3. Fortran Directives and C/C++ Pragmas..........ccccuiueiriireviiiieiiiese e sssesssesse s s st ssae st sse s sssenas 3
1.4, Filename CONVENTIONS.oiuiueiieerirciciei ettt st res ettt st e e e eene s ennens 3
0 T T U 1T ST 4
142, OULPUL FlES.... ettt ettt s e e es e e s st ettt eenes 6
1.5. Fortran, C, and CH+ Data TYPES......cvccuriiieiicieieieiri ettt sse bbbt b s st 7
1.6. Parallel Programming Using the PGl COMPIIEIS..........c.crieiuiiiiinicnenieeseseise e 7
1.6.1. RUN SMP Parallel PrOGrams........c.cceueuiuriieiiirieineineie ettt sse s 8
1.7. Platform-specific CONSIAEIAtIONS............ccocuiiirieiieeece ettt ettt bbb a st 8
1.7.1. Using the PGl COMPIIErS ON LINUX.....c.vururierirririenirriieniseieesissieessseiess ettt sssssessnens 9
1.7.2. Using the PGl Compilers 0N WINAOWS.........cceuriririiirieireinsiseisssse st sssss s ssessssssesssssssnes 9
1.7.3. PGl 0n the WINAOWS DESKIOP.......ccriuriieieireieieiree ettt 11
1.7.4. Using the PGl ComPIlErs 0N OS X......ccouiuiirieininieineieieississe sttt sttt sssessessssessessssns 12
1.8. Site-Specific Customization of the COMPIIETS.........c.ceririiiie e 14
1.8.1. USE SHEIC FlES.....eiiceiecic bbbt 14
1.8.2. USING USEI TC FIBS.....cviiiitiiei ettt bbb 14
1.9. CommON DEVEIOPMENT TASKS........cuiuriiieetiiecieiiets ettt s bbbt b s et b e 15

Chapter 2.Use Command Line OPLioNS.........cccurevercrcremmminnnimnesesessssssssssssssssesesessssssssssssssssssssessssssssssssssssssssesesssssssssssssnns 17

2.1, Command LiNe OPtION OVEIVIEW..........coeuiiriieiiiiciriieisissie sttt st sss st nb s s s nans 17
2.1.1. Command-line OPHONS SYNTAX.......cuiurrruriieeiieeieirees ettt 17
2.1.2. Command-liNe SUDOPLIONS. ..o 18
2.1.3. Command-line Conflicting OPHONS.........ciuririiiiririririeise st sen 18

2.2. Help with Command-ling OPHONS.........c.ieiiiieieiriieee ettt 18

2.3. Getting Started With PEOIMANCE. ..ottt ettt sttt etns 20
2.3.1. Using —fast and —fastsse OPLONS........ccuiieririiriiieeireee ettt bbbt 20
2.3.2. Other Performance-Related OPtiONS.........ccccicuiiieiiiccsee et 21

2.4. Targeting Multiple Systems — Using the —tp OPtON.........cocieiireineee e 21

PGI Compiler User's Guide i

2.5. FreqUeNtly-USEA OPtIONS.........cocviiiieiiiiieisicie ettt bbbt bbbt bbbt b s ettt 22

Chapter 3.0ptimizing and Parallelizing...........ccocoureririnnseninnisess s s 24
3.1, Overview of OPtIMIZALION.ccciieiiiice st e b bbb st 24
31,1, LOCAl OPHMIZALION.c.vcviiiceeeicteee ettt ettt ettt s ettt en st s bbbt b n et s s st nas 25
3.1.2. GlODal OPHIMIZAON........cuvieiieriieieirteeire bbb 25
3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization..............ccccuveninieneinnnenienee e, 25
3.1.4. Interprocedural Analysis (IPA) and OptimizZation..............ocreinninenee e 25
315, FUNCHON INHINING. .ttt et bbbt 26
3.1.6. Profile-Feedback Optimization (PFO).........coiuiieiirieirieeie e 26
3.2. Getting Started With OptMIZALION...........ccieiiiiricc et b b aes 26
A TR 1 1Yo T OSSOSO 27
32,2 —MINFO..o bbb 27
312,30 —MNEGINTO. ..t 27
3.2, —AIYIUN. ..ottt ettt R SRR e bR bbb R Rt n e 27
B2 D VR R RS e £t 28
3.2.8. PGPROF ...ttt ettt £t 28
3.3. Common Compiler Feedback FOrMat (CCFF).........coiiirinineisineiseeetssen ettt ss st snsesenns 28
3.4. Local and Global OptIMIZatioN...........coieiiiriiriienee e 28
B —MSATEPE ... b bbb bbbttt b ettt b n s 28
B2 =0 R RS R SRRt 29
3.5. Loop UNrolling USING —IMUNIOIL........c.cuiiieeiiieiri ettt 31
3.6. Vectorization USING —MVECL.........c..cuiiiiirieesee bbb 32
3.6.1. VeCtorization SUD-0PHONS.ccvieiiiiieriee et b b s bbb s 33
3.6.2. Vectorization Example USINg SIMD INSEIUCHONS. ..ot 34
3.7. Auto-Parallelization USING -MCONCUI..........c.cviieeieieieicsissist ettt a s st ses 36
3.7.1. Auto-Parallelization SUD-0PHONS.........oc ittt 37
3.7.2. Loops That Fail t0 Parallelize............cviriiriiiris s 38
3.8. Processor-Specific Optimization & the Unified BiNary...........cocoirinrienncsreeeseees e 42
3.9. Interprocedural Analysis and Optimization USING —MiPa..........cceerrininr e 43
3.9.1. Building a Program Without IPA — SINGIE SIEP.......ccceiieiririeieiscessse s 43
3.9.2. Building a Program Without IPA - Several SIEPS.........coeriririrreeeisee st 44
3.9.3. Building a Program Without IPA USING MaKE...........couieruriiierineirreieie et 44
3.9.4. Building @ Program WIth IPA............o et 44
3.9.5. Building a Program with IPA - SINGIE STEP.......ccciiiuiiieiiiieiee ettt 45
3.9.6. Building a Program with IPA - SeVeral STEPS..........ccoreriiirieiirerese e 45
3.9.7. Building a Program with 1PA USING MaKE..........ccevriiiicriesisrr et 46
3.9.8. QUESHIONS ADOUL IPA.......oeee e ettt ene et s e 46
3.10. Profile-Feedback Optimization using —=Mpfi/—MPfO..........cccviiimiiiirice e 47
3.11. Default OptimizZation LEVEIS..........cociiiieee sttt bbb bbb bbb 48
3.12. Local Optimization Using Directives and Pragmas..........cccoureuriniiininmieneeeineeeessseeessssesessssessessssesessssennes 48
3.13. Execution Timing and INStruction COUNLING..........ccevriuriiriiirieieisseei sttt sttt enns 49
3.14. Portability of Multi-Threaded Programs 0N LINUX...........cceieriinnincssessesess s 49
B TDNUMA . bbb s R bRt bbb 50

PGI Compiler User's Guide ii

Chapter 4.Using FUNCLiON ININING........ccouriinieriie s ss s ss s ss s sssssenses 51

4.1, InvoKiNg FUNCHON TNINING. ..ottt 51
4.2, USING AN ININE LIDIAIY.....coiviieiicisissce sttt ettt 52
4.3. Creating @n ININE LIDFAIY.........ccoieeieiee ettt ettt ettt et et een 53
4.3.1. Working With INliNE LIDFAMES........cc.evriurieiririierere e 54
4.3.2. DEPENAENCIES.cvvvviieeictcte ettt s bbb b s e st e e s s bbbt bbb s e s st ettt b s s s e e s aenetenas 54
4.3.3. Updating Inling Libraries - MaKefiles..........ccoiurirecnese e 54
4.4. Error Detection during ININING...........ceereieriieei e 55
4.5, EXAMPIES. ...ttt R 55
4.6. ReStrictions 0N INNNING........cceeiiiiiiiccccee et a bbb n s bbbt s s s s e e 55
Chapter 5.USING OPENMP.........ooiiiriniiitse s bbb 57
5.1, OPENMP OVEIVIEW.......cvviecieiiiete sttt sttt sss ettt et b s e s b bbbt s bbbttt b s 57
5.1.1. OpenMP Shared-Memory Parallel Programming MOdEL............cccoreuiiiinieninieeeeeeseees e 57

LT I 1= 1111 To] (oo 1T PR 58
5.1.3. OPENMP EXBMPIE.....cooiimieiiiietieeicireeie sttt s bbbttt b st 59
5.2, TASK OVEIVIEW. ... ettt 60
5.3. Fortran Parallelization DIMECHVES. ...ttt 61
5.4. C/C++ ParalleliZation Pragmas........ o irreuieririiieriseeieneseeeeseseeesssseeeessse st s s sss s sssassssnees 62
5.5. Directive and Pragma RECOGNITION.cceuriieririeireie et e 62
5.6. Directive and Pragma SUmMMAry TabIe.........cerirceeeei ettt 62
5.6.1. Directive and Pragma SUMMArY TabIE.........ccvririiririirireiscse s 63
5.7. Directive and Pragma ClAUSES. ..ottt bbbttt 64
5.8. RUNtime Library ROULINES.......ccoeuiiiiiiiiicces sttt eb bbb 67
5.9, ENVIFONMENE VATIBDIES. ... v e 72
Chapter 6.USING MPL.........ociiirrierisinissesssessessssessesssessesssessessssessesss st st st s s s s st s b s s st seneas 74
8.1, IMPI OVEIVIEW. ...ttt bbb 74
6.2. Compiling and Linking MPI APPlICAIONS..........covuiuieiiriiirieneisieieis e 75
6.3. Debugging MPI APPIICALIONS.cueieireeiieetrreieir ettt ettt s e s et neas 75
6.4, Profiling MPI APPIICALIONS.c.cvueiiuriieiciriieieiste ittt ettt 76
6.5. Using MPICH 0N LiNUX @NA OS X....uovuiuiirieiierieiiesieiesieessssse s ssssss st sss s sssss s ssssssssessssnsssesnnens 77
6.6. Using MPICH1, MPICH2, and MVAPICHT ON LINUX.....c.c.eurtiriiiinieienieiseisceiseine et 77
B.7. USING MVAPICHZ ON LINUX...vrievrivitieieiscieieissie ettt ettt 78
B.8. USING MS-MPI ON WINAOWS.........couiuereirieireiiereseinceseseieieeseeneeseseesesses e ses s st 78
6.9. USING OPEN IMPI ON LINUX.....cuiviiitiiiiriieiiietcictetss sttt sb bbb bbb bbb bbbt bt anaes 78
.10, USING SGI MPI ON LINUX...cv.cttvrieiteiseeiteeetses ettt bbb bbb 79
6.11. Using MPI COMPIIEr WIAPPETS.......cucuiieeiiecieisiscte st ssse sttt bbb sss bbb bbbt s s 79
812, LIMILALIONS. ... ettt bbb 79
6.13. Testing and BeNChMAIKING..........ccvviuiiirieiieie ettt ns s ees 80
Chapter 7.USING @n ACCEIEIALON..........ococuririiirisccisi e se s 81
7.0, OVBIVIBW. ...ttt £ bbbt 81
701, COMPONENES........cucviiiiieriitctee ettt ettt ettt et bbb bbbttt b bbbt es s b b s et b en bbb et bbbt as et b s aebenas 81
71220 AVAIIADIIIEY. ... oottt 82
7.1.3. User-directed Accelerator Programming............cccovceureieieunniesneeeeseisese s esesss s ssesessssssssssans 82

PGI Compiler User's Guide iv

7.1.4. Features Not Covered or IMpIEMENTEA..........cccuiiiieiriiecisce st 82

7.2, TEIMINOIOGY. ...ttt b 82
7.3, SYStEM REQUIMEMENES.cviiiviiiiicieiicis ettt ettt a bbbt s bt n st bt en 84
7.4, Supported Processors and GPUS..........c.cciiiiiiccicee ettt b ettt nenas 84
7.5. Installation @nd LICENSING........c.euiiieiiiriieieirieeisee ettt 85
7.5.1. REQUITEA FllBS....vvviiieececeetete ettt ettt bbbt a bbb b s s ettt s s 85
7.5.2. COMMANG LINE FIAG.... . ceieieiieieiiieee ettt 85
7.8, EXECULION MOUEL.......ceeiiiieiiet ettt bbbttt 85
78,1, HOSE FUNCHONS. ...ttt e ettt 86
7.8.2. LEVEIS OF PAralBlISM......coovriviiireiiieieisiieeseie ettt s s s sttt 86
7.7 MEMOTY IMOGEL......coceireiee ettt bbbt 86
7.7.1. Separate Host and Accelerator Memory ConsSiderations............cccvvievviereniceiiesisesssssessse e 87
7.7.2. ACCEIEIAION MEIMOIY......vuiviieiritieieicteie ettt b bbbt 87
7.7.3. CaChe MANAGEMENL........c.cuivieriieiieeeisese ettt ss bbb s bt s bbbt s sttt n s 87
7.8. Running an ACCEIErator PrOGram...........cc ottt 87
7.9, ACCEIETAION DIFECHVES. .. .vcvviieieiicieisiicte sttt sttt s ettt s bbbt s st bbbt 88
7.9.1. Enable ACCEIErator DIFECHVES.........cu ettt 88
R T o] 11| TSP 88

B T T O 1T (1P 89
7.9.4. Free-FOrm FOrran DIfECHVES........cvrrri ettt sttt snsesenseseens 89
7.9.5. Fixed-FOrm FOMran DIFECHVES.ccriiuriieirteirseeis ettt 90
7.9.6. OpENACC DireCtiVe SUMMEAIY.......cvuieiererieirreseereseieesessisees st bbb 91
7.10. ACCEIErator DIrECHVE ClAUSES........ouiuriiririeriieieieieiet sttt ettt bbbt 95
7.11. OpenACC RUNLIME LIDFAMES.ccueeeeceeer ettt sttt et s e ns et 98
7.11.1. Runtime Library DEfiNItiONS..........cccoeiieuiiiiieiriiiesce et nb s seten 98
7.11.2. RuUNtime LIbrary ROULINES. ..o 99
7.12. ENVIrONMENE VaTDIES......c.cviviieeiiciericis ettt sttt b st es s 100
7.13. Applicable Command LINE OPHONS...........ccueiiicieieicie ettt ettt aenenaas 101
7.14. Profiling ACCEIErator KEIMEIS..........c.viieieiriieieircieiet ettt 102
7.15. Related Accelerator Programming TOOIS..........c.oueueuriruririernieisneees ettt 102
7.15.1. PGPROF PGCOIECL........ceeiiettieieireieietseie ettt 102
7.15.2. NVIDIA CUDA PIOFIB.......cvivieirieiiieieisiieisetssieietstie ettt sttt sttt eb st b st ensessnnns 103
7.15.3. TAU - Tuning and ANGIYSIS ULIlItY.........ccoeuieririiiirieieeeese s 103
7.16. SUPPOTEA INEANSICS......cvivriierictetes ettt ettt b bbb bbbt bbb s bbb bt 103
7.16.1. Supported Fortran Intrinsics SUMMArY TabIE........ccviieririirrieerreereees e 103
7.16.2. Supported C Intrinsics SUMMArY TaDIE.........cccoiiviiricesice e 104
7.17. References related t0 ACCEIBIAIONS. v ettt ees et 106
L 1o (=T L[]« LT 107
8.1, INSHAll EClPSE CDT ...ttt bbbttt bbbt sttt et bbb s s e e 107
8.2, USE ECHPSE CDT ...ttt bbb 108
Chapter 9.Using Directives and Pragmas.........c.coormmmmmnmnesesssssmmsmssens 109
9.1. PGl Proprietary FOran DIfECHVES..........ccoiiriiiiirreiiiseiceseeeesse s ess sttt ssen 109
9.2. PGI Proprietary C and CHt PragMas.........cvururreiurirruiirireieessseessssssessssssseessssssessssssesssssssesssssssesssssssesssassesssassees 110

PGI Compiler User's Guide v

9.3. PGI Proprietary Optimization Directive and Pragma SUMMAIY..........cccccviereineiiniiisiseeriessssseesssse s 110

9.4. Scope of Fortran Directives and Command-Ling OPtiONS.........cocurureiirrierneernces e 112
9.5. Scope of C/C++ Pragmas and Command-Ling OPHONS.........ccccevieriiieeinicieisies et sssesnnes 113
9.6. Prefetch DireCtives and Pragmas..........coceeercerureeieirieee ettt es sttt seses s 115
9.6.1. Prefetch Directive Syntax in FOMIaN.........oiiirir sttt 116
9.6.2. Prefetch Directive Format REQUIFEMENTS............cccviiviiiicieicc ettt 116
9.6.3. Sample Usage of Prefetch DIFECHVE. ..o 116
9.6.4. Prefetch Pragma SYNtax i CICH.... ..ttt 116
9.6.5. Sample Usage of Prefetch Pragmas.........oco e 117
0.7, CEPRAGMA C...ooot sttt bbbttt 117
9.8. IGNORE_TKR DIFECHVE.cvvvevrreereisiissseesssessessssessessss s esssssssessssssessssessesssss s ssssssesssssssessssssssssassessssassessssssesnnes 117
9.8.1. IGNORE_TKR DIr€CHIVE SYNLAX......euevieerrerieriieieereseiseiseetseiss ettt ssse sttt sssessenns 117
9.8.2. IGNORE_TKR Directive Format REQUIFEMENTS...........coeurrirrieiere e eses e 118
9.8.3. Sample Usage of IGNORE_TKR DIr€CHVE.........ccieriiecieiriieisiisicisissieisisstsiss st ssss s ssesnnns 118
0.9. IDECS DIFBCHVES.......couvvecieeeereiiecise sttt s st bbb s s bbb s bbb b e bt s bbb ensaees 118
0.9.1. IDECS DiIr€CHVE SYNEAX......vurvrirererieeseriesiseisssessssessesssessesssessssssesssssessssssesssess s st ssessssssesssesssssssssanssassasssessans 119
9.9.2. FOrmMat REQUITEMENTS.coiiiiiieieieisisi sttt b ettt b bbbttt b s s s s s s asaebebena 119
0.9.3. SUMMAIY TaADIE......coviiiiiee bbbttt 119
Chapter 10.Creating and USIiNg LiDraries........ccooummmmreresesesmsmssmssssssssssesessssssssssssssssssssesessssssssssssssssssesssssssssssssssssssnenens 120
10.1. Using builtin Math FUNCHONS IN CICH ..ot 120
10.2. Using System Library ROULINES.........ccovcuiviiiieiicecccssee sttt s sb st 121
10.3. Creating and Using Shared ODbject FileS 0N LINUX.........cruiiurieriinirerereneiseeeeseises e eeees 121
10.3.1. Procedure to create a use a shared objeCt file...........occcviiiiiiceiicee s 121

0 IRC 2072 1o [0 I 0411 =T o PO 122
10.4. Creating and Using Dynamic Libraries 0n Mac OS X......ccoccevieiiiiriiicsse et ssssenns 123
10.5. PGI Runtime Libraries 0n WINAOWS............ocuiuriiririierieie ettt et 123
10.6. Creating and Using Static Libraries on WINAOWS...........ccouririininiininecs s 124
10.6.1. @ COMMEANG........oiiierieeetreeieere ettt ettt e s es et e s s bbb e e s e b s et se e 124
YNttt R R R R R 124
OPLIONS... ...ttt ettt bbb b b s bbb bRt b A bbbt b b s b bt b bbb s et b n bt as 124
10.6.2. 1aNID COMMEANG......covieeiiririer ettt ettt s s 125
L1 TSP 125
OPHIONS..... ettt bbb bbb E 8RR bR 125

10.7. Creating and Using Dynamic-Link Libraries on WINAOWS.............cccvueuriiriiiiiieiece e 125
10.7.1. BUII @ DLL: FOMIAN.......cuiiiieiiceeiricieir ettt ettt ses et ns e ennne s 127
10.7.2. BUII @ DLL: Co.oooeeiee sttt s e 128
10.7.3. Build DLLs Containing Circular Mutual IMpOrS: C.........coeiurieiirieereesee e 129
10.7.4. Build DLLs Containing Mutual Imports: FOMIan............ccceeniinnceies s 131
10.7.5. Import a Fortran module from @ DLL..........coiiiiriesreer ettt 132
10.8. USING LIB3F ...ttt 133
10.9. LAPACK, BLAS @GN0 FETS...couitiiieiiirieieisie sttt 133
10.10. LinKing With SCALAPACK.c.cveieteetei ettt 133
10.11. The C++ Standard Template LIDrary.........cccocirirsesssss st ssens 134

PGI Compiler User's Guide vi

Chapter 11.Using Environment Variables...........cccunrnrinmnninnissssssesssssssss s sssssssssens 135

11.1. Setting EnvIronment VAriabIES............c.ouiiiiriiii bbb 135
11.1.1. Setting Environment Variables 0N LINUX..........ccccveririiiiiceiniisssss et esssssss s ssssssssesenns 135
11.1.2. Setting Environment Variables on WINAOWS............crurirnierrere e 136
11.1.3. Setting Environment Variables on Mac OSX.........oiriirinine s 136

11.2. PGI-Related EnVIronMENt VarabIES...........cvueiriuriiririiiiriiiniieessise sttt sss st sss s ssssssssssssssnees 137

11.3. PGl EnVIironment Variables..........coveuririiriiesiees sttt st snsesnnnes 138
11,31 FLEXLIM_BATCH........cooiiiieieicieiete ettt s 138
11.3.2. FORTRANOPT ..ottt ettt sttt bbb bbb st s st st 139
11.3.3. GMON_OUT _PREFIX ... oottt 139
11.3.4. LD_LIBRARY _PATH......ocoitiieieiitieictittes sttt sttt sttt s 139
11.3.5. LM_LICENSE_FILE........co ittt 139
11.3.8. IMANPATH. ...ttt s b1 b1t s s bbbt 140
11,37 IMPSTRZ. ..ttt 140
11.3.8. IMP_BIND. ..ottt b ettt 140
11.3.9. IMP_BLIST ..ottt bbb bbb bbb bbb bbbt bbb 141
11,310, MP_SPIN. ..ottt bbbt 141
11311 IMP_WARN. ..ottt bbbt bbbt b bbbttt st 141
11,312, NCPUS ...ttt 88ttt 142
11,313, NCPUS_MAX ..ottt s bbb bbb bbb bbbt 142
11.3.14. NO_STOP_MESSAGE. ..o ottt 142
11,3015, PATH. .ottt bttt bbb s8R bR bR bbbt 142
11,316, PGl 142
11,317, PGI_CONTINUEttt ettt s s es et e s e s s ens et esnnetennes 143
11,318, PGI_OBUSUFRFIX ..ottt bbbttt s 143
11.3.19. PGILSTACK _USAGE....... ..ottt 143
11.3.20. PGLLTERM.....ootiiieiititietcetete ettt bbbttt bbbt 143
11.3.21. PGI_TERM_DEBUG.........coceitiiriiriirireiriesieissisisisss et ss st ss s ss s s s bbb 145
11.3.22. PGROUPD_LICENSE_FILE........coceiitiiteiiieiieiisissicietssseisvsss s ssse s s s sb s ss s s s ss s sasnes 145
11.3.23. PWD ..otttk 146
11.3.24. STATIC_RANDOM_SEED..........ccetiieirriieiriieie sttt st snss s s st snsnsesnnnns 146
11,3025, TIMP....oeeeee ettt 8888 Rt 146
11.3.26. TMPDIR.......oooiitiiieietseie ettt ettt 146

11.4. Using Environment MOAUIES 0N LINUX.........cvoiiriuiiiieieiiiiis ettt sns 146

11.5. Stack Traceback and JIT DEDUGGING.cueureerreuieriieiieiereiniereeeiees et 147

Chapter 12.Distributing Files - DEPIOYMENL.........ccocrerererercrriresse e sesesss s ssss s ssesssesssssssesssssssesssssssenses 148

12.1. Deploying APPlICAtIONS ON LINUX.....cucuiieerireeieiriieeeireeesises ettt esnes 148
12.1.1. Runtime Library CONSIAEIAtioNS..........cocviieuiicieiiiiceisies sttt st nnes 148
12.1.2. 64-Dit LINUX CONSIABIALIONS........euieeeieiciriceets ettt sttt 149
12.1.3. LinuX Redistributable FilES.........coiiiiriieiccsce sttt 149
12.1.4. Restrictions on LinUX POMaDIlILY.........c.c.oc et 149
12.1.5. Licensing for Redistributable Files..........ciiiiiisensess s 149

12.2. Deploying Applications 0N WINAOWS.........ccuiiieririiieiriienccis ettt 149

PGI Compiler User's Guide vii

12.2.1. PGl RediSHIDUIADIES..........couiiiicice e 150

12.2.2. Microsoft RediStribULADIES............c.co i 150
12.3. Code Generation and Processor ArChItECIUIE. ..o 150
12.3.1. Generating GeNneriC X86 COUE. ...ttt ettt sttt 151
12.3.2. Generating Code for @ SPECific PrOCESSOT.ciuriieiirieeirce st 151
12.4. Generating One Executable for Multiple Types 0f PrOCESSOTS.........coieiiirieieininieirieesse s 151
12.4.1. PGI Unified Binary Command-ling SWItChES...........ociiiiniiirecrecse s 151
12.4.2. PGI Unified Binary Directives and Pragmas..........cccoueueuiurireereenisnisinseisessseessssssesssssssessssssessssssesssssssesnees 152
Chapter 13.Inter-language Calling...........coorererrrerireriniriresse e s s 153
13.1. Overview of Calling CONVENTIONS...........cccviiuiieiiiereicicet ettt s bbb bbb s 153
13.2. Inter-language Calling CONSIABIATIONS.........c.cvururieiriirieiic e 154
13.3. FUNCHONS @Nd SUDTOULINES.......c.cemiiiiriieicic bbb 154
13.4. Upper and Lower Case Conventions, UNAEISCOES............oururirurieerireeeincieesiseseeeesesees s s sees s s sssssseens 155
13.5. COMPALIDIE DAIA TYPES.....ueviiireiriiieisicieisists sttt bbbt ea s bbb n e 155
13.5.1. Fortran Named CommOn BIOCKS...........cccuiuiiiiiiriiiciiiciee ettt 156
13.6. Argument Passing and RetUMN VAIUES...........coiiriiiircreese st 157
13.6.1. PasSiNg DY VAIUE (J0VAL)........viuirieriiriereirieneineeneise ettt sttt 157
13.6.2. Character REIUMN VAIUES.........c.vuiiiiiieicie et 157
13.6.3. COMPIEX REIUMN VAIUES........coivcviieiieicte ettt sttt sttt bbb 158
137, AITAY INGICES. ... ettt bbb bbb s8R s b 158
13,8, EXAMPIES.....co iR AR R ARt et R Rttt e 159
13.8.1. Example - FOrtran CalliNg C........coccuiuriirieeireireeireiee ettt 159
13.8.2. Example - C Calling FOMaN........ccccccviieicic ettt bbb s 160
13.8.3. EXample - CH4 CalliNg C......ooereieec e 161
13.8.4. EXample - C CalliNg C H.. ..ottt sttt sttt bbb nae s 161
13.8.5. Example - FOrtran CalliNg CH........cuiiieiicicieiec et 162
13.8.6. Example - CH+ Calling FOMTaN........c.viiiireises bbb e 163
13.9. WIN32 Calling CONVENTIONS........ouiuerierieirice et ree ettt sees s see et se s bbbt s e enseten 164
13.9.1. Win32 Fortran Calling CONVENLIONS..........ccoviiuriieiireieieireie ettt 164
13.9.2. Symbol Name Construction and Calling EXamPpIe..........cccovreirinininireesesesesesssesssssse s sseenees 165
13.9.3. Using the Default Calling CONVENLION. ..o e 166
13.9.4. Using the STDCALL Calling CONVENLION........c.ieiieriirieiiinieiseisseiseiss st 166
13.9.5. Using the C Calling CONVENTION.cuiuriieiiirieiieireei ettt 167
13.9.6. Using the UNIX Calling CONVENTION..........ccciiiviiiiiieisicresete ettt 167
13.9.7. Using the CREF Calling CONVENLION........c.cviiiiiieieiieieieiriieee ettt 167
Chapter 14.Programming Considerations for 64-Bit ENVIroNmMents.............cocovnurennenerrensenesnensensssessessssesessssessesesnens 168
14.1. Data Types in the 64-Bit ENVIFONMENL...........ciiiiii s 168
L R TR 070 - TR /o 169
14.1.2. FOMTAN DAt TYPES.....ouiceeiieecieeriees ettt ettt sttt bt s e s e 169
14.2. Large Static DAta iN LINUX......c.ociieiirieiesee e 169
14.3. Large Dynamically AllOCAtEA Data.........c.ciururiiiririirricieneee et 169
14.4. B4-Bit AITAY INABXING.. ..o eveieerieeiieieiree ettt b bbb bbbttt 170
14.5. Compiler Options for 64-bit Programming............cccsirueiririeinineininesess s sssss s ssessssessssses 170

PGI Compiler User's Guide viii

14.6. Practical Limitations of Large Array Programming...........cccceenerieriiceiiessssscsssessssse s sssesessssenns 171

14.7. Medium Memory Model and Large Array in C..........coieriiinrisis s 172
14.8. Medium Memory Model and Large Array in FOMIaN.........ccocriiieeniceies st sssnsns 173
14.9. Large Array and Small Memory Model in FOMraN.co e 174
Chapter 15.C/C++ Inline Assembly and INrNSICS. ... —————— 175
15,1, INNNE ASSEMDIY.....ceieeee bbbttt 175
15.2. Extended INlNe ASSEMDIY.........ciiiiriicie e 175
15.2.1. OULPUL OPBIANGS.......cocviiecteiitct ettt bbb bbb b bbbt bbb st bbbt st b 176
15.2.2. INPUL OPBIANGS. ..ottt bbbt 178
15.2.3. CIODDEE LISt ...t 180
15.2.4. AdItION@l CONSIIAINES.cvireeireeeeeiieirrei ettt ettt 181
15.2.5. SIMPIE CONSIIAINES.cvcvieiviiiieisieie st s bbb bbbt bbb s naes 181
15.2.6. MaChiNg CONSHIAINTS.........cuoiiieeircece sttt ettt 182
15.2.7. Multiple Alternative CONSITAINES.........ccciiieiiriiieiriciesie sttt 184
15.2.8. CONSAINT MOGIfIEIS.eeeeeeeees ettt ettt nten 185
15.3. OPEIANG AlBSES......vrivurrereeireestererees ettt es et es b s eb s st s b8 b8 8 s bbb r bt 186
15.4. ASSEMDIY SENG MOGIfIENS......cvovievriieieiieiee et 187
15.5. EXIENAEA ASM MACTOS. . ..coiuriieririeieiriieis sttt sttt 189
5.6, INEFINSICS. ... ettt s bR bbbttt 189

PGI Compiler User's Guide ix

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24

LIST OF TABLES

PGl Compilers and COMMEANGScceuieririuierieirierieiie et XV
OPLION DESCIIPHONSvuceeereeceeeseieeeesei ettt sttt s bbb es bbbttt 6
Examples of Usine Siterc and USET 1C FilEScccuviiviiiiiesicsee sttt 14
Typical —fast and —fastsse OPHONScccviveiicieiicece e eaes 20
Additional —fast and —fastsSe OPLONSccccucueiireiiiceie et 20
Commonly Used Command—LiNg OPLIONScouieiuririiriirireiiiriseisessseesessseesssssse s sssssssesssss s s ssssassesnees 22
Example of Effect 0f Code UNTOllINGc.vuiieiiiiriiiici e 32
—MVECE SUDOPLIONS ..ottt sttt 33
-MCONCUE SUDOPEIONS ...ttt bbbt 37
Optimization and —O, —g and —M<OPt> OPLONScceviurieiirieee e 43
Directive and Pragma SUMMArY TabIEccoiieiiesicer et 63
Directive and Pragma SUMmary TaDIEccccueuiiiriiiiccscce ettt s 64
Runtime Library ROUIINES SUMMATYcviiiiririiriesiees s 67
OpenMP-related Environment Variable SUMMAry TabIEcccocviiiniinieininiieseeissese e, 72
MPI DiStrDULION OPLONSveceereeceeiciees ettt ees e st ee e ee s s nseens 75
MPI Profiling OPHONScoceieiscicieieescie ettt 76
PGI Accelerator Directive SUMMArY TabIEc.ccviiiiirieerece e 91
Directive ClauSES SUMMEYccviiiieeeireieieireiee ettt bbbttt 95
Accelerator Runtime Library ROULINESccooiiiiiiieens et 99
Accelerator EnVironment Variables ..o s 100
Supported FOMran INHHNSICScooiiucviiiieiriieee et ettt sttt bbb bt naes 104
Supported C Intrinsic DOUDIE FUNCHONSc.ccvucviiciecceeete et st 105
Supported C Intrinsic Float FUNCHONS ...t 105
Proprietary Optimization-Related Fortran Directive and C/C++ Pragma SUmMmarycocoeeneereerneeneerneenenn. 111

PGI Compiler User's Guide X

Table 25

Table 26

Table 27

Table 28

Table 29

Table 30

Table 31

Table 32

Table 33

Table 34

Table 35

Table 36

Table 37

Table 38

Table 39

Table 40

IGNORE_TKR EXBMPIE ...ttt 118

IDECS Directives SUMMANY TaADIEcc.ccovveieeieieeieeeeeeeeceeeee ettt ettt ss st seeeen 119
PGI-Related Environment Variable SUMMANY ..o sesens 137
SUPPOrEd PGILTERM VAIUESccveviiiiiiecctctcte ettt bbb 144
Fortran and C/C++ Data Type CompatibIlitycocereuririinineeeiesee e 155
Fortran and C/C++ Representation of the COMPLEX TYPEcuvvveeirirerricnreceree e 156
Calling Conventions Supported by the PGI Fortran COMPIIETScovuviiririrnres e 165
B4-bit COMPIIET OPLONSovrieieirceiri st 170
Effects of Options on Memory and Array SIZESccccieviciiirieiiesees s 171
B4-Bit LIMITATIONS ..ottt 171
SIMPIE CONSITAINEScouivcviiriicice ettt ettt bbb bbb b sttt bbbt b s 181
X86/x86_64 MaChing CONSIAINTSccurieriiereiiereireieie ettt et 183
Multiple AEernative CONSIFAINES ..ottt 184
Constraint MOdifier CRAIACLETSc.. et 185
Assembly String Modifier CharaCers ..o 187
Intrinsic Header File Organization ... 190

PGI Compiler User's Guide Xi

PREFACE

Thisguideis part of a set of manuals that describe how to use The Portland Group (PGI) Fortran,
C, and C++ compilers and program development tools. These compilers and tools include the
PGF77, PGF95, PGFORTRAN, PGC++, and PGCC ANS C compilers, the PGPROF profiler,
and the PGDBG debugger. They work in conjunction with an x86 or x64 assembler and linker.

Y ou can use the PGl compilers and tools to compile, debug, optimize, and profile serial and
parallel applications for x86 processor-based systems.

The PGI Compiler User’s Guide provides operating instructions for the PGI command-level
development environment. The PGI Compiler Reference Manual contains details concerning
the PGI compilers' interpretation of the Fortran language, implementation of Fortran language
extensions, and command-level compilation. Users are expected to have previous experience
with or knowledge of the Fortran programming language. Neither guide teaches the Fortran
programming language.

Audience Description

This manual isintended for scientists and engineers using the PGl compilers. To use these
compilers, you should be aware of the role of high-level languages, such as Fortran, C, and C++,
aswell as assembly-language in the software devel opment process; and you should have some
level of understanding of programming. The PGl compilers are available on avariety of x86 or
x64 hardware platforms and operating systems. Y ou need to be familiar with the basic commands
available on your system.

Compatibility and Conformance to Standards

Y our system needs to be running a properly installed and configured version of the compilers.
For information on installing PGl compilers and tools, refer to the Release Notes and Installation
Guide included with your software.

For further information, refer to the following:

» American National Sandard Programming Language FORTRAN, ANSI X3. -1978 (1978).

» ISO/IEC 1539-1 : 1991, Information technology — Programming Languages — Fortran,
Geneva, 1991 (Fortran 90).

PGI Compiler User's Guide Xii

Preface

» I1SO/IEC 1539-1 : 1997, Information technology — Programming Languages — Fortran,
Geneva, 1997 (Fortran 95).

» ISO/IEC 1539-1 : 2004, Information technology — Programming Languages — Fortran,
Geneva, 2004 (Fortran 2003).

» ISO/IEC 1539-1 : 2010, Information technology — Programming Languages — Fortran,
Geneva, 2010 (Fortran 2008).

» Fortran 95 Handbook Complete |ISO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» TheFortran 2003 Handbook, Adams et a, Springer, 2009.

» OpenMP Application Program Interface, Version 3.1, July 2011, http://www.openmp.org.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,
1984).

» IBM VSFortran, IBM Corporation, Rev. GC26-4119.

» Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

» American National Standard Programming Language C, ANSI X3.159-1989.

» ISO/EC 9899:1999, Information technology — Programming Languages — C, Geneva, 1999
(C99).

Organization

Users typically begin by wanting to know how to use a product and often then find that they need
more information and facts about specific areas of the product. Knowing how as well as why you
might use certain options or perform certain tasksis key to using the PGl compilers and tools
effectively and efficiently. However, once you have this knowledge and understanding, you very
likely might find yourself wanting to know much more about specific areas or specific topics.

This book contains the essential information on how to use the compiler and is divided into these
sections:

Getting Started provides an introduction to the PGl compilers and describes their use and overall
features.

Use Command Line Options provides an overview of the command-line options as well as task-
related lists of options.

Optimizing and Parallelizing describes standard optimization techniques that, with little effort,
allow usersto significantly improve the performance of programs.

Using Function Inlining describes how to use function inlining and shows how to create aninline
library.

Using OpenM P provides a description of the OpenM P Fortran parallelization directives and of
the OpenMP C and C++ parall€elization pragmas, and shows examples of their use.

Using MPI describes how to use MPI with PGI Workstation and PGI server.
Using an Accelerator describes how to use the PGl Accelerator compilers.

Eclipse describes how to use the PGI C/C++ compilers from within Eclipse, afree, open source,
integrated software development environment.

PGI Compiler User's Guide xiii

www.openmp.org.

Preface

Using Directives and Pragmas provides a description of each Fortran optimization directive and
C/C++ optimization pragma, and shows examples of their use.

Creating and Using Libraries discusses PGl support libraries, shared object files, and environment
variables that affect the behavior of the PGl compilers.

Using Environment V ariabl es describes the environment variables that affect the behavior of the
PGI compilers.

Distributing Files - Deployment describes the deployment of your files once you have built,
debugged and compiled them successfully.

Inter-language Calling provides examples showing how to place C language callsin a Fortran
program and Fortran language callsin a C program.

Programming Considerations for 64-Bit Environments discusses issues of which programmers
should be aware when targeting 64-bit processors.

C/C++ Inline Assembly and Intrinsics describes how to use inline assembly codein C and C+
+ programs, as well as how to use intrinsic functions that map directly to x86 and x64 machine
instructions.

Hardware and Software Constraints

This guide describes versions of the PGl compilers that produce assembly code for x86 and
X64 processor-based systems. Details concerning environment-specific values and defaults and
system-specific features or limitations are presented in the rel ease notes delivered with the PGI
compilers.

Conventions

This guide uses the following conventions:
italic
is used for emphasis.
Constant Width
isused for filenames, directories, arguments, options, examples, and for |language statements
in the text, including assembly language statements.
Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this case iteml is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item2 or item3.
filename ...
ellipsisindicate arepetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.

PGI Compiler User's Guide Xiv

Preface

FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.

CIC++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux, OS
X, and Windows operating systems on a variety of x86-compatible processors. There are awide
variety of releases and distributions of each of these types of operating systems.

Terms

A number of termsrelated to systems, processors, compilers and tools are used throughout this
guide. For example:

AMDG64 linux86 0sx86 static linking
AVX linux86-64 0sx86-64 Win32

DLL 0S X shared library Win64
driver -mcmodel=small SSE Windows
dynamic library -mcmodel=medium SSE1 x64

Intel 64 MPI SSE2 x86
hyperthreading (HT) MPICH SSE3 x87

IA32 multi-core SSE4A and ABM

large arrays NUMA SSSE3

For a complete definition of these terms and other terms in this guide with which you may be
unfamiliar, PGI provides a glossary of terms which you can access at http://www.pgroup.com/
support/definitions.htm.

The following table lists the PGI compilers and tools and their corresponding commands:

Table 1 PGI Compilers and Commands

Compiler or Tool Language or Function Command
PGF77 FORTRAN 77 pgf77
PGF95 Fortran 90/95/2003 pgf9s
PGFORTRAN PGl Fortran pgfortran
PGCCC ANSIC99 and K&R C pgcc
PGC++ ANSI C++ with cfront features pgcpp on Windows
pgce, pgepp, and pge++ on Linux
PGDBG Source code debugger pgdbg

PGI Compiler User's Guide XV

http://www.pgroup.com/support/definitions.htm
http://www.pgroup.com/support/definitions.htm

Preface

Compiler or Tool Language or Function Command

PGPROF Performance profiler pgprof

n The commands pg£95 and pgfortran are equivalent.

In general, the designation PGI Fortran is used to refer to The Portland Group’ s Fortran
90/95/2003 compiler, and pgfortran is used to refer to the command that invokes the compiler. A
similar convention is used for each of the PGI compilers and tools.

For simplicity, examples of command-line invocation of the compilers generally reference the
pgfortran command, and most source code examples are written in Fortran. Usage of the PGF77
compiler, whose features are a subset of PGF95 or PGFORTRAN, issimilar. Usage of PGC++
and PGCC is consistent with PGF95, PGFORTRAN, and PGF77, though there are command-
line options and features of these compilers that do not apply to PGF95, PGFORTRAN, and
PGF77, and vice versa.

There are awide variety of x86-compatible processorsin use. All are supported by the PGI
compilers and tools. Most of these processors are forward-compatible, but not backward-
compatible, meaning that code compiled to target a given processor will not necessarily execute
correctly on a previous-generation processor.

A table listing the processor options that PGl supportsis available in the Release Notes. The table
also includes the features utilized by the PGI compilers that distinguish them from a compatibility
standpaint.

In this manual, the convention isto use "x86" to specify the group of processors that are "32-hit"
but not "64-bit." The convention isto use "x64" to specify the group of processors that are both
"32-bit" and "64-bit." x86 processor-based systems can run only 32-bit operating systems. x64
processor-based systems can run either 32-bit or 64-bit operating systems, and can execute all
32-hit x86 binariesin either case. x64 processors have additional registers and 64-bit addressing
capabilities that are utilized by the PGl compilers and tools when running on a 64-bit operating
system. The prefetch, SSE1, SSE2, SSE3, and AV X processor features further distinguish the
various processors. Where such distinctions are important with respect to a given compiler option
or feature, it is explicitly noted in this manual.

The default for performing scalar floating-point arithmetic is to use SSE instructions on targets that support
SSE1 and SSE2.

Related Publications

The following documents contain additional information related to the x86 and x64 architectures,
and the compilers and tools available from The Portland Group.

» PGI Fortran Reference manual describes the FORTRAN 77, Fortran 90/95, Fortran 2003
statements, data types, input/output format specifiers, and additional reference material
related to use of the PGI Fortran compilers.

» SystemV Application Binary Interface Processor Supplement by AT& T UNIX System
Laboratories, Inc. (Prentice Hall, Inc.).

PGI Compiler User's Guide XVi

Preface

» SystemV Application Binary Interface X86-64 Architecture Processor Supplement, http://
Www.x86-64.0rg/abi.pdf.

» Fortran 95 Handbook Complete |SO/ANS Reference, Adams et al, The MIT Press,
Cambridge, Mass, 1997.

» Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September,

1984).

IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

The C Programming Language by Kernighan and Ritchie (Prentice Hall).

C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT& T Bell

Laboratories, Inc. (Addison-Wesley Publishing Co., 1990).

v v Vv

v

PGI Compiler User's Guide XVii

http://www.x86
http://www.x86

Preface

PGI Compiler User's Guide xviii

Chapter 1.
GETTING STARTED

This section describes how to use the PGI compilers.

1.1. Overview

The command used to invoke a compiler, such as the pgfortran command, is called a compiler
driver. The compiler driver controls the following phases of compilation: preprocessing,
compiling, assembling, and linking. Once afile is compiled and an executablefile is produced,
you can execute, debug, or profile the program on your system. Executables produced by the
PGI compilers are unconstrained, meaning they can be executed on any compatible x86 or x64
processor-based system, regardless of whether the PGI compilers are installed on that system.

In general, using a PGl compiler involves three steps:

1. Produce program source code in afile containing a .f extension or another appropriate
extension, as described in Input Files. This program may be one that you have written or one
that you are modifying.

2. Compile the program using the appropriate compiler command.

3. Execute, debug, or profile the executable file on your system.

Y ou might also want to deploy your application, though thisis not arequired step.

The PGI compilers allow many variations on these general program development steps. These
variations include the following:

» Stop the compilation after preprocessing, compiling or assembling to save and examine
intermediate results.

» Provide options to the driver that control compiler optimization or that specify various
features or limitations.

» Include asinput intermediate files such as preprocessor output, compiler output, or assembler
output.

PGI Compiler User's Guide 1

Getting Started

1.2. Creating an Example

Let’slook at asimple example of using the PGI compiler to create, compile, and execute a
program that prints

hello

1. Create your program.
For this example, suppose you enter the following simple Fortran program in the file
hello. f:
print *, "hello"
end
2. Compile the program.

When you created your program, you called it hello. £. Inthisexample, we compileit from
ashell command prompt using the default pgfortran driver option. Use the following syntax:

PGIS$ pgfortran hello.f

By default, the executable output is placed in thefile a . out, or, on Windows platforms, in a
filename based on the name of the first source or object file on the command line. However,
you can specify an output file name by using the —o option.

To place the executable output in the file hello, use this command:

PGIS$ pgfortran -o hello hello.f

3. Execute the program.

To execute the resulting hello program, simply type the filename at the command prompt and
press the Return or Enter key on your keyboard:

PGIS$ hello
hello

1.3. Invoking the Command-level PGl Compilers

To trandate and link a Fortran, C, or C++ program, the pgf77, pgf95, pgfortran, pgcc, pgcpp, and
pgc++ commands do the following:

1. Preprocess the source text file.

2. Check the syntax of the source text.

3. Generate an assembly language file.

4. Pass control to the subsequent assembly and linking steps.

1.3.1. Command-line Syntax

The compiler command-line syntax, using pgfortran as an example, is:
pgfortran [options] [path]filename [...]

PGI Compiler User's Guide

Getting Started

Where:

options
is one or more command-line options, al of which are described in detail in Use Command
Line Options.

path
is the pathname to the directory containing the file named by filename. If you do not specify
the path for afilename, the compiler uses the current directory. Y ou must specify the path
separately for each filename not in the current directory.

filename
isthe name of a source file, preprocessed source file, assembly-language file, object file,
or library to be processed by the compilation system. Y ou can specify more than one
[path]filename.

1.3.2. Command-line Options

The command-line options control various aspects of the compilation process. For a complete
alphabetical listing and a description of all the command-line options, refer to Use Command-
Line Options.

Thefollowing list provides important information about proper use of command-line options.

» Caseisdignificant for options and their arguments.
» The compiler drivers recognize characters preceded by a hyphen () as command-line
options. For example, the -M11i st option specifies that the compiler creates alisting file.

The convention for the text of this manual is to show command-line options using a dash instead of a
hyphen; for example, you see ~-M11ist.

» Theorder of options and the filename is flexible. That is, you can place options before and
after the filename argument on the command line. However, the placement of some options
issignificant, such asthe —1 option, in which the order of the filenames determines the
search order.

n If two or more options contradict each other, the last one in the command line takes precedence.

1.3.3. Fortran Directives and C/C++ Pragmas

Y ou can insert Fortran directives and C/C++ pragmas in program source code to alter the effects
of certain command-line options and to control various aspects of the compilation process for a
specific routine or a specific program loop. For more information on Fortran directives and C/C+
+ pragmas, refer to Using OpenM P and Using Directives and Pragmas.

1.4. Filename Conventions

The PGI compilers use the filenames that you specify on the command line to find and to create
input and output files. This section describes the input and output filename conventions for the
phases of the compilation process.

PGI Compiler User's Guide 3

Getting Started

1.4.1. Input Files

Y ou can specify assembly-language files, preprocessed source files, Fortran/C/C++ source files,
object files, and libraries as inputs on the command line. The compiler driver determines the type
of each input file by examining the filename extensions.

For systems with a case-insensitive file system, use the —Mpreprocess option, described in ‘Command-
Line Options Reference’ section of the PGI Compiler's Reference Manual, under the commands for Fortran
preprocessing.

The drivers use the following conventions:

filename. f

indicates a Fortran sourcefile.

filename.F
indicates a Fortran source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.FOR
indicates a Fortran source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.F95
indicates a Fortran 90/95 source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.£90
indicates a Fortran 90/95 source file that isin freeform format.

filename.£95

indicates a Fortran 90/95 source file that isin freeform format.
filename.cuf

indicates a Fortran 90/95 source filein free format with CUDA Fortran extensions.
filename.CUF

indicates a Fortran 90/95 source file in free format with CUDA Fortran extensions and that
can contain macros and preprocessor directives (to be preprocessed).

filename.c

indicates a C source file that can contain macros and preprocessor directives (to be
preprocessed).
filename.C

indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.i

indicates a preprocessed C or C++ sourcefile.

PGI Compiler User's Guide 4

http://www.pgroup.com/resources/docs.htm

Getting Started

filename.cc
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename. cpp
indicates a C++ source file that can contain macros and preprocessor directives (to be
preprocessed).

filename.s
indicates an assembly-language file.

filename.o
(Linux and OS X) indicates an object file.

filename.obj

(Windows systems only) indicates an object file.
filename.a

(Linux and OS X) indicates alibrary of object files.

filename.lib
(Windows systems only) indicates a statically-linked library of object files or an import
library.

filename. so

(Linux only) indicates alibrary of shared object files.
filename.dll

(Windows systems only) indicates a dynamically-linked library.
filename.dylib

(OS X systems only) indicates a dynamically-linked library.

The driver passesfileswith . s extensions to the assembler and fileswith . o, .0b7j, .so, .d11,
.a,and . 1ib extensionsto the linker. Input files with unrecognized extensions, or no extension,
are also passed to the linker.

Fileswitha .7 (Capital F) or . FOR suffix are first preprocessed by the Fortran compilers
and the output is passed to the compilation phase. The Fortran preprocessor functions like cpp
for C programs, but is built in to the Fortran compilers rather than implemented through an
invocation of cpp. This design ensures consistency in the preprocessing step regardless of the
type or revision of operating system under which you are compiling.

Any input files not needed for a particular phase of processing are not processed. For example,

if on the command line you specify an assembly-language file (filename. s) and the -S
option to stop before the assembly phase, the compiler takes no action on the assembly language
file. Processing stops after compilation and the assembler does not run. In this scenario, the
compilation must have been completed in a previous pass which created the . s file. For a
complete description of the —s option, refer to Output Files.

In addition to specifying primary input files on the command line, code within other files can
be compiled as part of include files using the INCLUDE statement in a Fortran source file or

PGI Compiler User's Guide 5

Getting Started

the preprocessor #include directive in Fortran source files that use a . F extension or C and C++
sourcefiles.

When linking a program with alibrary, the linker extracts only those library components that the
program needs. The compiler driverslink in several libraries by default. For more information
about libraries, refer to Create and Use Libraries.

1.4.2. Output Files

By default, an executable output file produced by one of the PGI compilersis placed in thefile
a.out, or, on Windows, in afilename based on the name of the first source or object file on the
command line. As the Hello example shows, you can use the —o option to specify the output file
name.

If you use one of the options. —F (Fortran only), —p (C/C++ only), —S or —c, the compiler
produces afile containing the output of the last completed phase for each input file, as specified
by the option supplied.

The output file is a preprocessed source file, an assembly-language file, or an unlinked object
file respectively. Similarly, the —E option does not produce afile, but displays the preprocessed
source file on the standard output. Using any of these options, the —o optionisvalid only if you
specify asingle input file. If no errors occur during processing, you can use the files created by
these options as input to a future invocation of any of the PGI compiler drivers.

The following table lists the stop-after options and the output files that the compilers create when
you use these options. It also indicates the accepted input files.

Table 2 Option Descriptions

Option Stop After Input Output

-E preprocessing Source files preprocessed file to standard out

-F preprocessing Source files. This option is not valid for preprocessed file (. £)
pgcc or pgepp

-P preprocessing Source files. This option is not valid for preprocessed file (. 1)
pgf77, pgf95, or pgfortran.

-5 compilation Source files or preprocessed files assembly-language file (. s)

-C assembly Source files, or preprocessed files, or unlinked object file (. o or . obJ)
assembly-language files

none linking Source files, or preprocessed files, executable file (a . out or . exe)
assembly-language files, object files, or
libraries

If you specify multiple input files or do not specify an object filename, the compiler uses the
input filenames to derive corresponding default output filenames of the following form, where
filename is the input filename without its extension:

filename.f

indicates a preprocessed file, if you compiled a Fortran file using the —F option.

filename.i

indicates a preprocessed file, if you compiled using the —P option.

PGI Compiler User's Guide

Getting Started

filename.lst

indicates alisting file from the -M11ist option.
filename.o Or filename.obj

indicates a object file from the —c option.
filename.s

indicates an assembly-language file from the —s option.

Unless you specify otherwise, the destination directory for any output file is the current working directory. If
the file exists in the destination directory, the compiler overwrites it.

The following example demonstrates the use of output filename extensions.
$ pgfortran -c proto.f protol.F

This produces the output filesproto.o and protol. o, or, on Windows, proto.ob7j and
protol.obj, al of which are binary object files. Prior to compilation, thefileprotol.Fis
preprocessed because it has a . F filename extension.

1.9. Fortran, C, and C++ Data Types

The PGI Fortran, C, and C++ compilers recognize scalar and aggregate datatypes. A scalar data
type holds asingle value, such asthe integer value 42 or the real value 112.6. An aggregate data
type consists of one or more scalar data type objects, such as an array of integer values.

For information about the format and alignment of each data type in memory, and the range of
values each type can have on x86 or x64 processor-based systems running a 32-bit operating
system, refer to ‘Fortran, C, and C++ Data Types section of the PGI Compiler‘s Reference
Guide.

For more information on x86-specific data representation, refer to the System V Application
Binary Interface Processor Supplement by AT& T UNIX System Laboratories, Inc. (Prentice
Hall, Inc.).

For more information on x64 processor-based systems and the application binary interface (ABI)
for those systems, see http://www.x86-64.org/documentation/abi.pdf.

1.6. Parallel Programming Using the PGI Compilers

The PGI compilers support many styles of parallel programming:

» Automatic shared-memory parallel programs compiled using the -Mconcur option to
paf77, paf95, pgfortran, pgcc, or pgcpp. Parallel programs of this variety can be run on
shared-memory paralel (SMP) systems such as dual-core or multi-processor workstations.

» OpenMP shared-memory parallel programs compiled using the —mp option to pgf77, pgf95,
pgfortran, pgcc, or pgcpp. Paralel programs of this variety can be run on SMP systems.
Carefully coded user—directed parallel programs using OpenM P directives can often achieve
significant speed-ups on dual-core workstations or large numbers of processors on SMP
server systems. Using OpenM P contains compl ete descriptions of user-directed parallel
programming.

PGI Compiler User's Guide 7

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.x86-64.org/documentation/abi.pdf

Getting Started

» Distributed computing using an MPl message-passing library for communication between
distributed processes.

» Accelerated computing using either alow-level model such as CUDA Fortran or ahigh-level
model such as the PGI Accelerator model or OpenACC to target a many-core GPU or other
attached accelerator.

The first two types of parallel programs are collectively referred to as SMP parallel programs.

On asingle silicon die, today’ s CPUs incorporate two or more compl ete processor cores —
functional units, registers, level 1 cache, level 2 cache, and so on. These CPUs are known as
multi-core processors. For purposes of threads or OpenMP parallelism, these cores function as
two or more distinct processors. However, the processing cores are on a single chip occupying
asingle socket on a system motherboard. For purposes of PGI software licensing, a multi-core
processor is treated as a single CPU.

1.6.1. Run SMP Parallel Programs

When you execute an SMP parallel program, by default it uses only one processor. To run

on more than one processor, set the NCPUS environment variable to the desired number of
processors. For information on how to set environment variables, refer to Setting Environment
Variables.

n If you set NCPUS to a number larger than the number of physical processors, your program may execute
very slowly.

1.7. Platform-specific considerations

Thefollowing list are the platforms supported by the PGl Workstation and PGl Server compilers
and tools:

» 32-bit Linux — supported on 32-bit Linux operating systems running on either a 32-bit x86
compatible or an x64 compatible processor.

» 64-bit/32-bit Linux —includes all features and capabilities of the 32-bit Linux version, and is
also supported on 64-bit Linux operating systems running on an x64 compatible processor.

» 32-bit Windows — supported on 32-bit Windows operating systems running on either a 32-bit
x86 compatible or an x64-compatible processor.

» 64-bit/32-bit Windows — includes all features and capabilities of the 32-bit Windows version;
also supported on 64-bit Windows operating systems running an x64- compatible processor.

» 32-bit OS X — supported on 32-bit OS X operating systems running on either a 32-bit or 64-
bit Intel-based Mac system.

» 64-bit OS X — supported on 64-hit OS X operating systems running on a 64-hit I ntel-based
Mac system.

The following sections describe the specific considerations required to use the PGl compilers on
the various platforms; Linux, Windows, and OS X.

PGI Compiler User's Guide

Getting Started

1.7.1. Using the PGI Compilers on Linux

Linux Header Files

The Linux system header files contain many GNU gcc extensions. PGl supports many of these
extensions, thus allowing the PGCC C and C++ compilers to compile most programs that the
GNU compilers can compile. A few header files not interoperable with the PGI compilers
have been rewritten. Thesefilesareincluded in $PGI/1inux86/include andin $PGI/
linux86/include —-gcc*,suchassigset.h, asm/byteorder.h, stddef.h,
asm/posix_types.h and others. Also, PGI’'sversion of stdarg.h supports changesin
newer versions of Linux.

If you are using the PGCC C or C++ compilers, please make sure that the supplied versions of
these include files are found before the system versions. This hierarchy happens by default unless
you explicitly add a—I option that references one of the system include directories.

Running Parallel Programs on Linux

Y ou may encounter difficulties running auto-parallel or OpenM P programs on Linux systems
when the per-thread stack sizeis set to the default (2MB). If you have unexplained failures,
please try setting the environment variable OMP STACKSIZE to alarger value, such as 8MB.
For information on setting environment variables, refer to Setting Environment Variables.

If your program is still failing, you may be encountering the hard 8 MB limit on main process
stack sizesin Linux. You can work around the problem by issuing the following command:

In csh:

% limit stacksize unlimited

In bash, sh, zsh, or ksh, use;

S ulimit -s unlimited
1.7.2. Using the PGI Compilers on Windows

PGI on the Windows Start Menu

PGI provides a Start menu entry that provides access to different versions of PGl command shells
aswell as easy access to the PGl Debugger, the PGI Profiler, documentation, and licensing. The
following sections provide a quick overview of the menu selections.

To access the main PGl menu, from the Start menu, select Sart | All Programs | PG
Wor kstation.

PGI Compiler User's Guide 9

Getting Started

Command Shell Submenus

From the PGI Workstation menu, you have access to PGI command shells for each version of
PGI installed on your system. For example, if you have both PGI 14.1 and PGI 13.9 installed,
then you have a submenu for each of these versions.

The PGI submenus for each version include the following:

» PGI Bash (64) — Select this option to launch a Cygwin bash shell in which the environment
is pre-initialized to use the 64-bit PGI compilers and tools. The default environment variables
are already set and available. (Available only on x64 systems with Cygwin installed.)

» PGI Bash — Select this option to launch a Cygwin bash shell in which the environment is
pre-initialized to use the 32-bit PGI compilers and tools. The default environment variables
are aready set and available. (Available only on systems with Cygwin installed.)

» PGI Cmd (64) — Select this option to launch a Microsoft command shell in which the
environment is pre-initialized to use the 64-bit PGl compilers and tools. The default
environment variables are already set and available. (Available only on x64 systems.)

» PGl Cmd — Select this option to launch a Microsoft command shell in which the
environment is pre-initialized to use the 32-bit PGI compilers and tools. The default
environment variables are already set and available.

The command window launched by PGl Workstation can be customized using the "Properties’
selection on the menu accessible by right-clicking the window's title bar.

Debugger & Profiler Submenu

From the Debugger & Profiler menu, you have access to the PGl debugging and profiling
tools. PGDBG is a symbolic debugger for Fortran, C, C++ and assembly language programs. It
provides debugger features, such as execution control using breakpoints, single-stepping, and
examination and modification of application variables, memory locations, and registers.

» PGDBG Debugger — Select this option to launch the PGI debugger, PGDBG, for use with
both 32-bit and 64-bit applications.

» PGPROF Performance Profiler — Select this option to launch the PGPROF Performance
Profiler. PGPROF provides away to visualize and diagnose the performance of the
components of your program, and provides features for helping you to understand why
certain parts of your program have high execution times.

Documentation Submenu

From the Documentation menu, you have access to all PGl documentation that is useful for PGI
users. The documentation that is available includes the following:

» AMD CoreMath Library— Select this option to display documentation that describes
elements of the AMD Core Math Library, a software development library released by AMD
that includes a set of useful mathematical routines optimized for AMD processors.

PGI Compiler User's Guide 10

Getting Started

» CUDA Fortran Reference— Select this option to display the CUDA Fortran Programming
Guide and Reference. This document describes CUDA Fortran, asmall set of extensions to
Fortran that support and build upon the CUDA computing architecture.

» Fortran Language Reference— Select this option to display the PGI Fortran Reference.
This document describes The Portland Group's implementation of the FORTRAN 77 and
Fortran 90/95 languages and presents the Fortran language statements, intrinsics, and
extension directives.

» Installation Guide— Select this option to display the PGI Server and Workstation
Installation Guide. This document provides an overview of the steps required to successfully
install and license PGI Server and PGl Workstation.

» PGDBG Debugger Guide- Select this option to display the PGDBG Debugger Guide. This
guide describes how to use the PGDBG debugger to debug serial and parallel applications
built with PGI compilers. It contains information about how to use PGDBG, aswell as
detailed reference information on commands and graphical interfaces.

» PGPROF Profiler Guide- Select this option to display the PGPROF Profiler Guide. This
guide describes how to use the PGPROF profiler to tune serial and parallel applications built
with PGI compilers. It contains information about how to use the profiler, aswell as detailed
reference information on commands and graphical interfaces.

» Release Notes— Select this option to display the latest PGl Server and Workstation Release
Notes. This document describes changes between previous releases and the current release.

» User’'s Guide— Select this option to display the PGl User's Guide. This document provides
operating instructions for the PGI command-level development environment as well as
details concerning the PGl compilers' interpretation of the Fortran language, implementation
of Fortran language extensions, and command-level compilation.

Licensing Submenu

From the Licensing menu, you have access to the PGI License Agreement and an automated
license generating tool:

» Generate License— Select this option to display the PGI License Setup dialog that walks
you through the steps required to download and install alicense for PGl Workstation or PGI
Server. To complete this process you heed an internet connection.

» License Agreement — Select this option to display the license agreement that is associated
with use of PGI software.

1.7.3. PGl on the Windows Desktop

By default, a PGl Workstation installation creates a shortcut on the Windows desktop. This
shortcut launches a Cygwin bash shell if Cygwin isinstalled; otherwise it launches a Microsoft
command shell. The environment for this shell is pre-configured to use PGI compilers and
tools. On 64-bit systems, the 64-bit compilers are targeted, while on 32-bit systems, the 32-bit
compilers are targeted.

PGI Compiler User's Guide 1

Getting Started

BASH Shell Environment (Cygwin)

A UNIX-like shell environment, Cygwin, is bundled with PGI compilers and tools for Windows
to provide a familiar development environment for Linux or UNIX users.

After installation of PGl Workstation or PGl Server, you have a PGl Workstation icon on your
Windows desktop. Double-left-click on thisicon to launch an instance of the Cygwin bash
command shell window. Working within BASH is very much like working within the sh or ksh
shellson aLinux system; yet BASH has a command history feature similar to csh and several
other unique features. Shell programming is fully supported.

The BASH shell window is pre-initialized for usage of the PGl compilers and tools, so thereis
no need to set environment variables or modify your command path when the command window
comes up. In addition to the PGI compiler commands, within BASH you have access to over 100
common commands and utilities, including but not limited to the following:

vi gzip / gunzip ftp

tar / untar grep / egrep / fgrep awk

sed cksum cp

cat diff du

date kill Is

find mv printenv / env
more / less touch we

rm / rmdir make

If you are familiar with program development in a Linux environment, editing, compiling, and
executing programs within bash will be very comfortable. If you have not previously used
such an environment, you might want to familiarize yourself with vi or other editors and with
makefiles. The Web has an extensive online tutorial available for the vi editor aswell asa
number of thorough introductions to the construction and use of makefiles.

ar or ranlib

For library compatibility, PGI providesversions of ar and ranlib that are compatible with
native Windows object-file formats. For more information on these commands, refer to Creating
and Using Static Libraries on Windows.

1.7.4. Using the PGl Compilers on OS X

PGI Workstation 14.10 for OS X supports most of the features of the 32-and 64-bit versions for
linux86 and linux86-64 environments. Typically the PGl compilers and tools on OS X function
identically to their Linux counterparts.

PGI Compiler User's Guide 12

Getting Started

OS X Header Files

The OS X header files contain numerous non-standard extensions. PGl supports many of these
extensions, thus allowing the PGI C and C++ compilers to compile most programs that the GNU
compilers can compile. A few header files not interoperable with the PGI compilers have been
rewritten. These files are included in $PGI/0sx86/14.10/include or $PGI/0sx86-64/14.10/include.
Thesefiles are: stdarg.h, stddef.h, and others.

If you are using the PGI C or C++ compilers, please make sure that the supplied versions of
these include files are found before the system versions. Thiswill happen by default unless you
explicitly add a—l option that references one of the system include directories.

Mac OS Debugging Requirements

Both the —g and —~Mkeepobj switches play important roles when compiling a program on Apple
Mac OS for debugging.

» To debug a program with symbol information on the OS X, files must be compiled with the
-g switch to keep the program'’s object files, the fileswith a".0" extension. Further, these
object files must remain in the same directory in which they were created.

» If aprogram is built with separate compile and link steps, by compiling with the -c switch
which generates the ".0" object files, then using the —g switch guarantees the required object
files are available for debugging.

Use the following command segquence to compile and then link your code.

To compile the programs, use these commands:

pgcc -c -g main.c
pgcc -c¢ -g foo.c
pgcc -c -g bar.c

To link, use this command:

pgcc —-g main.o foo.o bar.o

Linking on OS X

On the OS X, the PGI Workstation 14.10 compilers do not support static linking of user binaries.
For compatibility with future Apple updates, the compilers support dynamic linking of user
binaries. For more information on dynamic linking, refer to Creating and Using Dynamic
Librarieson Mac OS X.

Running Parallel Programs on OS X

Y ou may encounter difficulties running auto-parallel or OpenM P programs on OS X systems
when the per-thread stack sizeis set to the default (8MB). If you have unexplained failures,
please try setting the environment variable OMP_STACKSIZE to alarger value, such as 16MB.
For information on how to set environment variables, refer to Setting Environment Variables.

PGI Compiler User's Guide 13

Getting Started

1.8. Site-Specific Customization of the Compilers

If you are using the PGI compilers and want all your users to have access to specific libraries or
other files, there are special filesthat allow you to customize the compilers for your site.

1.8.1. Use siterc Files

The PGI compiler drivers utilize afile named siterc to enable site-specific customization of
the behavior of the PGI compilers. The siterc fileislocated in the bin subdirectory of the
PGI installation directory. Using siterc, you can control how the compiler driversinvoke the
various components in the compilation tool chain.

1.8.2. Using User rc Files

In addition to the siterc file, user rc files can reside in a given user—s home directory, as specified
by the user—s HOME environment variable. Y ou can use these files to control the respective PGI
compilers. All of these files are optional.

On Linux and OS X, thesefilesare named .mypgf77rc, .mypgf90rc, .mypgccrc, and
.mypgcppre.

On Windows, thesefilesare named mypgf77rc, mypgf90rc, mypgf95re,
mypgfortranrc, mypgccrc, and mypgcpprec.

The following examples show how you can use these rc files to tailor a given installation for a
particular purpose.

Table 3 Examples of Usine siterc and User rc Files

To do this... Add the line shown to the indicated file(s)

Make available to all linux86-64 set SITELIB=/opt/newlibs/64;
compilations the libraries found in /
opt/newlibs/64 to /opt/pgi/linux86-64/14.10/bin/siterc

Make available to all linux86 compilations | set SITELIB=/opt/newlibs/32;
the libraries found in / opt /
newlibs/32 to /opt/pgi/linux86/14.10/bin/siterc

Add to all linux86-64 compilations a append SITELIB=/opt/local/fast;
new library path: /opt/local/
fast to /opt/pgi/linux86-64/14.10/bin/siterc

Make available to all linux86 compilations | set SITELIB=/opt/acml/include;
the include path: —I /opt/acml/
include to /opt/pgi/linux86/14.10/bin/sitercand /opt/
pgi/linux86-64/14.10/bin/siterc

PGI Compiler User's Guide 14

Getting Started

To do this... Add the line shown to the indicated file(s)

With linux86-64 compilations, change set MPILIBDIR=/opt/mympi/64;
—Mmp1 tolinkin /opt/
mympi/64/libmpix.a set MPILIBNAME=mpix;

to /opt/pgi/linux86-64/14.10/bin/siterc

With linux86-64 compilations, always add | set SITEDEF=IS64BIT AMD;
-DIS64BIT —-DAMD
to /opt/pgi/linux86-64/14.10/bin/siterc

Build an F90 or F95 executable for set set RPATH=./REDIST;
linux86-64 or linux86 that resolves PGl
shared objects in the relative directory to~/.mypgfortranrc
./REDIST

Note.This only affects the behavior of PGFORTRAN for the given user.

1.9. Common Development Tasks

Now that you have a brief introduction to the compiler, let’slook at some common development
tasks that you might wish to perform.

» When you compile code you can specify a number of options on the command line that
define specific characteristics related to how the program is compiled and linked, typically
enhancing or overriding the default behavior of the compiler. For alist of the most common
command line options and information on all the command line options, refer to Use
Command Line Options.

» Code optimization and parall€lization alows the compiler to organize your code for efficient
execution. While possibly increasing compilation time and making the code more difficult
to debug, these techniques typically produce code that runs significantly faster than code
that does not use them. For more information on optimization and parallelization, refer to
Optimizing and Parallelizing.

» Functioninlining, a special type of optimization, replaces a call to afunction or a subroutine
with the body of the function or subroutine. This process can speed up execution by
eliminating parameter passing and the function or subroutine call and return overhead. In
addition, function inlining allows the compiler to optimize the function with the rest of the
code. However, function inlining may also result in much larger code size with no increase in
execution speed. For more information on function inlining, refer to Using Function Inlining.

» Directives and pragmas allow users to place hintsin the source code to help the compiler
generate better assembly code. Y ou typically use directives and pragmas to control the
actions of the compiler in a particular portion of a program without affecting the program
asawhole. You place them in your source code where you want them to take effect. A
directive or pragmatypicaly staysin effect from the point where included until the end
of the compilation unit or until another directive or pragma changes its status. For more
information on directives and pragmas, refer to Using OpenM P and Using Directives and
Pragmas.

PGI Compiler User's Guide 15

Getting Started

» Alibrary isacollection of functions or subprograms used to develop software. Libraries
contain "helper" code and data, which provide services to independent programs, alowing
code and data to be shared and changed in a modular fashion. The functions and programs
in alibrary are grouped for ease of use and linking. When creating your programs, it is often
useful to incorporate standard libraries or proprietary ones. For more information on this
topic, refer to Creating and Using Libraries.

» Environment variables define a set of dynamic values that can affect the way running
processes behave on acomputer. It is often useful to use these variables to set and pass
information that alters the default behavior of the PGI compilers and the executables
which they generate. For more information on these variables, refer to Using Environment
Variables.

» Deployment, though possibly an infrequent task, can present some unique issues related
to concerns of porting the code to other systems. Deployment, in this context, involves
distribution of a specific file or set of filesthat are already compiled and configured. The
distribution must occur in such away that the application executes accurately on another
system which may not be configured exactly the same as the system on which the code was
created. For more information on what you might need to know to successfully deploy your
code, refer to Distributing Files - Deployment.

» Anintrinsicisafunction available in a given language whose implementation is handled
specially by the compiler. Intrinsics make using processor-specific enhancements easier
because they provide a C/C++ language interface to assembly instructions. In doing so, the
compiler manages details that the user would normally have to be concerned with, such as
register names, register allocations, and memory locations of data. For C/C++ programs, PGI
provides support for MM X SSE, SSE2, SSE3, SSSE3, SSE4A, ABM, and AVX intrinsics.
For more information on these intrinsics, refer to the C/C++ MMX/SSE Inline Intrinsics
section of the PGI Compiler's Reference Manual.

PGI Compiler User's Guide 16

http://www.pgroup.com/resources/docs.htm

Chapter 2.
USE COMMAND LINE OPTIONS

A command line option allows you to control specific behavior when a program is compiled and
linked. This section describes the syntax for properly using command-line options and provides a
brief overview of afew of the more common options.

For a complete list of command-line options, their descriptions and use, refer to the Command-Line
Options Reference section of the PGI Compiler's Reference Guide.

2.1. Command Line Option Overview

Before looking at al the command-line options, first become familiar with the syntax for these
options. There are alarge number of options available to you, yet most users only use a few of
them. So, start simple and progress into using the more advanced options.

By default, the PGl compilers generate code that is optimized for the type of processor on which
compilation is performed, the compilation host. Before adding options to your command-line,
review Help with Command-line Options and Frequently-used Options.

2.1.1. Command-line Options Syntax

On a command-line, options need to be preceded by a hyphen (-). If the compiler does not
recognize an option, you get an unknown switch error. The error can be downgraded to awarning
by adding the -noswitcherror option.

This document uses the following notation when describing options:
[item]

Square brackets indicate that the enclosed item is optional.
{item | item}

Braces indicate that you must select one and only one of the enclosed items. A vertical bar (|)
separates the choices.

PGI Compiler User's Guide 17

http://www.pgroup.com/resources/docs.htm

Use Command Line Options

Horizontal ellipsesindicate that zero or more instances of the preceding item are valid.

Some options do not allow a space between the option and its argument or within an argument. When
applicable, the syntax section of the option description in the Command-Line Options Reference section of
the PGI Compiler's Reference Guide .

2.1.2. Command-line Suboptions

Some options accept several suboptions. Y ou can specify these suboptions either by using the full
option statement multiple times or by using a comma-separated list for the suboptions.

The following two command lines are equivalent:

pgfortran -Mvect=simd -Mvect=noaltcode

pgfortran -Mvect=simd,noaltcode

2.1.3. Command-line Conflicting Options

Some options have an opposite or negated counterpart. For example, both -Mvect and -
Mnovect are available. -Mvect enables vectorization and -Mnovect disablesit. If you used
both of these commands on acommand line, they would conflict.

Rule: When you use conflicting options on a command line, the last encountered option takes precedence
OVEr any previous one.

The conflicting options rule is important for a number of reasons.

» Someoptions, such as —fast, include other options. Therefore, it is possible for you to be
unaware that you have conflicting options.

» You can usethisrule to create makefiles that apply specific flagsto a set of files, as shown in
the following example.

Example: Makefiles with Options

In this makefile fragment, CCFLAGS uses vectorization. CCNOVECTFLAGS uses the flags
defined for CCFLAGS but disables vectorization.

CCFLAGS=c -Mvect=simd
CCNOVECTFLAGS=$ (CCFLAGS) -Mnovect

2.2. Help with Command-line Options

If you are just getting started with the PGI compilers and tools, it is helpful to know which
options are available, when to use them, and which options most users find effective.

Using -help

The -help option isuseful because it provides information about all options supported by a
given compiler.

PGI Compiler User's Guide 18

http://www.pgroup.com/resources/docs.htm

Use Command Line Options

You can use —help in one of three ways:

>

Use —~help with no parametersto obtain alist of all the available options with a brief one-
line description of each.

Add a parameter to —he1p to restrict the output to information about a specific option. The
syntax for thisusageis:

—help <command line option>

Suppose you use the following command to restrict the output to information about the -
fast option:
$ pgfortran -help -fast

The output you seeis similar to:

—fast Common optimizations; includes -02 -Munroll=c:1 -Mnoframe -Mlre

In the following example, we add the —he 1p parameter to restrict the output to information
about the help command. The usage information for ~he1p shows how groups of options
can be listed or examined according to function.

S pgfortran -help -help
-help[=groups|asm|debug|language|linker|opt|other|overall |phase|prepro]
suffix|switch|target|variable]

Add a parameter to —he 1p to restrict the output to a specific set of options or to a building
process. The syntax for this usageisthis:
-help=<subgroup>

By using the command pgfortran -help -help, aspreviously shown, we can see
output that shows the available subgroups. Y ou can use the following command to restrict
the output on the ~he 1p command to information about only the options related to only one
group, such as debug information generation.

S pgfortran -help=debug

The output you seeis similar to this:

Debugging switches:

-M[no]lbounds Generate code to check array bounds

-Mchkfpstk Check consistency of floating point stack at subprogram calls
(32-bit only)

-Mchkstk Check for sufficient stack space upon subprogram entry
-Mcoff Generate COFF format object

-Mdwarfl Generate DWARF1l debug information with -g

-Mdwarf2 Generate DWARF2 debug information with -g

-Mdwarf3 Generate DWARF3 debug information with -g

-Melf Generate ELF format object

-g Generate information for debugger

-gopt Generate information for debugger without disabling
optimizations

For a complete description of subgroups, refer to the —he1p description in the Command
Line Options Reference section of the PGl Compiler Reference Manual.

PGI Compiler User's Guide 19

Use Command Line Options

2.3. Getting Started with Performance

One of the top priorities of most usersis performance and optimization. This section provides a
quick overview of afew of the command-line options that are useful in improving performance.

2.3.1. Using —fast and —fastsse Options

PGI compilersimplement awide range of options that allow users afine degree of control on
each optimization phase. When it comes to optimization of code, the quickest way to start isto
usetheoptions -fast or -fastsse. These options create a generally optimal set of flags for
x86 targets They incorporate optimization options to enable use of vector streaming SIMD (SSE)
instructions for 64-hit targets. They enable vectorization with SSE instructions, cache alignment,
and SSE arithmetic to flush to zero mode.

The contents of the —fast or —fastsse options are host-dependent. Further, you should use these
options on both compile and link command lines.

The following table showsthetypical -fast and -fastsse options.

Table 4 Typical -fast and -fastsse Options

Use this option... To do this...

-02 Specifies a code optimization level of 2.
-Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each iteration.
—Mnoframe Indicates to not generate code to set up a stack frame.

Note. With this option, a stack trace does not work.

-Mlre Indicates loop-carried redundancy elimination.

—Mpre Indicates partial redundancy elimination

—fast for 64-hit targets and - fastsse for both 32— and 64-bit targets a so typically include
the options shown in thistable:

Table 5 Additional -fast and —-fastsse Options

Use this option... To do this...

-Mvect=sse Generates SSE instructions.

—-Mscalarsse Generates scalar SSE code with xmm registers; implies —-Mf lushza.
-Mcache align Aligns long objects on cache-line boundaries

Note On 32-bit systems, if one file is compiled with the -Mcache align option, then all
files should be compiled with it. This is not true on 64-bit systems.

—-Mflushz Sets SSE to flush-to-zero mode.

PGI Compiler User's Guide 20

Use Command Line Options

Use this option... To do this...

-M[no]vect Controls automatic vector pipelining.

For best performance on processors that support SSE instructions, use the PGFORTRAN compiler, even
for FORTRAN 77 code, and the —fa st option.

To see the specific behavior of —fast for your target, use the following command:
$ pgfortran -help -fast

2.3.2. Other Performance-Related Options

While-fast and -fastsse are options designed to be the quickest route to best performance,
they are limited to routine boundaries. Depending on the nature and writing style of the source
code, the compiler often can perform further optimization by knowing the global context of usage
of agiven routine. For instance, determining the possible value range of actual parameters of
aroutine could enable aloop to be vectorized; similarly, determining static occurrence of calls
helps to decide which routine is beneficial toinline.

These types of global optimizations are under control of Interprocedural Analysis (1PA)

in PGl compilers. Option —Mipa enables Interprocedural Analysis. -Mipa=fast isthe
recommended option to get best performances for global optimization. Y ou can also add the
suboption inline to enable automatic global inlining across files. Y ou might consider using
-Mipa=fast, inline. Thisoption for interprocedural analysisand global optimization can
improve performance.

Y ou may also obtain further performance improvements by experimenting with the —
M<pgflag> options described in the section ‘ —M Options by Category’ section of the PGI
Compiler's Reference Guide. These optionsinclude, but are not limited to, -Mvect, —
Munroll, -Minline, -Mconcur, -Mpfi and -Mpfo. However, performance improvements
using these options are typically application- and system-dependent. It is important to time your
application carefully when using these options to ensure no performance degradations occur.

For more information on optimization, refer to Optimizing and Parallelizing. For specific
information about these options, refer to the ‘ Optimization Controls’ section of the PGI
Compiler‘s Reference Guide.

2.4. Targeting Multiple Systems — Using the —tp Option

The —tp option allows you to set the target architecture. By default, the PGI compiler uses

all supported instructions wherever possible when compiling on a given system. As aresult,
executabl es created on a given system may not be usable on previous generation systems. For
example, executables created on a Pentium 4 may fail to execute on a Pentium I11 or Pentium I1.

Processor-specific optimizations can be specified or limited explicitly by using the —tp option.
Thus, it is possible to create executables that are usable on previous generation systems. Using a
—tp flag option of k8 or p7 produces an executable that runs on most x86 hardware in use today.

PGI Compiler User's Guide 21

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Use Command Line Options

For more information about the —tp option, refer tothe—-tp <target> [, target...]
description in the Command-Line Options Reference section of the PGI Compiler’s Reference

Guide.

2.5. Frequently-used Options

In addition to overal performance, there are a number of other options that many users find
useful when getting started. The following table provides a brief summary of these options.

For more information on these options, refer to the compl ete description of each option available
in the Command-Line Options Reference section of the PGI Compiler's Reference Guide.

Also, there are anumber of suboptions available with each of the —M options listed. For more
information on those options, refer to the specific section on M Options by Category.

Table 6 Commonly Used Command-Line Options

Use this option...

To do this...

—fast These options create a generally optimal set of flags for targets that support SIMD capability. They
incorporate optimization options to enable use of vector streaming SIMD instructions (64-bit targets)

—fastsse and enable vectorization with SEE instructions, cache aligned and flushz.

-g Instructs the compiler to include symbolic debugging information in the object module.

—gopt Instructs the compiler to include symbolic debugging information in the object file, and to generate
optimized code identical to that generated when —g is not specified.

-help Provides information about available options.

—mcmodel=medium

Enables medium=model core generation for 64-bit targets, which is useful when the data space of the
program exceeds 4GB.

—-Mconcur Instructs the compiler to enable auto-concurrentization of loops. If specified, the compiler uses multiple
processors to execute loops that it determines to be parallelizable; thus, loop iterations are split to
execute optimally in a multithreaded execution context.

-Minfo Instructs the compiler to produce information on standard error.

-Minline Enables function inlining.

-Mipa=fast,inline

Enables interprocedural analysis and optimization. Also enables automatic procedure inlining.

~Mpfi or -Mpfo Enable profile feedback driven optimizations

—Mkeepasm Keeps the generated assembly files.

~Munroll Invokes the loop unroller to unroll loops, executing multiple instances of the loop during each iteration.
This also sets the optimization level to 2 if the level is set to less than 2, or if no -O or —g options are
supplied.

—-M[no]vect Enables/Disables the code vectorizer.

—{no_lexceptions Removes exception handling from user code. For C++, declares that the functions in this file generate
no C++ exceptions, allowing more optimal code generation.

-0 Names the output file.

-0 <level> Specifies code optimization level where <level>is 0, 1, 2, 3, or 4.

—tp <target> [,target...]

Specify the target processor(s); for the 64-bit compilers, more than one target is allowed, and enables
generation of PGl Unified Binary executables.

PGI Compiler User's Guide

22

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Use Command Line Options

Use this option... To do this...

-W1, <option> Compiler driver passes the specified options to the linker.

PGI Compiler User's Guide 23

Chapter 3.
OPTIMIZING AND PARALLELIZING

Source code that is readable, maintainable, and produces correct results is not always organized
for efficient execution. Normally, the first step in the program development process involves
producing code that executes and produces the correct results. Thisfirst step usually involves
compiling without much worry about optimization. After code is compiled and debugged, code
optimization and parall€lization become an issue.

Invoking one of the PGI compiler commands with certain options instructs the compiler to
generate optimized code. Optimization is not always performed since it increases compilation
time and may make debugging difficult. However, optimization produces more efficient code that
usually runs significantly faster than code that is not optimized.

The compilers optimize code according to the specified optimization level. Y ou can use a number
of options to specify the optimization levels, including -0, -Mvect, -Mipa, and -Mconcur.
In addition, you can use several of the —-M<pgflag> switchesto control specific types of
optimization and parall€lization.

This chapter describes these optimization options:

—fast —Minline -0 —Munroll
—Mconcur —Mipa=fast -Mpfi —-Mvect
-Minfo —Mneginfo -Mpfo —Msafeptr

—Mipa=fast,inline

This chapter aso describes how to choose optimization options to use with the PGl compilers.
This overview ishelpful if you are just getting started with one of the PGI compilers, or wish to
experiment with individual optimizations.

Compl ete specifications of each of these optionsis available in the Command-Line Options
Reference section of the PGl Compiler Reference Manual.

3.1. Overview of Optimization

In general, optimization involves using transformations and replacements that generate more
efficient code. Thisis done by the compiler and involves replacements that are independent of the

PGI Compiler User's Guide 24

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

particular target processor’ s architecture as well as replacements that take advantage of the x86 or
X64 architecture, instruction set and registers.

For discussion purposes, we categorize optimization:

Local Optimization

Global Optimization

L oop Optimization

Interprocedural Analysis (IPA) and Optimization
Optimization Through Function Inlining

Profile Feedback Optimization (PFO)

3.1.1. Local Optimization

Local optimization is performed on a block—by—block basis within a program’ s basic blocks. A
basic block is a sequence of statements in which the flow of control enters at the beginning and
leaves at the end without the possibility of branching, except at the end.

The PGI compilers perform many types of local optimization including: algebraic identity
removal, constant folding, common sub-expression elimination, redundant load and store
elimination, scheduling, strength reduction, and peephole optimizations.

3.1.2. Global Optimization

This optimization is performed on a program unit over al its basic blocks. The optimizer
performs control—flow and data—flow analysis for an entire program unit. All loops, including
those formed by IFs and GOTOs, are detected and optimized.

Global optimization includes: constant propagation, copy propagation, dead store elimination,
global register alocation, invariant code motion, and induction variable elimination.

3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization

The performance of certain classes of loops may be improved through vectorization or unrolling
options. Vectorization transforms loops to improve memory access performance and make use of
packed SSE instructions which perform the same operation on multiple data items concurrently.
Unrolling replicates the body of loops to reduce loop branching overhead and provide better
opportunities for local optimization, vectorization and scheduling of instructions. Performance for
loops on systems with multiple processors may also improve using the parallelization features of
the PGI compilers.

3.1.4. Interprocedural Analysis (IPA) and Optimization

Interprocedural analysis (IPA) allows use of information across function call boundaries to
perform optimizations that would otherwise be unavailable. For example, if the actual argument
to afunction isin fact a constant in the caller, it may be possible to propagate that constant into
the callee and perform optimizations that are not valid if the dummy argument istreated asa
variable. A wide range of optimizations are enabled or improved by using IPA, including but
not limited to data alignment optimizations, argument removal, constant propagation, pointer
disambiguation, pure function detection, FO0/F95 array shape propagation, data placement,

PGI Compiler User's Guide 25

Optimizing and Parallelizing

vestigial function removal, automatic function inlining, inlining of functions from pre-compiled
libraries, and interprocedural optimization of functions from pre-compiled libraries.

3.1.5. Function Inlining

This optimization allows a call to afunction to be replaced by a copy of the body of that function.
This optimization will sometimes speed up execution by eliminating the function call and

return overhead. Function inlining may also create opportunities for other types of optimization.
Function inlining is not always beneficial. When used improperly it may increase code size and
generate less efficient code.

3.1.6. Profile-Feedback Optimization (PFO)

Profile-feedback optimization (PFO) makes use of information from atrace file produced by
specidly instrumented executabl es which capture and save information on branch frequency,
function and subroutine call frequency, semi-invariant values, loop index ranges, and other
input data dependent information that can only be collected dynamically during execution of a
program.

By definition, use of profile-feedback optimization is a two-phase process. compilation and
execution of a specially-instrumented executable, followed by a subsequent compilation which
reads atrace file generated during the first phase and uses the information in that trace file to
guide compiler optimizations.

3.2. Getting Started with Optimization

Y our first concern should be getting your program to execute and produce correct results. To get
your program running, start by compiling and linking without optimization. Add —00 to your
compile line to select no optimization; or add —g to allow you to debug your program easily and
isolate any coding errors exposed during porting to x86 or x64 platforms. For more information
on debugging, refer to the PGDBG Debugger Guide.

If you want to get started quickly with optimization, a good set of options to use with any of the
PGI compilersis-fast -Mipa=fast, inline. For example
$ pgfortran -fast -Mipa=fast,inline prog.f

For dl of the PGI Fortran, C, and C++ compilers, the -fast -Mipa=fast, inline options
generally produce code that is well-optimized without the possibility of significant slowdowns
due to pathological cases.

» The-fast optionisan aggregate option that includes a number of individual PGI
compiler options; which PGI compiler options are included depends on the target for which
compilation is performed.

» The-Mipa=fast, inline optioninvokesinterprocedura analysis (IPA), including
several |PA suboptions. The inline suboption enables automatic inlining with IPA. If you do
not wish to use automatic inlining, you can compile with -Mipa=fast and use several IPA
suboptions without inlining.

By experimenting with individual compiler options on afile-by-file basis, further significant
performance gains can sometimes be realized. However, depending on the coding style,

PGI Compiler User's Guide 26

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

individual optimizations can sometimes cause slowdowns, and must be used carefully to ensure
performance improvements.

There are other useful command line options related to optimization and parall€elization, such as—
help, -Minfo, -Mneginfo, —dryrun, and —v.

3.2.1. -help

As described in Help with Command-Line Options, you can see a specification of any
command-ine option by invoking any of the PGI compilerswith —he1p in combination with the
option in question, without specifying any input files.

For example, you might want information on —0:
$ pgfortran -help -0

The resulting output is similar to this:

-0 Set opt level. All -01 optimizations plus traditional scheduling and
global scalar optimizations performed

Or you can see the full functionality of —he1p itself, which can return information on either an

individual option or groups of options:

$ pgfortran -help -help

The resulting output is similar to this:

—-help[=groups|asm|debug|language|linker|opt|other|overall|
phase|prepro|suffix|switch|target|variable]
Show compiler switches

3.2.2. -Minfo

Y ou can use the —-Minfo option to display compile-time optimization listings. When this option
is used, the PGI compilersissue informational messages to standard error (stderr) as compilation
proceeds. From these messages, you can determine which loops are optimized using unrolling,
SSE instructions, vectorization, parallelization, interprocedural optimizations and various
miscellaneous optimizations. Y ou can aso see where and whether functions are inlined.

For more information on —-Minfo, refer to Optimization Controls section of the PGI Compiler
Reference Manual.

3.2.3. =Mneginfo

Y ou can use the -Mneginfo option to display informational messages to standard error (stderr)
that explain why certain optimizations are inhibited.

For more information on -Mneginfo, refer to Optimization Controls section of the PGI
Compiler Reference Manual.

3.2.4. —dryrun

The -dryrun option can be useful as adiagnostic tool if you need to see the steps used by

the compiler driver to preprocess, compile, assemble and link in the presence of a given set of
command line inputs. When you specify the —dryrun option, these steps are printed to standard
error (stderr) but are not actually performed. For example, you can use this option to inspect the

PGI Compiler User's Guide 27

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

default and user—specified libraries that are searched during the link phase, and the order in which
they are searched by the linker.

3.2.5.-v

The —v option is similar to —dryrun, except each compilation step is performed.

3.2.6. PGPROF

PGPROF is aprofiling tool that provides away to visualize the performance of the components
of your program. Using tables and graphs, PGPROF associates execution time and resource
utilization data with the source code and instructions of your program. This association allows
you to see where a program’ s execution time is spent. Through resource utilization data and
compiler analysis information, PGPROF helps you to understand why certain parts of your
program have high execution times. Thisinformation may help you with selecting which
optimization options to use with your program.

PGPROF also allows you to correlate the messages produced by -Minfo and -Mneginfo,
described above, to your program’ s source code. This feature is known as the Common Compiler
Feedback Format (CCFF).

For more information on PGPROF, refer to the PGPROF Profiler Guide.

3.3. Common Compiler Feedback Format (CCFF)

Using the Common Compiler Feedback Format (CCFF), PGI compilers save information
about how your program was optimized, or why a particular optimization was not made, in
the executable file. To append thisinformation to the object file, use the compiler option —
Minfo=ccff.

If you choose to use PGPROF to aid with your optimization, PGPROF can extract this
information and associate it with source code and other performance data, allowing you to view
al of thisinformation simultaneously in one of the available profiler panels.

3.4. Local and Global Optimization

This section describes local and global optimization.

3.4.1. -Msafeptr

The -Msafeptr option can significantly improve performance of C/C++ programsin which
thereis known to be no pointer aliasing. For obvious reasons, this command-ine option must be
used carefully. There are anumber of suboptionsfor -Msafeptr:

» -Msafeptr=all — All pointers are safe. Equivalent to the default setting: -Msafeptr.
» -Msafeptr=arg— Function formal argument pointers are safe. Equivalent to -
Msafeptr=dummy.

» -Msafeptr=global — Global pointers are safe.

PGI Compiler User's Guide 28

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

» -Msafeptr=local — Local pointers are safe. Equivalent to-Msafeptr=auto.
» -Msafeptr=static— Staticloca pointers are safe.

If your C/C++ program has pointer aliasing and you also want automating inlining, then
compiling with -Mipa=fast or —-Mipa=fast, inline includes pointer aliasing
optimizations. |PA may be able to optimize some of the alias references in your program and
leave intact those that cannot be safely optimizied.

34.2.-0

Using the PGI compiler commands with the —Olevel option (the capital O isfor Optimize), you
can specify any integer level from 0 to 4.

-00

Level zero specifies no optimization. A basic block is generated for each language statement. At
thislevel, the compiler generates a basic block for each statement.

Performance will almost always be slowest using this optimization level. Thislevel is useful
for theinitial execution of aprogram. It is also useful for debugging, since thereis adirect
correlation between the program text and the code generated. To enable debugging, include —g
on your compileline.

-01

Level one specifieslocal optimization. Scheduling of basic blocksis performed. Register
alocation is performed.

Local optimization is agood choice when the code is very irregular, such as code that contains
many short statements containing | F statements and does not contain loops (DO or DO WHILE
statements). Although this case rarely occurs, for certain types of code, this optimization level
may perform better than level-two (-02).

-0

When no level is specified, level two global optimizations are performed, including traditional
scalar optimizations, induction recognition, and loop invariant motion. No SIMD vectorization is
enabled.

-02

Level two specifies global optimization. Thislevel performsall level-one local optimization as
well aslevel two global optimization described in —0. In addition, more advanced optimizations
such as SIMD code generation, cache alignment, and partial redundancy elimination are enabled.

PGI Compiler User's Guide 29

Optimizing and Parallelizing

-03

Level three specifies aggressive global optimization. This level performs all level-one and level-
two optimizations and enables more aggressive hoisting and scalar replacement optimizations that
may or may not be profitable.

04

Level four performs all level-one, level-two, and level-three optimizations and enables haisting of
guarded invariant floating point expressions.

Types of Optimizations

The PGI compilers perform many different types of local optimizations, including but not limited
to:

Algebraic identity removal

Constant folding

Common subexpression elimination
Local register optimization

Peephol e optimizations

Redundant load and store elimination
Strength reductions

Level-two optimization (—-02 or —0) specifies global optimization. The —fast option generally
specifies global optimization; however, the - fast switch varies from release to release,
depending on a reasonable sel ection of switches for any one particular release. The -0 or -

02 level performs all level-one local optimizations as well as global optimizations. Control

flow analysisis applied and global registers are allocated for al functions and subroutines.

L oop regions are given specia consideration. This optimization level is agood choice when the
program contains loops, the loops are short, and the structure of the codeis regular.

The PGI compilers perform many different types of global optimizations, including but not
limited to:

Branch to branch elimination
Constant propagation

Copy propagation

Dead store elimination

Global register allocation
Induction variable elimination
Invariant code motion

Y ou can explicitly select the optimization level on the command line. For example, the following
command line specifies level-two optimization which results in global optimization:
$ pgfortran -02 prog.f

PGI Compiler User's Guide 30

Optimizing and Parallelizing

The default optimization level changes depending on which options you select on the command
line. For example, when you select the —g debugging option, the default optimization level is
set to level—zero (-00). However, if you need to debug optimized code, you can use the —gopt
option to generate debug information without perturbing optimization. For a description of the
default levels, refer to Default Optimization Levels.

The -fast option includes —02 on al x86 and x64 targets. If you want to override the default
for -fast with —03 while maintaining all other elements of —fast, simply compile as follows:
$ pgfortran -fast -03 prog.f

3.5. Loop Unrolling using —Munroll

This optimization unrolls loops, which reduces branch overhead, and can improve execution
speed by creating better opportunities for instruction scheduling. A loop with a constant count
may be completely unrolled or partially unrolled. A loop with a non-constant count may also be
unrolled. A candidate loop must be an innermost loop containing one to four blocks of code.

The following example shows the use of the -Munro11 option:
$ pgfortran -Munroll prog.f

The -Munroll optionisincluded as part of —~fast on al x86 and x64 targets. The loop
unroller expands the contents of aloop and reduces the number of times aloop is executed.
Branching overhead is reduced when aloop is unrolled two or more times, since each iteration of
the unrolled loop corresponds to two or more iterations of the origina loop; the number of branch
instructions executed is proportionately reduced. When aloop is unrolled completely, the loop’s
branch overhead is eliminated altogether.

Loop unrolling may be beneficial for the instruction scheduler. When aloop is completely
unrolled or unrolled two or more times, opportunities for improved scheduling may be presented.
The code generator can take advantage of more possibilities for instruction grouping or filling
instruction delays found within the loop.

Examples Showing Effect of Unrolling

The following side-by—side examples show the effect of code unrolling on a segment that
computes a dot product.

This example is only meant to represent how the compiler can transform the loop; it is not meant to imply
that the programmer needs to manually change code. In fact, manually unrolling your code can sometimes
inhibit the compiler’s analysis and optimization.

PGI Compiler User's Guide 31

Optimizing and Parallelizing

Table 7 Example of Effect of Code Unrolling

Dot Product Code Unrolled Dot Product Code

REAL*4 A(100), B(100), Z REAL*4 A(100), B(100), Z
INTEGER I INTEGER I
DO I=1, 100 DO I=1, 100, 2
Z =7 + A(i) * B(i) Z =7 + A(i) * B(i)
END DO Z = 7Z + A(i+l) * B(i+1)
END END DO
END

Using the —-Minfo option, the compiler informs you when aloop is being unrolled. For example,
amessage similar to the following, indicating the line number, and the number of times the code
isunrolled, displays when aloop is unrolled:

dot:
5, Loop unrolled 5 times

Using the c:<m> and n:<m> sub-optionsto ~-Munrol1, or using -Mnounrol1l, you can control
whether and how loops are unrolled on afile-by-file basis. Using directives or pragmas, you can
precisely control whether and how a given loop is unrolled. For more information on —-Munroll,
refer to Use Command Line Options.

3.6. Vectorization using —-Mvect

The -Mvect optionisincluded as part of —fast on al x86 and x64 targets. If your program
contains computationally-intensive loops, the -Mvect option may be helpful. If in addition
you specify -Minfo, and your code contains loops that can be vectorized, the compiler reports
relevant information on the optimizations applied.

When a PGl compiler command is invoked with the -Mvect option, the vectorizer scans code
searching for loops that are candidates for high—evel transformations such as loop distribution,
loop interchange, cachetiling, and idiom recognition (replacement of a recognizable code
sequence, such as a reduction loop, with optimized code sequences or function calls). When the
vectorizer finds vectorization opportunities, it internally rearranges or replaces sections of loops
(the vectorizer changes the code generated; your source code’ s loops are not altered). In addition
to performing these loop transformations, the vectorizer produces extensive data dependence
information for use by other phases of compilation and detects opportunities to use vector or
packed Sreaming SMD Extensions (SSE) instructions on processors where these are supported.

The -Mvect option can speed up code which contains well-behaved countable loops which
operate on large REAL, REAL (4), REAL (8), INTEGER, INTEGER(4), COMPLEX (4) or
COMPLEX(8) arraysin Fortran and their C/C++ counterparts. However, it is possible that some
codes will show a decrease in performance when compiled with the -Mvect option due to

the generation of conditionally executed code segments, inability to determine data alignment,
and other code generation factors. For this reason, it is recommended that you check carefully
whether particular program units or loops show improved performance when compiled with this
option enabled.

PGI Compiler User's Guide 32

Optimizing and Parallelizing

3.6.1. Vectorization Sub-options

The vectorizer performs high-level loop transformations on countable loops. A loop is countable
if the number of iterationsis set only before loop execution and cannot be modified during loop
execution. Some of the vectorizer transformations can be controlled by arguments to the -Mvect
command line option. The following sections describe the arguments that affect the operation of
the vectorizer. In addition, some of these vectorizer operations can be controlled from within code
using directives and pragmas. For details on the use of directives and pragmas, refer to Using
Directives and Pragmas.

The vectorizer performs the following operations:

» Loop interchange

» Loop splitting

Loop fusion

Memory-hierarchy (cache tiling) optimizations

Generation of SSE instructions on processors where these are supported
Generation of prefetch instructions on processors where these are supported
» Loop iteration peeling to maximize vector alignment

» Alternate code generation

v

v v VY

By default, -Mvect without any sub-optionsis equivalent to:

—Mvectzassoc,cachesizezc
where ¢ isthe actual cache size of the machine.

This enables the options for nested loop transformation and various other vectorizer options.
These defaults may vary depending on the target system. The following table lists and briefly
describes some of the -Mvect suboptions.

Table 8 —-Mvect Suboptions

Use this option ... To instruct the vectorizer to do this...
-Mvect=altcode Generate appropriate code for vectorized loops.
-Mvect=[nol]assoc Perform[disable] associativity conversions that can change the

results of a computation due to a round-off error. For example,
a typical optimization is to change one arithmetic operation

to another arithmetic operation that is mathematically correct,
but can be computationally different and generate faster code.
This option is provided to enable or disable this transformation,
since a round-off error for such associativity conversions may
produce unacceptable results.

-Mvect=cachesize:n Tiles nested loop operations, assuming a data cache size of

n bytes. By default, the vectorizer attempts to tile nested loop
operations, such as matrix multiply, using multi-dimensional
strip-mining techniques to maximize re-use of items in the data

cache.
-Mvect=fuse Enable loop fusion.
—Mvect=gather Enable vectorization of indirect array references.

PGI Compiler User's Guide 33

Optimizing and Parallelizing

Use this option ... To instruct the vectorizer to do this...
-Mvect=idiom Enable idiom recognition.

-Mvect=levels:<n> Set the maximum next level of loops to optimize.
-Mvect=nocond Disable vectorization of loops with conditions.
-Mvect=partial Enable partial loop vectorization via inner loop distribution.
-Mvect=prefetch Automatically generate prefetch instructions when vectorizable

loops are encountered, even in cases where SSE instructions
are not generated.

-Mvect=short Enable short vector operations.

-Mvect=simd Automatically generate packed SSE (Streaming SIMD
Extensions), and prefetch instructions when vectorizable loops
are encountered. SIMD instructions, first introduced on Pentium
[l and AthlonXP processors, operate on single-precision
floating-point data.

-Mvect=sizelimit:n Limit the size of vectorized loops.

-Mvect=sse Equivalent to —-Mvect=simd.
-Mvect=tile Enable loop tiling.

-Mvect=uniform Perform consistent optimizations in both vectorized and

residual loops. Be aware that this may affect the performance
of the residual loop.

Inserting no in front of the option disables the option. For example, to disable the generation of SSE (or
SIMD) instructions, compile with -Mvect=nosimd.

3.6.2. Vectorization Example Using SIMD Instructions

One of the most important vectorization optionsis -Mvect=simd. When you use this option,
the compiler automatically generates SSE instructions, where possible, when targeting processors
on which these instructions are supported. This process can improve performance by severa
factors compared with the equivalent scalar code. All of the PGI Fortran, C and C++ compilers
support this capability. The PGl Release Notes show which x86 and x64 processors PGl supports.

In the program in VVector operation using SIMD instructions, the vectorizer recognizes the vector
operation in subroutine 'loop' when either the compiler switch -Mvect=simd or —-fast isused.
This example shows the compilation, informational messages, and runtime results using the SSE
instructions on a4 Core Intel Sandybridge 2.5 GHz system, along with issues that affect SSE
performance.

L oops vectorized using SSE instructions operate much more efficiently when processing vectors
that are aligned to a cache-line boundary. Y ou can cause unconstrained data objects of size
16 bytes or greater to be cache-aligned by compiling with the -Mcache align switch. An

PGI Compiler User's Guide 34

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

unconstrained data object is a data object that is not a common block member and not a member
of an aggregate data structure.

For stack-based local variables to be properly aligned, the main program or function must be compiled with
—Mcache align.

The -Mcache align switch hasno effect on the alignment of Fortran allocatable or automatic
arrays. If you have arrays that are constrained, such as vectors that are members of Fortran
common blocks, you must specifically pad your data structures to ensure proper cache alignment.
You canuse -Mcache align for only the beginning address of each common block to be
cache-aligned.

The following examples show the results of compiling the sample code in Vector operation using
SIMD instructions both with and without the option -Mvect=simd.

Vector operation using SIMD instructions

program vector op
parameter (N = 9999)
real*4d x(N), y(N), z(N), W(N)

doi=1, n
y(i) =1
z (1) = 2*1
w(i) = 4*1

enddo

do j = 1, 200000
call loop(x,v,z,w,1.0e0,N)
enddo
print *, x(1),x(771),x(3618),x(6498),x(9999)
end

subroutine loop(a,b,c,d,s,n)
integer i, n
real*4 a(n), b(n), c(n), d(n),s
doi =1, n
a(i) =b(i) + c(i) - s * d(i)
enddo
end

Assume the preceding program is compiled as follows, where ~-Mvect=nosimd disables SSE
vectorization:

[)

% pgfortran -fast -Mvect=nosimd -Minfo vadd.f -Mfree -o vadd
vector op:
4, Loop unrolled 16 times
Generates 1 prefetches in scalar loop
9, Loop not vectorized/parallelized: contains call
loop:
18, Loop unrolled 4 times

The following output shows a sample result if the generated executable is run and timed on a4
Core Intel Sandybridge 2.5 GHz system:

% /bin/time vadd

-1.000000 -771.000 -3618.000 -6498.00 -9999.00

1.35user 0.00system 0:01.35elapsed 99%CPU (Oavgtext+Oavgdata 3936maxresident) k
Oinputs+Ooutputs (Omajor+290minor)pagefaults Oswaps

PGI Compiler User's Guide 35

Optimizing and Parallelizing

Now, recompile with SSE vectorization enabled, and you see results similar to these:

[)

% pgfortran -fast -Minfo vadd.f -Mfree -o vadd
vector op:
4, Loop not vectorized: may not be beneficial
Unrolled inner loop 8 times
Residual loop unrolled 7 times (completely unrolled)
Generated 1 prefetches in scalar loop
9, Loop not vectorized/parallelized: contains call
loop:
17, Generated 4 alternate versions of the loop
Generated vector sse code for the loop
Generated 3 prefetch instructions for the loop

Notice the informational message for the loop at line 17.

» Thefirst two lines of the message indicate that the loop was vectorized, SSE instructions
were generated, and four alternate versions of the loop were also generated. The loop count
and alignments of the arrays determine which of these versions is executed.

» Thelast line of the informational message indicates that prefetch instructions have been
generated for three loads to minimize latency of data transfers from main memory.

Executing again, you should see results similar to the following:

% /bin/time vadd

-1.000000 -771.000 -3618.00 -6498.00 -9999.0

0.60user 0.00system 0:00.6lelapsed 99%CPU (Oavgtext+0avgdata 3920maxresident)k
Oinputs+0Ooutputs (Omajor+289minor)pagefaults Oswaps

The SIMD result is 2.25 times faster than the equivalent non-SIMD version of the program.
Speed-up realized by agiven loop or program can vary widely based on a number of factors:

» When the vectors of data are resident in the data cache, performance improvement using
vector SSE or SSE2 instructionsis most effective.

» If dataisaligned properly, performance will be better in general than when using vector SSE
operations on unaligned data.

» If the compiler can guarantee that datais aligned properly, even more efficient sequences of
SSE instructions can be generated.

» Theefficiency of loops that operate on single-precision data can be higher. SSE2 vector
instructions can operate on four single-precision elements concurrently, but only two double-
precision elements.

Compiling with —-Mvect=simd can resultin numerical differences from the executables generated
with less optimization. Certain vectorizable operations, for example dot products, are sensitive to order of
operations and the associative transformations necessary to enable vectorization (or parallelization).

3.7. Auto-Parallelization using -Mconcur

With the -Mconcur option the compiler scans code searching for loops that are candidates for
auto-parallelization. —-Mconcur must be used at both compile-time and link-time. When the
paralelizer finds opportunities for auto-parallelization, it parallelizes loops and you are informed

PGI Compiler User's Guide 36

Optimizing and Parallelizing

of theline or loop being parallelized if the -Minfo option is present on the compile line. For a
complete specification of -Mconcur, refer to the * Optimization Controls’ section of the PGI
Compiler Reference Manual.

A loop is considered parallelizable if it doesn't contain any cross-iteration data dependencies.
Cross-iteration dependencies from reductions and expandabl e scalars are excluded from
consideration, enabling more loops to be parallelizable. In general, loops with calls are not
paralelized due to unknown side effects. Also, loops with low trip counts are not parallelized
since the overhead in setting up and starting a parallel 1oop will likely outweigh the potential
benefits. In addition, the default is not to paralelize innermost loops, since these often by
definition are vectorizable using SSE instructions and it is seldom profitable to both vectorize and
paralelize the same loop, especially on multi-core processors. Compiler switches and directives
are available to let you override most of these restrictions on auto-parall€elization.

3.7.1. Auto-Parallelization Sub-options

The parallelizer performs various operations that can be controlled by arguments to the -
Mconcur command line option. The following sections describe these arguments that affect
the operation of the parallelizer. In addition, these parallelizer operations can be controlled from
within code using directives and pragmas. For details on the use of directives and pragmas, refer
to Using Directives and Pragmas.

By default, -Mconcur without any sub-optionsis equivalent to:

—Mconcur=dist:block

This enables parallelization of loops with blocked iteration allocation across the available threads
of execution. These defaults may vary depending on the target system. The following table lists
and briefly describes some of the -Mconcur suboptions.

Table 9 -Mconcur Suboptions

Use this option ... To instruct the parallelizer to do this...
—Mconcur=allcores Use all available cores. Specify this option at link time.
—Mconcur=[noJaltcode Generate [do not generate] alternate serial code for parallelized

loops. If altcode is specified without arguments, the parallelizer
determines an appropriate cutoff length and generates serial
code to be executed whenever the loop count is less than or
equal to that length.

If altcode :nis specified, the serial altcode is executed
whenever the loop count is less than or equal to n. Specifying
noaltcode disables this option and no alternate serial
code is generated.

—Mconcur=[nol]assoc Enable [disable] parallelization of loops with associative
reductions.

—Mconcur=bind Bind threads to cores. Specify this option at link time.

—Mconcur=cncall Specifies that it is safe to parallelize loops that contain

subroutine or function calls. By default, such loops are
excluded from consideration for auto-parallelization. Also,
no minimum loop count threshold must be satisfied before

PGI Compiler User's Guide 37

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

Use this option ... To instruct the parallelizer to do this...

parallelization occurs, and last values of scalars are assumed
to be safe.

—Mconcur=dist: {block|cyclic} Specifies whether to assign loop iterations to the available
threads in blocks or in a cyclic (round-robin) fashion. Block
distribution is the default. If cyclic is specified, iterations are
allocated to processors cyclically. That is, processor 0 performs
iterations 0, 3, 6, etc.; processor 1 performs iterations 1, 4, 7,
etc.; and processor 2 performs iterations 2, 5, 8, etc.

—-Mconcur=innermost Enable parallelization of innermost loops.

—Mconcur=levels:<n> Parallelize loops nested at most n levels deep.

—Mconcur=[no]numa Use thread/processors affinity when running on a NUMA
architecture. Specifying —-Mconcur=nonuma disables
this option.

The environment variable NCPUS is checked at runtime for a parallel program. If NCPUS is

set to 1, aparallel program runs serially, but will use the parallel routines generated during
compilation. If NCPUS is set to avalue greater than 1, the specified number of processors

are used to execute the program. Setting NCPUS to a value exceeding the number of physical
processors can produce inefficient execution. Executing a program on multiple processorsin an
environment where some of the processors are being time-shared with another executing job can
also result in inefficient execution.

As with the vectorizer, the -Mconcur option can speed up codeiif it contains well-behaved
countable loops and/or computationally intensive nested loops that operate on arrays. However,

it is possible that some codes show a decrease in performance on multi—processor systems when
compiled with -Mconcur due to parall€dization overheads, memory bandwidth limitations in the
target system, false—sharing of cache lines, or other architectural or code—generation factors. For
thisreason, it is recommended that you check carefully whether particular program units or loops
show improved performance when compiled using this option.

If the compiler is not able to successfully auto-parallelize your application, you should refer to
Using OpenMP. It is possible that insertion of explicit parallelization directives or pragmas, and
use of the compiler option —mp might enable the application to run in parallel.

3.7.2. Loops That Fail to Parallelize

In spite of the sophisticated analysis and transformations performed by the compiler,
programmers may notice loops that are seemingly parallel, but are not parallelized. In this
subsection, we look at some examples of common situations where parall€elization does not occur.

Innermost Loops

As noted earlier in this section, the PGl compilers will not paralelize innermost loops by
default, because it is usually not profitable. However, you can override this default using the —
Mconcur=innermost command-line option.

PGI Compiler User's Guide 38

Optimizing and Parallelizing

Timing Loops

Often, loops occur in programs that are similar to timing loops. The outer loop in the following
example is one such loop.
do j =1, 2

do i =1, n
1 a(i) = b(i) + c(i)
enddo
enddo

The outer loop in the preceding exampleis not parallelized because the compiler detects a cross-
iteration dependence in the assignment to a (1) . Suppose the outer loop were parallelized.

Then both processors would simultaneously attempt to make assignmentsinto a (1 :n) . Now

in general the values computed by each processor for a (1 :n) will differ, so that simultaneous
assignment into a (1 :n) will produce values different from sequential execution of the loops.

In this example, values computed for a (1 :n) don't depend on 5, so that simultaneous
assignment by both processors does not yield incorrect results. However, it is beyond the scope
of the compilers' dependence analysis to determine that values computed in one iteration of
aloop don't differ from values computed in another iteration. So the worst case is assumed,
and different iterations of the outer loop are assumed to compute different valuesfor a (1:n).
I's this assumption too pessimistic? If 5 doesn’t occur anywhere within aloop, the loop exists
only to cause some delay, most probably to improve timing resolution. It is not usually valid to
parallelize timing loops; to do so would distort the timing information for the inner loops.

Scalars

Quite often, scalars will inhibit parallelization of non-innermost loops. There are two separate
cases that present problems. In the first case, scalars appear to be expandable, but appear in non-
innermost loops, asin the following example.

There are anumber of technical problems to be resolved in order to recognize expandable scalars
in non-innermost loops. Until this generalization occurs, scalars like x in the preceding code
segment inhibit parallelization of loops in which they are assigned. In the following example,
scalar k isnot expandable, and it is not an accumulator for areduction.

.gt. n/2) k =n - (i - n/2)
If the outer loop is parallelized, conflicting values are stored into k by the various processors. The

variable k cannot be made local to each processor because its value must remain coherent among
the processors. It is possible the loop could be parallelized if all assignmentsto k are placed in

PGI Compiler User's Guide 39

Optimizing and Parallelizing

critical sections. However, it is not clear where critical sections should be introduced because
in genera the value for k could depend on another scalar (or on k itself), and code to obtain the
value of other scalars must reside in the same critical section.

In the previous example, the assignment to k within a conditional at label 2 prevents k from
being recognized as an induction variable. If the conditional statement at label 2 isremoved,
k would be an induction variable whose value varies linearly with 5, and the loop could be
paralelized.

Scalar Last Values

During paralelization, scalars within loops often need to be privatized; that is, each execution
thread has its own independent copy of the scalar. Problems can ariseif a privatized scalar is
accessed outside the loop. For example, consider the following loops in C/C++ and Fortran:

/* C/C++ version */
for (i = 1; i<N; i++){
if(x[i] > 5.0)
t = x[i];

call f(v)

The value of t may not be computed on the last iteration of the loop. Normally, if ascalar is
assigned within aloop and used following the loop, the PGl compilers save the last value of the
scalar. However, if the loop is parallelized and the scalar is not assigned on every iteration, it may
be difficult, without resorting to costly critical sections, to determine on what iteration t islast
assigned. Analysis allows the compiler to determine that a scalar is assigned on each iteration and
hence that the loop is safe to parallelize if the scalar is used later, asillustrated in the following C/
C++ and Fortran examples.

PGI Compiler User's Guide 40

/* C/C++ version */
for (i=1;i<n;i++) {
if (x[11>0.0) {
t=2.0;
}
else {
£t=3.0;
ylil=t;
}
}

v=t;

! Fortran version
do I =1,N
if (x(I)>0.0) then
t=2.0
else
t=3.0
y(i)=t
endif
enddo
v=t

Optimizing and Parallelizing

Notice that t isassigned on every iteration of the loop. However, there are cases where a scalar
may be privatizable, but if it is used after the loop, it is unsafe to parallelize. Examine the
following loops in which each use of t within the loop is reached by a definition from the same

iteration.

/* C/C++ Version */
for (i=1;i<N;i++) {
1if(x[1]>0.0) {

t=x[1];
vi]=t;
}
}
v=t;
f(v);
! Fortran Version
do I =1,N
if (x(I)>0.0) then
t=x(I)
y(i)=t
endif
enddo
v=t
call f(v)

Here t is privatizable, but the use of t outside the loop may yield incorrect results, since the
compiler may not be able to detect on which iteration of the parallelized loop t islast assigned.
The compiler detects the previous cases. When a scalar is used after the loop but is not defined on

every iteration of the loop, parallelization does not occur.

When the programmer knows that the scalar is assigned on the last iteration of the loop, the
programmer may use a directive or pragmato let the compiler know the loop is safe to parallelize.
Thedirective or pragmasafe lastval informsthe compiler that, for agiven loop, all scalars

PGI Compiler User's Guide

41

Optimizing and Parallelizing

are assigned in the last iteration of the loop; thus, it is safe to parallelize the loop. We could add
the following line to any of our previous examples.

'pgis$l safe lastval ! Fortran Version

#pragma loop safe lastval /* C/C++ Version */

The resulting code looks similar to this:

/* C/C++ Version */
#pragma loop safe lastval
for (i=1;i<N;i++) {
if(x[1]1>5.0) t=x[i];

}
v = t;

! Fortran Version
'pgis$l safe lastv

> 5.0) then

In addition, acommand-line option ~-Msafe lastval providesthisinformation for al loops
within the routines being compiled, which essentially provides global scope.

3.8. Processor-Specific Optimization & the Unified Binary

Every brand of processor has differences, some subtle, in hardware features such as instruction
sets and cache size. The compilers make architecture-specific decisions about things such as
instruction selection, instruction scheduling, and vectorization. By default, the PGI compilers
produce code specifically targeted to the type of processor on which the compilationis
performed. That is, the default isto use al supported instructions wherever possible when
compiling on a given system. As aresult, executables created on a given system may not be
usable on previous generation systems. For example, executables created on a Pentium 4 may fail
to execute on a Pentium I11 or Pentium 11.

All PGI compilers have the capability of generating unified binaries, which provide alow-
overhead means for generating a single executabl e that is compatible with and has good
performance on more than one hardware platform.

Y ou can use the —tp option to control compilation behavior by specifying the processor or
processors with which the generated code is compatible. The compilers generate and combine
into one executable multiple binary code streams, each optimized for a specific platform. At
runtime, the executabl e senses the environment and dynamically selects the appropriate code
stream. For specific information on the —tp option, refer to the PGI Compiler Reference Manual.

Executable size is automatically controlled via unified binary culling. Only those functions and
subroutines where the target affects the generated code have unique binary images, resultingin a
code-size savings of 10% to 90% compared to generating full copies of code for each target.

Programs can use the PGI Unified Binary even if al of the object files and libraries are not
compiled as unified binaries. Like any other object file, you can use PGl Unified Binary object

PGI Compiler User's Guide 42

http://www.pgroup.com/resources/docs.htm

Optimizing and Parallelizing

filesto create programs or libraries. No special start up code is needed; support islinked in from
the PGl libraries.

The -Mipa option disables generation of PGl Unified Binary. Instead, the default target auto-
detect rules for the host are used to select the target processor.

3.9. Interprocedural Analysis and Optimization using —Mipa

The PGI Fortran, C and C++ compilers use interprocedural analysis (IPA) that resultsin minimal
changes to makefiles and the standard edit-build-run application development cycle. Other

than adding —Mipa to the command line, no other changes are required. For reference and
background, the process of building a program without IPA is described later in this section,
followed by the minor modifications required to use IPA with the PGI compilers. While the
PGCC compiler is used here to show how IPA works, similar capabilities apply to each of the
PGI Fortran, C and C++ compilers.

The examples use Linux file naming conventions. On Windows, “.0’ files would be *.obj’ files, and ‘a.out’
files would be “.exe’ files.

3.9.1. Building a Program Without IPA — Single Step

Using the pgcc command-level compiler driver, multiple source files can be compiled and linked
into a single executable with one command. The following example compiles and links three
source files:

[

% pgcc -o a.out filel.c file2.c file3.c

In actuality, the pgcc driver executes several steps to produce the assembly code and object files
corresponding to each source file, and subsequently to link the object files together into asingle
executable file. This command is roughly equivalent to the following commands performed
individually:

pgcc -S -o filel.s filel.c

as -o filel.o filel.s

pgcc -S -o file2.s file2.c

as -o file2.0 file2.s

pgcc -S -o file3.s file3.c

as -o file3.o0 file3.s

pgcc -o a.out filel.o file2.o0 file3.o

o o° oo

o o oP

oo

If any of the three sourcefilesis edited, the executable can be rebuilt with the same command
line:

[

% pgcc -o a.out filel.c file2.c file3.c

This always works as intended, but has the side-effect of recompiling all of the source files, even if only
one has changed. For applications with a large number of source files, this can be time-consuming and
inefficient.

PGI Compiler User's Guide 43

Optimizing and Parallelizing

3.9.2. Building a Program Without IPA - Several Steps

It isalso possible to use individual pgcc commands to compile each source fileinto a
corresponding object file, and oneto link the resulting object files into an executable:

pgcc -c filel.c
pgcc -c file2.c
pgcc -c file3.c
pgcc -o a.out filel.o file2.o0 file3.o

oe

o oe

o©

The pgcc driver invokes the compiler and assembler as required to process each source file,
and invokes the linker for the final link command. If you modify one of the sourcefiles, the
executable can be rebuilt by compiling just that file and then relinking:

% pgcc -c filel.c
% pgcc -o a.out filel.o file2.0 file3.o

3.9.3. Building a Program Without IPA Using Make

The program compilation and linking process can be simplified greatly using themake utility on
systems where it is supported. Suppose you create amake file containing the following lines:

a.out: filel.o file2.0 file3.o

pgcc $(OPT) -o a.out filel.o file2.o file3.o
filel.o: filel.c

pgcc S$(OPT) -c filel.c

file2.0: file2.c

pgcc $(OPT) -c file2.c

file3.0: file3.c

pgcc S$(OPT) -c file3.c

It isthen possible to type a single make command:

% make

Themake utility determines which object files are out of date with respect to their corresponding
source files, and invokes the compiler to recompile only those source files and to relink the
executable. If you subsequently edit one or more source files, the executable can be rebuilt with
the minimum number of recompilations using the same single make command.

3.9.4. Building a Program with IPA

Interprocedural analysis and optimization (IPA) by the PGI compilers aters the standard and
make utility command-level interfaces aslittle as possible. IPA occursin three phases:

» Collection: Create asummary of each function or procedure, collecting the useful
information for interprocedural optimizations. Thisis done during the compile step if the -
Mipa switch is present on the command line; summary information is collected and stored in
the object file.

» Propagation: Process al the object filesto propagate the interprocedural summary
information across function and file boundaries. Thisis done during the link step, when all
the object files are combined, if the -Mipa switch is present on the link command line.

» Recompile/Optimization: Recompile each of the object files with the propagated
interprocedural information, producing a specialized object file. This processis aso
performed during the link step when the -Mipa switch is present on the link command line.

PGI Compiler User's Guide 44

Optimizing and Parallelizing

When linking with -M1 pa, the PGl compilers automatically regenerate | PA-optimized versions
of each object file, essentially recompiling each file. If there are IPA-optimized objects from a
previous build, the compilers will minimize the recompile time by reusing those objectsif they
are still valid. They will still be valid if the IPA-optimized object is newer than the original object
file, and the propagated I PA information for that file has not changed since it was optimized.

After each object file has been recompiled, the regular linker isinvoked to build the application
with the | PA-optimized object files. The IPA-optimized object files are saved in the same
directory asthe original object files, for use in subsequent program builds.

3.9.5. Building a Program with IPA - Single Step

By adding the -Mipa command line switch, several source files can be compiled and linked with
interprocedural optimizations with one command:

[)

% pgcc -Mipa=fast -o a.out filel.c file2.c file3.c

Just like compiling without —Mipa, the driver executes several steps to produce the assembly and
object files to create the executable:

pgcc -Mipa=fast -S -o filel.s filel.c

as -o filel.o filel.s

pgcc -Mipa=fast -S -o file2.s file2.c

as -o file2.0 file2.s

pgcc -Mipa=fast -S -o file3.s file3.c

as -o file3.0 file3.s

pgcc -Mipa=fast -o a.out filel.o file2.o file3.o

o o o oP

o° o° o°

In the last step, an IPA linker isinvoked to read all the IPA summary information and perform the
interprocedural propagation. The IPA linker reinvokes the compiler on each of the object files to
recompile them with interprocedural information. This creates three new objects with mangled
names:

filel ipa5 a.out.oco.o, file2 ipab5 a.out.oco.o, file3 ipab a.out.oo0.0

The system linker is then invoked to link these | PA-optimized objects into the final executable.
Later, if one of the three source filesis edited, the executable can be rebuilt with the same
command line:

[

% pgcc -Mipa=fast -o a.out filel.c file2.c file3.c

Thisworks, but again has the side-effect of compiling each source file, and recompiling each
object file at link time.

3.9.6. Building a Program with IPA - Several Steps

Just by adding the —-Mipa command-line switch, it is possible to use individual pgcc commands
to compile each source file, followed by a command to link the resulting object filesinto an
executable:

pgcc -Mipa=fast -c filel.c

pgcc -Mipa=fast -c file2.c

pgcc -Mipa=fast -c file3.c

pgcc -Mipa=fast -o a.out filel.o file2.o file3.o

o©

o° o° o°

PGI Compiler User's Guide 45

Optimizing and Parallelizing

The pgcc driver invokes the compiler and assembler as required to process each source file, and
invokes the IPA linker for the final link command. If you modify one of the sourcefiles, the
executable can be rebuilt by compiling just that file and then relinking:

% pgcc -Mipa=fast -c filel.c

% pgcc -Mipa=fast -o a.out filel.o file2.o0 file3.o

When the IPA linker isinvoked, it will determine that the |PA-optimized object for filel.o
(filel ipa5 a.out.oo.o)isstae, sinceitisolder than the object filel.o; and

hence it needs to be rebuilt, and reinvokes the compiler to generate it. In addition, depending

on the nature of the changes to the sourcefile filel. c, theinterprocedural optimizations
previously performed for £ile2 and £i1e3 may now be inaccurate. For instance, IPA

may have propagated a constant argument valuein acall fromafunctionin filel.ctoa
functionin £ile2. c; if the value of the argument has changed, any optimizations based on that
constant value are invalid. The IPA linker determines which, if any, of the previously created

I PA-optimized objects need to be regenerated; and, as appropriate, reinvokes the compiler to
regenerate them. Only those objects that are stale or which have new or different IPA information
are regenerated. This approach saves compile time.

3.9.7. Building a Program with IPA Using Make

As shown earlier, programs can be built with IPA using the make utility. Just add the command-
line switch -Mipa, as shown here:

OPT=-Mipa=fast
a.out: filel.o file2.0 file3.o
pgcc $(OPT) -o a.out filel.o file2.o file3.o

filel.o: filel.c
pgcc $(OPT) -c filel.c
file2.0: file2.c
pgcc $(OPT) -c file2.c
file3.0: file3.c

pgcc $(OPT) -c file3.c

Using the single make command invokes the compiler to generate any of the object files that are
out-of-date, then invokes pgcc to link the objectsinto the executable. At link time, pgcc calls the
IPA linker to regenerate any stale or invalid | PA-optimized objects.

[

% make

3.9.8. Questions about IPA

Question: Why isthe object file so large?

Answer: An object file created with —-Mipa contains several additional sections. Oneisthe
summary information used to drive the interprocedural analysis. In addition, the object file
contains the compiler internal representation of the source file, so the file can be recompiled at
link time with interprocedural optimizations. There may be additional information when inlining
isenabled. Thetotal size of the object file may be 5-10 timesits original size. The extra sections
are not added to the final executable.

Question: What if | compile with —-Mipa and link without -Mipa?

Answer: The PGI compilers generate alegal object file, even when the source file is compiled
with —Mipa. If you compile with —-Mipa and link without -Mipa, the linker isinvoked on the
original object files. A legal executable is generated. While this executable does not have the
benefit of interprocedural optimizations, any other optimizations do apply.

PGI Compiler User's Guide 46

Optimizing and Parallelizing

Question: What if | compile without -Mipa and link with -Mipa?

Answer: At link time, the IPA linker must have summary information about all the functions

or routines used in the program. Thisinformation is created only when afile is compiled with
—-Mipa. If you compile afile without -Mipa and then try to get interprocedural optimizations

by linking with —Mipa, the IPA linker will issue a message that some routines have no IPA
summary information, and will proceed to run the system linker using the original object files.

If some files were compiled with —Mipa and others were not, it will determine the safest
approximation of the IPA summary information for those files not compiled with -Mipa, and use
that to recompile the other files using interprocedural optimizations.

Question: Can | build multiple applications in the same directory with —-Mipa?

Answer: Yes. Suppose you have three sourcefiles: mainl.c,main2.c, and sub. c, where
sub . c is shared between the two applications. Suppose you build the first application with —
Mipa, using this command:

[

% pgcc -Mipa=fast -o appl mainl.c sub.c

The IPA linker creates two | PA-optimized object files and uses them to build the first application.
mainl ipa4 appl.oo sub ipa4 appl.oo

Now suppose you build the second application using this command:

[)

% pgcc -Mipa=fast -o app2 main2.c sub.c

The IPA linker creates two more | PA-optimized object files:
main2 ipa4 app2.00 sub ipa4 app2.00

There are now three object files for sub . c: the original sub . o, and two IPA-optimized objects, one for
each application in which it appears.

Question: How is the mangled name for the |PA-optimized object files generated?

Answer: The mangled name has*_ipa appended, followed by the decimal number of the length
of the executable file name, followed by an underscore and the executable file name itself. The
suffix is changed to .00 so that linking * .o does not pull in the IPA-optimized objects. If the IPA
linker determines that the file would not benefit from any interprocedural optimizations, it does
not have to recompile thefile at link time, and uses the original object.

3.10. Profile-Feedback Optimization using —-Mpfi/~-Mpfo

The PGI compilers support many common profile-feedback optimizations, including semi-
invariant value optimizations and block placement. These are performed under control of the —
Mpfi/-Mpfo command-line options.

When invoked with the -Mp £ i option, the PGI compilers instrument the generated executable for
collection of profile and data feedback information. This information can be used in subsequent
compilations that include the —Mp f o optimization option. -Mp i must be used at both compile-
time and link-time. Programs compiled with —-Mpf i include extra code to collect runtime

PGI Compiler User's Guide 47

Optimizing and Parallelizing

statistics and write them out to a trace file. When the resulting program is executed, a profile
feedback tracefilepgfi . out isgenerated in the current working directory.

Programs compiled and linked with —Mp f 1 execute more slowly due to the instrumentation and data
collection overhead. You should use executables compiled with —Mp £ 1 only for execution of training runs.

When invoked with the —-Mp f o option, the PGl compilers use datafromapgfi . out profile
feedback tracefile to enable or enhance certain performance optimizations. Use of this option
reguires the presence of apgfi . out tracefilein the current working directory.

3.11. Default Optimization Levels

The following table shows the interaction between the -O<level>, —g, and -M<opt> options. In
thetable, level canbe0, 1, 2, 3 or 4, and <opt> can be vect, concur, unroll or ipa. The
default optimization level is dependent upon these command-line options.

Table 10 Optimization and -0, —g and -M<opt> Options

Optimize Option Debug Option —M<opt> Option Optimization Level
none none none 1

none none -M<opt> 2

none -g none 0

-0 none or —g none 2

—Olevel none or —g none level

—Olevel <=2 none or —g -M<opt> 2

Code that is not optimized yet compiled using the option —00 can be significantly slower than
code generated at other optimization levels. The -M<opt > option, where <opt>isvect,
concur,unroll Of ipa, setsthe optimization level to 2if no -0 options are supplied. The -
fast option sets the optimization level to a target-dependent optimization level if no -0 options
are supplied.

3.12. Local Optimization Using Directives and Pragmas

Command-line options let you specify optimizations for an entire source file. Directives
supplied within a Fortran source file and pragmas supplied within a C or C++ source file provide
information to the compiler and alter the effects of certain command-line options or the default
behavior of the compiler. (Many directives have a corresponding command-line option.)

While acommand line option affects the entire source file that is being compiled, directives and
pragmas let you do the following:

» Apply, or disable, the effects of a particular command-line option to selected subprograms or
to selected loops in the source file (for example, an optimization).

» Globally override command-line options.

PGI Compiler User's Guide 48

Optimizing and Parallelizing

» Tune selected routines or loops based on your knowledge or on information obtained through
profiling.

Using Directives and Pragmas provides details on how to add directives and pragmas to your
sourcefiles.

3.13. Execution Timing and Instruction Counting

Asthis chapter describes, once you have a program that compiles, executes and gives correct
results, you may optimize your code for execution efficiency.

Selecting the correct optimization level requires some thought and may require that you compare
several optimization levels before arriving at the best solution. To compare optimization levels,
you need to measure the execution time for your program. There are several approaches you can
take for timing execution.

» You can use shell commands that provide execution time statistics.
» You caninclude function callsin your code that provide timing information.
» You can profile sections of code.

Timing functions available with the PGl compilers include these:

» 3Ftiming routines.
» The SECNDS pre-declared function in PGF77, PGF95, or PGFORTRAN.
» TheSYSTEM_CLOCK or CPU_CLOCK intrinsicsin PGF95 or PGFORTRAN.

In general, when timing a program, you should try to eliminate or reduce the amount of system
level activities such as /0O, program loading, and task switching.

The following example shows a fragment that indicates how to use SYSTEM_CLOCK
effectively within a Fortran program unit.

Using SYSTEM_CLOCK code fragment

integer :: nprocs, hz, clock0O, clockl
real :: time
call system clock (count rate=hz)
call system clock (count=clockO0)

< do work>

call system_clock(count:clockl)

t = (clockl - clock0)

time = real (t) / real (hz)

Or you can use the F90 cpu_ t ime subroutine:

real :: tl, t2, time
call cpu time(tl)

< do work>

call cpu time(t2)
time = t2 - tl

3.14. Portability of Multi-Threaded Programs on Linux

PGI created the library 1ibnuma to handle the variations between various implementations of
Linux.

PGI Compiler User's Guide 49

Optimizing and Parallelizing

Some older versions of Linux are lacking certain features that support multi-processor and multi-
core systems; in particular, the system call 'sched_setaffinity' and the numalibrary 1 ibnuma.
The PGI runtime library uses these features to implement some -Mconcur and —mp operations.

These variations led to the creation of the PGI library: 1ibnuma, which isused on all 32-bit and
64-bit Linux systems, but is not needed on Windows or OS X.

When a program is linked with the system 1ibnuma library, the program depends on that library
to run. On systems without a 1 ibnuma library, the PGl version of 1 ibnuma providesthe
required stubs so that the program links and executes properly. If the program is linked with
1libnuma, the differences between systemsis masked by the different versions of 1ibnuma.

When a program is deployed to the target system, the proper set of libraries, real or stub, should
be deployed with the program.

Thisfacility requires that the program be dynamically linked with 1ibnuma.

3.14.1. libnuma

Not all systems have 1ibnuma. Typicaly, only numa systems have thislibrary. PGl supplies a
stub version of 11ibnuma which satisfies the calls from the PGI runtimeto 1 ibnuma. 1 ibnuma
isashared library that is linked dynamically at runtime.

The reason to have anumalibrary on all systemsisto allow multi-threaded programs, such as
programs compiled with -Mconcur or —mp, to be compiled, linked, and executed without regard
to whether the host or target systems has a numallibrary. When the numalibrary is not available,
amulti-threaded program still runs because the callsto the numalibrary are satisfied by the PGI
stub library.

During installation, the installation procedure checks for the existence of areal 1ibnuma among
the system libraries. If thereal library is not found, the PGI stub version is substituted.

PGI Compiler User's Guide 50

Chapter 4.
USING FUNCTION INLINING

Function inlining replaces a call to afunction or a subroutine with the body of the function

or subroutine. This can speed up execution by eliminating parameter passing and function/
subroutine call and return overhead. It also allows the compiler to optimize the function with the
rest of the code. Note that using function inlining indiscriminately can result in much larger code
size and no increase in execution speed.

The PGI compilers provide two categories of inlining:

» Automatic inlining - During the compilation process, a hidden pass precedes the
compilation pass. This hidden pass extracts functions that are candidates for inlining. The
inlining of functions occurs as the source files are compiled.

» Inlinelibraries- You createinline libraries, for example using the pgfortran compiler driver
and the —o and -Mextract options. Thereisno hidden extract pass but you must ensure
that any filesthat depend on the inline library use the latest version of theinline library.

There are important restrictions on inlining. Inlining only appliesto certain types of functions.
Refer to Restrictions on Inlining for more details on function inlining limitations.

This section describes how to use the following options related to function inlining:

—Mextract
—Minline

-Mrecursive

4.1. Invoking Function Inlining

To invoke the function inliner, use the -Min1ine option. If you do not specify an inline library,
the compiler performs a special prepass on al source files named on the compiler command

line before it compiles any of them. This pass extracts functions that meet the requirements for
inlining and puts them in atemporary inline library for use by the compilation pass.

Severa -Minline suboptionslet you determine the selection criteriafor functions to be inlined.
These suboptions include:

PGI Compiler User's Guide 51

Using Function Inlining

except: func
Inlines all eligible functions except func, afunction in the source text. you can use acomma-
separated list to specify multiple functions.

[name] func
Inlines al functions in the source text whose name matches func. you can use a comma-
separated list to specify multiple functions.

[size]]n
Inlines functions with a statement count less than or equal to n, the specified size.

The size n may not exactly equal the number of statements in a selected function; the size parameter
is merely a rough gauge.

levelsin
Inlines n level of function calling levels. The default number isone (1). Using alevel greater
than one indicates that function calls within inlined functions may be replaced with inlined
code. This approach allows the function inliner to automatically perform a sequence of inline
and extract processes.

[lib:]file.ext
Instructs the inliner to inline the functions within the library file file .ext. If noinline
library is specified, functions are extracted from atemporary library created during an extract

prepass.

n Tip Create the library file using the ~-Mext ract option.

If you specify both afunction name and a size n, the compiler inlines functions that match the
function name or have n or fewer statements.

If aname is used without a keyword, then a name with a period is assumed to be aninline library
and a name without a period is assumed to be a function name. If a number is used without a
keyword, the number is assumed to be asize.

In the following example, the compiler inlines functions with fewer than approximately 100
statements in the source filemyprog . £ and writes the executable code in the default output file
a.out.

$ pgfortran -Minline=size:100 myprog.f

Refer to *—M Options by Category’ in the PGI Compiler's Reference Guide. For more
information on the -Min11ine options, refer to ‘—M Options by Category’ section of the PGI
Compiler's Reference Guide.

4.2. Using an Inline Library

If you specify one or more inline libraries on the command line with the -Min1ine option, the
compiler does not perform an initial extract pass. The compiler selects functions to inline from
the specified inline library. If you also specify a size or function name, all functionsin theinline
library meeting the selection criteria are selected for inline expansion at points in the source text
where they are called.

PGI Compiler User's Guide 52

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Function Inlining

If you do not specify afunction name or asize limitation for the -Minline option, the
compiler inlines every function in theinline library that matches a function in the source text.

In the following example, the compiler inlines the function proc fromtheinlinelibrary 1ib. i1l
and writes the executable code in the default output file a . out.

$ pgfortran -Minline=name:proc,lib:1lib.il myprog.f

The following command lineis equivalent to the preceding line, with the exception that in the
following example does not use the keywords name : and 1ib:. You typically use keywords

to avoid name conflicts when you use an inline library name that does not contain a period.
Otherwise, without the keywords, a period informs the compiler that the file on the command line
isaninlinelibrary.

$ pgfortran -Minline=proc,lib.il myprog.f

4.3. Creating an Inline Library

Y ou can create or update an inline library using the -Mext ract command-line option. If you
do not specify selection criteriawith the -Mext ract option, the compiler attemptsto extract all
subprograms.

Several -Mextract optionslet you determine the selection criteriafor creating or updating an
inline library. These selection criteriainclude:

func
Extracts the function func. you can use a comma-separated list to specify multiple functions.
[name:] func
Extracts the functions whose name matches func, afunction in the source text.
[size]]n
Limits the size of the extracted functions to functions with a statement count less than or equal
to n, the specified size.

The size n may not exactly equal the number of statements in a selected function; the size parameter
is merely a rough gauge.

[lib:lext.1lib
Stores the extracted information in the library directory ext . 1ib.

If noinlinelibrary is specified, functions are extracted to atemporary library created during an
extract prepass for use during the compilation stage.

When you use the -Mextract option, only the extract phase is performed; the compile and

link phases are not performed. The output of an extract passisalibrary of functions available for
inlining. This output is placed in theinline library file specified on the command line with the —o
filename specification. If the library file exists, new information is appended to it. If the file does
not exist, it is created. Y ou can use acommand similar to the following:

S pgfortran -Mextract=1lib:1ib.il myfunc.f
You can usethe -Minline option with the -Mextract option. In this case, the extracted
library of functions can have other functions inlined into the library. Using both options enables

you to obtain more than onelevel of inlining. In this situation, if you do not specify alibrary with
the -Minline option, theinline process consists of two extract passes. The first passis a hidden

PGI Compiler User's Guide 53

Using Function Inlining

passimplied by the -Min1ine option, during which the compiler extracts functions and places
them into atemporary library. The second pass uses the results of the first pass but putsits results
into the library that you specify with the —o option.

4.3.1. Working with Inline Libraries

Aninlinelibrary isimplemented as a directory with each inline function in the library stored as a
file using an encoded form of the inlinable function.

A specid file named TOC in theinline library directory serves as atable of contents for theinline
library. Thisis aprintable, ASCII file which you can examine to locate information about the
library contents, such as names and sizes of functions, the source file from which they were
extracted, the version number of the extractor which created the entry, and so on.

Libraries and their elements can be manipulated using ordinary system commands.

» Inlinelibraries can be copied or renamed.
» Elements of libraries can be deleted or copied from one library to another.
» Thels or dir command can be used to determine the last-change date of alibrary entry.

4.3.2. Dependencies

When alibrary is created or updated using one of the PGI compilers, the last-change date of the
library directory is updated. This allows alibrary to be listed as a dependence in a makefile and
ensures that the necessary compilations are performed when alibrary is changed.

4.3.3. Updating Inline Libraries - Makefiles

If you useinline libraries you must be certain that they remain up-to-date with the source files
into which they are inlined. One way to assure inline libraries are updated is to include themin a
makefile.

The makefile fragment in the following example assumesthefileutils. £ contains a number of
small functionsused inthefilesparser.fandalloc. f.

This portion of the makefile:

» Maintainstheinlinelibrary utils.il.
» Updates the library whenever you change utils. f or one of the include filesit uses.
» Compilesparser.f andalloc.f whenever you update the library.

PGI Compiler User's Guide 54

Using Function Inlining

Sample Makefile

SRC = mydir
FC = pgfortran
FFLAGS = -02
main.o: $(SRC)/main.f $(SRC)/global.h
S(FC) $(FFLAGS) -c S$(SRC)/main.f
utils.o: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
S (FC) S$(FFLAGS) -c $(SRC)/utils.f
utils.il: $(SRC)/utils.f $(SRC)/global.h $(SRC)/utils.h
$(FC) $(FFLAGS) -Mextract=15 -o utils.il $(SRC)/utils.f
parser.o: $(SRC)/parser.f $(SRC)/global.h utils.il
$(FC) $(FFLAGS) -Minline=utils.il -c $(SRC) /parser.f
alloc.o: $(SRC)/alloc.f $(SRC)/global.h utils.il
$(FC) $(FFLAGS) -Minline=utils.il -c $(SRC)/alloc.f
myprog: main.o utils.o parser.o alloc.o
$(FC) -o myprog main.o utils.o parser.o alloc.o

4.4. Error Detection during Inlining

Y ou can specify the -Minfo=inline option to request inlining information from the compiler
when you invoke the inliner. For example:

$ pgfortran -Minline=mylib.il -Minfo=inline myext.f

4.5. Examples

Assume the program dhry consists of asingle sourcefile dhry . £. The following command line
builds an executable file for dhry inwhich proc7 isinlined wherever it is caled:

$ pgfortran dhry.f -Minline=proc?7

The following command lines build an executable file for dhry in which proc7 plus any
functions of approximately 10 or fewer statements are inlined (one level only).

The specified functions are inlined only if they are previously placed in the inline library, temp . 11,
during the extract phase.

$ pgfortran dhry.f -Mextract=lib:temp.il
$ pgfortran dhry.f -Minline=10,proc7,temp.il

Using the same source file dhry . £, the following example builds an executable for dhry in
which all functions of roughly ten or fewer statements are inlined. Two levels of inlining are
performed. This means that if function A calls function B, and B calls C, and both B and C are
inlinable, then the version of B which isinlined into A will have had C inlined into it.

$ pgfortran dhry.f -Minline=size:10,levels:2

4.6. Restrictions on Inlining

The following Fortran subprograms cannot be extracted:

» Mainor BLOCK DATA programs.
» Subprograms containing alternate return, assigned GO TO, DATA, SAVE, or
EQUIVALENCE statements.

PGI Compiler User's Guide 55

Using Function Inlining

v

Subprograms containing FORMAT statements.
Subprograms containing multiple entries.

v

A Fortran subprogram is not inlined if any of the following applies:

» ltisreferenced in a statement function.

» A common block mismatch exists; in other words, the caller must contain all common blocks
specified in the callee, and elements of the common blocks must agree in name, order, and
type (except that the caller's common block can have additional members appended to the
end of the common block).

» Anargument mismatch exists; in other words, the number and type (size) of actual and
formal parameters must be equal.

» A name clash exists, such as acall to subroutine xyz in the extracted subprogram and a
variable named xyz in the caler.

The following types of C and C++ functions cannot be inlined:

» Functions containing switch statements
» Functions which reference a static variable whose definition is nested within the function
» Functions which accept a variable number of arguments

Certain C/C++ functions can only be inlined into the file that contains their definition:

» Static functions
» Functions which call a static function
» Functions which reference a static variable

PGI Compiler User's Guide 56

Chapter 5.
USING OPENMP

The PGF77 and PGFORTRAN Fortran compilers support the OpenM P Fortran Application
Program Interface. The PGCC ANSI C and PGCPP C++ compilers support the OpenMP C/C++
Application Program Interface.

OpenMP is a specification for a set of compiler directives, an applications programming interface
(API), and a set of environment variables that can be used to specify shared memory parallelism
in FORTRAN and C/C++ programs. OpenM P may be used to obtain most of the parallel
performance you can expect from your code, or it may serve as a stepping stone to paralelizing
an entire application with MPI.

This section provides information on OpenMP asiit is supported by PGI compilers. Currently, all
PGI compilers support the version 3.1 OpenM P specification.

Use the -mp compiler switch to enable processing of the OMP pragmas listed in this section. C
++ applications also compile with thread-safe versions of STL header files. As of Release 2011,
the OpenMP runtime library is linked by default. Specifying -mp aso links a C++, thread-safe,
Standard Template Library.

The C++ Standard Template library is thread-safe to the extent allowed in the STLport code: simultaneous
accesses to distinct containers are safe, simultaneous reads to shared containers are also safe. However,
simultaneous writes to shared containers must be protected by #pragma omp critical sections.

This section describes how to use the following option related to using OpenMP: —mp

5.1. OpenMP Overview

Let'slook at the OpenM P shared-memory parallel programming model and some common
OpenMP terminology.

5.1.1. OpenMP Shared-Memory Parallel Programming Model

The OpenM P shared-memory programming model is a collection of compiler directives or
pragmas, library routines, and environment variables that can be used to specify shared-memory
parallelism in Fortran and in C/C++ programs.

PGI Compiler User's Guide 57

Using OpenMP

Fortran directivesand C/C++ pragmas
Allow users to mark sections of code that can be executed in parallel when the codeis
compiled using the —mp switch.

When this switch is not present, the compiler ignores these directives and pragmas.

OpenMP Fortran directives begin with ! SOMP, C$OMP, or * $OMP, beginning in column 1.
OpenMP pragmas for C/C++ begin with #pragma omp. Thisformat alows the user to have
asingle source for use with or without the —mp switch, as these lines are then merely viewed
as comments when —mp is not present.

These directives and pragmas allow the user to create task, loop, and parallel section work-
sharing constructs and synchronization constructs. They also allow the user to define how data
is shared or copied between parallel threads of execution.

Fortran directives and C/C++ pragmasinclude a parallel region construct for writing coarse
grain SPMD programs, work-sharing constructs which specify that DO loop iterations or
C/C++ for loop iterations should be split among the available threads of execution, and
synchronization constructs.

The data environment is controlled either by using clauses on the directives or pragmas, or with
additional directives or pragmas.

Runtimelibrary routines
Are available to query the parallel runtime environment, for example to determine how many
threads are participating in execution of a parallel region.

Environment variables
Are available to control the execution behavior of parallel programs. For more information on
OpenMP, see www.openmp.org.

M acr o substitution
C and C++ omp pragmas are subject to macro replacement after #pragma omp.

5.1.2. Terminology

For OpenMP 3.1 there are a number of terms for which it is useful to have common definitions.

Thread
An execution entity with a stack and associated static memory, called threadprivate memory.

» An OpenMP thread is athread that is managed by the OpenMP runtime system.

» A thread-safe routine is aroutine that performs the intended function even when executed
concurrently, that is, by more than one thread.

Region
All code encountered during a specific instance of the execution of a given construct or of an
OpenMP library routine. A region includes any codein called routines as well as any implicit
code introduced by the OpenM P implementation.

Regions are nested if one region is (dynamically) enclosed by another region, that is, aregion
is encountered during the execution of another region. PGI supports non-lexically nested
paralel regions.

PGI Compiler User's Guide 58

www.openmp.org

Using OpenMP

Parallel region

In OpenMP 3.1 there is a distinction between a parallel region and an active parallel region. A
paralel region can be either inactive or active.

» Aninactive parallel region is executed by a single thread.

» Anactive paralel region isaparalld region that is executed by ateam consisting of more
than one thread.

The definition of an active parallel region changed between OpenMP 2.5 and OpenMP 3.1. In
OpenMP 2.5, the definition was a parallel region whose IF clause evaluates to true. To examine
the significance of this change, look at the following example:

program test
logical omp in parallel

!'Somp parallel
print *, omp in parallel ()
!Somp end parallel

stop
end

Suppose we run this program with OMP_NUM_THREADS set to one. In OpenMP 2.5, this
program yields T while in OpenMP 3.1, the program yields F. In OpenMP 3.1, execution is not
occurring by more than one thread. Therefore, change in this definition may mean previous
programs require modification.

Task

A specific instance of executable code and its data environment, generated when a thread
encounters atask construct or a parallel construct.

9.1.3. OpenMP Example

Look at the following simple OpenMP example involving loops.

PGI Compiler User's Guide 59

Using OpenMP

OpenMP Loop Example

PROGRAM MAIN

INTEGER I, N, OMP GET THREAD NUM
REAL*8 VvV (1000), GSUM, LSUM

GSUM = 0.0DO

N = 1000
DO I =1, N

V(I) = DBLE(I)
ENDDO

!SOMP PARALLEL PRIVATE (I,LSUM) SHARED (V,GSUM, N)
LSUM = 0.0DO
! SOMP DO
DO I =1, N
LSUM = LSUM + V(I)
ENDDO
!SOMP END DO
SOMP CRITICAL
print *, "Thread ",OMP_GET THREAD NUM()," local sum: ",LSUM
GSUM = GSUM + LSUM
!'SOMP END CRITICAL
'SOMP END PARALLEL

PRINT *, "Global Sum: ",GSUM
STOP
END

If you execute this example with the environment variable OMP_NUM_THREADS set to 4, then
the output looks similar to this:

Thread 0 local sum: 31375.00000000000
Thread 1 local sum: 93875.00000000000
Thread 2 local sum: 156375.0000000000
Thread 3 local sum: 218875.0000000000
Global Sum: 500500.0000000000

FORTRAN STOP

5.2. Task Overview

Every part of an OpenMP program is part of atask. A task, whose execution can be performed
immediately or delayed, has these characteristics:

» Codeto execute
» A dataenvironment - that is, it ownsits data
» Anassigned thread that executes the code and uses the data.

There are two activities associated with tasks: packaging and execution.

» Packaging: Each encountering thread packages a new instance of atask - code and data.
» Execution: Some thread in the team executes the task at some later time.

In the following sections, we use this terminology:

Task
The package of code and instructions for allocating data created when a thread encounters a
task construct. A task can be implicit or explicit.

» Anexplicit task is atask generated when atask construct is encountered during execution.

PGI Compiler User's Guide 60

Using OpenMP

» Animplicit task isatask generated by the implicit parallel region or generated when a
parallel construct is encountered during execution.

Task construct
A task directive plus a structured block
Task region
The dynamic sequence of instructions produced by the execution of atask by athread.

5.3. Fortran Parallelization Directives

Parallelization directives are commentsin a program that are interpreted by the PGI Fortran
compilers when the option —mp is specified on the command line. The form of a parall€elization
directiveis:

sentinel directive name [clauses]

With the exception of the SGI-compatible DOACROSS directive, the sentinel must comply with
theserules:

» Beoneof these: IOMP, COMP, or *$OMP.

Must start in column 1 (one).

Must appear as a single word without embedded white space.
The sentinel marking a DOACROSS directive is C$.

v v VY

The directive_name can be any of the directiveslisted in Directive and Pragma Summary Table.
The valid clauses depend on the directive. Directive and Pragma Clauses provides alist of
clauses, the directives and pragmas to which they apply, and their functionality.

In addition to the sentinel rules, the directive must also comply with these rules:

» Standard Fortran syntax restrictions, such as line length, case insensitivity, and so on, apply
to the directive line.

» Initial directive lines must have a space or zero in column six.

» Continuation directive lines must have a character other than a space or a zero in column six.
Continuation lines for CSDOA CROSS directives are specified using the C$& sentinel.

» Directiveswhich are presented in pairs must be used in pairs.
Clauses associated with directives have these characteristics:

» Theorder in which clauses appear in the parallelization directivesis not significant.

» Commas separate clauses within the directives, but commas are not allowed between the
directive name and the first clause.

» Clauses on directives may be repeated as needed, subject to the restrictions listed in the
description of each clause.

PGI Compiler User's Guide 61

Using OpenMP

5.4. C/C++ Parallelization Pragmas

Parall€elization pragmas are #pragma statementsin a C or C++ program that are interpreted by the
PGCC C and C++ compilers when the option -mp is specified on the command line. The form of
aparaldization pragmais:

#pragma omp pragma name [clauses]
The format for pragmas include these standards:

» The pragmas follow the conventions of the C and C++ standards.

» Whitespace can appear before and after the #.

Preprocessing tokens following the #pragma omp are subject to macro replacement.
The order in which clauses appear in the parallelization pragmas is not significant.
Spaces separate clauses within the pragmas.

Clauses on pragmas may be repeated as needed subject to the restrictions listed in the
description of each clause.

v v VY

v

For the purposes of the OpenMP pragmas, a C/C++ structured block is defined to be a statement
or compound statement (a sequence of statements beginning with { and ending with }) that has a
single entry and a single exit. No statement or compound statement is a C/C++ structured block if
thereisajump into or out of that statement.

5.5. Directive and Pragma Recoghnition

The compiler option —mp enables recognition of the parallelization directives and pragmas.

The use of this option also implies:

—Mreentrant

Local variables are placed on the stack and optimizations, such as -Mnoframe, that may
result in non-reentrant code are disabled.

-Miomutex
For directives, critical sections are generated around Fortran /O statements.

For pragmas, callsto I/O library functions are system-dependent and are not necessarily
guaranteed to be thread-safe. 1/0 library calls within parallel regions should be protected by
critical regions to ensure they function correctly on all systems.

5.6. Directive and Pragma Summary Table

The following table provides a brief summary of the directives and pragmas that PGI supports.

In the table, the values in uppercase letters are Fortran directives while the names in lowercase letters are
C/C++ pragmas.

PGI Compiler User's Guide 62

Using OpenMP

5.6.1. Directive and Pragma Summary Table

Table 11 Directive and Pragma Summary Table

Fortran Directive and C++

Pragma

Description

ATOMIC [TYPE} ... END ATOMIC
and atomic

Semantically equivalent to enclosing a single statement in the CRITCIAL...END
CRITICAL directive or critical pragma.

TYPE may be empty or one of the following: UPDATE, READ, WRITE, or CAPTURE.
The END ATOMIC directive is only allowed when ending ATOMIC CAPTURE regions.

n Only certain statements are allowed.

BARRIER and barrier

Synchronizes all threads at a specific point in a program so that all threads complete
work to that point before any thread continues.

CRITICAL ... END CRITICAL and
critical

Defines a subsection of code within a parallel region, a critical section, which is executed
one thread at a time.

DO...END DO and for

Provides a mechanism for distribution of loop iterations across the available threads in a
parallel region.

C$DOACROSS

Specifies that the compiler should parallelize the loop to which it applies, even though
that loop is not contained within a parallel region.

FLUSH and flush

When this appears, all processor-visible data items, or, when a list is present (FLUSH
[list]), only those specified in the list, are written to memory, thus ensuring that all the
threads in a team have a consistent view of certain objects in memory.

MASTER ... END MASTER and
master

Designates code that executes on the master thread and that is skipped by the other
threads.

ORDERED and ordered

Defines a code block that is executed by only one thread at a time, and in the order of
the loop iterations; this makes the ordered code block sequential, while allowing parallel
execution of statements outside the code block.

PARALLEL DO and parallel for

Enables you to specify which loops the compiler should parallelize.

PARALLEL ... END PARALLEL and
parallel

Supports a fork/join execution model in which a single thread executes all statements
until a parallel region is encountered.

PARALLEL SECTIONS and parallel
sections

Defines a non-iterative work-sharing construct without the need to define an enclosing
parallel region.

PARALLEL WORKSHARE ... END
PARALLEL WORKSHARE

Provides a short form method for including a WORKSHARE directive inside a
PARALLEL construct.

SECTIONS ... END SECTIONS and
sections

Defines a non-iterative work-sharing construct within a parallel region.

SINGLE ... END SINGLE and single

Designates code that executes on a single thread and that is skipped by the other
threads.

TASK and task

Defines an explicit task.

TASKYIELD and taskyield

Specifies a scheduling point for a task where the currently executing task may be
yielded, and a different deferred task may be executed.

PGI Compiler User's Guide

63

Using OpenMP

Fortran Directive and C++

Pragma Description
TASKWAIT and taskwait Specifies a wait on the completion of child tasks generated since the beginning of the
current task.

THREADPRIVATE and threadprivate | When a common block or variable that is initialized appears in this directive or pragma,
each thread’s copy is initialized once prior to its first use.

WORKSHARE ... END WORKSHARE | Provides a mechanism to effect parallel execution of non-iterative but implicitly data
parallel constructs.

5.7. Directive and Pragma Clauses

Some directives and pragmas accept clauses that further allow a user to control the scope
attributes of variables for the duration of the directive or pragma. Not all clauses are allowed on
all directives, so the clausesthat are valid are included with the description of the directive and
pragma.

The following table provides a brief summary of the clauses associated with OPENMP directives
and pragmas that PGI supports.

For complete information on these clauses, refer to the OpenM P documentation available on the
World Wide Web.

Table 12 Directive and Pragma Summary Table

Applies to this

This clause... Applies to this directive pragma Has this functionality
‘CAPTURE’ ATOMIC atomic Spegifies that the gtomic ac.ti.on is
reading and updating, or writing
and updating a value, capturing the
intermediate state.
‘COLLAPSE (n)’ DO..END DO parallel for Specifies hovy many loops are
PARALLEL DO associated with the loop construct.
PARALLEL
WORKSHARE
COPYN sy
PARALLEL DO parallel for variable. You assign the same value
PARALLEL SECTIONS to threadprivate variables for each
PARALLEL thread in the team executing the
WORKSHARE parallel region. Then, for each variable
specified, the value of the variable
in the master thread of the team is
copied to the threadprivate copies at
the beginning of the parallel region.
‘COPYPRIVATE(list) SINGLE single Specifies that one or more variables
should be shared among all threads.
This clause provides a mechanism to
use a private variable to broadcast a

PGI Compiler User's Guide 64

This clause...

Applies to this directive

Applies to this
pragma

Using OpenMP

Has this functionality

value from one member of a team to
the other members.

‘DEFAULT’

Specifies the behavior of unscoped

PARALLEL parallel ; h)
PARALLEL DO parallel for variables in a.parallell region, sugh as
the data-sharing attributes of variables.
PARALLEL SECTIONS
PARALLEL
WORKSHARE
‘FINAL TASK task Specifies that all §ubtasks of this task
will be run immediately.
‘FIRSTPRIVATE(list) DO for Specifies that each thread should have
its own instance of a variable, and
PARALLEL parallel that each variable in the list should be
PARALLEL DO paralle for initialized with the value of the original
PARALLEL SECTIONS sections variable, because it exists before the
PARALLEL single parallel construct.
WORKSHARE
SECTIONS
SINGLE
F() PARALLEL .. END parallel Specifies yvhether a qup shguld be
PARALLEL parallel for executed in parallel or in serial.
PARALLEL DO ... parallel sections
END PARALLEL DO
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL
WORKSHARE
‘LASTPRIVATE(list)’ DO parallel Spegifies that the.enclgsing context's
PARALLEL DO . parallel for version of the vgrlable |s.set equal to
. the private version of whichever thread
END PARALLEL DO parallel sections | oyectes the final iteration of a for-loop
PARALLEL SECTIONS ... sections construct or last section of #pragma
END PARALLEL sections.
SECTIONS
SECTIONS
‘MERGEABLE’ TASK task Specifies that this task will run with
the same data environment, including
OpenMP internal control variables, as
when it is encountered.
‘NOWAIT DO ... END DO for Eliminates the parrier implicit at the end
SECTIONS sections of a parallel region.
SINGLE single
WORKSHARE ...
END WORKSHARE
‘NUM_THREADS’ PARALLEL parallel Sets the number of threads in a thread
PARALLEL DO .. parallel for team.

PGI Compiler User's Guide

65

This clause...

Applies to this directive

Applies to this
pragma

Using OpenMP

Has this functionality

PGI Compiler User's Guide

END PARALLEL DO parallel sections
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS
PARALLEL
WORKSHARE
‘ORDERED’ DO._END DO parallel for Specifies that this block within the
PARALLEL DO... parallel DO or FOR.region needs to
be execute serially in the same order
END PARALLEL DO indicated by the enclosing loop.
‘PRIVATE’ DO for Specifies that each thread should have
PARALLEL paralle its own instance of a variable.
PARALLEL DO ... parallel for
END PARALLEL DO parallel sections
PARALLEL SECTIONS ... sections
END PARALLEL single
SECTIONS
PARALLEL
WORKSHARE
SECTIONS
SINGLE
‘READ’ ATOMIC atomic Specifies that the atomic action is
reading a value.
‘REDUCTION' DO for Shpecifies that one or thLe va(;'iablesh
that are private to each thread are the
({operator Eﬁgﬁtit DO E:::::: for subject cg‘ a reduction .operation atthe
end of the parallel region.
| intrinsic } END PARALLEL DO parallel sections
. PARALLEL SECTIONS ... sections
END PARALLEL
list) SECTIONS
PARALLEL
WORKSHARE
SECTIONS
‘SCHEDULE’ DO .. END DO for Applies to the FOR directive, allowing
the user to specify the chunking method
(typel E/:IIEAPL:%E_CI;LDO parallelfor for parallleliz:tion.yWork is assigned o
threads in different manners depending
, chunk]) on the scheduling type or chunk size
used.
‘SHARED’ PARALLEL parallel Specifies that one or more variables
PARALLEL DO . parallel for should be.shared among all threads. All
. threads within a team access the same
END PARALLEL DO parallel sections storage area for shared variables
PARALLEL SECTIONS ...
END PARALLEL
SECTIONS

66

Using OpenMP

Applies to this

This clause... Applies to this directive pragma Has this functionality
PARALLEL
WORKSHARE
‘UNTIED’ TASK task Specifies that any threaq in ti}? team
TASKWAIT taskwait can resume the task region after a
suspension.
‘UPDATE’ ATOMIC atomic Specifies that the atomic action is
updating a value.
‘WRITE’ ATOMIC atomic Specifies that the atomic action is
writing a value.

5.8. Runtime Library Routines

User-callable functions are available to the programmer to query and alter the parallel execution
environment.

Any C/C++ program unit that invokes these functions should include the statement #include
<omp.h>. The omp . h include file contains definitions for each of the C/C++ library routines and
the required type definitions. For example, to usethe omp get num_threads function, use
this syntax:

#include <omp.h>
int omp get num threads(void) ;

Unlimited OpenMP thread counts are available in all PGI configurations. The number of threads is
unlicensed in the OpenMP runtime libraries - up to the hard limit of 256 threads.

The following table summarizes the runtime library calls.

n The Fortran call is shown first followed by the equivalent C/C++ call.

Table 13 Runtime Library Routines Summary

Runtime Library Routines with Examples

omp_get_num_threads

Returns the number of threads in the team executing the parallel region from which it is called. When called from a serial region,
this function returns 1. A nested parallel region is the same as a single parallel region. By default, the value returned by this
function is equal to the value of the environment variable OMP NUM THREADS or to the value set by the last previous
callto omp_set num_threads ().

Fortran integer function omp get num threads/()

C/C++ int omp get num threads(void);

omp_set_num_threads

Sets the number of threads to use for the next parallel region.

PGI Compiler User's Guide 67

Using OpenMP

Runtime Library Routines with Examples

This subroutine or function can only be called from a serial region of code. If it is called from within a parallel region, or from within
a subroutine or function that is called from within a parallel region, the results are undefined. Further, this subroutine or function
has precedence over the OMP NUM THREADS environment variable.

Fortran subroutine omp set num threads (scalar integer exp)

C/C++ void omp set num threads (int num threads);

omp_get_thread_num

Returns the thread number within the team. The thread number lies between 0 and omp_get_num_threads () -1. When
called from a serial region, this function returns 0. A nested parallel region is the same as a single parallel region.

Fortran integer function omp get thread num()

C/C++ int omp get thread num(void);

omp_get_ancestor_thread_num

Returns, for a given nested level of the current thread, the thread number of the ancestor.

Fortran integer function omp get ancestor thread num(level)
integer level

C/C++ int omp get ancestor thread num(int level);

omp_get_active_level

Returns the number of enclosing active parallel regions enclosing the task that contains the call. PGI currently supports only one
level of active parallel regions, so the return value currently is 1.

Fortran integer function omp get active level ()
CIC++ int omp get active level (void);
omp_get_level

Returns the number of parallel regions enclosing the task that contains the call.

Fortran integer function omp get level ()

CIC++ int omp_get level (void);

omp_get_max_threads

Returns the maximum value that can be returned by calls to omp_get _num threads ().

If omp_set num threads () is used to change the number of processors, subsequent calls to
omp_get max_threads () return the new value. Further, this function returns the maximum value whether executing from a
parallel or serial region of code.

Fortran integer function omp get max threads/()
CIC++ void omp get max threads (void);
omp_get_num_procs

Returns the number of processors that are available to the program

Fortran integer function omp get num procs()

C/C++ int omp get num procs (void);

PGI Compiler User's Guide 68

Using OpenMP

Runtime Library Routines with Examples

omp_get_stack_size

Returns the value of the OpenMP internal control variable that specifies the size that is used to create a stack for a newly created
thread.

This value may not be the size of the stack of the current thread.

Fortran lomp get stack size interface

function omp get stack size ()

use omp lib kinds

integer (kind=OMP STACK SIZE KIND)
omp get stack size

end function omp get stack size

end interface

C/C++ size t omp get stack size(void);

omp_set_stack_size

Changes the value of the OpenMP internal control variable that specifies the size to be used to create a stack for a newly created
thread.

The integer argument specifies the stack size in kilobytes. The size of the stack of the current thread cannot be changed. In the
PGl implementation, all OpenMP or auto-parallelization threads are created just prior to the first parallel region; therefore, only
callstoomp set stack size () thatoceur prior to the first region have an effect.

Fortran subroutine omp_set stack size(integer (KIND=OMP_STACK SIZE KIND))

C/C++ void omp set stack size(size t);

omp_get_team_size

Returns, for a given nested level of the current thread, the size of the thread team to which the ancestor belongs.

Fortran integer function omp get team size (level)
integer level

CIC++ integer omp get team size (int level);

omp_in_final

Returns whether or not the call is within a final task.

Returns . TRUE . for directives and non-zero for pragmas if called from within a parallel region and . FALSE . for
directives and zero for pragmas if called outside of a parallel region. When called from within a parallel region that is serialized,
for example in the presence of an IF clause evaluating . FALSE . for directives and zero for pragmas, the function returns
.FALSE . fordirectives and zero for pragmas.

Fortran integer function omp in final ()

CIC++ int omp_in final (void);

omp_in_parallel

Returns whether or not the call is within a parallel region.

Returns . TRUE . for directives and non-zero for pragmas if called from within a parallel region and . FALSE . for
directives and zero for pragmas if called outside of a parallel region. When called from within a parallel region that is serialized,

PGI Compiler User's Guide 69

Runtime Library Routines with Examples

for example in the presence of an IF clause evaluating . FALSE . for directives and zero for pragmas, the function returns

.FALSE . for directives and zero for pragmas.

Using OpenMP

Fortran

logical function omp_ in parallel ()

C/C++

int omp in parallel (void);

omp_set_dynamic

Allows automatic dynamic adjustment of the number of threads used for execution of parallel regions.

This function is recognized, but currently has no effect.

Fortran

subroutine omp set dynamic(scalar logical exp)

C/C++

void omp set dynamic (int dynamic_ threads) ;

omp_get_dynamic

Allows the user to query whether automatic dynamic adjustment of the number of threads used for execution of parallel regions is

enabled.

This function is recognized, but currently always returns . FALSE . for directives and zero for pragmas.

Fortran

logical function omp get dynamic ()

C/C++

void omp get dynamic (void);

omp_set_nested

Allows enabling/disabling of nested parallel regions.

Fortran subroutine omp set nested(nested)
logical nested
CIC++ void omp set nested(int nested);

omp_get_nested

Allows the user to query whether dynamic adjustment of the number of threads available for execution of parallel regions is

enabled.
Fortran logical function omp get nested()
CIC++ int omp get nested(void);

omp_set_schedule

Set the value of

the run_sched_var.

Fortran subroutine omp set schedule (kind, modifier)
include ‘omp lib kinds.h’
integer (kind=omp sched kind) kind
integer modifier

CIC++ double omp set schedule ()

omp_get_schedule

PGI Compiler User's Guide

70

Using OpenMP

Runtime Library Routines with Examples

Retrieve the value of the run_sched_var.

Fortran subroutine omp get schedule (kind, modifier)
include ‘omp lib kinds.h’
integer (kind=omp sched kind) kind
integer modifier

CIC++ double omp get schedule ()

omp_get_wtime

Returns the elapsed wall clock time, in seconds, as a DOUBLE PRECISION value for directives and as a floating-point double
value for pragmas.

Times returned are per-thread times, and are not necessarily globally consistent across all threads.

Fortran double precision function omp get wtime ()
C/C++ double omp get wtime (void)
omp_get_wtick

Returns the resolution of omp_get_wtime(), in seconds, as a DOUBLE PRECISION value for Fortran directives and as a floating-
point double value for C/C++ pragmas.

Fortran double precision function omp get wtick()
CIC++ double omp get wtick();
omp_init_lock

Initializes a lock associated with the variable lock for use in subsequent calls to lock routines.

The initial state of the lock is unlocked. If the variable is already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp init lock(lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock
C/C++ void omp init lock(omp lock t *lock);
void omp init nest lock(omp nest lock t *lock);

omp_destroy_lock

Disassociates a lock associated with the variable.

Fortran subroutine omp destroy lock(lock)

include ‘omp lib kinds.h’

integer (kind=omp lock kind) lock
C/C++ void omp destroy lock(omp lock t *lock);

void omp destroy nest lock (omp nest lock t *lock);
omp_set_lock

Causes the calling thread to wait until the specified lock is available.

PGI Compiler User's Guide 71

Using OpenMP

Runtime Library Routines with Examples

The thread gains ownership of the lock when it is available. If the variable is not already associated with a lock, it is illegal to make
a call to this routine.

Fortran subroutine omp set lock (lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock

C/C++ void omp set lock(omp lock t *lock);
void omp set nest lock(omp nest lock t *lock);

omp_unset_lock

Causes the calling thread to release ownership of the lock associated with integer_var.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran subroutine omp_unset lock (lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock

C/C++ #include <omp.h> void omp unset lock(omp lock t *lock);
void omp unset nest lock(omp nest lock t *lock);

omp_test_lock

Causes the calling thread to try to gain ownership of the lock associated with the variable.

The function returns . TRUE . for directives and non-zero for pragmas if the thread gains ownership of the lock; otherwise it
returns . FALSE . for directives and zero for pragmas.

If the variable is not already associated with a lock, it is illegal to make a call to this routine.

Fortran logical function omp test lock(lock)
include ‘omp lib kinds.h’
integer (kind=omp lock kind) lock

C/C++ int omp test lock(omp lock t *lock);
int omp test nest lock(omp nest lock t *lock);

5.9. Environment Variables

Y ou can use OpenMP environment variables to control the behavior of OpenMP programs.
These environment variables allow you to set and pass information that can alter the behavior of
directives and pragmas.

The following summary table is a quick reference for the OpenM P environment variables that
PGI uses.

Table 14 OpenMP-related Environment Variable Summary Table

Environment Variable Default Description

OMP_DYNAMIC FALSE Currently has no effect. Typically enables (TRUE) or disables (FALSE)
the dynamic adjustment of the number of threads.

OMP_MAX_ACTIVE_LEVELS Specifies the maximum number of nested parallel regions.

OMP_NESTED FALSE Enables (TRUE) or disables (FALSE) nested parallelism.

PGI Compiler User's Guide 72

Using OpenMP

Environment Variable Default Description

OMP_NUM_THREADS 1 Specifies the number of threads to use during execution of
parallel regions at the corresponding nested level. For example,
OMP_NUM_THREADS=4,2 uses 4 threads at the first nested parallel
level, and 2 at the next nested parallel level.

OMP_SCHEDULE STATIC with Specifies the type of iteration scheduling and optionally the chunk size

chunk size of 1

to use for omp for and omp parallel for loops that include the runtime
schedule clause. The supported schedule types, which can be specified
in upper- or lower-case are static, dynamic, guided, and auto.

OMP_PROC_BIND FALSE Specifies whether executing threads should be bound to a core during
execution. Allowable values are "true" and "false".

OMP_STACKSIZE Overrides the default stack size for a newly created thread.

OMP_THREAD_LIMIT 64 Specifies the absolute maximum number of threads that can be used in
a program.

OMP_WAIT_POLICY ACTIVE Sets the behavior of idle threads, defining whether they spin or sleep

when idle. The values are ACTIVE and PASSIVE.

PGI Compiler User's Guide

73

Chapter 6.
USING MPI

Message Passing Interface (MPI) is an industry-standard application programming interface
designed for rapid data exchange between processors in a cluster application. MPI is computer
software used in computer clustersthat allows the processes of a parallel application to
communicate with one another.

PGI provides MPI support with PGl compilers and tools. PGI compilers provide explicit support
to build MPI applications on Windows using Microsoft’ s implementation of MPI, MS-MPI, on
OS X using MPICH, and on Linux using MPICH, MVAPICHZ2, and Open MPI. Of course, you
may always build using an arbitrary version of MPI; to do this, usethe -1, -1, and -1 option.

PGI Workstation for Linux and OS X includes MPICH, while on Windows PGl Workstation
includes MS-MPI. The PGI CDK on Linux also includes MPICH and CDK users can download
PGI-built versions of MVAPICH2 and Open MPI from pgroup.com. This section describes
how to use the MPI capabilities of PGI compilers and how to configure PGI compilers so these
capabilities can be used with custom MPI installations.

The debugger and profiler are enabled to support MPI applications running locally with alimited
number of processes. The PGPROF Profile Guide and the PGDBG Debugger Guide describe the
MPI-enabled toolsin detail:

» PGPROF graphical MPI/OpenM P/multi-thread performance profiler.
» PGDBG graphical MPI/OpenM P/multi-thread symbolic debugger.

6.1. MPI| Overview

This section contains general information applicable to various MPI distributions. For
distribution-specific information, refer to the sections later in this section.

MPI isaset of function calls and libraries that are used to send messages between multiple
processes. These processes can be located on the same system or on a collection of distributed
servers. Unlike OpenMP, the distributed nature of MPI alowsit to work in almost any parallel
environment.

PGI Compiler User's Guide 74

Using MPI

6.2. Compiling and Linking MPI Applications

The PGI compilers provide an option, -Mmp i, to make building MPI applications with some MPI
distributions more convenient by adding the MPI include and library directories to the compiler's
include and library search paths. The compiler determines the location of these directories using
various mechanisms described in the MPI distribution-specific sections later in this section.

Table 15 lists the sub-options supported by —Mmp1i.
Table 15 MPI Distribution Options

This MPI

implementation... Requires compiling and linking with this option...
MPICH1 Deprecated. -Mmpi=mpichl

MPICH2 Deprecated. -Mmpi=mpich?2

MPICH v3 -Mmpi=mpich

MS-MPI -~Mmpi=msmpi

MVAPICH1 Deprecated. -Mmpi=mvapichl

MVAPICH2 Use MVAPICH2 compiler wrappers.

Open MPI Use Open MPI compiler wrappers.

SGI MPI -Mmpi=sgimpi

For distributions of MPI that are not supported by the -Mmpi compiler option, use the MPI-
distribution-supplied compiler wrappers mpicc, mpic++, mpif77, or mpif90 to compile and link.

6.3. Debugging MPI Applications

The PGI debugger, PGDBG, provides support for symbolic debugging of MPI applications.
The number and location of processes that can be debugged is limited by your license. PGI

Workstation licenses limit processes to a single system whereas PGl CDK licenses support

general development on clusters.

For al distributions of MPI except MPICH1, support for which has been deprecated, and SGI
MPI, you can initiate an MPI debugging session from either the command line or from within
PGDBG. For MPICH1 and SGI MPI, debugging must be initiated at the command line. For
specific information on how to initiate a debugging session for a particular version of MPI, refer
to the PGDBG Debugger Guide.

PGDBG can display the contents of message queues for instances of MPI that have been
configured to support that feature. The version of MPICH1 provided with PGl Workstation
on Linux and OS X is configured with this support. At thistime, MS-MPI does not support
displaying message queue contents.

For more information on MPI and displaying message queues, refer to the documentation for
your specific distribution of MPI.

PGI Compiler User's Guide 75

Using MPI

6.4. Profiling MPI Applications

The PGI performance profiler, PGPROF, provides support for profiling MPI applications. The
number of processes that can be profiled is limited by your license. PGl Workstation licenses
limit processes to a single system whereas PGl CDK licenses support general development on
clusters PGPROF instrumentation is inserted into the program by the compiler, and after the
program is executed, the PGPROF profiler can display MPI message count statistics as they relate
to the source code of the application and the time spent in those portions of the application.

To create and view a performance profile of your MPI application, you must first build an
instrumented version of the application using the -Mpro f= option to specify one of the MPI
distributions. The -Mprof= option requires that you use another profiling sub-option in
conjunction with the MPI distribution sub-options, listed in Table 16.

Table 16 MPI Profiling Options

This MPI distribution... Requires compiling and linking with these options...

MPICH1 Deprecated. -Mprof=mpichl, {func|lines|time}
MPICH2 Deprecated. -Mprof=mpich2, {func|lines|time}
MPICH v3 -Mprof=mpich, {func|lines|time}

MVAPICH1 Deprecated. -Mprof=mvapichl, {func|lines|time}
MVAPICH2

Use MVAPICH2 compiler wrappers
-profile={profcc|proffer}
-Mprof={func|lines|time}

MS-MPI -Mprof=msmpi, {func|lines}

Open MPI Use with Open MPI compiler wrappers

-Mprof={func|lines|time}

SGI MPI -Mprof=sgimpi, {func|lines|time}

For example, you can use the following command to compile for profiling with MPICH v3:
$ pgfortran -fast -Mprof=mpich, func my mpi app.f90

The default versions of the compiler wrappers (i.e. mpicc and mpi £ 90) provided by MPI distributions
do not correctly support the ~Mp ro £ option and may need to be modified to enable profiling.

Once you have built an instrumented version of your MPI application, running it produces the
profile data. For specific details on using PGPROF to view the profile data, refer to the PGPROF
Profiler Guide.

PGI Compiler User's Guide 76

Using MPI

6.5. Using MPICH on Linux and OS X

PGI Workstation for Linux and OS X and PGl CDK for Linux include MPICH header files,
libraries and tool s required to compile, execute, profile, and debug MPI programs. PGI
Workstation can be installed on a single system, and that system can be treated as if it isasmall
cluster by using this version of MPI.

Example
MPI Hello World Example

The following MPI example program uses MPICH.

cd my example dir

cp -r $PGI/1inux86-64/14.0/EXAMPLES/MPI/mpihello .
cd mpihello

export PATH=$PGI/1inux86-64/2014/mpi/mpich/bin:$PATH
pgfortran -Mmpi=mpich mpihello.f -o mpihello

Uy Uy O O

$ mpiexec mpihello
Hello world! I'm node O

S mpiexec -np 4 mpihello

Hello world! I'm node O

Hello world! I'm node 2

Hello world! I'm node 1

Hello world! I'm node 3

If you want to build your MPI application using the instance of MPICH installed with the PGI
compilers, just use the -Mmpi=mpich option. Add —g for debugging, or use -Mprof=mpich
instead to instrument for MPICH profiling.

To use adifferent instance of MPICH instead of the PGI-provided one, use the MPIDIR
environment variable. Before compiling set MPIDIR to the root of the MPICH installation
directory that you want to use, that is, the directory that contains bin, include, lib, and so on. You
can still use the -Mmpi=mpich and -Mprof=mpich options but now the compilers use the
MPIDIR-specified version of MPICH instead of the PGI default.

6.6. Using MPICH1, MPICH2, and MVAPICH1 on Linux

The -Mmpi and -Mprof sub-options mpichl, mpich2 and mvapichl have been deprecated in
the PGI 2014 release and will be disabled in afuture release. To use these deprecated options,
you must first set the environment variable MPIDIR to the root of the MPI installation directory
you intend to use, that is, the directory that contains bin, include, lib and so on. If you do not set
MPIDIR, you will see an error like the following:

$ pgfortran -Mmpi=mpich2 pi.f90 -o fpi
—~Mmpi=mpich2 has been deprecated and will be removed in a future release
pgfortran-Error-The environment variable S$SMPIDIR must be set to use MPICH2

Once MPIDIR is set, you can use -Mmpi and —M prof with the mpichl, mpich2 and mvapichl
sub-options as you have in previous rel eases.

PGI Compiler User's Guide 77

Using MPI

6.7. Using MVAPICH2 on Linux

PGI CDK users can download a PGI-built version of MVAPICH2 for Linux that includes
everything required to compile, execute, profile, and debug MPI programs using MVAPICH2.

To build an application using MVAPICH2, use the MVAPICH2 compiler wrappers: mpicc, mpic
++, mpif77, and mpif90. These wrappers autonmatically set up the compiler commands with the
correct include file search paths, library directories, and link libraries.

To build an application using MVAPICHZ2 for debugging, add —g to the compiler wrapper
command line arguments.

PGI provides two profiling configuration files with MVAPICH2 to enable profiling. When using

the compilers wrappers mpicc or mpic++, add the -profile=profcc option. When using the

wrappers mpif77 or mpifo0, add the -profile=proffer option. To al the wrappers, add one
of the -Mprof=func, -Mprof=1lines, Of -Mprof=time options.

6.8. Using MS-MPI on Windows

PGI products on Windows include a version of Microsoft’s MPI. Y ou can compile, run, debug,
and profile locally on your system using this instance of MS-MPI.

To compile the application, use the -Mmp i=msmpi option. This option automatically sets up the
appropriate include and library paths to use the MS-MPI headers and libraries. To compile for
debugging, add —g.

To build an application that generates MPI profile data, use the -Mprof=msmpi option. This
option performs MPICH-style profiling for Microsoft MPI. Using this option implies the option
-Mmpi=msmpi. The profile data generated by running an application built with the option -
Mprof=msmpi containsinformation about the number of sends and receives, aswell asthe
number of bytes sent and received, correlated with the source location associated with the sends
and receives. You must use -Mprof=msmpi in conjunction with either -Mprof=func or -
Mprof=lines.

6.9. Using Open MPI on Linux

PGI CDK users can download a PGI-built version of Open MPI for Linux that includes
everything required to compile, execute, profile, and debug MPI programs using Open MPI.

To build an application using Open MPI, use the Open MPI compiler wrappers. mpicc, mpic+
+, mpif77, and mpif90. These wrappers automatically set up the compiler commands with the
correct include file search paths, library directories, and link libraries.

To build an application using Open MPI for debugging, add —g to the compiler wrapper
command line arguments.

PGI Compiler User's Guide 78

Using MPI

To build an application that generates MPI profile data suitable for use with PGPROF, use the
Open MPI compiler wrappers with the -Mprof=func, -Mprof=1ines, Of -Mprof=time
option. PGI has pre-configured these wrappers for use with —-Mprof.

6.10. Using SGI MPI on Linux

PGI compilers and tools support SGI’ s version of MPI. If you want to build your MPI application
using an instance of SGI MPI, you must first set either MPIDIR or MPI_ROQOT to the root of

the SGI MPI installation directory that you want to use, that is, the directory that contains bin,
include, lib, and so on. Then you can compile with the -Mmpi=sgimpi option. Add -g for
debugging, or use -Mprof=sgimpi instead to instrument for profiling. To run programs

built with SGI MPI, you must include the SGI MPI lib directory inthe LD_LIBRARY_PATH
environment variable.

6.11. Using MPI Compiler Wrappers

When you use MPI compiler wrappersto build with the -fpic or -mcmodel=medium
options, then you must specify -sh11ib to link with the correct libraries. Here are afew
examples:

For astatic link to the MPI libraries, use this command:

[

% mpicc hello.f

For adynamic link to the MPI libraries, use this command:
% mpicc hello.f -shlib

To compilewith -fpic, which, by default, invokes dynamic linking, use this command:

[)

% mpicc -fpic -shlib hello.f

To compile with -mcmode1=medium, use this command:

[

% mpicc -mcmodel=medium -shlib hello.f

6.12. Limitations

The Open Source Cluster utilities, in particular the MPICH and ScaL APACK libraries, are
provided with support necessary to build and define their proper use. However, use of these
libraries on linux86-64 systems is subject to the following limitations:

» MPI libraries are limited to Messages of length < 2GB, and integer arguments are
INTEGER*4 in FORTRAN, and intin C.

» Integer arguments for ScaLAPACK libraries are INTEGER*4 in FORTRAN, andint in C.
» Arrays passed must be < 2GB in size.

PGI Compiler User's Guide 79

Using MPI

6.13. Testing and Benchmarking

TheExamples directory contains various benchmarks and tests. Copy this directory into alocal
working directory by issuing the following command:
% cp -r $PGI/1linux86/14.1/EXAMPLES/MPI .

NAS Parallel Benchmarks

The NPB2.3 subdirectory contains version 2.3 of the NAS Parallel Benchmarksin MPI. Issue the
following commands to run the BT benchmark on 4 nodes of your cluster:

cd MPI/NPB2.3/BT

make BT NPROCS=4 CLASS=W
cd ../bin

mpirun -np 4 bt.W.4

o o oP

oo

There are several other NAS parallel benchmarks available in this directory. Similar commands
are used to build and run each of them. If you want to run alarger problem, try building the Class
A version of BT by substituting "A" for "W" in the previous commands.

ScaLAPACK

The ScaLAPACK test times execution of the 3D PBLAS (parallel BLAS) on your cluster. To run
this test, execute the following commands:

o

cd scalapack
make
% mpirun -np 4 pdbla3tim

o\

PGI Compiler User's Guide 80

Chapter 7.
USING AN ACCELERATOR

An accelerator is a special-purpose co-processor attached to a CPU and to which the CPU can
offload data and executable kernels to perform compute-intensive calculations. This section
describes a collection of compiler directives used to specify regions of codein Fortran and C
programs that can be offloaded from a host CPU to an attached accelerator.

7.1. Overview

The programming model and directives described in this section allow programmers to create
high-level host+accelerator programs without the need to explicitly initialize the accelerator,
manage data or program transfers between the host and accelerator, or initiate accel erator
startup and shutdown. Rather, all of these details are implicit in the programming model and are
managed by the PGI Fortran , C, and C++ accelerator compilers.

The method described provides a model for accelerator programming that is portable across
operating systems and various host CPUs and accelerators. The directives allow a programmer to
migrate applications incrementally to accelerator targets using standards-compliant Fortran or C.

This programming model allows the programmer to augment information available to the
compilers, including specification of datalocal to an accelerator region, guidance on mapping of
loops onto an accelerator, and similar performance-related details.

7.1.1. Components

The PGI Accelerator compiler technology includes the following components:

PGFORTRAN auto-parallelizing accel erator-enabled Fortran 90/95 and F2003 compilers
PGCC auto-parallelizing accel erator-enabled ANSI C99 and K& R C compiler
NVIDIA CUDA Toolkit components

A simple command-line tool to detect whether the system has an appropriate GPU or
accelerator card

vV v v VY

No accelerator-enabled debugger is included with this release

PGI Compiler User's Guide 81

Using an Accelerator

7.1.2. Availability

The PGI 14.10 Fortran & C Accelerator compilers are available only on x86 processor-based
workstations and servers with an attached NVIDIA CUDA-enabled GPU or Tesla card.
These compilerstarget al platformsthat PGl supports. All examplesincluded in this section
are devel oped and presented on such a platform. For alist of supported GPUSs, refer to the
Accelerator Installation and Supported Platformslist in the latest PGl Release Notes.

7.1.3. User-directed Accelerator Programming

In user-directed accelerator programming the user specifies the regions of a host program to be
targeted for offloading to an accelerator device. The bulk of auser’s program, aswell asregions
containing constructs that are not supported on the targeted accelerator, are executed on the host.
This section concentrates on specification of loops and regions of code to be offloaded to an
accelerator.

7.1.4. Features Not Covered or Implemented

This section does not describe features or limitations of the host programming environment as
awhole. Further, it does not cover automatic detection and offloading of regions of code to an
accelerator by acompiler or other tool. While future versions of the PGl compilers may allow for
automatic offloading, this feature is not currently supported.

7.2. Terminology

Clear and consistent terminology isimportant in describing any programming model. This section
provides definitions of the terms required for you to effectively use this section and the associated
programming model.

Accelerator
a special-purpose co-processor attached to a CPU and to which the CPU can offload data and
executable kernels to perform compute-intensive calculations.

Compute intensity
for agiven loop, region, or program unit, the ratio of the number of arithmetic operations
performed on computed data divided by the number of memory transfers required to move
that data between two levels of amemory hierarchy.

Computeregion
astructure block defined by an OpenA CC compute construct. A compute construct is
a structured block containing loops which are compiled for the accelerator. A compute
region may require device memory to be allocated and data to be copied from host to device
upon region entry, and data to be copied from device to host memory and device memory
deallocated upon exit. The dynamic range of a compute construct, including any code in
procedures called from within the construct, is the compute region. In this release, compute
regions may not contain other compute regions or data regions.

Construct
astructured block identified by the programmer or implicitly defined by the language. Certain
actions may occur when program execution reaches the start and end of a construct, such as

PGI Compiler User's Guide 82

http://www.pgroup.com/resources/docs.htm

Using an Accelerator

device memory allocation or data movement between the host and device memory. Loops
in a compute construct are targeted for execution on the accelerator. The dynamic range of a
construct including any code in procedures called from within the construct, is called aregion.
CUDA
stands for Compute Unified Device Architecture; the CUDA environment from NVIDIA isa
C-like programming environment used to explicitly control and program an NVIDIA GPU.
Dataregion
aregion defined by an OpenACC data construct, or an implicit data region for a function or
subroutine containing OpenACC directives. Data regions typically require device memory
to be alocated and data to be copied from host to device memory upon entry, and data to be
copied from device to host memory and device memory deallocated upon exit. Data regions
may contain other data regions and compute regions.
Device
agenera reference to any type of accelerator.
Device memory
memory attached to an accelerator which is physically separate from the host memory.
Directive
in C, a#pragma, or in Fortran, a specially formatted comment statement that is interpreted by
acompiler to augment information about or specify the behavior of the program.
DMA
Direct Memory Access, a method to move data between physically separate memories; thisis
typically performed by aDMA engine, separate from the host CPU, that can access the host
physical memory aswell asan IO device or GPU physical memory.
GPU
a Graphics Processing Unit; one type of accelerator device.
GPGPU
General Purpose computation on Graphics Processing Units.
Host
the main CPU that in this context has an attached accelerator device. The host CPU controls
the program regions and data |oaded into and executed on the device.
L oop trip count
the number of times a particular loop executes.
OpenACC
aparald programming standard describing a set of compiler directives which can be applied
to standard C, C++, and Fortran to specify regions of code for offloading from a host CPU to
an attached accelerator.
OpenCL - Open Compute Language
a standard C-like programming environment similar to CUDA that enables portable low-level
general-purpose programming on GPUs and other accelerators.
Private data
with respect to an iterative loop, data which is used only during a particular loop iteration.
With respect to amore general region of code, data which is used within the region but is not
initialized prior to the region and isre-initialized prior to any use after the region.
Region
the dynamic range of a construct, including any procedures invoked from within the construct.
Structured block
in C, an executable statement, possibly compound, with asingle entry at the top and asingle
exit at the bottom. In Fortran, a block of executable statements with a single entry at the top
and a single exit at the bottom.

PGI Compiler User's Guide 83

Using an Accelerator

Vector operation
asingle operation or sequence of operations applied uniformly to each element of an array.
Visible device copy
acopy of avariable, array, or subarray alocated in device memory, that is visible to the
program unit being compiled.

7.3. System Requirements

For NVIDIA GPUs

To use the PGI Accelerator compiler features on NVIDIA GPUs, you must install the NVIDIA
drivers. Y ou may download these components from the NVIDIA website at www.nvidia.com/
cuda

These are not PGI products. They are licensed and supported by NVIDIA.

You must be using an operating system that is supported by both the current PGI release and by the
CUDA software and drivers.

For AMD Radeon GPUs

To use the PGI Accelerator compiler features on AMD Radeon GPUs, you must install the AMD
Catalyst drivers. Y ou may download these components from the AMD website at www.amd.com

These are not PGI products. They are licensed and supported by AMD.

You must be using an operating system that is supported by both the current PGl release and by the
Catalyst drivers.

7.4. Supported Processors and GPUs

This PGl Accelerator compiler release supports all AMD64 and Intel 64 host processors. Use the
-tp=<target> flag as documented in the release to specify the target processor.

Use the —acc flag to enable OpenACC directives and the —ta=<target> flag to target
NVIDIA and AMD GPU. Y ou can then use the generated code on any supported system with
CUDA installed that has a CUDA-enabled GeForce, Quadro, or Tesla card, or any supported
system with a supported AMD Radeon GPU.

For more information on these flags as they relate to accel erator technology, refer to Applicable
Command Line Options.

For acomplete list of supported CUDA GPUSs, refer to the NVIDIA website at:www.nvidia.com/
object/cuda learn_products.html

PGI Compiler User's Guide 84

www.nvidia.com/cuda
www.nvidia.com/cuda
www.amd.com
www.nvidia.com/object/cuda_learn_products.html
www.nvidia.com/object/cuda_learn_products.html

Using an Accelerator

Y ou can detect whether the system has CUDA properly installed and has an attached GPU
by running the pgaccelinfo command, which is delivered as part of the PGl Accelerator
compilers software package.

7.5. Installation and Licensing

The PGI Accelerator compilers have a different license key than the -x64 only version of the PGl
Workstation, PGl Server, or PGl CDK products.

7.5.1. Required Files

n If you are installing on Windows, the required files are built for you.

The default NVIDIA Compute Capability for generated code in this release is cc2+ or fermi+,
enabling code generation for NVIDIA Fermi and Kepler GPUs. You can usethe —ta flag to
specify other compute capabilities, including compute capability 1.0 through 1.3.

Y ou can aso change the default to one or more of the supported compute capabilities by adding a
line similar to the following one to the sitenvrc file. This example sets the compute capability
to enable code generation for all of the supported compute capabilities. Notice that the compute
capabilities are separated by a space.

set COMPUTECAP=10 11 12 13 20 30 35;

Placethe sitenvrc filein the following directory, where $PGI is the PGI installation directory,
whichistypically /opt/pgi of /usr/pgi.
$PGI/1inux86-64/14.1/bin/

7.5.2. Command Line Flag

After acquiring the PGl Accelerator compilers license key, you can usethe —acc or —ta option
withthe pgfortran or pgcc commands.

For more information on the —t a flag and the suboptions that relate to the target accelerators,
refer to Applicable Command Line Options.

The compiler automatically invokes the necessary CUDA software tools to create the kernel code
and embeds the kernelsin the Linux object file.

n To access the accelerator libraries, you must link an accelerator program with the —t a flag as well.

7.6. Execution Model

The execution model targeted by the PGl Accelerator compilersis host-directed execution with
an attached accelerator device, such asa GPU. The bulk of a user application executes on the
host. Compute intensive regions are offloaded to the accel erator device under control of the host.

PGI Compiler User's Guide 85

Using an Accelerator

The accelerator device executes kernels, which may be as smple as a tightly-nested loop, or as
complex as a subroutine, depending on the accelerator hardware.

7.6.1. Host Functions

Even in accelerator-targeted regions, the host must orchestrate the execution; it

» alocates memory on the accelerator device
initiates data transfer

sends the kernel code to the accel erator
passes kernel arguments

queues the kernel

waits for completion

transfers results back to the host
deallocates memory

vV v v VY

v v VY

n In most cases, the host can queue a sequence of kernels to be executed on the device, one after the
other.

7.6.2. Levels of Parallelism

Most current GPUs support two levels of parallelism:

» anouter doall (fully paralel) loop level
» aninner synchronous (SIMD or vector) loop level

Each level can be multidimensional with 2 or 3 dimensions, but the domain must be strictly
rectangular. The synchronous level may not be fully implemented with SIMD or vector
operations, so explicit synchronization is supported and required across this level. No
synchronization is supported between parall€l threads across the doall level.

The execution model on the device side exposes these two levels of parallelism and the
programmer is required to understand the difference between, for example, afully parallel loop
and aloop that is vectorizable but requires synchronization acrossiterations. All fully parallel
loops can be scheduled for either doall or synchronous parallel execution, but by definition
SIMD vector loops that require synchronization can only be scheduled for synchronous parallel
execution.

7.7. Memory Model

The most significant difference between a host-only program and a host+accelerator program is
that the memory on the accelerator can be completely separate from host memory, which isthe
case on most current GPUs. For example:

» Thehost cannot read or write accelerator memory by reference because it is not mapped into
the virtual memory space of the host.

» All data movement between host memory and accelerator memory must be performed by the
host through runtime library calls that explicitly move data between the separate memories.

PGI Compiler User's Guide 86

Using an Accelerator

» Itisnot valid to assume the accelerator can read or write host memory, though this may be
supported by accelerators in the future.

7.7.1. Separate Host and Accelerator Memory Considerations

The programmer must be aware of the potentially separate memories for many reasons, including
but not limited to:

» Memory bandwidth between host memory and accelerator memory determines the compute
intensity required to effectively accelerate a given region of code.

» Limited size of accelerator memory may prohibit offloading of regions of code that operate
on very large amounts of data.

7.7.2. Accelerator Memory

On the accelerator side, current GPUs implement a weak memory model. In particular, they

do not support memory coherence between threads unless those threads are parallel only at the
synchronous level and the memory operations are separated by an explicit barrier. Otherwise,

if one thread updates a memory location and another reads the same location, or two threads
store avalue to the same location, the hardware does not guarantee the results. While the results
of running such a program might be inconsistent, it is not accurate to say that the results are
incorrect. By definition, such programs are defined as being in error. While a compiler can detect
some potential errors of this nature, it is nonethel ess possible to write an accel erator region that
produces inconsistent numerical results.

7.7.3. Cache Management

Some current GPUs have a software-managed cache, some have hardware-managed caches, and
most have hardware caches that can be used only in certain situations and are limited to read-only
data. In low-level programming models such as CUDA or OpenCL, it is up to the programmer

to manage these caches. However, in the PGl Accelerator programming model, the compiler
manages these caches using hints from the programmer in the form of directives.

7.8. Running an Accelerator Program

Running a program that has accelerator directives and was compiled and linked with the -ta flag
is the same as running the program compiled without the -t a flag.

» When running programs on NVIDIA GPUs, the program looks for and dynamically loads
the CUDA libraries. When running programs on AMD GPUs, the program looks for and
dynamically loads the AMD OpenCL libraries. If the libraries are not available, or if they
arein adifferent directory than they were when the program was compiled, you may need to
append the appropriate library directory to your LD_LIBRARY_PATH environment variable
on Linux or to the PATH environment variable on Windows.

» OnLinux, if you have no server running on your NVIDIA GPU, when your program reaches
itsfirst accelerator region, there may be a 0.5 to 1.5 second pause to warm up the GPU from
a power-off audience. Y ou can avoid this delay by running the pgcudainit programinthe
background, which keeps the GPU powered on.

PGI Compiler User's Guide 87

Using an Accelerator

» If you compile aprogram for a particular accelerator type, then run the program on a system
without that accelerator, or on a system where the target libraries are not in a directory where
the runtime library can find them, the program may fail at runtime with an error message.

> If you set the environment variable PGI ACC_NOTIFY to anonzero integer value,
the runtime library prints aline to standard error every time it launches a kernel on the
accelerator.

7.9. Accelerator Directives

This section provides an overview of the Fortran and C directives used to delineate accel erator
regions and to augment information available to the compiler for scheduling of loops and
classification of data.

7.9.1. Enable Accelerator Directives

PGI Accelerator compilers enable accelerator directives with the —acc and —ta command line
option. For more information on this option asiit relates to the Accelerator, refer to Applicable
Command Line Options.

The syntax used to define directives allows compilers to ignore accelerator directives if support is disabled
or not provided.

_ACCEL macro

The ACCEL macro name is defined to have avalue yyyymm where yyyy isthe year and

mm is the month designation of the version of the Accelerator directives supported by the
implementation. For example, the version for May, 2009 is 200905. The PGI compilers define
this macro when accelerator directives are enabled.

_OPENACC macro

The OPENACC macro nameis defined to have avalue yyyymm where yyyy isthe year
and mm is the month designation of the version of the OpenACC directives supported by the
implementation. For example, the version for June, 2013 is 201306. All OpenACC compilers
define this macro when OpenACC directives are enabled.

7.9.2. Format

The specific format of the directive depends on the language and the format or form of the source.
Directives include a name and clauses, and the format of the directive depends on the type:

» Cdirectives, described in ‘C Directives
» Free-form Fortran directives, described in ‘ Free-Form Fortran Directives

PGI Compiler User's Guide 88

Using an Accelerator

» Fixed-form Fortran directives, described in ‘ Fixed-Form Fortran Directives

n This document uses free form for all PGl Accelerator compiler Fortran directive examples.

Rules
The following rules apply to all OpenACC compiler directives:

» Only one directive-name can be specified per directive.
» Theorder in which clauses appear is not significant.
» Clauses may be repeated unless otherwise specified.

» For clausesthat have alist argument, alist is acommarseparated list of variable names, array
names, or, in some cases, subarrays with subscript ranges.

7.9.3. C Directives

In C, OpenACC compiler directives are specified using #pragma

Syntax
The syntax of an OpenACC compiler directiveis:

#pragma acc directive-name [clause [,clause]...] new-line
Rules

In addition to the general directive rules, the following rules apply to OpenACC C directives:

» Eachdirective startswith #pragma acc.

» Theremainder of the directive follows the C conventions for pragmas.

» White space may be used before and after the #; white space may be required to separate
wordsin adirective.

» Preprocessing tokens following the #pragma acc are subject to macro replacement.

» Cdirectives are case sensitive.

» An Accelerator directive applies to the immediately following structured block or loop.

7.9.4. Free-Form Fortran Directives

OpenACC Fortran directives can be either Free-Form or Fixed-Form directives. Free-Form
Accelerator directives are specified with the ! Sacc mechanism.

Syntax

The syntax of directivesin free-form sourcefilesis:

!Sacc directive-name [clause [,clause]...]

PGI Compiler User's Guide 89

Using an Accelerator

Rules

In addition to the genera directive rules, the following rules apply to OpenACC Free-Form
Fortran directives:

» The comment prefix (1) may appear in any column, but may only be preceded by white space
(spaces and tabs).

» Thesentinel (!$acc) must appear as a single word, with no intervening white space.

» Linelength, white space, and continuation rules apply to the directive line.

» Initia directive lines must have a space after the sentinel.

» Continued directive lines must have an ampersand (&) as the last nonblank character on the
line, prior to any comment placed in the directive.

» Comments may appear on the same line as the directive, starting with an exclamation point
and extending to the end of theline.

» If thefirst nonblank character after the sentinel is an exclamation point, the lineisignored.
» Directives are case-insensitive.

» Directives cannot be embedded within continued statements.

» Statements must not be embedded within continued directives.

7.9.5. Fixed-Form Fortran Directives

Fixed-Form Accelerator directives are specified using one of three formats.

Syntax

The syntax of directivesin fixed-form source filesis one these three formats:
!'Sacc directive-name [clause [,clause]...]
cSacc directive-name [clause [,clause]...]
*Sacc directive-name [clause [,clause]...]

Rules

In addition to the general directive rules, the following rules apply to Accelerator Fixed-Form
Fortran directives:

» Thesenting (!acc, cacc, or * $acc) must occupy columns 1-5.

» Fixed form line length, white space, continuation, and column rules apply to the directive
line.

» Initial directive lines must have a space or zero in column 6, and continuation directive lines
must have a character other than a space or zero in column 6.

» Comments may appear on the same line as a directive, starting with an exclamation point on
or after column 7 and continuing to the end of theline.

» Directives are case-insensitive.
» Directives cannot be embedded within continued statements.
» Statements must not be embedded within continued directives.

PGI Compiler User's Guide 90

Using an Accelerator

7.9.6. OpenACC Directive Summary

PGI currently supports these types of accelerator directives:

Parallel Directive
Kernels Directive
Loop Directive
Combined Directive
Data Directive

Enter Data and Exit Data Directives
Host_Data Directive
Cache Directive
Declare Directive
Update Directive
Routine Directive
Wait Directive

Table 17 lists and briefly describes each of the accelerator directives that PGI currently supports.
For a complete description of each directive, refer to ' PGl Accelerator Directives' in the PGI
Compiler's Reference Guide.

Table 17 PGl Accelerator Directive Summary Table

This directive... Accepts these clauses... Has this functionality...

Parallel Directive Defines the region of the program that should be compiled for

async [(int-expr)]) :
parallel execution on the accelerator device.

wait [(int-expr-list)]
num_gangs (int-expr)
num_workers(int-expr)
vector_length(int-expr)
if(condition)

reduction(operator : list)
copy (list)

copyin(list)

copyout(list)

create(list)

present(list)
present_or_copy(list)
present_or_copyin(list)
present_or_copyout(/ist)
present_or_create(list)
deviceptr(list)

private(list)

firstprivate(list)

C Syntax

#pragma acc parallel [clause [, clause]...] new-line
structured block

PGI Compiler User's Guide 91

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using an Accelerator

This directive...

Accepts these clauses...

Has this functionality...

Fortran Syntax

!Sacc parallel [clause [, clause]...]
structured block
!Sacc end parallel

Kernels Directive Defines the region of the program that should be compiled
into a sequence of kernels for execution on the accelerator

device.

async [(int-expr)]

wait [(int-expr-list)]

if(condition)

copy (list)

copyin(list)

copyout(list)

create(list)

present(list)
present_or_copy(list)
present_or_copyin(list)
present_or_copyout(ist)
present_or_create(list)
deviceptr(list)

C Syntax

#pragma acc kernels [clause [, clause]...] new-line
structured block

Fortran Syntax

!Sacc kernels [clause [, clause]...]
structured block
!Sacc end kernels

Data Directive Defines data, typically arrays, that should be allocated

if(condition)

copy.(I/s't) whether data should be copied from the host to the device
copyin(I’S,t) memory upon region entry, and copied from the device to
copyout(fist) host memory upon region exit.

in the device memory for the duration of the data region,

create(list)
present_or_copy(list)
present_or_copyin(list)
present_or_copyoul(list)
present_or_create(list)

deviceptr(list)
C Syntax
#pragma acc data [clause [, clause]...] new-line
structured block
Fortran Syntax
!Sacc data [clause [, clause]...]

structured block
!Sacc end data

Enter Data Directive Defines data, typically arrays, that should be allocated in the
device memory for the duration of the program or until an
exit data regdirective that deallocates the data, and
whether data should be copied from the host to the device

memory atthe enter data directive.

if(condition)

async [(int-expr)]
wait [(int-expr-list)]
copyin(list)
create(list)

PGI Compiler User's Guide 92

This directive... Accepts these clauses...

Using an Accelerator

Has this functionality...

present_or_copyin(list)
present_or_create(list)

C Syntax
#pragma acc enter data [clause [, clause]...
FortranSyntax

!Sacc enter data [clause [, clause]..

] new-line

-]

Exit Data Directive if(condtion)

async [(int-expr)]
wait [(int-expr-list)]

Defines data, typically arrays, that should be allocated in the
device memory, and whether data should be copied from the
device to the host memory.

copyout(list)
delete(ist)
C Syntax
#pragma acc exit data [clause [, clause]...
Fortran Syntax
!Sacc exit data [clause [, clause].

ool

] new-line

Host_Data Directive use_device(list)

Makes the address of the device data available on the host.

structured block
!$acc end host data

C Syntax
#pragma acc host data [clause [, clause]...
structured block
Fortran Syntax
!Sacc host data [clause [, clause]...

] new-line

Loop Directive collapse(n)

gang [(gang-arg-list)]
worker [([num:] int-expr)]
vector [([length:] int-expr)]
seq

independent

private(list)

reduction(operator : list)

Describes what type of parallelism to use to execute the loop
and declare loop-private variables and arrays and reduction
operations. Applies to a loop which must appear on the
following line.

C Syntax
#pragma acc loop [clause [,clause]..
for loop
Fortran Syntax
!Sacc loop [clause [,clause]...]

do loop

.]Jnew-line

Combined Parallel Loop
Directive

Any clause that is allowed on a
parallel directive or a loop directive
is allowed on a combined parallel
loop directive.

Is a shortcut for specifying a loop directive nested
immediately inside an accelerator parallel directive. The
meaning is identical to explicitly specifying a parallel
construct containing a loop directive.

PGI Compiler User's Guide

93

This directive...

Accepts these clauses...

Using an Accelerator

Has this functionality...

C Syntax

for loop
Fortran Syntax

do loop

#pragma acc parallel loop [clause

!Sacc parallel loop [clause

L

L,

clause]...]

clause]...]

new-line

Combined Kernels Loop
Directive

Any clause that is allowed on a
kernels directive or a loop directive
is allowed on a combined kernels
loop directive.

Is a shortcut for specifying a loop directive nested
immediately inside an accelerator kernels directive. The
meaning is identical to explicitly specifying a kernels
construct containing a loop directive.

C Syntax
#pragma acc kernels loop [clause [, clause]...] new-line
for loop
Fortran Syntax
!Sacc kernels loop [clause [, clause]...]
do loop
Cache Directive Specifies array elements or subarrays that should be fetched
into the highest level of the cache for the body of a loop.
Must appear at the top of (inside of) the loop.
C Syntax
#pragma acc cache (list)... new-line
Fortran Syntax
!Sacc cache (list)
Declare Directive copy (ist) Specifies that an array or arrays are to be allocated in the
copyin(list) device memory for the duration of the implicit data region of a
copyouty fist) function, subroutine, or program.

create(list)
present_or_copy (list)
present_or_copyin(list)
present_or_copyout(ist)
present_or_create(list)
deviceptr(list)
device_resident(list)

Specifieswhether the data values are to be transferred from
the host to the device memory upon entry to the implicit data
region, and from the device to the host memory upon exit
from the implicit data region.

Creates a visible device copy of the variable or array.

C Syntax

FortranSyntax

!Sacc declare

#pragma acc declare

[,declclause] ..

[,declclause] ...

.new-1line

Update Directive

PGI Compiler User's Guide

async [(int-expr)]
wait [(int-expr)]
device-type [

(device-type-list)]
if (audience)

self (fist)

Used during the lifetime of accelerator data to update
all or part of a host memory array with values from the
corresponding array in device memory, or to update all
or part of a device memory array with values from the
corresponding array in host memory.

94

Using an Accelerator

This directive... Accepts these clauses... Has this functionality...

host (fist)
device(list)

C Syntax

#pragma acc update updateclause [,updateclause]...new-line

Fortran Syntax

!Sacc update updateclause [,updateclause]...

Routine Directive gang Used to tell the compiler to compile a given procedure
worker for an accelerator as well as the host. In a file or routine
with a procedure call the rout ine directive tells the

vector implementation the attributes of the procedure when called
seq on the accelerator.
C Syntax
#pragma acc routine clause [,clause]...new-line
or
#pragma acc routine (name) clause [,clause]...new-line
Fortran Syntax
!Sacc routine clause [,clause]...
or
!Sacc routine(name) clause [,clause]...
Wait Directive if(condition) Specifies to wait lljlntll all operations on a sple(tzlﬁc device
) . async queue or all async queues are complete.
device(list) yneq yneq P
C Syntax
#pragma acc wait [(int-expr-list)] [clause [,clause]...] new-line
Fortran Syntax

!Sacc wait [(int-expr-list)] [clause [,clause]...]

7.10. Accelerator Directive Clauses

CFAIIJHHprovides an aphabetical listing and brief description of each clause that is applicable
for the various Accelerator directives. The table also indicates for which directives the clauseis
applicable.

Table 18 Directive Clauses Summary

Use this clause... In these directives... To do this...
async [(int-expr)] Parallel The parallel or kernels region or data operations may be processed
Kernels asynchronously while the chal .thread continues with the code
following the construct or directive.
Enter Data
Exit Data
Update

PGI Compiler User's Guide 95

Use this clause...

In these directives...

Using an Accelerator

To do this...

collapse (n) Loop Specifies how many tightly nested loops are associated with the loop
construct.
copy (list) Parallel Declares that the variables, arrays, or subarrays in the list have
Kemels values in the host memory that need to be copied to the accelerator
) memory, and are assigned values on the accelerator that need to be
gatT Region copied back to the host.
eclare
copyin (list) Parallel Declares that the variables, arrays or subarrays in the list have values
Kernels in the host memory that need to be copied to the accelerator memory,
Data
Declare
Enter Data
copyout (list) Parallel Declares that the variables, arrays, or subarrays in the list are
Kernels assigned or contain values in the accelerator memory that need to be
Data copied back to the host memory at the end of the accelerator region.
Declare
Exit Data
create (list) Parallel Declares that the variables, arrays, or subarrays in the list are to
Kernels be allocated (created) in the device memory; but the values in the
local memory are not needed on the accelerator; and any values
Data computed and assigned on the accelerator are not needed back in
Declare local memory.
Enter Data
delete (list) Exit Data Deallocate arrays, subarrays or common blocks without copying
values back to local memory.
device (list) Update Copies the variables, arrays, or subarrays in the list argument from
host memory to the visible device copy of the variables, arrays, or
subarrays in device memory.
device_resident (list) Declare Specifies that the memory of the named variables should be allocated
in the accelerator device memory and not in the host memory.
deviceptr (list) Parallel Declares that the items in the list are device pointers, so the data
Kernels need not be allocated or moved between the host and device..
Data
Declare

firstprivate (list)

Parallel Region

Declares that a copy of each item on the list will be created for each
parallel gang, and that the copy will be initialized with the value of that
item on the host when the parallel construct is encountered.

gang [(gang-arg-list)]

Specifies that the iterations of the associate loop or loops are to be

Loo
Rou‘t)ine executed in parallel by distributing the iterations among the gangs
created by the parallel construct.
host (list) Update Copies the visible device copies of the variables, arrays, or subarrays

in the list argument to the associated host memory locations. The
copy occurs after completion of the compute or data region.

PGI Compiler User's Guide

96

Use this clause...

In these directives...

Using an Accelerator

To do this...

if (condition)

When present, tells the compiler to generate two copies of the region

Parallel
Kemels - one for the accelerator, one for the host - and to generate code to
decide which copy to execute.
if (condition) Data Region Conditionally allocate memory on, and move data to and/or from the
device.
Enter Data
Exit Data
Update
independent Loop Tells the compiler that the iterations of this loop are data-independent
of each other, thus allowing the compiler to generate code to execute
the iterations in parallel, without synchronization.
num_gangs (int-expr) Parallel Defines the number of parallel gangs that will execute the region.
num_workers (int-expr) Parallel Defines the number of workers within each gang that will be active
after a gang transitions from worker-single mode to worker-partitioned
mode.
present (list) Parallel Tells the implementation that the items in the list are already present
Kernels in device memory.
Data
Declare
present_or_copy (list) Parallel Tells the implementation to test whether each of the items in the
Kemels list are already present in the accelerator memory. If the data is not
present, the program behaves as with the copy clause.
Data
Declare
present_or_copyin (list) Parallel Tells the implementation to test whether each of the items in the
Kernels list are already present in the accelerator memory. If the data is not
present, the program behaves as with the copyin clause.
Data
Enter Data
Declare
present_or_copyout (list) Parallel Tells the implementation to test whether each of the items in the
Kernels list are already present in the accelerator memory. If the data is not
present, the program behaves as with the copyout clause.
Data
Declare
present_or_create (list) Parallel Tells the implementation to test whether each of the items in the
Kemels list are already present in the accelerator memory. If the data is not
Dat present, the program behaves as with the create clause.
ata
Enter Data
Declare
private (list) Loop Specifies that a copy of each item in the list will be created for each
thread that executes one or more iterations of the associated loop or
loops.
private (list) Parallel Declares that a copy of each item on the list will be created for each

parallel gang.

PGI Compiler User's Guide

97

Using an Accelerator

Use this clause... In these directives... To do this...

reduction (operator: list) Loop For each variable in the list, a private copy is created for each thread

that executes iterations of the associated loop or loops and initialized
for the operator. At the end of the loop, the values for each thread are
combined using the reduction operator, and the result combined with

the value of the original variable and stored in the original variable.

reduction (operator: list) Parallel For each variable in the list, a private copy is created for each parallel
gang and initialized for the operator. At the end of the region, the
values for each gang are combined using the reduction operator, and
the result combined with the value of the original variable and stored
in the original variable.

self (list) Update Specifies that the items in the list are to be copied from the
accelerator device memory to the local memory. The se 1 £ clause
is a synonym for the ho s t clause.

seq Loop Tells the compiler to execute this loop sequentially on the accelerator.
There is no maximum number of iterations for a seq schedule.

use_device (list) Host_Data Tells the compiler to use the device address of any item in the list in
code within the construct.

vector [(length: int-expr)] Loop Tells the compiler to execute this loop in vector or SIMD mode on the
accelerator.

vector_length (int-expr) Parallel Defines the number of vector lanes that will be active after a worker

transitions from vector-single mode to vector-partitioned mode.

wait [(int-expr-list)] The compute, data or update operation may not be launched or

Parallel
executed until all operations enqueued up to this point by this
Kernels . . -
thread on the associated asynchronous device activity queues have
Enter Data completed.
Exit Data
Update
worker [([num:] int-expr)] | Loop Specifies that the iterations of the associated loop or loops are to be

executed in parallel by distributing the iterations among the multiple
workers within a single gang.

7.11. OpenAcc Runtime Libraries

This section provides an overview of the user-callable functions and library routines that are
available for use by programmersto query the accelerator features and to control behavior of
accelerator-enabled programs at runtime.

In Fortran, none of the OpenACC runtime library routines may be called from a PURE or ELEMENTAL
procedure.

7.11.1. Runtime Library Definitions

There are separate runtime library files for C and for Fortran.

PGI Compiler User's Guide 98

Using an Accelerator

C Runtime Library Files

In C, prototypes for the runtime library routines are available in a header file named accel.h.

All thelibrary routines are extern functionswith ‘*C' linkage. Thisfile defines:

» The prototypes of all routinesin this section.
» Any datatypes used in those prototypes, including an enumeration type to describe types of

accelerators.

Fortran Runtime Library Files

In Fortran, interface declarations are provided in a Fortran include filenamed accel 1ib.h
and in aFortran module named accel 1ib. Thesefiles define:

» Interfacesfor al routines in this section.
» Integer parameters to define integer kinds for arguments to those routines.
» Integer parameters to describe types of accelerators.

» Theinteger parameter accel version withavalue yyyymm where yyyy and mm are
the year and month designations of the version of the Accelerator programming model
supported. This value matches the value of the preprocessor variable ACCEL.

7.11.2. Runtime Library Routines

Table 19 lists and briefly describes the runtime library routines supported by PGI in addition to
the standard OpenACC runtine API routines.

Table 19 Accelerator Runtime Library Routines

This Runtime Library

Routine...

Does this...

acc_allocs

Returns the number of arrays allocated in data or compute regions.

acc_bytesalloc

Returns the total bytes allocated by data or compute regions.

acc_bytesin

Returns the total bytes copied in to the accelerator by data or compute regions.

acc_bytesout

Returns the total bytes copied out from the accelerator by data or compute regions.

acc_copyins

Returns the number of arrays copied in to the accelerator by data or compute regions.

acc_copyouts

Returns the number of arrays copied out from the accelerator by data or compute regions.

acc_disable_time

Tells the runtime to stop profiling accelerator regions and kernels.

acc_enable_time

Tells the runtime to start profiling accelerator regions and kernels, if it is not already doing so.

acc_exec_time

Returns the number of microseconds spent on the accelerator executing kernels.

acc_frees

Returns the number of arrays freed or deallocated in data or compute regions.

acc_get_device

Returns the type of accelerator device used to run the next accelerator region, if one is
selected.

acc_get_device_num

Returns the number of the device being used to execute an accelerator region.

acc_get_free_memory

Returns the total available free memory on the attached accelerator device.

PGI Compiler User's Guide

Using an Accelerator

This Runtime Library

Routine... Does this...

acc_get_memory Returns the total memory on the attached accelerator device.

acc_get_num_devices Returns the number of accelerator devices of the given type attached to the host.

acc_kernels Returns the number of accelerator kernels launched since the start of the program.

acc_regions Returns the number of accelerator regions entered since the start of the program.

acc_total_time Returns the number of microseconds spent in accelerator compute regions and in moving data

for accelerator data regions.

7.12. Environment Variables

PGI supports environment variables that modify the behavior of accelerator regions. This section
defines the user-setable environment variables used to control behavior of accelerator-enabled
programs at execution. These environment variables must comply with these rules:

» The names of the environment variables must be upper case.
» Thevalues assigned environment variables are case insensitive and may have leading and

trailing white space.

» Thebehavior isimplementation-defined if the values of the environment variables change
after the program has started, even if the program itself modifies the values.

Table 20 lists and briefly describes the Accelerator environment variables that PGl supports.

Table 20 Accelerator Environment Variables

This environment variable...

Does this...

ACC_DEVICE_TYPE

Controls which accelerator device to use when executing accelerator regions, if the
program has been compiled to use more than one different type of device. The value
of this environment variable is implementation-defined, and currently may be the
string NVIDIA, RADEON, or HOST.

ACC_DEVICE_NUM

Controls the default device number to use when executing accelerator regions. The
value of this environment variable must be a nonnegative integer between zero and
the number of devices attached to the host.

PGI_ACC_NOTIFY

When set to an integer value, the value is used as a bit mask to print information
about kernel launches (value 1), data transfers (value 2), region entry/exit (value 4),
and wait operations or synchronizations with the device (value 8).

PGI_ACC_TIME

Enables a lightweight profiler to measure data movement and accelerator kernel
execution time and print a summary at the end of program execution.

PGI_ACC_BUFFERSIZE

For NVIDIA CUDA devices, this defines the size of the pinned buffer used to transfer
data between host and device.

PGI_ACC_CUDA_GANGLIMIT

For NVIDIA CUDA devices, this defines the maximum number of gangs (CUDA
thread blocks) that will be launched by a kernel.

PGI_ACC_DEV_MEMORY

For AMD Radeon devices, this defines the maximum size OpenCL buffer to allocate.
The maximum size may also be limited by the target device.

PGI Compiler User's Guide

100

Using an Accelerator

7.13. Applicable Command Line Options

The following command line options are applicabl e specifically when working with accelerators.

—-ta
Use this option to enable recognition of the '$Acc directivesin Fortran, and #pragma acc
directivesin C.

Use this option to specify the target host processor architecture.
=acc

Use this option to enable OpenACC directives. You can use the —acc suboptions to specify
loop autoparallelization, how the compiler reports compute regions failures to accelerate, and
whether to issue awarning or an error for non-OpenA CC accelerator directives.

—Minfo Or -Minfo=accel
Use this option to see messages about the success or failure of the compiler in trandating the
accelerator region into GPU kernels.

The -t a flag has the following accelerator-related suboptions:
nvidia
Select NVIDIA accelerator target. This option has a number of suboptions:

cc10, ccl1, cc12, cc13, Generate code for compute capability 1.0, 1.1, 1.2, 1.3, 2.0, 3.0, or 3.5 respectively; multiple

cc20, cc30, cc35

selections are valid.

cuda6.0 or 6.0 Specify the CUDA 6.0 version of the toolkit. This is the default.

cuda6.5 or 6.5 Specify the CUDA 6.5 version of the toolkit.

fastmath Use routines from the fast math library.

fermi Generate code for Fermi Architecture equivalent to NVIDIA compute capability 2.x.

[noJflushz control flush-to-zero mode for floating point computations in the GPU code generated for PGI
Accelerator model compute regions.

keep Keep the kernel files.

kepler Generate code for Kepler Architecture equivalent to NVIDIA compute capability 3.x.

maxregcount:n

Specify the maximum number of registers to use on the GPU.
Leaving this blank indicates no limit.

nofma Do not generate fused multiply-add instructions.

noL1 Prevent the use of L1 hardware data cache to cache global variables.

tesla Generate code for Tesla Architecture equivalent to NVIDIA compute capability 1.x.

time Link in a limited-profiling library, as described in Profiling Accelerator Kernels.
host

Select NO accelerator target. Generate PGl Unified Binary Code.

PGI Compiler User's Guide

101

Using an Accelerator

The compiler automatically invokes the necessary CUDA software tools to create the kernel code
and embeds the kernelsin the object file.

n To access accelerator libraries, you must link an accelerator program with the —t a flag.

7.14. Profiling Accelerator Kernels

This release supports the environment variable PGI_ACC_TIME. Setting this environment
variable to a nonzero value enabl es collection and printing of simple timing information about the
accelerator regions and generated kernels.

Accelerator Kernel Timing Data

bb04.£90
sl
15: region entered 1 times
time (us): total=1490738
init=1489138 region=1600
kernels=155 data=1445
w/o init: total=1600 max=1600
min=1600 avg=1600
18: kernel launched 1 times
time (us): total=155 max=155 min=155 avg=155

In this example, a number of things are occurring:

» For each accelerator region, the file name bb04 . £90 and subroutine or function name s1 is
printed, with the line number of the accelerator region, which in the exampleis 15.

» Thelibrary counts how many times the region is entered (1 in the example) and the
microseconds spent in the region (in this example 1490738), which is split into
initialization time (in thisexample 14891 38) and execution time (in this example 1600).

» The execution time is then divided into kernel execution time and data transfer time between
the host and GPU.

» For each kernel, the line number is given, (18 in the example), along with a count of kernel
launches, and the total, maximum, minimum, and average time spent in the kernel, all of
which are 155 in this example.

7.15. Related Accelerator Programming Tools

7.15.1. PGPROF pgcollect

The PGI profiler, PGPROF, has an Accelerator tab that displays profiling information provided
by the accelerator. Thisinformation is available in the filepgprof . out andis collected

by using pgecollect on an executable binary compiled for an accelerator target. For more
information on pgcollect, refer to the ‘ pgcollect Reference’ section of the PGPROF Profiler
Guide.

PGI Compiler User's Guide 102

http://www.pgroup.com/doc/pgprof.pdf
http://www.pgroup.com/doc/pgprof.pdf

Using an Accelerator

7.15.2. NVIDIA CUDA Profile

Y ou can use the NVIDIA CUDA Profiler with PGI-generated code for the NVIDIA
GPUs. Y ou may download the CUDA Profiler from the same website as the CUDA
software:www.nvidia.com/cuda

Documentation and support is provided by NVIDIA.

7.15.3. TAU - Tuning and Analysis Utility

Y ou can use the TAU (Tuning and Analysis Utility), version 2.18.1+, with PGI-generated
accelerator code. TAU instruments code at the function or loop level, and version 2.18.1
is enhanced with support to track performance in accelerator regions. TAU software and
documentation is available at this website: http://tau.uoregon.edu

7.16. Supported Intrinsics

Anintrinsic is afunction available in a given language whose implementation is handled
specifically by the compiler. Typically, an intrinsic substitutes a sequence of automatically-
generated instructions for the original function call. Since the compiler has an intimate knowledge
of theintrinsic function, it can better integrate it and optimize it for the situation.

Intrinsics make the use of processor-specific enhancements easier because they provide a
language interface to assembly instructions. In doing so, the compiler manages things that the
user would normally have to be concerned with, such as register names, register allocations, and
memory locations of data.

This section contains an overview of the Fortran and C intrinsics that the accel erator supports.

7.16.1. Supported Fortran Intrinsics Summary Table

Table 21 isan aphabetical summary of the supported Fortran intrinsics that the accel erator
supports. These functions are specific to Fortran 90/95 unless otherwise specified.

n For complete descriptions of these intrinsics, refer to ‘Fortran Intrinsics’ of the PGI Fortran Reference
Manual.

In most cases PGI provides support for al the data types for which the intrinsic is valid. When
support is available for only certain data types, the middle column of the table specifies which
ones, using the following codes:

| for integer S for single precision real C for single precision complex

D for double precision real Z for double precision complex

PGI Compiler User's Guide 103

www.nvidia.com/cuda
http://tau.uoregon.edu
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Table 21 Supported Fortran Intrinsics

This intrinsic Returns this value ...

Using an Accelerator

ABS 1,S,.D absolute value of the supplied argument.

ACOS arccosine of the specified value.

AINT truncation of the supplied value to a whole number.
ANINT nearest whole number to the supplied argument.
ASIN arcsine of the specified value.

ATAN arctangent of the specified value.

ATAN2 arctangent of the specified value.

COS SD cosine of the specified value.

COSH hyperbolic cosine of the specified value.

DBLE SD conversion of the value to double precision real.
DPROD double precision real product.

EXP SD exponential value of the argument.

IAND result of a bit-by-bit logical AND on the arguments.
[EOR result of a bit-by-bit logical exclusive OR on the arguments.
INT 1,S,D conversion of the value to integer type.

IOR result of a bit-by-bit logical OR on the arguments.
LOG SD natural logarithm of the specified value.

LOG10 base-10 logarithm of the specified value.

MAX maximum value of the supplied arguments.

MIN minimum value of the supplied arguments.

MOD remainder of the division.

NINT nearest integer to the real argument.

NOT result of a bit-by-bit logical complement on the argument.
REAL 1,S,.D conversion of the argument to real.

SIGN absolute value of A times the sign of B.

SIN SD value of the sine of the argument.

SINH hyperbolic sine of the argument.

SQRT SD square root of the argument.

TAN tangent of the specified value.

TANH hyperbolic tangent of the specified value.

7.16.2. Supported C Intrinsics Summary Table

This section contains two alphabetical summaries - one for double functions and a second for
float functions. These lists contain only those C intrinsics that the accelerator supports.

PGI Compiler User's Guide

104

Using an Accelerator

Table 22 Supported C Intrinsic Double Functions

This intrinsic Returns this value ...

acos arccosine of the specified value.

asin arcsine of the specified value.

atan arctangent of the specified value.

atan2 arctangent of y/x, where y is the first argument, x the second.
oS cosine of the specified value.

cosh hyperbolic cosine of the specified value.

exp exponential value of the argument.

fabs absolute value of the argument.

fmax maximum value of the two supplied arguments

fmin minimum value of the two supplied arguments

log natural logarithm of the specified value.

log10 base-10 logarithm of the specified value.

pow value of the first argument raised to the power of the second argument.
sin value of the sine of the argument.

sinh hyperbolic sine of the argument.

sqrt square root of the argument.

tan tangent of the specified value.

tanh hyperbolic tangent of the specified value.

Table 23 Supported C Intrinsic Float Functions

This intrinsic Returns this value ...

acosf arccosine of the specified value.

asinf arcsine of the specified value.

atanf arctangent of the specified value.

atan2f arctangent of y/x, where y is the first argument, x the second.
cosf cosine of the specified value.

coshf hyperbolic cosine of the specified value.

expf exponential value of the floating-point argument.

fabsf absolute value of the floating-point argument.

logf natural logarithm of the specified value.

log10f base-10 logarithm of the specified value.

powf value of the first argument raised to the power of the second argument.
sinf value of the sine of the argument.

PGI Compiler User's Guide

105

Using an Accelerator

This intrinsic Returns this value ...

sinhf hyperbolic sine of the argument.

sqrtf

square root of the argument.

tanf

tangent of the specified value.

tanhf hyperbolic tangent of the specified value.

7.17. References related to Accelerators

>

ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran,
Geneva, 1997 (Fortran 95).

American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).
I1SO/IEC 9899:1999, Information Technology - Programming Languages - C, Geneva, 1999
(C99).

PGDBG Dubugger Manual, The Portland Group, Release 14.1, January, 2014. Available
online at http://www.pgroup.com/doc/pgdbg.pdf.

PGPROF Profiler Manual, The Portland Group, Release 14.1, January, 2014. Available
online at http://www.pgroup.com/doc/pgprof.pdf.

PGI Fortran Reference, The Portland Group, Release 14.1, January. Available online at
http://www.pgroup.com/doc/pgifortref . pdf

PGI Compiler User's Guide 106

http://www.pgroup.com/doc/pgdbg.pdf
http://www.pgroup.com/doc/pgprof.pdf
http://www.pgroup.com/doc/pgifortref.pdf

Chapter 8.
ECLIPSE

This document explains how to install and use the PGI plugin for Eclipse CDT (C/C++
development tool). PGI Eclipse integration is only available on Linux.

8.1. Install Eclipse CDT

To install the Eclipse plugin for the PGI C and C++ compilers:

1. Beforeyou install, check your CDT version.

1. GotoHelp-> About Eclipse
2. Click the Eclipse CDT button.

Y ou might need to hover the mouse pointer on the button to see the hint.
3. Select Eclipse C/C++ Development Tools.

The first number in the feature version specifies which plugin version is selected.
2. Goto Help -> Install New software.
3. Click the Add button to add a new software repository.

4. Inthe Add Repository dialog box:

1. Click Local.

2. Select your PGI installation directory, such as /opt /pgi.

3. Browseinside2014/eclipse and select the directory matching your CDT version.
4. Click OK.

The Add Repository dialog should show the path to the local directory containing the
plugin for your CDT version. For example, if PGl compilers are installed in /opt/pgi, then
the CDT 7 pluginislocated in /opt /pgi/<os-version>/2014/eclipse/cdt7,
the CDT 8 pluginisin /opt/pgi/<os-version>/2014/eclipse/cdt8, and so
on.

5. Click OK inthe Add Repository dialog.

PGI Compiler User's Guide 107

Eclipse

Theinstall form now shows “ The Portland Group C/C++ Compiler Plugin” as an option to
install.

5. Check the box next to The Portland Group option and select Next to get to the Install Details
view.

6. Click Next again.
7. Review and accept the End-User License agreement.
8. Click Finish.

Y ou are prompted to restart. Select Restart to complete installation of the plugin.

8.2. Use Eclipse CDT

To use the Eclipse plugin for the PGI C and C++ compilers, the directory containing PGI
compilers and tools should be included in your PATH prior to starting Eclipse IDE. For details
on how to include this directory in your PATH environment variable, refer to Using Environment
Variables, and specifically to PATH.

This plugin currently does not support the Code Analysis feature of Eclipse CDT. Thisfeatureis
disabled by default for PGI projects; it can be re-enabled but this action results in spurious syntax
errors. Any compilation or link errors are reported at build time.

The PGI plugin follows the same rules for creating, building, and running a project as any
other compiler supported by Eclipse. For more information, refer to Eclipse documentation and
tutorials at: http://www.eclipse.org/documentation/.

PGI Compiler User's Guide 108

www.eclipse.org/documentation/

Chapter 9.
USING DIRECTIVES AND PRAGMAS

It is often useful to be able to alter the effects of certain command line options or default behavior
of the compiler. Fortran directives and C/C++ pragmas provide pragmatic information that
control the actions of the compiler in a particular portion of a program without affecting the
program as awhole. That is, while acommand line option affects the entire source file that is
being compiled, directives and pragmas apply, or disable, the effects of a command line option

to selected subprograms or to selected loopsin the source file, for example, to optimize a specific
area of code. Use directives and pragmas to tune selected routines or loops.

9.1. PGI Proprietary Fortran Directives

PGI Fortran compilers support proprietary directives that may have any of the following forms:

'pgiSg directive
'pgi$r directive
'pgi$l directive
'pgi$ directive

n If the input is in fixed format, the comment character must begin in column 1 and either * or C is allowed in
place of !.

The scope indicator controls the scope of the directive. Thisindicator occurs after the $. Some
directives ignore the scope indicator.

The valid scopes, shown in the previous forms of the directive, are these:

° (global) indicates the directive applies to the end of the sourcefile.

r (routine) indicates the directive applies to the next subprogram.

| (loop) indicates the directive applies to the next loop, but not to any loop contained within the
loop body. Loop-scoped directives are only applied to DO loops.

blainr;icateﬁ that the default scope for the directive is applied.

PGI Compiler User's Guide 109

Using Directives and Pragmas

The body of the directive may immediately follow the scope indicator. Alternatively, any
number of blanks may precede the name of the directive. Any namesin the body of the directive,
including the directive name, may not contain embedded blanks. Blanks may surround any
specia characters, such asacommaor an equal sign.

The directive name, including the directive prefix, may contain upper or lower case letters, and
the caseis not significant. Caseis significant for any variable names that appear in the body of
the directive if the command line option —-Mupcase is selected. For compatibility with other
vendors' directives, the prefix cpgi$ may be substituted with cdirs$ or cvds.

9.2. PGI Proprietary C and C++ Pragmas

Pragmas may be supplied in a C/C++ source file to provide information to the compiler. Many
pragmas have a corresponding command-line option. Pragmas may also toggle an option,
selectively enabling and disabling the option.

The general syntax of apragmais:
#pragma [scope] pragma-body

The optional scopefield isan indicator for the scope of the pragma; some pragmas ignore the
scope indicator.

The valid scopes are:

global
indicates the pragma applies to the entire source file.
routine
indicates the pragma applies to the next function.
loop
indicates the pragma applies to the next loop (but not to any loop contained within the loop
body). Loop-scoped pragmas are only applied to for and while loops.

If ascope indicator is not present, the default scope, if any, is applied. Whitespace must

appear after the pragma keyword and between the scope indicator and the body of the pragma.
Whitespace may also surround any special characters, such asacommaor an equal sign. Caseis
significant for the names of the pragmas and any variable names that appear in the body of the

pragma.

9.3. PGl Proprietary Optimization Directive and Pragma
Summary

The following table summarizes the supported Fortran directives and C/C++ pragmas. The
following terms are useful in understanding the table.

» Functionality isabrief summary of the way to use the directive or pragma. For a complete
description, refer to the ‘ Directives and Pragmas Reference’ section of the PGl Compiler's
Reference Guide.

» Many of the directives and pragmas can be preceded by NO. The default entry indicates the
default for the directive or pragma. N/A appearsif a default does not apply.

PGI Compiler User's Guide 110

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Directives and Pragmas

» The scope entry indicates the allowed scope indicators for each directive or pragma, with T,
for loop, R for routine, and G for global. The default scope is surrounded by parentheses and
N/A appearsif the directive or pragmais not available in the given language.

The "*" in the scope indicates this:

For routine-scoped directive
The scope includes the code following the directive or pragma until the end of the routine.

For globally-scoped directive
The scope includes the code following the directive or pragma until the end of the file rather than
for the entire file.

The name of a directive or pragma may also be prefixed with —M.

For example, you can use the directive -Mbounds, which is equivalent to the directive bounds
and you can use —Mopt, which is equivalent to opt. For pragmas, you can use the directive —
Mnoassoc, which is equivalent to the pragma noassoc, and -Mvintr, which is equivalent to
vintr.

Table 24 Proprietary Optimization-Related Fortran Directive and C/C++ Pragma
Summary

Directive or Fortran C/C++
pragma Functionality DIEN] Scope Scope
altcode (noaltcode) Do/don't generate alternate code for vectorized altcode (LRG (LRG
and parallelized loops.
assoc (noassoc) Do/don’t perform associative transformations. assoc (L)RG (LRG
bounds (nobounds) Do/don’t perform array bounds checking. nobounds (R)G* (R)G
cncall (nocncall) Loops are considered for parallelization, even if nocncall (L)RG (L)RG
they contain calls to user-defined subroutines or
functions, or if their loop counts do not exceed
usual thresholds.
concur (noconcur) Do/don’t enable auto-concurrentization of loops. concur (L)RG (LIRG
depchk (nodepchk) Do/don't ignore potential data dependencies. depchk (L)RG (LRG
eqvchk (noeqvchk) Do/don’t check EQUIVALENCE for data eqvchk (L)RG N/A
dependencies.
fcon (nofcon) Do/don’'t assume unsuffixed real constants are nofcon N/A (R)G
single precision.
invarif (noinvarif) Do/don’t remove invariant if constructs from loops. | invarif (L)RG (LRG
ivdep Ignore potential data dependencies. ivdep (L)RG N/A
Istval (nolstval) Do/don’t compute last values. Istval (L)RG (LIRG
prefetch Control how prefetch instructions are emitted
opt Select optimization level. N/A (R)G (R)G
safe (nosafe) Do/don't treat pointer arguments as safe. safe N/A (R)G

PGI Compiler User's Guide

1M

Using Directives and Pragmas

Directive or Fortran C/C++

pragma Functionality Default Scope Scope

safe_lastval Parallelize when loop contains a scalar used not enabled L) (L)
outside of loop.

safeptr (nosafeptr) Do/don’t ignore potential data dependencies to nosafeptr N/A L(R)G
pointers.

single (nosingle) Do/don’t convert float parameters to double. nosingle N/A (R)G*

tp Generate PGI Unified Binary code optimized for N/A (R)G (R)G
specified targets.

unroll (nounroll) Do/don’t unroll loops. nounroll (L)RG (L)RG

vector (novector) Do/don't perform vectorizations. vector (L)RG* (LRG

vintr (novintr) Do/don’t recognize vector intrinsics. vintr (L)RG (LRG

9.4. Scope of Fortran Directives and Command-Line Options

During compilation the effect of a directive may be to either turn an option on, or turn an option
off. Directives apply to the section of code following the directive, corresponding to the specified
scope, which may include the following loop, the following routine, or the rest of the program.
This section presents several examples that show the effect of directives aswell as their scope.
Consider the following Fortran code:

integer maxtime, time

parameter (n = 1000, maxtime = 10)
double precision a(n,n), b(n,n), c(n,n)
do time = 1, maxtime
do i =1, n
do j =1, n
c(i,3) = a(i,J) + b(i,3)
enddo
enddo
enddo

When compiled with —-Mvect, both interior loops are interchanged with the outer loop.

$ pgfortran -Mvect dirvectl.f

Directives dter this behavior either globally or on aroutine or loop by loop basis. To assure that
vectorization is not applied, use the novector directive with global scope.

cpgi$g novector
integer maxtime, time

parameter (n = 1000, maxtime = 10)
double precision a(n,n), b(n,n), c(n,n)
do time = 1, maxtime
doi=1, n
do j =1, n
c(i,j) = a(i,J) + b(i,3)
enddo
enddo
enddo
end

PGI Compiler User's Guide 112

Using Directives and Pragmas

In this version, the compiler disables vectorization for the entire source file. Another use of the
directive scoping mechanism turns an option on or off locally, either for a specific procedure or
for a specific loop:

integer maxtime, time

parameter (n = 1000, maxtime = 10)
double precision a(n,n), b(n,n), c(n,n)
cpgi$l novector

do time = 1, maxtime
doi=1, n
do j =1, n
c(i,j) = a(i,J) + b(i,3)
enddo
enddo
enddo

Loop level scoping does not apply to nested loops. That is, the directive only applies to the
following loop. In this example, the directive turns off vector transformations for the top-

level loop. If the outer loop were atiming loop, thiswould be a practical use for aloop-scoped
directive.

9.5. Scope of C/C++ Pragmas and Command-Line Options

During compilation a pragma either turns an option on or turns an option off. Pragmas apply to
the section of code corresponding to the specified scope - either the entire file, the following loop,
or the following or current routine. This section presents several examples showing the effect of
pragmas and the use of the pragma scope indicators.

n In all cases, pragmas override a corresponding command-line option.

For pragmas that have only routine and global scope, there are two rules for determining the
scope of the pragma. We cover these special scope rules at the end of this section.

Consider the following program:

main () {

float a[100][100], b[100][100], c[100][100];

int time, maxtime, n, i, Jj;

maxtime=10;

n=100;

for (time=0; time<maxtime;time++)

for (3j=0; j<n;j++)
for (i=0; i<n;i++)
clil[3] = alil[3] + bli][3]:

t

When thisis compiled using the -Mvect command-line option, both interior loops are
interchanged with the outer loop. Pragmas alter this behavior either globally or on aroutine or

PGI Compiler User's Guide 113

Using Directives and Pragmas

loop by loop basis. To ensure that vectorization is not applied, use the novector pragmawith
global scope.

main () {
#pragma global novector

float a[100][100], b[100][100],c[100][100];

int time, maxtime, n, i, Jj;

maxtime=10;

n=100;

for (time=0; time<maxtime;time++)

for (3j=0; j<n;j++)
for (i=0; i<n;i++)
clil[j] = alillj] + blil[3];

}

In this version, the compiler does not perform vectorization for the entire source file. Another use
of the pragma scoping mechanism turns an option on or off locally either for a specific procedure
or for a specific loop. The following example shows the use of aloop-scoped pragma.

main () {

float a[100][100], b[100][100],c[100]([100];

int time, maxtime, n, i, Jj;

maxtime=10;

n=100;
#pragma loop novector

for (time=0; time<maxtime;time++)

for (3j=0; j<n;j++)
for (i=0; i<n;i++)
c[il[3] = alil[3] + bIil[3];

}

Loop level scoping does not apply to nested loops. That is, the pragma only appliesto the
following loop. In this example, the pragma turns off vector transformations for the top-level
loop. If the outer loop were atiming loop, this would be a practical use for aloop-scoped pragma.
The following example shows routine pragma scope:

#include "math.h"
funcl () {
#pragma routine novector
float a[100][100], b[100][100];
float c[100][100], 4[100][100];
int i,3;
for (i=0;i<100;i++)
for (j=0;73<100;j++)
afil[j] = alil[3] + b[i]1[J] * cli1[317
c[il[3J] = cli1([3] + bl[i1([3J] * 4li1([3]1;

func2 () {
float a[200][200], b[200][200];
float c[200] [200], d[200][200];
int i,3;
for (1=0;1<200;1++)
for (j=0;3<200;j++)
alil[3j] alil[j] + bl[il[3] * cl[i1[3J1;
cli][3] c[i][J] + blil[3] * dl[i]l[]]~

PGI Compiler User's Guide 114

Using Directives and Pragmas

When this source is compiled using the -Mvect command-line option, func2 is vectorized
but funcl is not vectorized. In the following example, the global novector pragma turns off
vectorization for the entire file.

#include "math.h"
funcl () |
#pragma global novector
float a[100][100], b[100][100];
float ¢[100][100], d[100][1007];
int 1,73;
for (1i=0;1<100;1i++)
for (j=0;3<100;j++)
alil[3] = alil[3] + bI[1i][F] * cli][i];
clil[3] = cl[il[3] + bLil[3] * A[i1[3];

}
func2 () {
float a[200] [200], b[200][200];
float c[200] [200], d[200][200];
int i,3;
for (i=0;1<200;1i++)
for (3j=0;73<200;j++)
alil[3] = alil(j] + b[i]1[3] * clil[i];
cli]l[3] cl[i][J] + blil[3] * dl[i]l[3]:

Special Scope Rules

Specia rules apply for a pragma with loop, routine, and global scope. When the pragmaiis placed
within aroutine, it appliesto the routine from its point in the routine to the end of the routine. The
same rule applies for one of these pragmas with global scope.

However, there are several pragmas for which only routine and global scope applies and which
affect code immediately following the pragma:

» bounds and fcon — The bounds and fcon pragmas behave in a similar manner to pragmas with
loop scope. That is, they apply to the code following the pragma.

» opt and safe — When the opt or safe pragmas are placed within aroutine, they apply to the
entire routine as if they had been placed at the beginning of the routine.

9.6. Prefetch Directives and Pragmas

Today’ s processors are so fast that it is difficult to bring data into them quickly enough to keep
them busy. Prefetch instructions can increase the speed of an application substantially by bringing
datainto cache so that it is available when the processor needsiit.

When vectorization is enabled using the -Mvect or —-Mprefetch compiler options, or an
aggregate option such as —fast that incorporates -Mvect, the PGl compilers selectively emit
instructions to explicitly prefetch datainto the data cache prior to first use. Y ou can control how
these prefetch instructions are emitted by using prefetch directives and pragmas.

For alist of processors that support prefetch instructions refer to the PGl Release Notes.

PGI Compiler User's Guide 115

Using Directives and Pragmas

9.6.1. Prefetch Directive Syntax in Fortran

The syntax of a prefetch directive is asfollows:

cSmem prefetch <varl>[,<var2>[,...]]

where <varn>isany valid variable, member, or array element reference.

9.6.2. Prefetch Directive Format Requirements

The sentinel for prefetch directives is c Smem, which is distinct from the cpgi $ sentinel used for
optimization directives. Any prefetch directives that use the cpgi $ sentinel are ignored by the PGI
compilers.

v

The"c" must be in column 1.

Either * or ! isalowed in place of c.

The scope indicators g, r and | used with the cpgi$ sentinel are not supported.

The directive name, including the directive prefix, may contain upper or lower case letters
and is case insensitive (case is not significant).

» If the command line option ~Mupcase isused, any variable names that appear in the body
of the directive are case sensitive.

v v VY

9.6.3. Sample Usage of Prefetch Directive

Prefetch Directive Use

This example uses prefetch directives to prefetch datain a matrix multiplication inner loop where
arow of one source matrix has been gathered into a contiguous vector.

real*8 a(m,n), b(n,p), c(m,p), arow(n)

do j =1, p

cSmem prefetch arow(l),b(1,])

cSmem prefetch arow(5),b(5,7)

cSmem prefetch arow(9),b(9,7])

do k=1, n, 4

cSmem prefetch arow(k+12),b(k+12,7)

c(i,j) = c(i,]J) + arow(k) * b(k,7J)
c(i,j) = c(i,J) + arow(k+l) * b(k+1l,3)
c(i,j) = c(i,j) + arow(k+2) * b(k+2,7)
c(i,j) = c(i,3) + arow(k+3) * b (k+3,7)
enddo

enddo

This pattern of prefetch directives the compiler emits prefetch instructions whereby elements of
arow and b are fetched into the data cache starting four iterations prior to first use. By varying
the prefetch distance in thisway, it is sometimes possible to reduce the effects of main memory
latency and improve performance.

9.6.4. Prefetch Pragma Syntax in C/C++

The syntax of a prefetch pragmais as follows:

#pragma mem prefetch <varl>[,<var2>[,...]]

PGI Compiler User's Guide 116

Using Directives and Pragmas

where <varn>isany valid variable, member, or array element reference.

9.6.5. Sample Usage of Prefetch Pragma

Prefetch Pragmain C

This example uses the prefetch pragmato prefetch data from the source vector x for eight
iterations beyond the current iteration.

for (i=0; i<n; i++) {
#pragma mem prefetch x[1+8]
yli]l = y[i] + a*x[i];

}

9.7. CSPRAGMA C

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, and
OSX systems, an underscore is appended to Fortran global names, including names of functions,
subroutines, and common blocks. This mechanism distinguishes Fortran name space from C/C++
name space.

Y ou can use CSPRAGMA C in the Fortran program to call a C/C++ function from Fortran. The
statement would look similar to this:
C$PRAGMA C (name[,name]...)

This statement directs the compiler to recognize the routine 'name' as a C function, thus preventing the
Fortran compiler from appending an underscore to the routine name.

On Win32 systems the CSPRAGMA C aswell asthe attributes C and STDCALL may effect
other changes on argument passing as well as on the names of the routine.

For more information on this topic, refer to Win32 Calling Conventions.

9.8. IGNORE_TKR Directive

This directive indicates to the compiler to ignore the type, kind, and/or rank (/TKR/) of the
specified dummy arguments in an interface of a procedure. The compiler also ignores the type,
kind, and/or rank of the actual arguments when checking all the specificsin ageneric call for
ambiguities.

9.8.1. IGNORE_TKR Directive Syntax

The syntax for the IGNORE_TKR directiveisthis:
!DIR$ IGNORE TKR [[(<letter>) <dummy arg>] ...]

<letter>
is one or any combination of the following:

T - type K - kind R - rank

PGI Compiler User's Guide 117

Using Directives and Pragmas

For example, KR indicates to ignore both kind and rank rules and TKR indicates to ignore the
type, kind, and rank arguments.

<dummy_arg>
if specified, indicates the dummy argument for which TKR rules should be ignored. If not
specified, TKR rules areignored for al dummy arguments in the procedure that contains the
directive.

9.8.2. IGNORE_TKR Directive Format Requirements

The following rules apply to this directive:

» IGNORE_TKR must not specify dummy arguments that are allocatable, Fortran 90 pointers,
or assumed-shape arrays.

» |IGNORE_TKR may appear in the body of an interface block or in the body of a module
procedure, and may specify dummy argument names only.

» IGNORE_TKR may appear before or after the declarations of the dummy arguments it
specifies.

» If dummy argument names are specified, IGNORE_TKR applies only to those particular
dummy arguments.

» If no dummy argument names are specified, IGNORE_TKR appliesto all dummy arguments
except those that are allocatable objects, Fortran 90 pointers, or assumed-shape arrays.

9.8.3. Sample Usage of IGNORE_TKR Directive

Consider this subroutine fragment:

subroutine example (A,B,C,D)
IDIRS IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 25 indicates which rules are ignored for which dummy argumentsin the preceding sample
subroutine fragment:

Table 25 IGNORE_TKR Example

Dummy Argument Ignored Rules

A Type, Kind and Rank
B Only rank

C Type and Kind

D Only Kind

Notice that no letters were specified for A, so al type, kind, and rank rules are ignored.

9.9. IDECS$ Directives

PGI Fortran compilers for Microsoft Windows support several de-facto standard Fortran
directives that help with inter-language calling and importing and exporting routines to and from
DLLs.

PGI Compiler User's Guide 118

Using Directives and Pragmas

9.9.1. IDECS Directive Syntax

These directives all take the form:
IDECS directive

9.9.2. Format Requirements

Y ou must follow the following format requirements for the directive to be recognized in your
program:

» Thedirective must begin in column 1 when thefile is fixed format or compiled with -
Mfixed.

» Thedirective prefix ! DECS requires a space between the prefix and the directive keyword,
such asATTRIBUTES.

» The! must begin the prefix when compiling Fortran 90/95 free-form format.

» Thecharacters C or * can be used in place of ! in either form of the prefix when compiling
F77-style fixed-form format.

» Thedirectives are completely case insensitive.

9.9.3. Summary Table

The following table summarizes the supported ! DECS$ directives. For a complete description of
each directive, refer to the ‘| DECS$ Directives' section of the ‘ Directives and Pragmas Reference’
section in the PGl Compiler's Reference Guide.

Table 26 IDEC$ Directives Summary Table

Directive Functionality

ALIAS Specifies an alternative name with which to resolve a routine.
ATTRIBUTES Lets you specify properties for data objects and procedures.
DECORATE Specifies that the name specified in the ALIAS directive should have the prefix and postfix

decorations performed on it that are associated with the calling conventions that are in effect. This
directive has no effect if ALIAS is not specified.

DISTRIBUTE Tells the compiler at what point within a loop to split into two loops.

PGI Compiler User's Guide 119

http://www.pgroup.com/resources/docs.htm

Chapter 10.
CREATING AND USING LIBRARIES

A library is acollection of functions or subprograms that are grouped for reference and ease of
linking. This section discusses issues related to PGI-supplied compiler libraries. Specificaly, it
addresses the use of C/C++ builtin functionsin place of the corresponding libc routines, creation
of dynamically linked libraries, known as shared objects or shared libraries, and math libraries.

This section does not duplicate material related to using libraries for inlining, described in Creating
an Inline Library or information related to runtime library routines available to OpenMP programmers,
described in Runtime Library Routines.

PGI provides libraries that export C interfaces by using Fortran modules. On Windows, PGI aso
provides additions to the supported library functionality for runtime functions included in DFLIB.

This section has examples that include the following options related to creating and using
libraries.

—-Bdynamic —-def<file> —implib <file> -Mmakeimplib
-Bstatic —dynamiclib -1 -0
-C -fpic —Mmakedll —shared

10.1. Using builtin Math Functions in C/C++

The name of the math header fileismath . h. Include the math header filein all of your source
filesthat use a math library routine as in the following example, which calculates the inverse
cosine of 3.5.

#include <math.h>
#include<stdio.h>
#define PI 3.1415926535
void main ()
{

double x, y;

X = PI/3.0;

y = acos (0.5);

printf ($f $f\n’,x,vy);
}

PGI Compiler User's Guide 120

Creating and Using Libraries

Including math . h causes PGCC C and C++ to use builtin functions, which are much more
efficient than library calls. In particular, if you includemath. h, thefollowing intrinsics calls are
processed using builtins:

abs acosf asinf atan atan2 atan2f
atanf oS cosf exp expf fabs
fabsf fmax fmaxf fmin fminf log
log10 log10f logf pow powf sin
sinf sqrt sqrtf tan tanf

10.2. Using System Library Routines

Release 14.10 of the PGI runtime libraries makes use of Linux system libraries to implement,
for example, OpenMP and Fortran 1/0O. The PGI runtime libraries make use of several additional
system library routines.

On 64-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_write pthread_mutex_init sleep
aio_read calloc pthread_mutex_lock

aio_return getrlimit pthread_mutex_unlock

aio_suspend pthread_attr_init setrlimit

On 32-bit Linux systems, the system library routines that PGI supports include these:

aio_error aio_suspend getrlimit sleep
aio_read aio_write pthread_attr_init
aio_return calloc setrlimit

10.3. Creating and Using Shared Object Files on Linux

All of the PGI Fortran, C, and C++ compilers support creation of shared object files. Unlike
statically-linked object and library files, shared object files link and resolve references with

an executable at runtime viaa dynamic linker supplied with your operating system. The PGI
compilers must generate position independent code to support creation of shared objects by the
linker. However, thisis not the default. Y ou must create object files with position independent
code and shared abject files that will include them.

10.3.1. Procedure to create a use a shared object file
The following steps describe how to create and use a shared object file.

1. Create an object file with position independent code.

To do this, compile your code with the appropriate PGl compiler using the —fpic option, or
one of the equivalent options, suchas-fPIC, -Kpic, and -KPIC, which are supported for

PGI Compiler User's Guide 121

Creating and Using Libraries

compatibility with other systems. For example, use the following command to create an object
file with position independent code using pgfortran:

[)

% pgfortran -c -fpic tobeshared.f

2. Produce a shared object file.

To do this, use the appropriate PGl compiler to invoke the linker supplied with your system.
It is customary to name such filesusing a . so filename extension. On Linux, you do this by
passing the —shared option to the linker:

[

% pgfortran -shared -o tobeshared.so tobeshared.o

Compilation and generation of the shared object can be performed in one step using both the —fpic
option and the appropriate option for generation of a shared object file.

3. Use ashared object file.

To do this, use the appropriate PGl compiler to compile and link the program which will
reference functions or subroutines in the shared object file, and list the shared object on the
link line, as shown here:

[

% pgfortran -o myprog myprog.f tobeshared.so

4. Make the executable available.

Y ou how have an executable myprog which does not include any code from functions or
subroutinesin tobeshared. so, but which can be executed and dynamically linked to
that code. By default, when the program is linked to produce myprog, no assumptions are
made on the location of tobeshared. so. Therefore, for myprog to execute correctly,
you must initialize the environment variable LD LIBRARY PATH to include the directory
containing tobeshared. so. If LD LIBRARY PATH isaready initialized, it isimportant
not to overwrite its contents. If you have placed tobeshared. so indirectory /home/
myusername/bin, youcaninitialize LD_LIBRARY PATH toinclude that directory and
preserve its existing contents, as shown in the following:

% setenv LD LIBRARY PATH "SLD LIBRARY PATH":/home/myusername/bin

If you know that tobeshared. so dwaysresidesin a specific directory, you can create the
executable myprog in aform that assumes this directory by using the —R link-time option.
For example, you can link as follows:

[)

% pgfortran -o myprog myprof.f tobeshared.so -R/home/myusername/bin

As with the —1. option, there is no space between —R and the directory name. If the —R option is used,
itis not necessary to initialize LD LIBRARY PATH.

In the previous example, the dynamic linker dways|ooksin /home /myusername/
bin toresolve referencesto tobeshared. so. By default, if the LD LIBRARY PATH
environment variable is not set, the linker only searches /usr/1ib and /1ib for shared
objects.

10.3.2. Idd Command

The 1dd command is a useful tool when working with shared object files and executables that
reference them. When applied to an executable, as shown in the following example, 1dd lists all

PGI Compiler User's Guide 122

Creating and Using Libraries

shared object files referenced in the executable along with the pathname of the directory from
which they will be extracted.

[)

% 1dd myprog

If the pathname is not hard-coded using the-R option, and if LD LIBRARY PATH isnot
initialized, the pathname islisted as "not found". For more information on 1dd, its options and
usage, see the online man page for 1dd.

10.4. Creating and Using Dynamic Libraries on Mac OS X

PGI compilers for Mac OS X do not support static linking on user executables. Apple only ships dynamic
versions of its system libraries - not static versions. You can create static libraries; however, you cannot
create 100% static executables.

The 32-bit version of PGl Workstation for Mac OS X supports generation of dynamic libraries.
To create the dynamic library, you use the ~dynamiclib switch to invoke the libtool utility
program provided by Mac OS X. For more information, refer to the 1ibtool man page.

The following example creates and uses a dynamic library:

1. Create the object files.
world.f90:

subroutine world
print *, 'Hello World!'
end

hello.£90:

program hello
call world
end

2. Build the dynamic library.

[)

% pgfortran -dynamiclib world.f90 -o world.dylib

3. Build the program that uses the dynamic library.
% pgfortran hello.f90 world.dylib -o hello

4. Run the program.

% ./hello]|
Hello World!

10.5. PGI Runtime Libraries on Windows

Both statically- and dynamically-linked library (DLL) versions are available with the PGI runtime
libraries on Windows. The static libraries are used by default.

PGI Compiler User's Guide 123

Creating and Using Libraries

» You can usethe dynamically-linked version of the runtime by specifying -Bdynamic at
both compile and link time.

n C++ on Windows does not support —-Bdynami c.

» You can explicitly specify static linking, the default, by using -Bstatic a compile and
link time.

For details on why you might choose one type of linking over ancther type, refer to Creating and
Using Dynamic-Link Libraries on Windows.

10.6. Creating and Using Static Libraries on Windows

The Microsoft Library Manager (LIB.EXE) isthetool that istypically used to create and
manage a static library of object files on Windows. LIB is provided with the PGl compilers as
part of the Microsoft Open Tools. Refer to www.msdn2.com for a complete L.IB reference -
search for LIB.EXE. For alist of available options, invoke LIB with the / 2 switch.

For compatibility with legacy makefiles, PGl provides awrapper for LIB and LINK called ar.
Thisversion of ar iscompatible with Windows and object-file formats.

PGI also provides ranlib as aplaceholder for legacy makefile support.

10.6.1. ar command

The ar command is alegacy archive wrapper that interprets legacy ar command line options
and translatestheseto LINK/LIB options. You can useit to create libraries of object files.

Syntax

The syntax for the ar command isthis:

ar [options] [archive] [object file].
Where;

» Thefirst argument must be acommand line switch, and the leading dash on the first optionis
optional.

» Thesingle character options, such as —d and —v, may be combined into one option, such as
—dv.

Thus, ar dv,ar -dv, andar -d -v al meanthe samething.
» Thefirst non-switch argument must be the library name.
» Exactly oneof -d, —r, —t, or —x must appear on the command line.

Options

The options available for the ar command are these:

PGI Compiler User's Guide 124

www.msdn2.com

Creating and Using Libraries

_C
This switch isfor compatibility; it isignored.
—d
Deletes the named object files from the library.
_r
Replacesin or adds the named object files to the library.
—
Writes atable of contents of the library to standard out.
-V
Writes a verbose file-by-file description of the making of the new library to standard out.
—X
Extracts the named files by copying them into the current directory.

10.6.2. ranlib command

The ranlib command isawrapper that allows use of legacy scripts and makefiles that use the
ranlib command. The command actually does nothing; it merely exists for compatibility.

Syntax
The syntax for the ran1 ib command is this:
ranlib [options] [archive]
Options
The options available for the ar command are these:
—help
Short help information is printed out.
-V

Version information is printed out.

10.7. Creating and Using Dynamic-Link Libraries on Windows

There are several differences between static- and dynamic-link libraries on Windows. Libraries
of either type are used when resolving external references for linking an executable, but the
process differs for each type of library. When linking with a static library, the code needed from
the library isincorporated into the executable. When linking with aDLL, external references are
resolved using the DLL'simport library, not the DLL itself. The code in the DLL associated with
the external references does not become a part of the executable. The DLL isloaded when the
executable that needsit is run. For the DLL to be loaded in this manner, the DLL must be in your
path.

Static libraries and DLLs also handle global data differently. Global datain static librariesis
automatically accessible to other abjects linked into an executable. Global datain aDLL can only
be accessed from outside the DLL if the DLL exports the data and the image that uses the data
importsit.

PGI Compiler User's Guide 125

Creating and Using Libraries

To access global data, the C compilers support the Microsoft storage class extensions:
__declspec(dllimport)and declspec(dllexport). These extensions may appear
as storage class modifiers and enable functions and data to be imported and exported:

extern int declspec(dllimport) intfunc();
float declspec(dllexport) fdata;

The PGI Fortran compilers support the DEC$ ATTRIBUTES extensions DLLIMPORT and
DLLEXPORT:

cDECS$ ATTRIBUTES DLLEXPORT :: object [,object]
cDEC$ ATTRIBUTES DLLIMPORT :: object [,object]

Herecisoneof C, ¢, !, or *. object isthe name of the subprogram or common block that is
exported or imported. Further, common block names are enclosed within slashes (/), as shown
here:

cDEC$ ATTRIBUTES DLLIMPORT :: intfunc
!DEC$ ATTRIBUTES DLLEXPORT :: /fdata/

For more information on these extensions, refer to |DEC$ Directives.
The examplesin this section further illustrate the use of these extensions.
To create aDLL from the command line, use the -Mmaked11 option.

The following switches apply to making and using DLLswith the PGI compilers:

—Bdynamic
Compilefor and link to the DLL version of the PGI runtime libraries. Thisflag is required
when linking with any DLL built by the PGI compilers. This flag corresponds to the /MD flag
used by Microsoft’'s c1 compilers.

When you use the PGI compiler flag -Bdynami c to create an executable that links to the
DLL form of the runtime, the executable built is smaller than one built without -Bdynamic.
The PGI runtime DLLs, however, must be available on the system where the executable is
run. You must use the -Bdynami c flag when linking an executable against aDLL built by
the PGI compilers.

n C++ on Windows does not support -Bdynamic.

—Bstatic
Compile for and link to the static version of the PGI runtime libraries. This flag corresponds to
the /MT flag used by Microsoft’s c1 compilers.

On Windows, you must use-Bstatic for both compiling and linking.

—Mmakedll
Generate adynamic-link library or DLL. Implies -Bdynami c.

—Mmakeimplib
Generate an import library without generating a DLL. Use this flag when you want to generate
an import library for aDLL but are not yet ready to build the DLL itself. This situation
might arise, for example, when building DLLs with mutual imports, as shownin Build DLLs
Containing Mutual Imports: Fortran.

—o <file>
Passed to the linker. Name the DLL or import library <file>.

PGI Compiler User's Guide 126

Creating and Using Libraries

—def <file>
When used with -Mmaked11, thisflag is passed to the linker and a . def file named <file> is
generated for the DLL. The . de £ file contains the symbols exported by the DLL. Generating
a .def fileisnot required when building a DLL but can be a useful debugging tool if the
DLL does not contain the symbols that you expect it to contain.

When used with -Mmakeimplib, thisflag ispassed to 1ib whichrequiresa . def fileto
create an import library. The . def file can be empty if the list of symbolsto export are passed
to 1ib on the command line or explicitly marked as DLLEXPORT in the source code.

—implib <file>
Passed to the colinker. Generate an import library named <file> for the DLL. A DLL’simport
library isthe interface used when linking an executabl e that depends on routinesinaDLL.

To use the PGI compilers to create an executable that links to the DLL form of the runtime,
use the compiler flag -Bdynami c. The executable built will be smaller than one built without
-Bdynami c; the PGI runtime DLLs, however, must be available on the system where the
executable isrun. The -Bdynami c flag must be used when an executable is linked against a
DLL built by the PGI compilers.

The following examples outline how to use -Bdynamic, -Mmakedll and -Mmakeimplib to
build and use DL Ls with the PGI compilers.

n C++ on Windows does not support -Bdynamic.

10.7.1. Build a DLL: Fortran

Thisexample buildsaDLL from asingle sourcefile, ocbjectl. f, which exportsdataand a
subroutine using DLLEXPORT. The sourcefile, progl . £, uses DLLIMPORT to import the data
and subroutine from the DLL.

objectl.f

subroutine subl (1)

!DECS ATTRIBUTES DLLEXPORT :: subl
integer 1

common /acommon/ adata

integer adata

IDECS ATTRIBUTES DLLEXPORT :: /acommon/
print *, "subl adata", adata

print *, "subl i ", i

adata = i

end
progl.f

program progl

common /acommon/ adata

integer adata

external subl

!DEC$ ATTRIBUTES DLLIMPORT:: subl, /acommon/
adata = 11

call subl (12)

print *, "main adata", adata

end

PGI Compiler User's Guide 127

Creating and Using Libraries

1. Createthe DLL obj1.d11 anditsimport library obj1.1ib using the following series of

commands;

% pgfortran -Bdynamic -c objectl.f
% pgfortran -Mmakedll objectl.obj -o objl.dll

. Compile the main program:

[

% pgfortran -Bdynamic -o progl progl.f -defaultlib:objl

The -Bdynamic and -Mmaked11 switches cause the compiler to link against the PGI
runtime DLLs instead of the PGI runtime static libraries. The -Bdynami c switch isrequired
when linking against any PGI-compiled DLL, such asobj1.d11. The -defaultlib: switch
specifiesthat obj1.1ib, the DLL'simport library, should be used to resolve imports.

. Ensurethat obj1.d11 isinyour path, then run the executable prog1 to determineif the
DL L was successfully created and linked:
% progl
subl adata 11
subl i 12

main adata 12

Should you wish to change obj1 . d11 without changing the subroutine or function
interfaces, no rebuilding of prog1 isnecessary. Just recreate obj1.d11 and the new
objl.dl1l isloaded at runtime.

10.7.2. Builda DLL: C

In this example, we build aDLL out of asingle sourcefile, object?2 . c, which exports data
and asubroutineusing declspec(dllexport). Themain sourcefile, prog2.c, uses

declspec(dllimport) toimport the data and subroutine from the DLL.

object2.c

int __declspec(dllexport) data;
void declspec (dllexport)

func2 (int 1)

{

printf ("func2: data == %d\n", data);
printf ("func2: i == %d\n", 1i);
data = 1i;

}

prog2.c

int declspec(dllimport) data;
void declspec (dllimport) func2 (int);

int
main ()
{
data = 11;
func2(12) ;
printf ("main: data == %d\n",data);

return 0;

}

PGI Compiler User's Guide 128

Creating and Using Libraries

1. Step 1: Createthe DLL obj2.d11 anditsimport library obj2 . 1ib using the following
series of commands:

% pgcc -Bdynamic -c object2.c
pgcc -Mmakedll object2.0bj -o obj2.dll

oo

2. Step 2: Compile the main program:

[)

% pgcc -Bdynamic -o prog2 prog2.c -defaultlib:obj2

The -Bdynami ¢ switch causes the compiler to link against the PGI runtime DLLs instead
of the PGI runtime static libraries. The -Bdynami c switch isrequired when linking against
any PGIl-compiled DLL suchasobj2.d11. The-defaultlib: switch specifiesthat
obj2.11ib, the DLL’simport library, should be used to resolve the imported data and
subroutineinprog?. c.

3. Step 3: Ensure that obj2.d11 isinyour path, then run the executable prog?2 to determine if
the DLL was successfully created and linked:

% progz

func2: data == 11
func2: i == 12
main: data == 12

Should you wish to change ob 72 . d11 without changing the subroutine or function
interfaces, no rebuilding of prog?2 is necessary. Just recreate obj2.d11 and the new
obj2.d1l1 isloaded at runtime.

10.7.3. Build DLLs Containing Circular Mutual Imports: C

In this example we build two DLLS, obj3.d11 and obj4.d11, each of which imports a
routine that is exported by the other. To link the first DLL, the import library for the second
DLL must be available. Usually an import library is created when a DLL islinked. In this case,
however, the second DLL cannot be linked without the import library for the first DLL. When
such circular imports exist, an import library for one of the DLLs must be created in a separate

PGI Compiler User's Guide 129

Creating and Using Libraries

step without creating the DLL. The PGI drivers call the Microsoft 11b tool to create import
libraries in this situation. Once the DLLs are built, we can use them to build the main program.
/* object3.c */

void declspec(dllimport) func 4b(void);
void _ declspec (dllexport)
func_ 3a(void)
{
printf ("func 3a, calling a routine in obj4.dll\n");
func_4b () ;
}
void _ declspec (dllexport)
func 3b(void)
{
printf ("func_3b\n");
}

/* objectd.c */
void _ declspec(dllimport) func 3b(void);
void _ declspec (dllexport)
func 4a(void)
{
printf ("func 4a, calling a routine in obj3.dll\n");
func 3b();
}
void declspec(dllexport)
func 4b (void)
{
printf ("func 4b\n");
}

/* prog3.c */

void _ declspec(dllimport) func 3a(void);

void _ declspec(dllimport) func 4a(void);

int

main ()

{
func 3a();
func 4a();
return 0;

}

1. Step 1: Use —-Mmakeimplib with the PGl compilersto build an import library for the first
DLL without building the DLL itself.

pgcc -Bdynamic -c object3.c
pgcc -Mmakeimplib -o obj3.lib object3.obj

o\©

o
e

Tip The —def=<def f1i1e> option can also be used with —-Mmakeimplib.Usea .def
file when you need to export additional symbols from the DLL. A . de £ file is not needed in this
example because all symbols are exported using declspec(dllexport).

2. Step 2: Usethe import library, obj 3. 11ib, created in Step 1, to link the second DLL.

pgcc -Bdynamic -c objectéd.c
pgcc -Mmakedll -o obj4.dll objectd.obj -defaultlib:obj3

o

o\

3. Step 3: Usetheimport library, obj4.11ib, created in Step 2, to link thefirst DLL.

)

% pgcc -Mmakedll -o obj3.dll object3.obj -defaultlib:obj4

4. Step 4: Compile the main program and link against the import libraries for the two DLLsS

[

% pgcc -Bdynamic prog3.c -o prog3 -defaultlib:obj3 -defaultlib:obj4

PGI Compiler User's Guide 130

Creating and Using Libraries

5. Step 5: Execute prog3 . exe to ensure that the DLLS were create properly.

% prog3
func 3a, calling a routine in obj4.dll
func 4b
func 4a, calling a routine in obj3.dll
func 3b

10.7.4. Build DLLs Containing Mutual Imports: Fortran

In this example we build two DLLswhen each DLL is dependent on the other, and use them to
build the main program.

In the following sourcefiles, object2. £95 makes calls to routines defined in object3.£95,
and vice versa. This situation of mutual imports requires two stepsto build each DLL.

Tolink thefirst DLL, theimport library for the second DLL must be available. Usually an import
library is created when aDLL islinked. In this case, however, the second DLL cannot be linked
without the import library for the first DLL. When such circular imports exist, an import library
for one of the DLLs must be created in a separate step without creating the DLL. The PGI drivers
call the Microsoft 11b tool to create import librariesin this situation.

Once the DLLs are built, we can use them to build the main program.

object2.£95

subroutine func 2a

external func 3b

!DEC$ ATTRIBUTES DLLEXPORT :: func 2a

!DEC$ ATTRIBUTES DLLIMPORT :: func 3b
print*,"func 2a, calling a routine in obj3.dl1l"

call func 3b() end subroutine

subroutine func 2b

!DEC$ ATTRIBUTES DLLEXPORT :: func 2b
print*,"func 2b"

end subroutine

object3.£f95

subroutine func 3a
external func 2b
!DEC$ ATTRIBUTES DLLEXPORT :: func 3a
!DECS$ ATTRIBUTES DLLIMPORT :: func 2b
print*,"func 3a, calling a routine in obj2.dl1l"

call func 2b() end subroutine

subroutine func 3b

!DECS ATTRIBUTES DLLEXPORT :: func_3b
print*, "func 3b"

end subroutine

prog2.£95

program prog2
external func 2a
external func 3a
!DECS$ ATTRIBUTES DLLIMPORT :: func 2a
!DECS$ ATTRIBUTES DLLIMPORT :: func 3a
call func 2a()
call func 3a()
end program

PGI Compiler User's Guide 131

Creating and Using Libraries

1. Use -Mmakeimplib with the PGl compilersto build an import library for the first DLL
without building the DLL itself.

% pgfortran -Bdynamic -c object2.£95
pgfortran -Mmakeimplib -o obj2.1lib object2.obj

oo

Tip The —def=<def £1i1e> option can also be used with —-Mmakeimplib.Usea .def
file when you need to export additional symbols from the DLL. A . de £ file is not needed in this
example because all symbols are exported using DLLEXPORT.

2. Usetheimport library, obj2.11ib, createdin Step 1, to link the second DLL.

% pgfortran -Bdynamic -c object3.£f95
pgfortran -Mmakedll -o obj3.dll object3.obj -defaultlib:obj2

oo

3. Usetheimport library, obj3.1ib, created in Step 2, to link the first DLL.
% pgfortran -Mmakedll -o obj2.dll object2.obj -defaultlib:obj3

4. Compile the main program and link against the import libraries for the two DLLSs.
% pgfortran -Bdynamic prog2.f95 -o prog2 -defaultlib:obj2 -defaultlib:obj3

5. Execute prog?2 to ensure that the DLLs were create properly.

% prog2
func 2a, calling a routine in obj3.dll
func 3b
func 3a, calling a routine in obj2.dll
func 2b

10.7.5. Import a Fortran module from a DLL

In this example we import a Fortran module from aDLL. We use the source file de fmod . £90
to create aDLL containing a Fortran module. We then use the source file use _mod. £90 to
build a program that imports and uses the Fortran module from de fmod. £90.

defmod.f90

module testm
type a_ type
integer :: an_ int
end type a type
type(a type) :: a, b
IDECS$ ATTRIBUTES DLLEXPORT :: a,b
contains
subroutine print a
IDEC$ ATTRIBUTES DLLEXPORT :: printia
write(*,*) a%an_int
end subroutine
subroutine print b
IDEC$ ATTRIBUTES DLLEXPORT :: printib
write (*,*) b%an_int
end subroutine
end module

usemod.f90

use testm
a%an_int =
%an_int =
call print
call print b
end

1
2
a

PGI Compiler User's Guide 132

Creating and Using Libraries

1. Createthe DLL.

% pgf90 -Mmakedll -o defmod.dll defmod.£f90
Creating library defmod.lib and object defmod.exp

2. Create the exe and link against the import library for the imported DLL.
% pgf90 -Bdynamic -o usemod usemod.f90 -defaultlib:defmod.lib

3. Run the exe to ensure that the module was imported from the DLL properly.

% usemod
1
2

10.8. Using LIB3F

The PGI Fortran compilersinclude complete support for the de facto standard LIB3F library
routines on both Linux and Windows operating systems. See the PGI Fortran Language
Reference manual for acomplete list of available routines in the PGl implementation of LIB3F.

10.9. LAPACK, BLAS and FFTs

Pre-compiled versions of the public domain LAPACK and BLAS libraries are included

with the PGI compilers. The LAPACK library iscalled 1iblapack.a or on Windows,
liblapack.lib. The BLASIibrary iscalled 1ibblas.a or on Windows, 1ibblas.lib.
Theselibrariesareinstalled to SPGI /<target>/1ib, where <target> is replaced with the
appropriate target name (linux86, 1inux86-64, 0sx86, 0sx86-64, win32, or winb4.

To use these libraries, smply link them in using the -1 option when linking your main program:
% pgfortran myprog.f -llapack -1lblas

Highly optimized assembly-coded versions of BLAS and certain FFT routines may be available
for your platform. In some cases, these are shipped with the PGI compilers. See the current
release notes for the PGl compilers you are using to determine if these optimized libraries exist,
where they can be downloaded (if necessary), and how to incorporate them into your installation
asthe defauilt.

10.10. Linking with ScaLAPACK

The ScaL APACK libraries are automatically installed with each MPI library version which
accompanies a PGI installation. Y ou can link with the ScaLAPACK libraries by specifying —
Mscalapack on any of the PGI compiler command lines. For example:

o)

% mpif90 myprog.f -Mscalapack

A pre-built version of the BLAS library is automatically added when the -Mscalapack switch
is specified. If you wish to use adifferent BLAS library, and still use the -Mscalapack switch,
then you can list the set of libraries explicitly on your link line. Alternately, you can copy your
BLASibrary into $PGI/1inux86/14.10/1ib/libblas.a.

PGI Compiler User's Guide 133

Creating and Using Libraries

10.11. The C++ Standard Template Library

The PGC++ compiler includes a bundled copy of the STLPort Standard C++ Library. See the
online Standard C++ Library tutorial and reference manual at www.stlport.com for further details

and licensing.

PGI Compiler User's Guide

134

www.stlport.com

Chapter 11.
USING ENVIRONMENT VARIABLES

Environment variables allow you to set and pass information that can alter the default behavior of
the PGI compilers and the executables which they generate. This section includes explanations of
the environment variables specific to PGl compilers. Other environment variables are referenced

and documented in other sections of this User’s Guide, the accompanying Reference Manual, the
PGDBG Debugger Guide and the PGPROF Profiler Manual.

» You use OpenMP environment variables to control the behavior of OpenMP programs.
For consistency related to the OpenM P environment, the details of the OpenM P-rel ated
environment variables are included in OpenMP section: Environment Variables.

» You can use environment variables to control the behavior of the PGDBG debugger or
PGPROF profiler. For adescription of environment variables that affect these tools, refer to
the PGDBG Debugger Manual and PGPROF Profiler Manual, respectively.

11.1. Setting Environment Variables

Before we look at the environment variables that you might use with the PGI compilers and tools,
let’stake alook at how to set environment variables. To illustrate how to set these variablesin
various environments, let’slook at how a user might initialize the shell environment prior to
using the PGI compilers and tools.

11.1.1. Setting Environment Variables on Linux

Let’s assume that you want access to the PGI products when you log in. Let’s further assume
that you installed the PGI compilersin /opt /pgi and that the licensefileisin /opt/pgi/
license.dat. For access at startup, you can add the following lines to your startup file.

In csh, use these commands:

setenv PGI /opt/pgi

setenv MANPATH "SMANPATH":S$PGI/1inux86/14.10/man
setenv LM LICENSE FILE $PGI/license.dat

set path = (SPGI/1inux86/14.10/bin $path)

o o o o°

PGI Compiler User's Guide 135

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Environment Variables

In bash, sh, zsh, or ksh, use these commands:

$ PGI=/opt/pgi; export PGI

$ MANPATH=SMANPATH:S$PGI/1inux86/14.10/man; export MANPATH
$ LM LICENSE FILE=SPGI/license.dat; export LM LICENSE FILE
$ PATH=$PGI/1linux86/14.10/bin:$PATH; export PATH

11.1.2. Setting Environment Variables on Windows

In Windows, when you access PGl Workstation 14.10 (for example, using Sart | ALL Programs
| PGI Workstation | Command Shells 14.10), you have options that PGI provides for setting your
environment variables - either the DOS command environment or the Cygwin Bash environment.

When you open either of these shells available to you, the default environment variables are
already set and available to you.

Y ou may want to use other environment variables, such as the OpenMP ones. This section
explains how to do that.

Suppose that your home directory isC : \ tmp. The following examples show how you might set
the temporary directory to your home directory, and then verify that it is set.

Command prompt:

Once you have launched a command shell for the version of PGI that you are using, (32-bit or 64-
bit), enter the following:

DOS> set TMPDIR=C:\tmp
DOS> echo $TMPDIR%
C:\tmp

DOS>

Cygwin Bash prompt:

From PGI Workstation 14.10, select PGl Workstation (32-bit or 64-bit) and at the Cygwin Bash
prompt, enter the following

PGIS$ export TMPDIR=C:\tmp
PGI$ echo $TMPDIR

C:\tmp

PGIS

11.1.3. Setting Environment Variables on Mac OSX

Let’s assume that you want access to the PGI products when you log in. Let’s further assume
that you installed the PGI compilersin /opt /pgi and that the licensefileisin /opt/pgi/
license.dat. For accessat startup, you can add the following linesto your startup file.

For x64 0sx86-64 in a csh:
% set path = (/opt/pgi/osx86-64/14.10/bin S$path)

For x64 0sx86-64 in a bash, sh, zsh, or ksh:
$ PATH=/opt/pgi/osx86-64/14.10/bin:S$PATH; export PATH

PGI Compiler User's Guide 136

Using Environment Variables

11.2. PGI-Related Environment Variables

For easy reference, the following table provides a quick listing of some OpenMP and al PGI
compiler-related environment variables. This section provides more detailed descriptions of
the environment variables specific to PGl compilers and the executables they generate. For
information specific to OpenMP environment variables, refer to Table 14 and to the complete
descriptionsin ‘ OpenM P Environment Variables' in the PGI Compiler’s Reference Manual.

Table 27 PGl-Related Environment Variable Summary

Environment Variable Description

FLEXLM_BATCH

(Windows only) When set to 1, prevents interactive pop-ups from appearing by
sending all licensing errors and warnings to standard out rather than to a pop-up
window.

FORTRANOPT

Allows the user to specify that the PGI Fortran compilers user VAX 1/O conventions.

GMON_OUT_PREFIX

Specifies the name of the output file for programs that are compiled and linked with
the —pg option.

LD_LIBRARY_PATH

Specifies a colon-separated set of directories where libraries should first be searched,
prior to searching the standard set of directories.

LM_LICENSE_FILE

Specifies the full path of the license file that is required for running the PGI software.
On Windows, LM LICENSE FILE does notneed to be set.

MANPATH Sets the directories that are searched for manual pages associated with the
command that the user types. On OS X, MANPATH does not need to be set.

MPSTKZ Increases the size of the stacks used by threads executing in parallel regions. The
value should be an integer <n> concatenated with M or m to specify stack sizes of n
megabytes.

MP_BIND Specifies whether to bind processes or threads executing in a parallel region to a
physical processor.

MP_BLIST WhenMP BINDis yes, this variable specifically defines the thread-CPU
relationship, overriding the default values.

MP_SPIN Specifies the number of times to check a semaphore before calling sched_yield() (on
Linux or Mac OS X) or _sleep() (on Windows).

MP_WARN Allows you to eliminate certain default warning messages.

NCPUS Sets the number of processes or threads used in parallel regions.

NCPUS_MAX Limits the maximum number of processors or threads that can be used in a parallel

region.

NO_STOP_MESSAGE

If used, the execution of a plain STOP statement does not produce the message
FORTRAN STOP.

OMP_DYNAMIC

Currently has no effect. Enables (TRUE) or disables (FALSE) the dynamic
adjustment of the number of threads. The default is FALSE.

OMP_MAX_ACTIVE_LEVELS

Specifies the maximum number of nested parallel regions.

OMP_NESTED

Currently has no effect. Enables (TRUE) or disables (E'ALSE) nested parallelism.
The default is FALSE.

PGI Compiler User's Guide

137

http://www.pgroup.com/resources/docs.htm

Using Environment Variables

Environment Variable Description

OMP_NUM_THREADS Specifies the number of threads to use during execution of parallel regions. Default is
1.

OMP_SCHEDULE Specifies the type of iteration scheduling and, optionally, the chunk size to use for
omp for and omp parallel for loops that include the runtime schedule clause. The
default is STATIC with chunk size = 1.

OMP_STACKSIZE Overrides the default stack size for a newly created thread.

OMP_WAIT_POLICY Sets the behavior of idle threads, defining whether they spin or sleep when idle. The
values are ACTIVE and PASSIVE. The defaultis ACTIVE.

PATH Determines which locations are searched for commands the user may type.

PGl Specifies, at compile-time, the root directory where the PGI compilers and tools are
installed.

PGI_CONTINUE If set, when a program compiled with—Mch k £ p st k is executed, the stack is
automatically cleaned up and execution then continues.

PGI_OBJSUFFIX (Windows only) Allows you to control the suffix on generated object files.

PGI_STACK_USAGE (Windows only) Allows you to explicitly set stack properties for your program.

PGI_TERM Controls the stack traceback and just-in-time debugging functionality.

PGI_TERM_DEBUG Overrides the default behavior when PGI _TERM is setto debug.

PGROUPD_LICENSE_FILE Specifies the location of the PGl license. This variable is set in the registry

on Windows machines, and is specific to PGI products. On Windows,
PGROUPD LICENSE FILE does notneed to be set.

PWD Allows you to display the current directory.
STATIC_RANDOM_SEED Forces the seed returned by RANDOM SEED to be constant.
TMP Sets the directory to use for temporary files created during execution of the PGI

compilers and tools; interchangeable with TMPDTR.

TMPDIR Sets the directory to use for temporary files created during execution of the PGI
compilers and tools.

11.3. PGI Environment Variables

Y ou use the environment variables listed in Table 27 to ater the default behavior of the PGI
compilers and the executables which they generate. This section provides more detailed
descriptions about the variables in this table that are not OpenM P environment variables.

11.3.1. FLEXLM_BATCH

By default, on Windows the license server creates interactive pop-up messages to issue warning
and errors. Y ou can use the environment variable FLEXLM BATCH to prevent interactive pop-up
windows. To do this, set the environment variable FLEXLM BATCH to 1.

The following csh example prevents interactive pop-up messages for licensing warnings and
errors:
% set FLEXLM BATCH = 12

PGI Compiler User's Guide 138

Using Environment Variables

11.3.2. FORTRANOPT

FORTRANOPT allowsthe user to adjust the behavior of the PGI Fortran compilers.

» If FORTRANOPT exists and contains the value vaxi o, the record length in the open
statement isin units of 4-byte words, and the $ edit descriptor only has an effect for lines
beginning with a space or aplus sign (+).

» |f FORTRANOPT exists and containsthevalue format relaxed, anl/Oitem
corresponding to a numerical edit descriptor (such asF, E, |, and so on) is not required to be
atype implied by the descriptor.

» Inanon-Windows environment, if FORTRANOPT exists and containsthevaluecrif, a
sequential formatted or list-directed record is allowed to be terminated with the character
sequence \ r \n (carriage return, newline). This approach is useful when reading records
from afile produced on a Window’ s system.

The following example causes the PGI Fortran compilersto use VAX /O conventions:
% setenv FORTRANOPT vaxio

11.3.3. GMON_OUT_PREFIX

GMON OUT PREFIX specifiesthe name of the output file for programs that are compiled and
linked with the —pg option. The default nameis gmon . out.

If GMON OUT PREFIX isset, the name of the output file has GMON OUT PREFIX asaprefix.
Further, the suffix is the pid of the running process. The prefix and suffix are separated by a dot.
For example, if the output file ismygmon, then the full filename may look something similar to

this: mygmon.0012348567.

The following example causes the PGI Fortran compilersto use pgout asthe output file for
programs compiled and linked with the -pg option.
% setenv GMON OUT PREFIX pgout

°

11.3.4. LD_LIBRARY_PATH

TheLD LIBRARY PATH variableisa colon-separated set of directories specifying where
libraries should first be searched, prior to searching the standard set of directories. Thisvariableis
useful when debugging a new library or using a nonstandard library for specia purposes.

The following csh example adds the current directory to your LD LIBRARY PATH variable.
% setenv LD LIBRARY PATH "$LD LIBRARY PATH":"./"

11.3.5. LM_LICENSE_FILE

TheLM LICENSE FILE variable specifiesthefull path of the license file that is required for
running the PGI software.

For example, once the license fileisin place, you can execute the following csh commands to
make the products you have purchased accessible and to initialize your environment for use of
FLEXIm. These commands assume that you use the default installation directory: /opt/pgi

% setenv PGI /opt/pgi
% setenv LM LICENSE FILE "$LM LICENSE FILE":/opt/pgi/license.dat

PGI Compiler User's Guide 139

Using Environment Variables

To set the environment variable LM LICENSE FILE tothefull path of the license key file, do
this:

1. Open the System Properties dialog: Sart | Control Panel | System.
2. Select the Advanced tab.
3. Click the Environment Variables button.

» If LM LICENSE FILE isnot already an environment variable, create a new system
variable for it. Set its value to the full path, including the name of the license key file,
license.dat.

» If LM LICENSE FILE aready existsasan environment variable, append the path to
the license file to the variable’ s current value using a semi-colon to separate entries.

11.3.6. MANPATH

The MANPATH variable sets the directories that are searched for manual pages associated with the
commands that the user types. When using PGI products, it isimportant that you set your PATH
to include the location of the PGI products and then set the MANPATH variable to include the man
pages associated with the products. MANPATH is not required for OS X.

The following csh example targets x64 linux86-64 version of the compilers and tool sand allows
the user access to the manual pages associated with them.

% set path = (/opt/pgi/linux86-64/14.10/bin $path
% setenv MANPATH "SMANPATH":/opt/pgi/linux86-64/14.10/man

11.3.7. MPSTKZ

MPSTKZ increases the size of the stacks used by threads executing in parallel regions. Y ou
typically use this variable with programs that utilize large amounts of thread-local storagein

the form of private variables or local variablesin functions or subroutines called within parallel
regions. The value should be an integer <n> concatenated with M or m to specify stack sizes of n
megabytes.

For example, the following setting specifies a stack size of 8 megabytes.

% setenv MPSTKZ 8M

11.3.8. MP_BIND

You canset MP_BIND to yes oOr y to bind processes or threads executing in a parallel region to
physical processor. Set it to no or n to disable such binding. The default is to not bind processes
to processors. This variable is an execution-time environment variable interpreted by the PGI
runtime support libraries. It does not affect the behavior of the PGl compilersin any way.

n The MP_BIND environment variable is not supported on all platforms.

% setenv MP BIND y

PGI Compiler User's Guide 140

Using Environment Variables

11.3.9. MP_BLIST

MP BLIST alowsyou to specifically define the thread-CPU relationship.

n This variable is only in effect when MP_ BINDIs yes.

WhiletheMP BIND variable binds processors or threads to a physical processor, MP BLIST
allows you to specifically define which thread is associated with which processor. The list defines
the processor-thread relationship order, beginning with thread 0. Thislist overrides the default
binding.

For example, the following setting for MP BLIST maps CPUs 3, 2, 1 and 0 to threads 0, 1, 2 and
3 respectively.
% setenv MP BLIST=3,2,1,0

11.3.10. MP_SPIN

When athread executing in a parallel region enters a barrier, it spins on a semaphore. Y ou
canuseMP_SPIN to specify the number of timesit checks the semaphore before calling
sched yield() (onLinux or MACOSX)or sleep () (onWindows). These calls cause
the thread to be re-scheduled, allowing other processes to run. The default value is 17000000.

% setenv MP_SPIN 200

11.3.11. MP_WARN

MP_WARN allowsyou to eliminate certain default warning messages.

By default, awarning is printed to standard error if you execute an OpenMP or auto-parallelized
program with NCPUS or OMP NUM THREADS set to avalue larger than the number of physical
processors in the system.

For example, if you produce a parallelized executable a . out and execute as follows on a system
with only one processor, you get a warning message.
% setenv OMP NUM THREADS 2

% a.out
Warning: OMP NUM THREADS or NCPUS (2) greater than available cpus (1)

FORTRAN STOP

Setting MP_ WARN to NO eliminates these warning messages.

PGI Compiler User's Guide 141

Using Environment Variables

11.3.12. NCPUS

Y ou can use the NCPUS environment variable to set the number of processes or threads used in
paralel regions. The default isto use only one process or thread, which is known as serial mode.

OMP_ NUM THREADS has the same functionality as NCPUS. For historical reasons, PGI supports
the environment variable NCPUS. If both OMP_NUM THREADS and NCPUS are set, the value of
OMP_ NUM THREADS takes precedence.

Setting NCPUS to avaue larger than the number of physical processors or coresin your system
can cause parallel programsto run very slowly.

11.3.13. NCPUS_MAX

You can usethe NCPUS MAX environment variable to limit the maximum number of processes
or threads used in a parallel program. Attempts to dynamically set the number of processes or
threads to a higher value, for example using set_omp_num_threads(), will cause the number of
processes or threads to be set at the value of NCPUS MAX rather than the value specified in the
function call.

11.3.14. NO_STOP_MESSAGE

If theNO_STOP MESSAGE Vvariable exists, the execution of aplain STOP statement does not
produce the message FORTRAN STOP. The default behavior of the PGI Fortran compilersisto
issue this message.

11.3.15. PATH

The PATH variable sets the directories that are searched for commands that the user types. When
using PGI products, it isimportant that you set your PATH to include the location of the PGI
products.

Y ou can aso use this variable to specify that you want to use only the linux86 version of the
compilers and tools, or to target linux86 as the default.

The following csh exampl e targets x64 linux86-64 version of the compilers and tools.
% set path = (/opt/pgi/linux86-64/14.10/bin $path)

11.3.16. PGl

The PGT environment variable specifies the root directory where the PGI compilers and tools are
installed. Thisvariable isrecognized at compile-time. If it isnot set, the default value depends on
your system as well as which compilers are installed:

» OnLinux, the default value of thisvariableis /opt/pgi.

» On Windows, the default valueisC: \Program Files\PGI, where C representsthe
system drive. If both 32- and 64-bit compilers are installed, the 32-bit compilersarein C:
\Program Files (x86)\PGI.

» OnMac OS X, the default value of thisvariableis /opt/pgi.

PGI Compiler User's Guide 142

Using Environment Variables

In most cases, if the PGI environment variable is not set, the PGI compilers and tools
dynamically determine the location of this root directory based on the instance of the compiler
or tool that was invoked. However, there are still some dependencies on the PGI environment
variable, and you can use it as a convenience when initializing your environment for use of the
PGI compilers and tools.

For example, assuming you use csh and want the 64-bit linux86-64 versions of the PGl compilers
and tools to be the default, you would use this syntax:

setenv PGI /opt/pgi

setenv MANPATH "SMANPATH":$PGI/linux86/14.10/man
setenv LM LICENSE FILE $PGI/license.dat

set path = (SPGI/1inux86-64/14.10/bin Spath)

oe

oP P oo

11.3.17. PGI_CONTINUE

You set the PGI CONTINUE variable to specify the actions to take before continuing with
execution. For example, if the PGI CONTINUE environment variable is set and then a program
that is compiled with -Mchk fpstk isexecuted, the stack is automatically cleaned up and
execution then continues. If PGI_CONTINUE isset to verbose, the stack is automatically
cleaned up, awarning message is printed, and then execution continues.

n There is a performance penalty associated with the stack cleanup.

11.3.18. PGI_OBJSUFFIX

You can set the PGI OBJSUFFIX environment variable to generate object files that have a
specific suffix. For example, if you set PGI OBJSUFFIX to . o, the object files have a suffix of
.o rather than . ob.

11.3.19. PGI_STACK_USAGE

(Windowsonly) The PGI_ STACK USAGE variable allows you to explicitly set stack properties
for your program. When the user compiles a program with the -Mchk stk option and sets the
PGI_STACK_USAGE environment variable to any value, the program displays the stack space
allocated and used after the program exits. Y ou might see something similar to the following
message:

thread 0 stack: max 8180KB, used 48KB

This message indicates that the program used 48K B of a 8180KB allocated stack. For more
information on the -Mchkstk option, refer to ‘—Mchkstk’ in the PGI Compiler’s Reference
Manual.

11.3.20. PGI_TERM

The PGI_TERM environment variable controls the stack traceback and just-in-time debugging
functionality. The runtime libraries use the value of PGI TERM to determine what action to take
when a program abnormally terminates.

Thevalueof PGI_TERM is acomma-separated list of options. The commands for setting the
environment variable follow.

PGI Compiler User's Guide 143

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Using Environment Variables

» Incsh:
% setenv PGI_TERM option[,option...]
» Inbash, sh, zsh, or ksh:

$ PGI_TERM=option[,option...]
$ export PGI_TERM

» Inthe Windows Command Prompt:
C:\> set PGI_TERM=option[,option...]

Table 28 lists the supported values for option. Following the table is a complete description of
each option that indicates specifically how you might apply the option.

By default, al of these options are disabled.
Table 28 Supported PGI_TERM Values

[no]debug Enables/disables just-in-time debugging (debugging invoked on error)
[nojtrace Enables/disables stack traceback on error
[no]signal Enables/disables establishment of signal handlers for common signals that cause program termination
[no]abort Enables/disables calling the system termination routine abort()
[no]debug

This enables/disabl es just-in-time debugging. The default isnodebug.

When PGI_TERM is set to debug, the following command is invoked on error, unless you use
PGI_TERM DEBUG to override this default.
pgdbg -text -attach <pid>

<pid> isthe process D of the process being debugged.

The PGI_TERM_DEBUG environment variable may be set to override the default setting. For
more information, refer to PGI_TERM_DEBUG.

[no]trace

This enables/disables stack traceback on error.

[no]signal

This enables/disables establishing signal handlers for the most common signals that cause
program termination. The default isnosignal. Setting trace and debug automatically
enables signal. Specificaly setting nosignal allowsyou to override this behavior.

[no]abort

This enables/disables calling the system termination routine abort(). The default isnoabort.
When noabort isin effect the process terminates by calling _exit (127).

On Linux, when abort isin effect, the abort routine creates a core file and exits with code 127.

PGI Compiler User's Guide 144

Using Environment Variables

On Windows, when abort isin effect, the abort routine exits with the status of the exception
received. For example, if the program receives an access violation, abort() exits with status
0xC0000005.

A few runtime errors just print an error message and call exit (127), regardless of the status
of PGI TERM. These are mainly errors such as specifying an invalid environment variable value
where a traceback would not be useful.

If it appears that abort() does not generate core files on a Linux system, be sure to unlimit the
coredumpsize. Y ou can do thisin these ways:

» Using csh:

% limit coredumpsize unlimited
% setenv PGI_TERM abort

» Using bash, sh, zsh, or ksh:

$ ulimit -c unlimited
$ export PGI_ TERM=abort

To debug a core file with pgdbg, start pgdbg with the -core option. For example, to view a core
file named "core" for a program named "a.out":

$ pgdbg -core core a.out

For more information on why to use this variable, refer to Stack Traceback and J'T Debugging.

11.3.21. PGI_TERM_DEBUG

The PGI_TERM DEBUG variable may be set to override the default behavior when PGI_ TERM
isset to debug.

Thevalueof PGI_TERM DEBUG should be set to the command line used to invoke the program.
For example:

gdb --quiet --pid %d

Thefirst occurrence of $d inthe PGI_TERM DEBUG string is replaced by the process id.

The program named inthe PGI TERM DEBUG string must be found on the current PATH or
specified with afull path name.

11.3.22. PGROUPD_LICENSE_FILE

You can use the PGROUPD LICENSE FILE to specifiesthe location of the PGI license. This
variable is set in the registry on Windows machines, and is specific to PGI products.

The system environment variable PGROUPD LICENSE FILE isnot required by PGI
products on Windows but you can use it to override the default location that is searched for the
license.dat file.

To use the system environment variable PGROUPD LICENSE FILE, setitto thefull path of
the license keysfile. To do this, follow these steps:

1. Open the System Properties dialog from Control Panel | System.
2. Select the‘Advanced’ tab.
3. Click the ‘Environment Variables button.

PGI Compiler User's Guide 145

Using Environment Variables

» If PGROUPD LICENSE FILE isnot already an environment variable, create a new
system variable for it. Set its value to the full path, including the name of thefile, for the
license keysfile.

» If PGROUPD LICENSE FILE aready exists asan environment variable, append the
path to the license file to the variabl€' s current value using a semi-colon to separate
entries.

11.3.23. PWD

The PWD variable allows you to display the current directory.

11.3.24. STATIC_RANDOM_SEED

Youcanuse STATIC RANDOM SEED to force the seed returned by the Fortran 90/95
RANDOM SEED intrinsic to be constant. Thefirst call to RANDOM SEED without arguments
resets the random seed to a default value, then advances the seed by a variable amount based
on time. Subsequent callsto RANDOM SEED without arguments reset the random seed to the
sameinitial value asthefirst call. Unless the timeis exactly the same, each time a program
isrun adifferent random number sequence is generated. Setting the environment variable
STATIC RANDOM SEED to YES forcesthe seed returned by RANDOM SEED to be constant,
thereby generating the same sequence of random numbers at each execution of the program.

11.3.25. TMP

Y ou can use TMP to specify the directory to use for placement of any temporary files created
during execution of the PGl compilers and tools. This variable is interchangeable with TMPDIR.

11.3.26. TMPDIR

Y ou can use TMPDIR to specify the directory to use for placement of any temporary files created
during execution of the PGl compilers and tools.

11.4. Using Environment Modules on Linux

On Linux, if you use the Environment Modules package, that is, themodule 1oad command,
PGI includes a script to set up the appropriate module files.

Assuming your installation base directory is /opt /pgi, and your MODULEPATH environment
variableis /usr/local/Modules/modulefiles, execute this command:
% /opt/pgi/linux86/14.10/etc/modulefiles/pgi.module.install \

-all -install /usr/local/Modules/modulefiles
This command creates module files for al installed versions of the PGI compilers. Y ou must
have write permission to themodulefiles directory to enable the module commands:

module load pgi32/14.10
module load pgi64/14.10
module load pgi/14.10

o° d° o°

PGI Compiler User's Guide 146

Using Environment Variables

where "pgi/14.10" uses the 32-bit compilers on a 32-bit system and uses 64-bit compilers on a 64-
bit system.

To see what versions are available, use this command:

[

% module avail pgi

Themodule load command setsor modifiesthe environment variables asindicated in the
following table.

This Environment Variable... Is set or modified by the module load command
CC Full path to pgcc

CPP Full path to pgprepro

CXX Path to pgcpp

FC Full path to pgfortran

F77 Full path to pgf77

F90 Full path to pgf90

LD LIBRARY PATH Prepends the PGl library directory

MANPATH Prepends the PGl man page directory

PATH Prepends the PGI compiler and tools 1o i n directory
PGI The base installation directory

PGl does not provide support for the Environment Modules package. For more information about the
package, go to: http://modules.sourceforge.net.

11.5. Stack Traceback and JIT Debugging

When a programming error resultsin aruntime error message or an application exception, a
program will usually exit, perhaps with an error message. The PGI runtime library includes a
mechanism to override this default action and instead print a stack traceback, start a debugger, or,
on Linux, create a core file for post-mortem debugging.

The stack traceback and just-in-time debugging functionality is controlled by an environment
variable, PGI _TERM, described in PGI_TERM. The runtime libraries use the value of
PGI TERM to determine what action to take when a program abnormally terminates.

When the PGI runtime library detects an error or catches asignal, it calls the routine
pgi stop here () priorto generating a stack traceback or starting the debugger. The
pgi stop here () routineisaconvenient spot to set abreakpoint when debugging a
program.

PGI Compiler User's Guide 147

Chapter 12.
DISTRIBUTING FILES - DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want to
distribute it to users who need to run it on avariety of systems. This section addresses how to
effectively distribute applications built using PGI compilers and tools. The application must be
installed in such away that it executes accurately on a system other than the one on which it was
built, and which may be configured differently.

12.1. Deploying Applications on Linux

To successfully deploy your application on Linux, some of the issues to consider include:

Runtime Libraries
64-bit Linux Systems
Redistribution of Files
Licensing

vV v v Vv

12.1.1. Runtime Library Considerations

On Linux systems, the system runtime libraries can be linked to an application either statically or
dynamically. For example, for the C runtime library, 1ibc, you can use either the static version
libc.a or the shared object version 1ibc. so. If the application is intended to run on Linux
systems other than the one on which it was built, it is generally safer to use the shared object
version of the library. This approach ensures that the application uses aversion of the library that
is compatible with the system on which the application is running. Further, it works best when the
application is linked on a system that has an equivalent or earlier version of the system software
than the system on which the application will be run.

n Building on a newer system and running the application on an older system may not produce the desired
output.

To use the shared object version of alibrary, the application must also link to shared object
versions of the PGI runtime libraries. To execute an application built in such away on a system

PGI Compiler User's Guide 148

Distributing Files - Deployment

on which PGI compilers are not installed, those shared objects must be available. To build using
the shared object versions of the runtime libraries, use the -Bdynamic option, as shown here:
$ pgf90 -Bdynamic myprog.£f90

12.1.2. 64-bit Linux Considerations

On 64-bit Linux systems, 64-bit applications that use the -mcmode 1=medium option
sometimes cannot be successfully linked statically. Therefore, users with executables built with
the -mcmode1=medium option may need to use shared libraries, linking dynamically. Also,
runtime libraries built using the - £pi c option use 32-bit offsets, so they sometimes need to
reside near other runtime 1ibs in ashared area of Linux program memory.

If your application is linked dynamically using shared objects, then the shared object versions of the PGI
runtime are required.

12.1.3. Linux Redistributable Files

The method for installing the shared object versions of the runtime libraries required for
applications built with PGI compilers and tools is manual distribution.

When the PGI compilers are installed, there are directories that have a name that begins with
REDIST for each platform (linux86 and linux86-64); these directories contain the redistributed
shared object libraries. These may be redistributed by licensed PGI customers under the terms of
the End-User License Agreement.

12.1.4. Restrictions on Linux Portability

Y ou cannot expect to be able to run an executable on any given Linux machine. Portability
depends on the system you build on as well as how much your program uses system routines
that may have changed from Linux release to Linux release. For example, one area of significant
change between some versions of Linux isin 1ibpthread. so. PGl compilers use this shared
object for both the option -Mconcur (auto-parallel) and the option -mp (OpenMP) programs.

Typically, portability is supported for forward execution, meaning running a program on the same
or alater version of Linux; but not for backward compatibility, that is, running on a prior release.
For example, a user who compiles and links a program under Suse 9.1 should not expect the
program to run without incident on a Red Hat 9.0 system, which is an earlier version of Linux.

It may run, but it isless likely. Developers might consider building applications on earlier Linux
versions for wider usage.

12.1.5. Licensing for Redistributable Files

Thefilesin the REDIST directories may be redistributed under the terms of the End-User License
Agreement for the product in which they were included.

12.2. Deploying Applications on Windows

Windows programs may be linked statically or dynamically.

PGI Compiler User's Guide 149

Distributing Files - Deployment

» A dtatically linked program is completely self-contained, created by linking to static versions
of the PGI and Microsoft runtime libraries.

» A dynamically linked program depends on separate dynamically-linked libraries (DLLS) that
must be installed on a system for the application to run on that system.

Although it may be simpler to install a statically linked executable, there are advantages to using
the DLL versions of the runtime, including:

» Executable binary file sizeis smaller.

» Multiple processes can use DLLs at once, saving Ssystem resources.

» New versions of the runtime can be installed and used by the application without rebuilding
the application.

Dynamically-linked Windows programs built with PGl compilers depend on dynamic runtime
library files (DLLS). These DLLs must be distributed with such programs to enable them to
execute on systems where the PGl compilers are not installed. These redistributable libraries
include both PGI runtime libraries and Microsoft runtime libraries.

12.2.1. PGI Redistributables

PGI redistributable directories contain al of the PGI Linux runtime library shared object files or
Windows dynamically-linked libraries that can be re-distributed by PGI 14.10 licensees under the
terms of the End-User License Agreement (EULA).

12.2.2. Microsoft Redistributables

The PGI products on Windows include Microsoft Open Tools. The Microsoft Open Tools
directory contains a subdirectory named redist. PGI licensees may redistribute the files
contained in this directory in accordance with the terms of the End-User License Agreement.

Microsoft supplies installation packages, vcredist x86.exe andvcredist x64.exe,
containing these runtime files. These files are availablein the redi st directory.

12.3. Code Generation and Processor Architecture

The PGI compilers can generate much more efficient code if they know the specific x86
processor architecture on which the program will run. When preparing to deploy your application,
you should determine whether you want the application to run on the widest possible set of

x86 processors, or if you want to restrict the application to run on a specific processor or set of
processors. The restricted approach allows you to optimize performance for that set of processors.

Different processors have differences, some subtle, in hardware features, such as instruction

sets and cache size. The compilers make architecture-specific decisions such as instruction
selection, instruction scheduling, and vectorization, all of which can have a profound effect on the
performance of applications.

Processor-specific code generation is controlled by the —tp option, described in the section ‘—
tp <target> [,target...]’ of the PGI Compiler Reference Manual. When an application is compiled
without any -tp options, the compiler generates code for the type of processor on which the
compiler isrun.

PGI Compiler User's Guide 150

http://www.pgroup.com/resources/docs.htm

Distributing Files - Deployment

12.3.1. Generating Generic x86 Code

To generate generic x86 code, use one of the following forms of the-tp option on your
command line;

-tp px ! generate code for any x86 cpu type

—-tp p6 ! generate code for Pentium 2 or greater

While both of these examples are good choices for portable execution, most users have Pentium 2
or greater CPUs.

12.3.2. Generating Code for a Specific Processor

Y ou can use the —tp option to request that the compiler generate code optimized for a specific
processor. The PGl Release Notes contains a list of supported processors or you can look at the -
tp entry in the compiler output generated by using the —-he1p option, described in ‘—help’ in the
PGI Compiler Reference Manual.

12.4. Generating One Executable for Multiple Types of
Processors

PGI unified binaries provide alow-overhead method for a single program to run well on a
number of hardware platforms.

All 64-bit PGI compilers can produce PGI Unified Binary programs that contain code streams
fully optimized and supported for both AMD64 and Intel EM64T processors using the -t p target
option.

The compilers generate and combine multiple binary code streams into one executable, where
each stream is optimized for a specific platform. At runtime, this one executable senses the
environment and dynamically selects the appropriate code stream.

Executable size is automatically controlled via unified binary culling. Only those functions and
subroutines where the target affects the generated code have unique binary images, resultingin a
code-size savings of 10-90% compared to generating full copies of code for each target.

Programs can use PGI Unified Binary technology even if all of the object files and libraries are
not compiled as unified binaries. Like any other object file, you can use PGI Unified Binary
object filesto create programs or libraries. No special start up code is needed; support islinked in
from the PGI libraries.

The -Mp £ i option disables generation of PGl Unified Binary object files. Instead, the default
target auto-detect rules for the host are used to select the target processor.

12.4.1. PGI Unified Binary Command-line Switches

The PGI Unified Binary command-line switch is an extension of the target processor switch, -
tp, which may be applied to individual files during compilation.

PGI Compiler User's Guide 151

Distributing Files - Deployment

The target processor switch, -t p, accepts a comma-separated list of 64-bit targets and generates
code optimized for each listed target.

The following example generates optimized code for three targets:
-tp k8-64,p7-64,core2-64

A specid target switch, -tp x64,isthesameas—-tp k8-64, p7-64.

12.4.2. PGI Unified Binary Directives and Pragmas

PGI Unified binary directives and pragmas may be applied to functions, subroutines, or whole
files. The directives and pragmas cause the compiler to generate PGl Unified Binary code
optimized for one or more targets. No special command line options are needed for these pragmas
and directivesto take effect.

The syntax of the Fortran directiveis:
pgiSlglr|] pgi tp [target]...
where the scope is g (global), r (routine) or blank. The default isr, routine.

For example, the following syntax indicates that the whole file, represented by g, should be
optimized for both k8 64 and p7_64.

pgi$g pgi tp k8 64 p7 64

The syntax of the C/C++ pragmais.
#pragma [global|routine|] tp [target]...

where the scopeis global, routine, or blank. The default is routine.

For example, the following syntax indicates that the next function should be optimized for k8 64,
p7_64, and core2 64.

#pragma routine tp k8 64 p7 64 core2 64

PGI Compiler User's Guide 152

Chapter 13.
INTER-LANGUAGE CALLING

This section describes inter-language calling conventions for C, C++, and Fortran programs
using the PGI compilers. Fortran 2003 provides a mechanism to support the interoperability

with C. Thisincludesthe ISO_C Binding intrinsic module, binding labels, and the BIND
attribute. In the absence of this mechanism, the following sections describe how to call a Fortran
function or subroutine from a C or C++ program and how to call a C or C++ function from a
Fortran program. For information on calling assembly language programs, refer to the ‘* Runtime
Environment’’ section of the PGI Compilers Reference Guide.

This section provides examples that use the following options related to inter-language calling.
For more information on these options, refer to the ** Command-Line Options Reference’” section
of the PGI Compiler Reference Guide.

-cC -Mnomain -Miface -Mupcase

13.1. Overview of Calling Conventions

This section includes information on the following topics:

Functions and subroutines in Fortran, C, and C++
Naming and case conversion conventions
Compatible data types

Argument passing and special return values
Arrays and indexes

Win32 calling conventions

vV Vv v v Vv

The sections | nter-language Calling Considerations through Example - C++ Calling Fortran
describe how to perform inter-language calling using the Linux, Mac OSX, or Win64 convention.
Default Fortran calling conventions for Win32 differ, although Win32 programs compiled using
the -Mi face=unix Fortran command-line option use the Linux/Win64 convention rather than
the default Win32 conventions. All information in those sections pertaining to compatibility

of arguments applies to Win32 as well. For details on the symbol name and argument passing
conventions used on Win32 platforms, refer to Win32 Calling Conventions.

PGI Compiler User's Guide 153

http://www.pgroup.com/resources/docs.htm
http://www.pgroup.com/resources/docs.htm

Inter-language Calling

13.2. Inter-language Calling Considerations

In general, when argument data types and function return values agree, you cancal aC or C + +
function from Fortran aswell as call a Fortran function from C or C++. When data types for
arguments do not agree, you may need to develop custom mechanisms to handle them. For
example, the Fortran COMPLEX type has a matching type in C99 but does not have a matching
typein C89; however, it is gtill possible to provide inter-language calls but there are no general
calling conventions for such cases.

» If a C++ function contains objects with constructors and destructors, calling such a function from
either C or Fortran is not possible unless the initialization in the main program is performed from a
C + + program in which constructors and destructors are properly initialized.

> Ingeneral, you can call a C or Fortran function from C++ without problems as long as you use the
extern "C" keyword to declare the function in the C++ program. This declaration prevents name
mangling for the C function name. If you want to call a C++ function from C or Fortran, you also
have to use the extern "C" keyword to declare the C++ function. This keeps the C++ compiler from
mangling the name of the function.

> You can use the __cplusplus macro to allow a program or header file to work for both C and C++. For
example, the following defines in the header file stdio.h allow this file to work for both C and C++.
#ifndef STDIO H
#define STDIO H
#ifdef cplusplus

extern "C" {
#endif /* cplusplus */

. /* Functions and data types defined... */

#ifdef cplusplus

}

#endif /* _ cplusplus */
#endif

» C++ member functions cannot be declared extern, since their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

13.3. Functions and Subroutines

Fortran, C, and C++ define functions and subroutines differently.

For a Fortran program calling a C or C++ function, observe the following return value
convention:

» When aC or C++ function returns avalue, call it from Fortran as a function.
» When aC or C++ function does not return avalue, call it as a subroutine.

For a C/C++ program calling a Fortran function, the call should return asimilar type. Table 29,
Fortran and C/C++ Data Type Compatibility, lists compatible types. If the call isto a Fortran
subroutine, a Fortran CHARACTER function, or a Fortran COMPLEX function, call it from C/C++
as afunction that returns void. The exception to this convention is when a Fortran subroutine has
alternate returns; call such a subroutine from C/C++ asafunction returning int whose valueis
the value of the integer expression specified in the alternate RETURN statement.

PGI Compiler User's Guide 154

Inter-language Calling

13.4. Upper and Lower Case Conventions, Underscores

By default on Linux, Win64, and OSX systems, all Fortran symbol names are converted to lower
case. C and C++ are case sensitive, so upper-case function names stay upper-case. When you
use inter-language calling, you can either name your C/C++ functions with lower-case names,

or invoke the Fortran compiler command with the option —-Mupcase, in which case it will not
convert symbol namesto lower-case.

When programs are compiled using one of the PGI Fortran compilers on Linux, Win64, and OSX
systems, an underscore is appended to Fortran global names (names of functions, subroutines and
common blocks). This mechanism distinguishes Fortran name space from C/C++ name space.
Use these naming conventions:

» If you call aC/C++ function from Fortran, you should rename the C/C++ function
by appending an underscore or use CSPRAGMA C in the Fortran program. For more
information on CSPRAGMA C, refer to CSPRAGMA C.

» If you call aFortran function from C/C++, you should append an underscore to the Fortran
function name in the calling program.

13.5. Compatible Data Types

Table 29 shows compatible data types between Fortran and C/C++. Table 30, Fortran and C/
C++ Representation of the COMPLEX Type shows how the Fortran COMPLEX type may be
represented in C/C++.

Tip If you can make your function/subroutine parameters as well as your return values match types, you
should be able to use inter-language calling.

Table 29 Fortran and C/C++ Data Type Compatibility

Fortran Type (lower case) CI/C++ Type Size (bytes)
character x char x 1
character*n x char x[n] n
real x float x 4
real*4 x float x 4
real*8 x double x 8
double precision double x 8
integer x int x 4
integer*1 x signed char x 1
integer*2 x short x 2
integer*4 x int x 4
integer*8 x long long x 8

PGI Compiler User's Guide 155

Inter-language Calling

Fortran Type (lower case) C/C++ Type Size (bytes)
logical x int x 4
logical*1 x char x 1
logical*2 x short x 2
logical*4 int x 4
logical*8 long x 8

Table 30 Fortran and C/C++ Representation of the compLEx Type

Fortran Type (lower case) C/C++ Type Size (bytes)
complex x struct {float r,i:} x; 8
float complex x; 8
complex*8 x struct {float r,i;} x; 8
float complex x; 8
double complex x struct {double dr,di;} x; 16
double complex x; 16
complex *16 x struct {double dr,di;} x; 16
double complex x; 16

n For C/C++, the comp 1 ex type implies C99 or later.

13.5.1. Fortran Named Common Blocks

A named Fortran common block can be represented in C/C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C/C++ must have
the added underscore. For example, here is a Fortran common block:

INTEGER I

COMPLEX C

DOUBLE COMPLEX CD

DOUBLE PRECISION D
COMMON /COM/ i, ¢, cd, d

This Fortran Common Block is represented in C with the following equivalent:

extern struct {

int 1i;

struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

com_;

—

PGI Compiler User's Guide 156

Inter-language Calling

This same Fortran Common Block is represented in C++ with the following equivalent:

extern "C" struct {

int i;

struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

} com ;

n Tip For global or external data sharing, extern "C" is not required.

13.6. Argument Passing and Return Values

In Fortran, arguments are passed by reference, that is, the address of the argument is passed,
rather than the argument itself. In C/C++, arguments are passed by value, except for strings and
arrays, which are passed by reference. Due to the flexibility provided in C/C++, you can work
around these differences. Solving the parameter passing differences generally involvesintelligent
use of the & and * operators in argument passing when C/C++ calls Fortran and in argument
declarations when Fortran calls C/C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the
string is also passed to a calling function.

On the following systems, the compiler places the length argument(s) at the end of the parameter
list, following the other formal arguments:

» OnLinux and Mac OS X systems

» OnWin32 systems when using the UNIX calling convention on Windows, that is, using the
option -Miface=unix

» On Win64 systems, except when using the option -Mi face=cref

The length argument is passed by value, not by reference.

13.6.1. Passing by Value (%VAL)

When passing parameters from a Fortran subprogram to a C/C++ function, it is possible to

pass by value using the $VAL function. If you enclose a Fortran parameter with $VAL (), the
parameter is passed by value. For example, the following call passesthe integer i and the logical
bvar by value.

integer*1 i
logical*1l bvar
call cvalue (%VAL(i), %VAL (bvar))

13.6.2. Character Return Values

Functions and Subroutines describes the general rules for return values for C/C++ and Fortran
inter-language calling. Thereisaspecia return value to consider. When a Fortran function
returns a character, two arguments need to be added at the beginning of the C/C++ calling
function’s argument list:

» The address of the return character or characters

PGI Compiler User's Guide 157

Inter-language Calling

» Thelength of the return character
The following exampleillustrates the extra parameters, tmp and 10, supplied by the caller:

Character Return Parameters

! Fortran function returns a character
CHARACTER* (*) FUNCTION CHF(C1,I)
CHARACTER* (*) C1
INTEGER I
END

/* C declaration of Fortran function */
extern void chf ();

char tmp[10];

char cl1[9];

int i;

chf (tmp, 10, cl, &i, 9);

If the Fortran function is declared to return a character value of constant length, for example

CHARACTER*4 FUNCTION CHF (), the second extra parameter representing the length must
still be supplied, but is not used.

n The value of the character function is not automatically NULL-terminated.

13.6.3. Complex Return Values

When a Fortran function returns a complex value, an argument needs to be added at the beginning
of the C/C++ calling function’s argument list; this argument is the address of the complex return
value. COMPLEX Return Valuesillustrates the extra parameter, cp1x, supplied by the caler.

COMPLEX Return Values

COMPLEX FUNCTION CF (C, I)
INTEGER I

END

extern void cf ();

typedef struct {float real, imag;} cplx;
cplx cl;

int i;

cf (&cl, &i);

13.7. Array Indices

C/C++ arrays and Fortran arrays use different default initial array index values. By default, arrays
in C/C++ start at 0 and arrqaysin Fortran start at 1. If you adjust your array comparisons so that
a Fortran second element is compared to a C/C++ first element, and adjust similarly for other
elements, you should not have problems working with this difference. If thisis not satisfactory,
you can declare your Fortran arraysto start at zero.

Another difference between Fortran and C/C++ arraysis the storage method used. Fortran uses
column-major order and C/C++ uses row-major order. For one-dimensional arrays, this poses no
problems. For two-dimensional arrays, where there are an equal number of rows and columns,

PGI Compiler User's Guide 158

Inter-language Calling

row and column indexes can simply be reversed. For arrays other than single dimensional arrays,
and square two-dimensional arrays, inter-language function mixing is not recommended.

13.8. Examples

This section contains examples that illustrate inter-language calling.

13.8.1. Example - Fortran Calling C

There are other solutions to calling C from Fortran than the one presented in this section. For example,
you canuse the iso ¢ binding intrinsic module which PGI does support. For more information on
this module and for examples of how to use it, search the web using the keyword iso_c_binding.

C function f2c_func_ shows a C function that is called by the Fortran main program shown
in Fortran Main Program f2c_main.f. Notice that each argument is defined as a pointer, since
Fortran passes by reference. Also notice that the C function name uses all lower-case and a
trailing"_"

Fortran Main Program f2c_main.f

logical*1l booll

character letterl
integer*4 numintl, numint?2
real numfloatl

double precision numdoubl
integer*2 numshorl
external f2c func

call f2c func(booll, letterl, numintl, numint2, numfloatl, numdoubl, numshorl)

write(*, "(L2, A2, I5, I5, F6.l1, Fo.1l, I5)")
+ booll, letterl, numintl, numint2, numfloatl,numdoubl, numshorl

end

C function f2¢_func_

#define TRUE Oxff
#define FALSE 0
void f2c func (booll, letterl, numintl, numint2, numfloatl,\
numdoubl, numshorl, len letterl)
char *booll, *letterl;
int *numintl, *numint2;
float *numfloatl;
double *numdoubl;
short *numshorl;
int len letterl;

*booll = TRUE; *letterl = 'v';
*numintl = 11; *numint2 = -44;
*numfloatl = 39.6 ;

*numdoubl = 39.2;

*numshorl = 981;

PGI Compiler User's Guide 159

Inter-language Calling

Compile and execute the program £2c_main. £ withthecall to £2c_func_ using the
following command lines:

$ pgcc -c f2c_func.c

$ pgfortran f2c_ func.o f2c main.f

Executing the a . out file should produce the following output:

T v 11 -44 39.6 39.2 981

13.8.2. Example - C Calling Fortran

The example C Main Program c2f_main.c shows a C main program that calls the Fortran
subroutine shown in Fortran Subroutine c2f_sub.f.

» Each call usesthe & operator to pass by reference.
» Thecall to the Fortran subroutine uses all lower-case and atrailing

non

C Main Program c2f_main.c

void main () {
char booll, letterl;
int numintl, numint2;
float numfloatl;
double numdoubl;
short numshorl;
extern void c2f func ():;

c2fisub7(&boollT&letEerl,&numintl,&numint2,&numfloatl,&numdoubl,&numshorl, 1);

printf (" %s %c %d %d %3.1f %.0f %d\n",
booll?"TRUE" : "FALSE", letterl, numintl, numint2,
numfloatl, numdoubl, numshorl);

}
Fortran Subroutine c2f_sub.f

subroutine c2f func (booll, letterl, numintl, numint2,
+ numfloatl, numdoubl, numshorl)

logical*1l booll

character letterl

integer numintl, numint?2

double precision numdoubl

real numfloatl

integer*2 numshorl

booll = .true.
letterl = "v"
numintl = 11
numint2 = -44

numdoubl = 902
numfloatl = 39.6
numshorl = 299
return

end

To compile this Fortran subroutine and C program, use the following commands:

$ pgcc -c c2f main.c
$ pgfortran -Mnomain c2f main.o c2 sub.f

Executing the resulting a . out file should produce the following outpult:
TRUE v 11 -44 39.6 902 299

PGI Compiler User's Guide

160

Inter-language Calling

13.8.3. Example - C++ Calling C

C++ Main Program cp2c_main.C Calling a C Function shows a C++ main program that calls the
C function shown in Simple C Function c2cp_func.c.

C++ Main Program cp2c¢_main.C Calling a C Function

extern "C" void cp2c_func(int n, int m, int *p);
#include <iostream>

main ()

{

int a,b,c;

a=8;

b=2;

c=0;

cout << "main: a = "<<a<<" b = "<<b<<Mptr c = "<<hex<<&c<< endl;
cp2c_func(a,b, &c) ;

cout << "main: res = "<<c<<endl;

)
Simple C Function c2cp_func.c

void cp2c func(numl, num2, res)
int numl, num2, *res;

{

printf ("func: a = %d b = %d ptr ¢ = %$x\n",numl, num2, res) ;
*res=numl/num?2;
printf ("func: res = %d\n", *res);

}
To compile this C function and C++ main program, use the following commands:

$ pgcc -c cp2c_func.c
$ pgcpp cp2c_main.C cp2c_func.o

Executing the resulting a.out file should produce the following outpult:

main: a = 8 b = 2 ptr ¢ = Oxbffffb94
func: a = 8 b = 2 ptr ¢ = bffffb94
func: res = 4

main: res = 4

13.8.4. Example - C Calling C ++

The examplein C Main Program c2cp_main.c Calling a C++ Function shows a C main program
that calls the C++ function shown in Simple C++ Function c2cp_func.C with Extern C.

C Main Program c2cp_main.c Calling a C++ Function

extern void c2cp func(int a, int b, int *c);
#include <stdio.h>

main () {
int a,b,c;
a=8; b=2;

printf ("main: a = $d b = %d ptr ¢ = %x\n",a,b, &c);
c2cp_func(a,b, &c);
printf ("main: res = %d\n",c);

}

PGI Compiler User's Guide 161

Inter-language Calling

Simple C++ Function c2cp_func.C with Extern C

#include <iostream>
extern "C" void c2cp_ func(int numl,int num2,int *res)

{

cout << "func: a = "<<numl<<" b = "<<num2<<"ptr c ="<<res<<endl;
*res=numl/num?2;
cout << "func: res = "<<res<<endl;

}

To compile this C function and C++ main program, use the following commands:

$ pgcc -c c2cp _main.c
$ pgcpp c2cp main.o c2cp_ func.C

Executing the resulting a.out file should produce the following output:

main: a = 8 b = 2 ptr ¢ = Oxbffffb94
func: a = 8 b = 2 ptr ¢ = bffffbo4
func: res = 4

main: res = 4

n You cannot use the extern "C" form of declaration for an object’'s member functions.

13.8.5. Example - Fortran Calling C++

The Fortran main program shown in Fortran Main Program f2cp_main.f calling a C++ function
callsthe C++ function shown in C++ function f2cp_func.C .

Notice:

» Each argument is defined as a pointer in the C++ function, since Fortran passes by reference.
» The C++ function name uses all lower-case and atrailing"_":

Fortran Main Program f2cp_main.f calling a C++ function

logical*1l booll
character letterl
integer*4 numintl, numint2
real numfloatl
double precision numdoubl
integer*2 numshorl
external f2cpfunc
call f2cp func (booll, letterl, numintl,
+ numint2, numfloatl, numdoubl, numshorl)
write(*, " (L2, A2, I5, I5, F6.1, F6.1, I5)")
+ booll, letterl, numintl, numint2, numfloatl,
+ numdoubl, numshorl
end

PGI Compiler User's Guide 162

Inter-language Calling

C++ function f2cp_func.C

#define TRUE Oxff
#define FALSE O

extern "C"

{

extern void f2cp func (
char *booll, *letterl,
int *numintl, *numint2,
float *numfloatl,
double *numdoubl,

short *numshortl,

int len letterl)

{

*booll = TRUE; *letterl = 'v';
*numintl = 11; *numint2 = -44;
*numfloatl = 39.6; *numdoubl = 39.2; *numshortl = 981;

}
}

Assuming the Fortran programisin afile fmain. £, and the C++ function isin afile
cpfunc.C, create an executable, using the following command lines:

$ pgcpp -c¢ f2cp_ func.C
$ pgfortran f2cp func.o f2cp main.f -pgcpplibs

Executing the a . out file should produce the following output:
T v 11 -44 39.6 39.2 981

13.8.6. Example - C++ Calling Fortran

Fortran Subroutine cp2f _func.f shows a Fortran subroutine called by the C++ main program
shown in C++ main program cp2f_main.C. Notice that each call usesthe & operator to pass by
reference. Also notice that the call to the Fortran subroutine uses all lower-case and atrailing " _":

C++ main program cp2f_main.C

#include <iostream>
extern "C" { extern void cp2f func (char *,char *,int *,int *,
float *,double *,short *); }
main ()
{
char booll, letterl;
int numintl, numint2;
float numfloatl;
double numdoubl;
short numshorl;

cp2f func (&booll, &letterl, &énumintl, &numint2, énumfloatl, &numdoubl, &énumshorl) ;
cout << " booll = ";

booll?cout << "TRUE ":cout << "FALSE "; cout <<endl;
cout << " letterl = " << letterl <<endl;

cout << " numintl = " << numintl <<endl;

cout << " numint2 = " << numint?2 <<endl;

cout << " numfloatl = " << numfloatl <<endl;

cout << " numdoubl = " << numdoubl <<endl;

cout << " numshorl = " << numshorl <<endl;

PGI Compiler User's Guide 163

Inter-language Calling

Fortran Subroutine cp2f_func.f

subroutine cp2f func (booll, letterl, numintl,
+ numint2, numfloatl, numdoubl, numshorl)
logical*1l booll

character letterl

integer numintl, numint2

double precision numdoubl

real numfloatl

integer*2 numshorl

booll = .true. ; letterl = "v"

numintl = 11 ; numint2 = -44

numdoubl = 902 ; numfloatl = 39.6 ; numshorl = 299
return

end

To compile this Fortran subroutine and C++ program, use the following command lines:

$ pgfortran -c cp2f func.f
$ pgcpp cp2f func.o cp2f main.C -pgf90libs

Executing this C++ main should produce the following output:
booll = TRUE

letterl = v
numintl = 11
numint2 = -44
numfloatl = 39.6
numdoubl = 902
numshorl = 299

You must explicitly link in the PGFORTRAN runtime support libraries when linking pgfortran-compiled
program units into C or C++ main programs. When linking pgf77-compiled program units into C or C++
main programs, you need only link in —1pgftnrtl.

13.9. Win32 Calling Conventions

A calling convention is a set of conventions that describe the manner in which a particular routine
is executed. A routine's calling conventions specify where parameters and function results are
passed. For a stack-based routine, the calling conventions determine the structure of the routine's
stack frame.

The calling convention for C/C++ isidentical between most compilers on Win32 , Linux, Mac
OS X, and Win64. However, Fortran calling conventions vary widely between legacy Win32
Fortran compilers and Linux or Win64 Fortran compilers.

13.9.1. Win32 Fortran Calling Conventions

Four styles of calling conventions are supported using the PGI Fortran compilers for Win32:
Default, C, STDCALL, and UNIX.

» Default - Used in the absence of compilation flags or directives to alter the default.

» Cor STDCALL - Used if an appropriate compiler directiveis placed in a program unit
containing the call. The C and STDCALL conventions are typically used to call routines
coded in C or assembly language that depend on these conventions.

PGI Compiler User's Guide 164

Inter-language Calling

» UNIX - Used in any Fortran program unit compiled using the -Mi face=unix (or the
- Munix) compilation flag.

The following table outlines each of these calling conventions.

Table 31 Calling Conventions Supported by the PGI Fortran Compilers

Convention Default STDCALL c UNIX
Case of symbol name Upper Lower Lower Lower
Leading underscore Yes Yes Yes Yes
Trailing underscore No No No Yes
Argument byte count added Yes Yes No No
Arguments passed by reference Yes No* No* Yes
Character argument length passed After each char No No End of argument
argument list
First character of character string is No Yes Yes No
passed by value
varargs support No No Yes Yes
Caller cleans stack No No Yes Yes

* Except arrays, which are always passed by reference even in the STDCALL and C conventions

While it is compatible with the Fortran implementations of Microsoft and several other vendors, the C
calling convention supported by the PGI Fortran compilers for Windows is not strictly compatible with the
C calling convention used by most C/C++ compilers. In particular, symbol names produced by PGl Fortran
compilers using the C convention are all lower case. The standard C convention is to preserve mixed-case
symbol names. You can cause any of the PGl Fortran compilers to preserve mixed-case symbol names
using the —Mupcase option, but be aware that this could have other ramifications on your program.

13.9.2. Symbol Name Construction and Calling Example

This section presents an example of the rules outlined in Calling Conventions Supported by the
PGI Fortran Compilers. In the pseudocode shown in the following examples, $addr refersto the
address of adataitem while $val refersto the value of that dataitem. Subroutine and function
names are converted into symbol names according to the rules outlined in Table 31.

Consider the following subroutine call, where ais a double precision scaar, b isareal vector of

sizen, and nisan integer:

call work (‘ERR’, a, b, n)

» Default - The symbol name for the subroutine is constructed by pre-pending an underscore,
converting to all upper case, and appending an @ sign followed by an integer indicating the

total number of bytes occupied by the argument list. Byte counts for character arguments
appear immediately following the corresponding argument in the argument list.

PGI Compiler User's Guide 165

Inter-language Calling

The following example is pseudocode for the preceding subroutine call using Default
conventions:
call WORKQ@20 (%addr (‘ERR’), 3, %addr(a), %addr(b), %addr(n))

» STDCALL - The symbol name for the subroutine is constructed by pre-pending an
underscore, converting to all lower case, and appending an @ sign followed by an integer
indicating the total number of bytes occupied by the argument list. Character strings are
truncated to the first character in the string, which is passed by value asthefirst bytein a4-
byte word. The following is an example of the pseudocode for the work subroutine call using
STDCALL conventions:
call work@20 (%val(‘E’), %val(a), %addr(b), 3%val(n))

Notice in this case that there are still 20 bytesin the argument list. However, rather than five
4-byte quantities as in the Default convention, there are three 4-byte quantities and one 8-
byte quantity (the double precision value of a).

» C - The symbol name for the subroutine is constructed by pre-pending an underscore and
converting to all lower case. Character strings are truncated to the first character in the string,
which is passed by value as the first byte in a 4-byte word.

Thefollowing is an example of the pseudocode for the work subroutine call using C
conventions:
call work (%val(‘E’), %val(a), %addr(b), %val(n))

» UNIX - The symbol name for the subroutine is constructed by pre-pending an underscore,
converting to all lower case, and appending an underscore. Byte counts for character strings
appear in sequence following the last argument in the argument list.

The following is an example of the pseudocode for the work subroutine call using UNIX
conventions:
call work (%addr(‘ERR’), %addr(a), %addr(b), %addr(n),3)

13.9.3. Using the Default Calling Convention

The Default calling convention is used if no directives are inserted to modify calling conventions
and if neither the -Mi face=unix (or -Munix) compilation flag is used. Refer to Symbol
Name Construction and Calling Example for a complete description of the Default calling
convention.

13.9.4. Using the STDCALL Calling Convention

Using the STDCALL calling convention requires the insertion of a compiler directive into the

declarations section of any Fortran program unit which callsthe STDCALL program unit. Y ou
cannot mix UNIX-style argument passing and STDCALL calling conventions within the same
file.

In the following example syntax for the directive, work isthe name of the subroutine to be called
using STDCALL conventions:
!DEC$ ATTRIBUTES STDCALL :: work

PGI Compiler User's Guide 166

Inter-language Calling

Y ou can list more than one subroutine, separating them by commas. Refer to Symbol Name
Construction and Calling Example for a complete description of the implementation of
STDCALL.

» The directive prefix IDEC$ requires a space between the prefix and the directive keyword
ATTRIBUTES.

» The ! must begin the prefix when compiling using Fortran 90 freeform format.

» The characters C or * can be used in place of ! in either form of the prefix when compiling with fixed-
form format.

» The directives are completely case insensitive.

13.9.5. Using the C Calling Convention

Using the C calling convention requires the insertion of a compiler directive into the declarations
section of any Fortran program unit which calls the C program unit. Y ou cannot mix UNIX-style
argument passing and C calling conventions within the sasmefile.

Syntax for the directive is as follows:
!DEC$ ATTRIBUTES C :: work

Where work isthe name of the subroutine to be called using C conventions. More than one
subroutine may be listed, separated by commas. Refer to Symbol Name Construction and Calling
Example for a complete description of the implementation of the C calling convention.

13.9.6. Using the UNIX Calling Convention

Using the UNIX calling convention is straightforward. Any program unit compiled using
- Miface=unix or the -Munix compilation flag uses the UNIX convention.

13.9.7. Using the CREF Calling Convention

Using the CREF calling convention is straightforward. Any program unit compiled using
- Miface=cref compilation flag uses the CREF convention.

PGI Compiler User's Guide 167

Chapter 14.
PROGRAMMING CONSIDERATIONS FOR 64-BIT

ENVIRONMENTS

PGI provides 64-bit compilers for the 64-bit Linux, Windows, and Mac OS X operating systems
running on the x64 architecture. Y ou can use these compilers to create programs that use 64-bit
memory addresses. However, there are limitations to how this capability can be applied. With
the exception of Linux86-64, the object file formats on all of the operating systems limit the
total cumulative size of code plus static datato 2GB. Thislimit includes the code and statically
declared datain the program and in system and user object libraries. Linux86-64 implements
amechanism that overcomes this limitations, as described in Large Static Datain Linux. This
section describes the specifics of how to use the PGI compilers to make use of 64-bit memory
addressing.

The 64-bit Windows, Linux, and OS X environments maintain 32-bit compatibility, which means
that 32-bit applications can be devel oped and executed on the corresponding 64-bit operating
system.

The 64-bit PGI compilers are 64-bit applications which cannot run on anything but 64-bit CPUs running 64-
bit Operating Systems.

This section describes how to use the following options related to 64-bit programming.

-fPIC -mcmodel=medium -Mlarge arrays

-i8 -Mlargeaddressaware -tp

14.1. Data Types in the 64-Bit Environment

The size of some data types can be different in a 64-bit environment. This section describes the
major differences. For detailed information, refer to the ‘ Fortran, C, and C++ Data Types section
of the PGI Compiler's Reference Guide.

PGI Compiler User's Guide 168

http://www.pgroup.com/resources/docs.htm

Programming Considerations for 64-Bit Environments

14.1.1. C/C++ Data Types

On 32-bit Windows, int is 4 bytes, long is 4 bytes, and pointers are 4 bytes. On 64-bit windows,
the size of anint is4 bytes, along is 4 bytes, and a pointer is 8 bytes.

On the 32-bit Linux and Mac OS X operating systems, the size of anint is4 bytes, alongis4
bytes, and a pointer is 4 bytes. On the 64-bit Linux and Mac OS X operating systems, the size of
anintis4 bytes, alongis 8 bytes, and a pointer is 8 bytes.

14.1.2. Fortran Data Types

In Fortran, the default size of the INTEGER type is 4 bytes. The -1 8 compiler option may be
used to make the default size of all INTEGER datain the program 8 bytes.

When using the -Mlarge arrays option, described in 64-Bit Array Indexing, any 4-byte
INTEGER variables that are used to index arrays are silently promoted by the compiler to 8
bytes. This promotion can lead to unexpected consequences, so 8-byte INTEGER variables are
recommended for array indexing when using the option -Mlarge arrays.

14.2. Large Static Data in Linux

Linux86-64 operating systems support two different memory models. The default model used by
PGI compilersisthe small memory model, which can be specified using -mcmodel=small.
Thisisthe 32-bit model, which limits the size of code plus statically allocated data,

including system and user libraries, to 2GB. The medium memory model, specified by -
mcmodel=medium, allows combined code and static data areas (.text and .bss sections) larger
than 2GB. The -mcmodel=medium option must be used on both the compile command and the
link command in order to take effect.

The Win64 and 64-bit Mac OS X operating systems do not have any support for large static data
declarations.

There are two drawbacks to using -mcmode 1=medium. First, thereisincreased addressing
overhead to support the large data range. This can affect performance, though the compilers
seek to minimize the added overhead through careful instruction generation. Second, -
mcmodel=medium cannot be used for objectsin shared libraries, because thereis no OS
support for 64-bit dynamic linkage.

14.3. Large Dynamically Allocated Data

Dynamically allocated data objectsin programs compiled by the 64-bit PGI compilers can be
larger than 2GB. No special compiler options are required to enable this functionality. The size of
the allocation is only limited by the system. However, to correctly access dynamically allocated
arrays with more than 2G elements you should use the -Mlarge arrays option, described in
the following section.

PGI Compiler User's Guide 169

Programming Considerations for 64-Bit Environments

14.4. 64-Bit Array Indexing

The 64-bit PGI compilers provide an option, -Mlarge arrays, that enables 64-bit indexing of
arrays. This means that, as necessary, 64-bit INTEGER constants and variables are used to index
arrays.

In the presence of -Mlarge arrays, the compiler may silently promote 32-bit integers to 64 bits,
which can have unexpected side effects.

On Linux86-64, the -Mlarge arrays option aso enables single static data objects larger than
2 GB. This option isthe default in the presence of -mcmodel=medium.

n On Win64, static data may not be larger than 2GB.

14.5. Compiler Options for 64-bit Programming

The usual switchesthat apply to 64-bit programmers seeking to increase the data range of their
applications are in the following table.

Table 32 64-bit Compiler Options

Option Purpose Considerations

—mcmodel=medium Enlarge object size; Allow | Linux86-64 only. Slower execution. Cannot be used with —fPIC.
for declared data the size of | Objects cannot be put into shared libraries.
larger than 2GB

-Mlargeaddressaware [Win64 only] Generates Use -Mlargeaddressaware=no for a direct addressing mechanism
code that allows for that restricts the total addressable memory. This is not applicable if
addresses greater than the object file is placed in a DLL. Further, if an object file is compiled
2GB, using RIP-relative with this option, it must also be used when linking.
addressing.

-Mlarge_arrays Perform all array-location- | Slightly slower execution. Is implicit with -mcmodel=medium. Can
to-address calculations be used with option -mcmodel=small. Win64 does not support —
using 64-bit integer Mlarge_arrays for static objects larger than 2GB.
arithmetic.

—fPIC Position independent code. | Dynamic linking restricted to a 32-bit offset. External symbol
Necessary for shared references should refer to other shared lib routines, rather than the
libraries. program calling them.

-i8 All INTEGER functions, Users should take care to explicitly declare INTEGER functions as
data, and constants INTEGER*4.
not explicitly declared
INTEGER*4 are assumed
to be INTEGER®S.

The following table summarizes the limits of these programming models under the specified
conditions. The compiler options you use vary by processor.

PGI Compiler User's Guide 170

Programming Considerations for 64-Bit Environments

Table 33 Effects of Options on Memory and Array Sizes

Addr. Math Max Size Gbytes

Condition A | AS DS

32-bit linux86 programs 32 32 2 2 2
64-bit addr limited by option —-mcmodel=small 64 32 2 2 2
—fpicincompatible with —mcmodel=medium 64 32 2 2 2
Enable full support for 64-bit data addressing 64 64 >2 >2 >2
A Address Type - size in bits of data used for address calculations, 32-bit or 64-bit.

| Index Arithmetic -bit-size of data used to index into arrays and other aggregate data structures. If 32-bit, total range of
any single data object is limited to 2GB.

AS Maximum Array Size- the maximum size in gigabytes of any single data object.
DS - max size in gigabytes combined of all data objects in .bss
TS Maximum Total Size- max size in gigabytes, in aggregate, of all executable code and data objects in a running program.

14.6. Practical Limitations of Large Array Programming

The 64-bit addressing capability of the Linux86-64 and Win64 environments can cause
unexpected issues when data sizes are enlarged significantly. The following table describes the
most common occurrences of practical limitations of large array programming.

Table 34 64-Bit Limitations

array initialization

Initializing a large array with a data statement may result in very large assembly and object files,
where a line of assembler source is required for each element in the initialized array. Compilation and
linking can be very time consuming as well. To avoid this issue, consider initializing large arrays in a
loop at runtime rather than in a data statement.

stack space Stack space can be a problem for data that is stack-based. In Win64, stack space can be increased by
using this link-time switch, where N is the desired stack size:-=W1, —stack:N
In linux86-64, stack size is increased in the environment. Setting stacksize to
unlimited often is not large enough.
limit stacksize new size ! in csh
ulimit -s new size ! in bash
page swapping If your executable is much larger than the physical size of memory, page swapping can cause it to run

dramatically slower; it may even fail. This is not a compiler problem. Try smaller data sets to determine
whether or not a problem is due to page thrashing.

configured space

Be sure your linux86-64 system is configured with swap space sufficiently large to support the data
sets used in your application(s). If your memory+swap space is not sufficiently large, your application
will likely encounter a segmentation fault at runtime.

PGI Compiler User's Guide

171

Programming Considerations for 64-Bit Environments

support for large Arrays that are not dynamically allocated are limited by how the compiler can express the ‘distance’
address offsets in object | between them when generating code. A field in the object file stores this ‘distance’ value, which is
file format limited to 32-bits on Win32, Win64, linux86, and linux86-64 with —-mcmodel=small. It is 64-bits on

linux86-64 with —-mcmodel=medium.

Without the 64-bit offset support in the object file format, large arrays cannot be
declared statically or locally stack-based.

14.7. Medium Memory Model and Large Array in C

Consider the following example, where the aggregate size of the arrays exceeds 2GB.

Medium Memory Model and Large Array in C

% cat bigadd.c
#include <stdio.h>
#define SIZE 600000000 /* > 2GB/4 */
static float a[SIZE], bI[SIZE];
int
main ()
{
long long i, n, m;
float c[SIZE]; /* goes on stack */

n = SIZE;
m = 0;
for (i = 0; i < n; i += 10000) {
ali]l] = 1 + 1;
b[i] = 2.0 * (1 + 1);
cli] = ali]l + bli];
m = ij;
}
printf("a[0]=%g b[0]=%g c[0]=%g\n", a[0], b[0], c[0]);
printf ("m=%11d a[%$11d]=%g b[%11d]=%gc[%$11d]=%g\n",m,m,a[m],m,b[m],m,c[m]) ;

return 0O;

}

% pgcc —mcmodel=medium -o bigadd bigadd.c

When SIZE is greater than 2G/4, and the arrays are of type float with 4 bytes per element, the

size of each array is greater than 2GB. With pgcc, using the -mcmodel=medium switch, a static

data object can now be > 2GB in size. If you execute with these settingsin your environment, you

may see the following:

% bigadd
Segmentation fault

PGI Compiler User's Guide

172

Programming Considerations for 64-Bit Environments

Execution fails because the stack size is not large enough. Y ou can most likely correct this error
by usingthe1imit stacksize command to reset the stack size in your environment:
% limit stacksize 3000M

The command 1imit stacksize unlimited probably does not provide as large a stack as we
are using in the this example.

% bigadd

al[0]=1 b[0]=2 c[0]=3

n=599990000 a[599990000]=5.9999e+08 b[599990000]=1.19998e+09
c[599990000]1=1.79997e+09

14.8. Medium Memory Model and Large Array in Fortran

The following example works with the PGFORTRAN, PGF95, and PGF77 compilers included
in Release 2014. Both compilers use 64-bit addresses and index arithmetic when the -
mcmode l=medium option is used.

Consider the following example:

Medium Memory Model and Large Array in Fortran

[)

% cat mat.f
program mat
integer i, j, k, size, 1, m, n
parameter (size=16000) ! >2GB
parameter (m=size,n=size)
real*8 a(m,n),b(m,n),c(m,n),d
doi=1, m
do j =1, n
a(i,j)=10000.0D0*dble (i) +dble(7)
b(i,3)=20000.0D0*dble (i) +dble ()
enddo
enddo
!Somp parallel
!'Somp do
doi=1, m
do j =1, n
C(llj) = a(llj) + b(llj)
enddo
enddo
!'Somp do
do i=1,m
do j =1, n
d = 30000.0D0*dble (i) +dble (j)+dble(7j)

if (d .ne. c(i,3)) then
print *,"err i=",1i,"j=",3j
print *,"c(i,j)=",c(i,])
print *,"d=",d
stop

endif

enddo
enddo

!'Somp end parallel

print *, "M =",M,", N =",N
print *, "c(M,N) = ", c(m,n)
end

PGI Compiler User's Guide 173

Programming Considerations for 64-Bit Environments

When compiled with the PGFORTRAN compiler using -mcmodel=medium:

setenv OMP NUM THREADS 2
mat

= 16000 , N = 16000
(M,N) = 480032000.0000000

Q I 00 o0 oe

pgfortran -Mfree —mp -o mat mat.f -i8 -mcmodel=medium

14.9. Large Array and Small Memory Model in Fortran

The following example uses large, dynamically-allocated arrays. The code is divided into amain
and subroutine so you could put the subroutine into a shared library. Dynamic allocation of large
arrays saves space in the size of executable and savestime initializing data. Further, the routines
can be compiled with 32-bit compilers, by just decreasing the parameter size.

Large Array and Small Memory Model in Fortran

% cat mat allo.f90

program mat allo
integer i, Jj
integer size, m, n
parameter (size=16000)
parameter (m=size,n=size)

double precision, allocatable::a(:,:),b(:,:),c(:,:)

allocate(a(m,n), b(m,n), c(m,n))
do i = 100, m, 1
do j = 100, n, 1

a(i,j) = 10000.0D0 * dble(i) + dble(j)
b(i,j) = 20000.0D0 * dble(i) + dble(j)
enddo
enddo
call mat add(a,b,c,m,n)
print *, "M =", m,",N =",n
print *, "c(M,N) =", c(m,n)

end

subroutine mat add(a,b,c,m,n)
integer m, n, i, j
double precision a(m,n),b(m,n),c(m,n)
doi=1, m
do j =1, n
c(i,j) = a(i,j) + b(i,J)
enddo
enddo
return
end

[

PGI Compiler User's Guide

% pgfortran -o mat allo mat allo.f90 -i8 -Mlarge arrays -mp -fast

174

Chapter 15.
C/C++ INLINE ASSEMBLY AND INTRINSICS

15.1. Inline Assembly

Inline Assembly lets you specify machine instructionsinside a"C" function. The format for an
inline assembly instruction is this:

{ asm | asm_ } ("string");

The asm statement begins with theasmor __asm _ keyword. The __asm__ keyword istypically
used in header files that may be included in ISO "C" programs.

string is one or more machine specific instructions separated with a semi-colon (;) or newline (\n)
character. These instructions are inserted directly into the compiler’s assembly-language output
for the enclosing function.

Some simple asm statements are:

asm ("cli™);
asm ("sti");

These asm statements disable and enable system interrupts respectively.

In the following example, the eax register is set to zero.

asm("pushl %eax\n\t" "movl $0, %eax\n\t" "popl %eax");

Notice that eax is pushed on the stack so that it isit not clobbered. When the statement is done
with eax, it is restored with the popl instruction.

Typically aprogram uses macros that enclose asm statements. The following two examples use
the interrupt constructs created previously in this section:

#define disableInt asm__ ("cli");
#define enableInt asm _ ("sti");

15.2. Extended Inline Assembly

Inline Assembly explains how to use inline assembly to specify machine specific instructions
insidea"C" function. This approach works well for simple machine operations such as disabling
and enabling system interrupts. However, inline assembly has three distinct limitations:

PGI Compiler User's Guide 175

3.

C/C++ Inline Assembly and Intrinsics

The programmer must choose the registers required by the inline assembly.

To prevent register clobbering, the inline assembly must include push and pop code for
registers that get modified by the inline assembly.

There is no easy way to access stack variablesin an inline assembly statement.

Extended Inline Assembly was created to address these limitations. The format for extended inline
assembly, also known as extended asm, is as follows:

{ asm | asm__ } [volatile | _ volatile]
("string" [: [output operands]] [: [input operands]] [: [clobberlist]]):;

>

Extended asm statements begin with theasmor __asm __ keyword. Typicaly the__asm
keyword is used in header files that may be included by 1SO "C" programs.

An optional volatile or __ volatile keyword may appear after the asm keyword. This
keyword instructs the compiler not to delete, move significantly, or combine with any other
asm statement. Like _asm__, the _ volatile keyword istypically used with header files
that may be included by 1SO "C" programs.

"string" is one or more machine specific instructions separated with a semi-colon (;)

or newline (\n) character. The string can also contain operands specified in the [output
operands|, [input operands], and [clobber list]. Theinstructions are inserted directly into the
compiler's assembly-language output for the enclosing function.

The [output operands], [input operands], and [clobber list] items each describe the effect of
the instruction for the compiler. For example:

[)

asm("movl %1, %$%eax\n" "movl %$%eax, %0":"=r" (x) : "r" (y)

. Mo

Seax");

where "=r" (x) is an output operand.
"r" (y) isan input operand.
"%eax" isthe clobber list consisting of one register, "%eax".

The notation for the output and input operands is a constraint string surrounded by quotes,
followed by an expression, and surrounded by parentheses. The constraint string describes
how the input and output operands are used in the asm "string". For example, "r" tells the
compiler that the operand is aregister. The "=" tells the compiler that the operand is write
only, which means that avalueis stored in an output operand's expression at the end of the
asm statement.

Each operand is referenced in the asm "string" by a percent "%" and its number. The first
operand is number 0O, the second is number 1, the third is number 2, and so on. In the
preceding example, "%0" references the output operand, and "%1" references the input
operand. The asm "string" also contains "%%eax", which references machine register
"%eax". Hard coded registers like "%eax" should be specified in the clobber list to prevent
conflicts with other instructions in the compiler's assembly-language output.

[output operands], [input operands], and [clobber list] items are described in more detail in
the following sections.

15.2.1. Output Operands

The [output operands] are an optional list of output constraint and expression pairs that specify
the result(s) of the asm statement. An output constraint is a string that specifies how aresult is

PGI Compiler User's Guide 176

C/C++ Inline Assembly and Intrinsics

delivered to the expression. For example, "=r" (x) says the output operand is awrite-only register
that storesitsvalue in the"C" variable x at the end of the asm statement. An example follows:

int x;
void example ()

{
asm("movl $0, %0" : "=r" (x));

}

The previous example assigns 0 to the "C" variable x. For the function in this example, the
compiler produces the following assembly. If you want to produce an assembly listing, compile
the example with the pgcc —s compiler option:

example:
..Dcfb0:
pushg %rbp
..Dcfi0:
movqg $rsp, %rbp
..Dcfil:

..EN1:

lineno: 8
movl $0, %eax
movl %eax, x(%rip)

lineno: O
popqg srbp
ret

In the generated assembly shown, notice that the compiler generated two statements for the asm
statement at line number 5. The compiler generated "movl $0, %eax" from the asm "string”. Also
notice that %eax appearsin place of "%0" because the compiler assigned the %eax register to
variable x. Since item 0 is an output operand, the result must be stored in its expression (x).

In addition to write-only output operands, there are read/write output operands designated with a
"+" instead of a"=". For example, "+r" (X) tells the compiler to initialize the output operand with
variable x at the beginning of the asm statement.

To illustrate this point, the following example increments variable x by 1:

int x=1;
void example?2 ()
{
asm("addl $1, %0" : "+r" (x));
}

To perform the increment, the output operand must be initialized with variable x. The read/
write constraint modifier ("+") instructs the compiler to initialize the output operand with its
expression. The compiler generates the following assembly code for the example2() function:

example?2:

..Dcfb0:

pushg %$rbp
..Dcfi0:

movg %rsp, %rbp
..Dcfil:

..EN1:

lineno: 5

movl x(%rip), %eax
addl $1, %eax
movl %$eax, x(%rip)
lineno: O

popdg %rbp

ret

From the example2() code, two extraneous moves are generated in the assembly: one movl for
initializing the output register and a second mov! to write it to variable x. To eliminate these

PGI Compiler User's Guide 177

C/C++ Inline Assembly and Intrinsics

moves, use amemory constraint type instead of aregister constraint type, as shown in the
following example:
int x=1;

void example?2 ()

{
asm("addl $1, %0" : "+m" (x));

}

The compiler generates a memory reference in place of amemory constraint. This eliminates the
two extraneous moves. Because the assembly uses a memory reference to variable x, it does not
have to move x into aregister prior to the asm statement; nor does it need to store the result after
the asm statement. Additional constraint types are found in Additional Constraints.

example?2:
..Dcfb0:

pushg %rbp
..DcfiO:

movqg $rsp, %rbp
..Dcfil:

..EN1:

lineno: 5
addl $1, x(%rip)
lineno: O
popdg %rbp

ret
The examples thus far have used only one output operand. Because extended asm accepts alist
of output operands, asm statements can have more than one result, as shown in the following
example:

void exampled ()

{

int x=1; int y=2;

asm("addl $1, %$1\n" "addl %1, %0": "+r" (x), "+m" (y));
}

This example increments variable y by 1 then adds it to variable x. Multiple output operands

are separated with acomma. The first output operand isitem 0 ("%0") and the second isitem 1
("%1") in the asm "string". The resulting values for x and y are 4 and 3 respectively.

15.2.2. Input Operands

The [input operands] are an optional list of input constraint and expression pairs that specify
what "C" values are needed by the asm statement. The input constraints specify how the datais
delivered to the asm statement. For example, "r" (X) says that the input operand is aregister that
has a copy of the value stored in "C" variable x. Another exampleis"m" (x) which saysthat the
input item is the memory location associated with variable x. Other constraint types are discussed
in Additional Constraints. An example follows:

void exampleb ()
{

int x=1;

int y=2;

int z=3;

asm("addl %2, %$1\n" "addl %2, %0" : "+r" (x), "4+m" (y) : "r" (z));
}

The previous example adds variable z, item 2, to variable x and variable y. The resulting values
for x and y are 4 and 5 respectively.

PGI Compiler User's Guide 178

C/C++ Inline Assembly and Intrinsics

Another type of input constraint worth mentioning here is the matching constraint. A matching
constraint is used to specify an operand that fills both an input as well as an output role. An
example follows:

int x=1;

void example6 ()

{

asm("addl $1, %1"
s M=y (X)
"0 (%))

}

The previous example is equivalent to the example2() function shown in Output Operands. The
constraint/expression pair, "0" (X), tells the compiler to initialize output item 0 with variable x

a the beginning of the asm statement. The resulting value for xis 2. Also note that "%1" in the
asm "string" means the same thing as "%0" in this case. That is because there is only one operand
with both an input and an output role.

Matching constraints are very similar to the read/write output operands mentioned in Output
Operands. However, there is one key difference between read/write output operands and
matching constraints. The matching constraint can have an input expression that differs from its
output expression.

The following example uses different values for the input and output roles:

int x;

int y=2;

void example7 ()

{

asm("addl $1, %1"
s M=y (X)
"0 (y))z

}

The compiler generates the following assembly for example7():

example7:

..Dcfb0:

pushg %$rbp
..Dcfi0:

movg %$rsp, %rbp
..Dcfil:

..EN1:

lineno: 8

movl y(%rip), %eax
addl $1, %eax
movl %$eax, x(%rip)
lineno: O

popdg %rbp

ret
Variable x getsinitialized with the value stored in y, which is 2. After adding 1, the resulting
value for variable x is 3.

Because matching constraints perform an input role for an output operand, it does not make

sense for the output operand to have the read/write ("+") modifier. In fact, the compiler disallows

matching constraints with read/write output operands. The output operand must have a write only
"=") modifier.

PGI Compiler User's Guide 179

C/C++ Inline Assembly and Intrinsics

15.2.3. Clobber List

The [clobber list] isan optional list of strings that hold machine registers used in the asm
"string". Essentialy, these strings tell the compiler which registers may be clobbered by the
asm statement. By placing registersin this list, the programmer does not have to explicitly save
and restore them as required in traditional inline assembly (described in Inline Assembly). The
compiler takes care of any required saving and restoring of the registersin thislist.

Each machine register in the [clobber list] is a string separated by a comma. The leading ‘%' is
optiona in the register name. For example, "%eax" is equivalent to "eax". When specifying the
register inside the asm "string", you must include two leading '%' charactersin front of the name
(for example., "%%eax"). Otherwise, the compiler will behave as if a bad input/output operand
was specified and generate an error message. An example follows:

void example8 ()

{

int x;

int y=2;

asm("movl %1, %$%eax\n"
"movl %1, %$%edx\n"
"addl %$%edx, %%eax\n"
"addl %%eax, 0"
s M=y (X)
: "O" (y)
: "eaX", "edX") ;

}

This code uses two hard-coded registers, eax and edx. It performs the equivaent of 3*y and
assignsit to x, producing aresult of 6.

In addition to machine registers, the clobber list may contain the following special flags:

n CC
The asm statement may alter the control code register.

"memory"
The asm statement may modify memory in an unpredictable fashion.

When the "memory" flag is present, the compiler does not keep memory values cached in
registers across the asm statement and does not optimize stores or loads to that memory. For
example:

asm("call MyFunc":::"memory") ;

This asm statement contains a"memory" flag because it contains acall. The callee may otherwise
clobber registersin use by the caller without the "memory"” flag.

PGI Compiler User's Guide 180

C/C++ Inline Assembly and Intrinsics

The following function uses extended asm and the "cc" flag to compute a power of 2 that isless
than or equal to the input parameter n.
#pragma noinline

int asmDivideConquer (int n)

{

int ax = 0;
int bx = 1;
asm (

"LogLoop:n"

"cmp %2, %$1n"

"jnle Donen"

"inc %0n"

"add %1,%1n"

"jmp LogLoopn"

"Done:n"

"dec %0n"

:n+r" (ax), nppn (bX) : n"yen (n) : "CC") ;
return ax;

}

The'cc’ flag is used because the asm statement contains some control flow that may alter the
control code register. The #pragma noinline statement prevents the compiler from inlining the
asmDivideConquer() function. If the compiler inlines asmDivideConguer(), then it may illegally
duplicate the labels LogL oop and Done in the generated assembly.

15.2.4. Additional Constraints

Operand constraints can be divided into four main categories:

» Simple Constraints

» Machine Constraints

» Multiple Alternative Constraints
» Constraint Modifiers

15.2.5. Simple Constraints

The simplest kind of constraint is a string of |etters or characters, known as Smple Constraints,
such asthe "r" and "m" constraints introduced in Output Operands. Table 35 describes these
constraints.

Table 35 Simple Constraints

Constraint Description

whitespace Whitespace characters are ignored.

E An immediate floating point operand.

F Same as "E".

g Any general purpose register, memory, or immediate integer operand is allowed.

i An immediate integer operand.

m A memory operand. Any address supported by the machine is allowed.
n Same as "i".
0 Same as "m".

PGI Compiler User's Guide 181

C/C++ Inline Assembly and Intrinsics

Constraint Description

p An operand that is a valid memory address. The expression associated with the constraint is expected to
evaluate to an address (for example, "p" (&x)).

r A general purpose register operand.
X Same as "g".
0,1,2,.9 Matching Constraint. See Output Operands for a description.

The following example uses the general or "g" constraint, which allows the compiler to pick an
appropriate constraint type for the operand; the compiler chooses from ageneral purpose register,

memory, or immediate operand. This code lets the compiler choose the constraint type for "y".

void example9 ()
{
int X, y:2;
asm("movl %1, %0\n" : "=r"
(X) . ngn (y)) ;
}

This technique can result in more efficient code. For example, when compiling example9() the
compiler replaces the load and store of y with a constant 2. The compiler can then generate an
immediate 2 for the y operand in the example. The assembly generated by pgcc for our example
isasfollows:

example9:
..Dcfb0:

pushg %rbp
..DcfiO:

movq %rsp, %rbp
..Dcfil:
..EN1:

lineno: 3
movl $2, %eax
lineno: 6
popq srbp

ret

In this example, notice the use of $2 for the "y" operand.

Of course, if y isaways 2, then the immediate value may be used instead of the variable with the
"i'" constraint, as shown here:

void examplelO ()

{

int x;

asm("movl %1, %0\n"
s M=pW (X)
2"t (2))

}

Compiling examplel0() with pgcc produces assembly similar to that produced for exampl€9().

15.2.6. Machine Constraints

Another category of constraintsis Machine Constraints. The x86 and x86_64 architectures have
several classes of registers. To choose a particular class of register, you can use the x86/x86_64
machine constraints described in Table 36.

PGI Compiler User's Guide 182

C/C++ Inline Assembly and Intrinsics

Table 36 x86/x86_64 Machine Constraints

Constraint Description

a a register (e.g., %al, %ax, %eax, %rax)

A Specifies a or d registers. This is used primarily for holding 64-bit integer values on 32 bit targets. The d
register holds the most significant bits and the a register holds the least significant bits.

b b register (e.g, %bl, %bx, %ebx, %rbx)

o c register (e.g., %cl, %cx, %ecx, %rcx)

C Not supported.

d d register (e.g., %dl, %dx, %edx, %rdx)

D di register (e.g., %dil, %di, %edi, %rdi)

e Constant in range of Oxffffffff to Ox7ffffff

f Not supported.

G Floating point constant in range of 0.0 to 1.0.

| Constant in range of 0 to 31 (e.g., for 32-bit shifts).

(-

Constant in range of 0 to 63 (e.g., for 64-bit shifts)

Constant in range of Oto 127.

Constant in range of 0 to 65535.

Constant in range of 0 to 3 constant (e.g., shifts for lea instruction).

Z|IZ2| | =

Constant in range of 0 to 255 (e.g., for out instruction).

Same as "r" simple constraint.

Same as "r" simple constraint.

Same as "r" simple constraint.

|l o O|=

si register (e.g., %sil, %si, %edi, %rsi)

—

Not supported.

u Not supported.
X XMM SSE register

Not supported.

z Constant in range of 0 to Ox7fffffff.

The following example uses the "x" or XMM register constraint to subtract ¢ from b and store the
resultina

double examplell ()
{

double a;

double b = 400.99;
double ¢ = 300.98;
asm ("subpd %2, %0;"
s M=y (a)

"OH (b) , "X" (C)
);
return a;

}

PGI Compiler User's Guide 183

C/C++ Inline Assembly and Intrinsics

The generated assembly for this example isthis:

examplell:

..Dcfb0:

pushg %rbp

..Dcfi0:

movqg %$rsp, $rbp

..Dcfil:

..EN1:

lineno: 4

movsd .C00128 (%rip), S%S$xmml
movsd .C00130(%rip), S%S$xmm2
movapd %$xmml, %xmmO

subpd $xmm2, $%$xmmO;

lineno: 10

lineno: 11

popg %rbp

ret

If aspecified register is not available, the pgcc and pgepp compilersissue an error message.

For example, pgcc and pgcepp reserves the "%ebx" register for Position Independent Code (PIC)
on 32-hit system targets. If a program has an asm statement with a"b" register for one of the
operands, the compiler will not be able to obtain that register when compiling for 32-bit with the -
fPIC switch (which generates PIC).

To illustrate this point, the following example is compiled for a 32-bit target using PIC:

void examplel?2 ()

{

int x=1;

int y=1;

asm("addl %1, %0\n"
: "+a" (x)
: "b" (y))

}

Compiling with the "-tp p7" switch chooses a 32-hit target.

% pgcc examplel2.c -fPIC -c -tp p7

PGC-S-0354-Can't find a register in class 'BREG' for extended ASM
operand 1 (examplel2.c: 3)

PGC/x86 Linux/x86 Rel Dev: compilation completed with severe errors

15.2.7. Multiple Alternative Constraints

Sometimes a single instruction can take a variety of operand types. For example, the x86
permits register-to-memory and memory-to-register operations. To alow thisflexibility ininline
assembly, use multiple alternative constraints. An alternative is a series of constraints for each
operand.

To specify multiple alternatives, separate each alternative with a comma.

Table 37 Multiple Alternative Constraints

Constraint Description

Separates each alternative for a particular operand.

? Ignored

! Ignored

PGI Compiler User's Guide 184

C/C++ Inline Assembly and Intrinsics

The following example uses multiple aternatives for an add operation.

void examplel3 ()

{

int x=1;

int y=1;

asm("addl %1, %0\n"
: "+ab,cd" (x)
: "db,cam" (y));

}

The preceding examplel3() has two alternatives for each operand: "ab,cd" for the output operand
and "db,cam" for the input operand. Each operand must have the same number of aternatives;
however, each alternative can have any number of constraints (for example, the output operand in
examplel3() has two constraints for its second alternative and the input operand has three for its
second alternative).

The compiler first tries to satisfy the left-most alternative of the first operand (for example, the
output operand in examplel3()). When satisfying the operand, the compiler starts with the | eft-
most constraint. If the compiler cannot satisfy an alternative with this constraint (for example,

if the desired register is not available), it tries to use any subsequent constraints. If the compiler
runs out of constraints, it moves on to the next aternative. If the compiler runs out of aternatives,
it issues an error similar to the one mentioned in examplel2(). If an alternative is found, the
compiler uses the same alternative for subsequent operands. For example, if the compiler chooses
the"c" register for the output operand in examplel3(), then it will use either the"a" or "m"
constraint for the input operand.

15.2.8. Constraint Modifiers

Characters that affect the compiler's interpretation of a constraint are known as Constraint
Modifiers. Two constraint modifiers, the"=" and the "+", were introduced in Output Operands.
The following table summarizes each constraint modifier.

Table 38 Constraint Modifier Characters

Constraint

Modifier Description

= This operand is write-only. It is valid for output operands only. If specified, the "=" must appear as the first
character of the constraint string.

+ This operand is both read and written by the instruction. It is valid for output operands only. The output
operand is initialized with its expression before the first instruction in the asm statement. If specified, the "+"
must appear as the first character of the constraint string.

& A constraint or an alternative constraint, as defined in Multiple Alternative Constraints, containing an "&"
indicates that the output operand is an early clobber operand. This type operand is an output operand that
may be modified before the asm statement finishes using all of the input operands. The compiler will not
place this operand in a register that may be used as an input operand or part of any memory address.

% Ignored.

Characters following a "#" up to the first comma (if present) are to be ignored in the constraint.

* The character that follows the ™" is to be ignored in the constraint.

The"="and "+" modifiers apply to the operand, regardless of the number of aternativesin the
constraint string. For example, the "+" in the output operand of examplel3() appears once and

PGI Compiler User's Guide 185

C/C++ Inline Assembly and Intrinsics

applies to both aternativesin the constraint string. The "&", "#", and "*" modifiers apply only to
the aternative in which they appear.

Normally, the compiler assumes that input operands are used before assigning results to the
output operands. This assumption lets the compiler reuse registers as needed inside the asm
statement. However, if the asm statement does not follow this convention, the compiler may
indiscriminately clobber aresult register with an input operand. To prevent this behavior, apply
the early clobber "&" modifier. An example follows:

void examplelb ()
{
int w=1;
int z;
asm("movl $1, %0\n"
"addl %2, %0\n"
"movl %2, %1"
s M=g" (W), N_ypn (Z) : "yw (W))’.

}

The previous code exampl e presents an interesting ambiguity because "w" appears both as an
output and as an input operand. So, the value of "Z" can be either 1 or 2, depending on whether
the compiler uses the same register for operand 0 and operand 2. The use of constraint "r" for
operand 2 alows the compiler to pick any general purpose register, so it may (or may not) pick
register "a"' for operand 2. This ambiguity can be eliminated by changing the constraint for
operand 2 from "r" to "a" so the value of "z" will be 2, or by adding an early clobber "&" modifier
so that "z" will be 1. The following example shows the same function with an early clobber "&"
modifier:

void examplel6 ()

{
int w=1;
int z;
asm("movl $1, %0\n"
"addl %2, %0\n"
"movl %2, %1"
B ":&a" (W), n:r" (Z) B "r" (W)) ;
}
Adding the early clobber "&" forces the compiler not to use the "a" register for anything other
than operand 0. Operand 2 will therefore get its own register with its own copy of "w". The result

for"z" in examplel6() is 1.

15.3. Operand Aliases

Extended asm specifies operands in assembly strings with a percent '%' followed by the operand
number. For example, "%0" references operand 0 or the output item "=&a" (w) in function
examplel6() in the previous example. Extended asm also supports operand aliasing, which

PGI Compiler User's Guide 186

C/C++ Inline Assembly and Intrinsics

allows use of a symbolic name instead of a number for specifying operands, asillustrated in this
example:

void examplel7 ()
{
int w=1, z=0;
asm("movl $1, %[outputl]\n"
"addl %[input], %[outputl]\n"
"movl %[input], $%[output2]"
[outputl] "=&a" (w), [output2] "=r"
(z)
[input] "r" (w));
}

In examplel8(), "%0" and "%[outputl]” both represent the output operand.

15.4. Assembly String Modifiers

Special character sequences in the assembly string affect the way the assembly is generated by
the compiler. For example, the "%" is an escape sequence for specifying an operand, "%%"
produces a percent for hard coded registers, and "\n" specifies anew line. Table 39 summarizes
these modifiers, known as Assembly String Modifiers.

Table 39 Assembly String Modifier Characters

Modifier Description

\ Same as \ in printf format strings.

%* Adds a ™" in the assembly string.

%% Adds a '%"in the assembly string.

%A Adds a ™" in front of an operand in the assembly string. (For example, %A0 adds a ™' in front of operand 0 in
the assembly output.)

%B Produces the byte op code suffix for this operand. (For example, %b0 produces 'b' on x86 and x86_64.)

%L Produces the word op code suffix for this operand. (For example, %L0 produces 'I' on x86 and x86_64.)

%P If producing Position Independent Code (PIC), the compiler adds the PIC suffix for this operand. (For
example, %P0 produces @PLT on x86 and x86_64.)

%Q Produces a quad word op code suffix for this operand if it is supported by the target. Otherwise, it produces a
word op code suffix. (For example, %Q0 produces 'q' on x86_64 and 'I' on x86.)

%S Produces 's' suffix for this operand. (For example, %S0 produces 's' on x86 and x86_64.)

%T Produces 't' suffix for this operand. (For example, %S0 produces 't' on x86 and x86_64.)

%W Produces the half word op code suffix for this operand. (For example, %WO0 produces 'w' on x86 and x86_64.)

%a Adds open and close parentheses () around the operand.

%b Produces the byte register name for an operand. (For example, if operand 0 is in register 'a’, then %b0 will
produce '%al'.)

%c Cuts the '$' character from an immediate operand.

%k Produces the word register name for an operand. (For example, if operand 0 is in register 'a’, then %k0 will

produce '%eax'.)

PGI Compiler User's Guide 187

C/C++ Inline Assembly and Intrinsics

Modifier Description

%q Produces the quad word register name for an operand if the target supports quad word. Otherwise, it
produces a word register name. (For example, if operand 0 is in register 'a', then %q0 produces %rax on
x86_64 or %eax on x86.)

%w Produces the half word register name for an operand. (For example, if operand 0 is in register 'a’, then %w0
will produce '%ax’.)

%z Produces an op code suffix based on the size of an operand. (For example, 'b' for byte, ‘w' for half word, 'I' for
word, and 'q' for quad word.)

%+ %C %D %F %0 %X %f %h %l %n %s %y are not supported.

These modifiers begin with either abackslash "\" or a percent "%".

The modifiersthat begin with a backslash "\" (e.g., "\n") have the same effect asthey doin a
printf format string. The modifiers that are preceded with a"%" are used to modify a particular
operand.

These modifiers begin with either abackslash "\" or a percent "%" For example, "%b0" means,
"produce the byte or 8 bit version of operand 0". If operand 0 is aregister, it will produce a byte
register such as %al, %bl, %cl, and so on.

Consider this example:

void examplel9 ()
{
int a = 1;
int *p = &a;
asm ("add%$z0 %gl, %a0"
: ll:&pll (p) : llrll (a)’ "O" (p));
}
On an x86 target, the compiler produces the following instruction for the asm string shown in the
preceding example:

addl %ecx, (%eax)

The "%z0" modifier produced an 'l' (lower-case ‘L") suffix because the size of pointer p is 32 bits
on x86. The "%q1" modifier produced the word register name for variable a. The "%a0" instructs
the compiler to add parentheses around operand 0, hence " (%oeax)".

On an x86_64 target, the compiler produces the following instruction for the asm string shown in
the preceding example:

addg %rcx, (%rax)

The "%z0" modifier produced a'q' suffix because the size of pointer p is 64-bit on x86_64.
Because x86_64 supports quad word registers, the "%ql" modifier produced the quad word
register name (%rax) for variable a.

PGI Compiler User's Guide 188

C/C++ Inline Assembly and Intrinsics

15.5. Extended Asm Macros

Aswith traditional inline assembly, described in Inline Assembly, extended asm can beused in a
macro. For example, you can use the following macro to access the runtime stack pointer.

#define GET_SP(x) \
asm("mov %%$sp, %0": "=m" (##x):: "Ssp");
void example20 ()

{
void * stack pointer;
GET SP(stack pointer);
}

The GET_SP macro assigns the value of the stack pointer to whatever isinserted in its argument
(for example, stack_pointer). Another "C" extension known as statement expressionsis used to
write the GET_SP macro another way:

#define GET SP2 ({ \

void *my stack ptr; \

asm("mov %%sp, %0": "=m" (my stack ptr) :: "%sp"); \
my stack ptr; \

})

void example2l ()

{
void * stack pointer = GET_ SP2;

}

The statement expression allows abody of code to evaluate to asingle value. Thisvalueis
specified as the last instruction in the statement expression. In this case, the value is the result
of the asm statement, my_stack_ptr. By writing an asm macro with a statement expression,
the asm result may be assigned directly to another variable (for example, void * stack_pointer
= GET_SP2) or included in alarger expression, such as: void * stack_pointer = GET_SP2 -
sizeof(long).

Which style of macro to use depends on the application. If the asm statement needs to be a part
of an expression, then a macro with a statement expression is a good approach. Otherwise, a
traditional macro, like GET_SP(x), will probably suffice.

15.6. Intrinsics

Inline intrinsic functions map to actual x86 or x64 machine instructions. Intrinsics are inserted
inline to avoid the overhead of afunction call. The compiler has special knowledge of intrinsics,
so with use of intrinsics, better code may be generated as compared to extended inline assembly
code.

The PGI Workstation version 7.0 or higher compiler intrinsics library implements MM X, SSE,
SS2, SSE3, SSSE3, SSE4a, ABM, and AV X instructions. The intrinsic functions are available
to C and C++ programs on Linux and Windows. Unlike most functions which arein libraries,
intrinsics are implemented internally by the compiler. A program can call the intrinsic functions
from C/C++ source code after including the corresponding header file.

Theintrinsics are divided into header files as follows:

PGI Compiler User's Guide 189

C/C++ Inline Assembly and Intrinsics

Table 40 Intrinsic Header File Organization

Instructions Header File Instructions Header File
ABM intrin.h SSE2 emmintrin.h
AVX immintrin.h SSE3 pmmintrin.h
MMX mmintrin.h SSSE3 tmmintrin.h
SSE xmmintrin.h SSE4a ammintrin.h

The following is a ssimple example program that calls XMM intrinsics.

#include <xmmintrin.h>

int main () {

~ ml28 A, B, result;

A = mm set ps(23.3, 43.7, 234.234, 98.746);
B = mm set ps(15.4, 34.3, 4.1, 8.6);

result = mm add ps(_ A, B);

return 0O;

}

PGI Compiler User's Guide 190

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2014 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Tables
	Preface
	Audience Description
	Compatibility and Conformance to Standards
	Organization
	Hardware and Software Constraints
	Conventions
	Terms
	Related Publications

	Getting Started
	1.1. Overview
	1.2. Creating an Example
	1.3. Invoking the Command-level PGI Compilers
	1.3.1. Command-line Syntax
	1.3.2. Command-line Options
	1.3.3. Fortran Directives and C/C++ Pragmas

	1.4. Filename Conventions
	1.4.1. Input Files
	1.4.2. Output Files

	1.5. Fortran, C, and C++ Data Types
	1.6. Parallel Programming Using the PGI Compilers
	1.6.1. Run SMP Parallel Programs

	1.7. Platform-specific considerations
	1.7.1. Using the PGI Compilers on Linux
	1.7.2. Using the PGI Compilers on Windows
	1.7.3. PGI on the Windows Desktop
	1.7.4. Using the PGI Compilers on OS X

	1.8. Site-Specific Customization of the Compilers
	1.8.1. Use siterc Files
	1.8.2. Using User rc Files

	1.9. Common Development Tasks

	Use Command Line Options
	2.1. Command Line Option Overview
	2.1.1. Command-line Options Syntax
	2.1.2. Command-line Suboptions
	2.1.3. Command-line Conflicting Options

	2.2. Help with Command-line Options
	2.3. Getting Started with Performance
	2.3.1. Using –fast and –fastsse Options
	2.3.2. Other Performance-Related Options

	2.4. Targeting Multiple Systems — Using the –tp Option
	2.5. Frequently-used Options

	Optimizing and Parallelizing
	3.1. Overview of Optimization
	3.1.1. Local Optimization
	3.1.2. Global Optimization
	3.1.3. Loop Optimization: Unrolling, Vectorization and Parallelization
	3.1.4. Interprocedural Analysis (IPA) and Optimization
	3.1.5. Function Inlining
	3.1.6. Profile-Feedback Optimization (PFO)

	3.2. Getting Started with Optimization
	3.2.1. –help
	3.2.2. –Minfo
	3.2.3. –Mneginfo
	3.2.4. –dryrun
	3.2.5. –v
	3.2.6. PGPROF

	3.3. Common Compiler Feedback Format (CCFF)
	3.4. Local and Global Optimization
	3.4.1. –Msafeptr
	3.4.2. –O

	3.5. Loop Unrolling using –Munroll
	3.6. Vectorization using –Mvect
	3.6.1. Vectorization Sub-options
	3.6.2. Vectorization Example Using SIMD Instructions

	3.7. Auto-Parallelization using -Mconcur
	3.7.1. Auto-Parallelization Sub-options
	3.7.2. Loops That Fail to Parallelize

	3.8. Processor-Specific Optimization & the Unified Binary
	3.9. Interprocedural Analysis and Optimization using –Mipa
	3.9.1. Building a Program Without IPA – Single Step
	3.9.2. Building a Program Without IPA - Several Steps
	3.9.3. Building a Program Without IPA Using Make
	3.9.4. Building a Program with IPA
	3.9.5. Building a Program with IPA - Single Step
	3.9.6. Building a Program with IPA - Several Steps
	3.9.7. Building a Program with IPA Using Make
	3.9.8. Questions about IPA

	3.10. Profile-Feedback Optimization using –Mpfi/–Mpfo
	3.11. Default Optimization Levels
	3.12. Local Optimization Using Directives and Pragmas
	3.13. Execution Timing and Instruction Counting
	3.14. Portability of Multi-Threaded Programs on Linux
	3.14.1. libnuma

	Using Function Inlining
	4.1. Invoking Function Inlining
	4.2. Using an Inline Library
	4.3. Creating an Inline Library
	4.3.1. Working with Inline Libraries
	4.3.2. Dependencies
	4.3.3. Updating Inline Libraries - Makefiles

	4.4. Error Detection during Inlining
	4.5. Examples
	4.6. Restrictions on Inlining

	Using OpenMP
	5.1. OpenMP Overview
	5.1.1. OpenMP Shared-Memory Parallel Programming Model
	5.1.2. Terminology
	5.1.3. OpenMP Example

	5.2. Task Overview
	5.3. Fortran Parallelization Directives
	5.4. C/C++ Parallelization Pragmas
	5.5. Directive and Pragma Recognition
	5.6. Directive and Pragma Summary Table
	5.6.1. Directive and Pragma Summary Table

	5.7. Directive and Pragma Clauses
	5.8. Runtime Library Routines
	5.9. Environment Variables

	Using MPI
	6.1. MPI Overview
	6.2. Compiling and Linking MPI Applications
	6.3. Debugging MPI Applications
	6.4. Profiling MPI Applications
	6.5. Using MPICH on Linux and OS X
	6.6. Using MPICH1, MPICH2, and MVAPICH1 on Linux
	6.7. Using MVAPICH2 on Linux
	6.8. Using MS-MPI on Windows
	6.9. Using Open MPI on Linux
	6.10. Using SGI MPI on Linux
	6.11. Using MPI Compiler Wrappers
	6.12. Limitations
	6.13. Testing and Benchmarking

	Using an Accelerator
	7.1. Overview
	7.1.1. Components
	7.1.2. Availability
	7.1.3. User-directed Accelerator Programming
	7.1.4. Features Not Covered or Implemented

	7.2. Terminology
	7.3. System Requirements
	7.4. Supported Processors and GPUs
	7.5. Installation and Licensing
	7.5.1. Required Files
	7.5.2. Command Line Flag

	7.6. Execution Model
	7.6.1. Host Functions
	7.6.2. Levels of Parallelism

	7.7. Memory Model
	7.7.1. Separate Host and Accelerator Memory Considerations
	7.7.2. Accelerator Memory
	7.7.3. Cache Management

	7.8. Running an Accelerator Program
	7.9. Accelerator Directives
	7.9.1. Enable Accelerator Directives
	7.9.2. Format
	7.9.3. C Directives
	7.9.4. Free-Form Fortran Directives
	7.9.5. Fixed-Form Fortran Directives
	7.9.6. OpenACC Directive Summary

	7.10. Accelerator Directive Clauses
	7.11. OpenAcc Runtime Libraries
	7.11.1. Runtime Library Definitions
	7.11.2. Runtime Library Routines

	7.12. Environment Variables
	7.13. Applicable Command Line Options
	7.14. Profiling Accelerator Kernels
	7.15. Related Accelerator Programming Tools
	7.15.1. PGPROF pgcollect
	7.15.2. NVIDIA CUDA Profile
	7.15.3. TAU - Tuning and Analysis Utility

	7.16. Supported Intrinsics
	7.16.1. Supported Fortran Intrinsics Summary Table
	7.16.2. Supported C Intrinsics Summary Table

	7.17. References related to Accelerators

	Eclipse
	8.1. Install Eclipse CDT
	8.2. Use Eclipse CDT

	Using Directives and Pragmas
	9.1. PGI Proprietary Fortran Directives
	9.2. PGI Proprietary C and C++ Pragmas
	9.3. PGI Proprietary Optimization Directive and Pragma Summary
	9.4. Scope of Fortran Directives and Command-Line Options
	9.5. Scope of C/C++ Pragmas and Command-Line Options
	9.6. Prefetch Directives and Pragmas
	9.6.1. Prefetch Directive Syntax in Fortran
	9.6.2. Prefetch Directive Format Requirements
	9.6.3. Sample Usage of Prefetch Directive
	9.6.4. Prefetch Pragma Syntax in C/C++
	9.6.5. Sample Usage of Prefetch Pragma

	9.7. C$PRAGMA C
	9.8. IGNORE_TKR Directive
	9.8.1. IGNORE_TKR Directive Syntax
	9.8.2. IGNORE_TKR Directive Format Requirements
	9.8.3. Sample Usage of IGNORE_TKR Directive

	9.9. !DEC$ Directives
	9.9.1. !DEC$ Directive Syntax
	9.9.2. Format Requirements
	9.9.3. Summary Table

	Creating and Using Libraries
	10.1. Using builtin Math Functions in C/C++
	10.2. Using System Library Routines
	10.3. Creating and Using Shared Object Files on Linux
	10.3.1. Procedure to create a use a shared object file
	10.3.2. ldd Command

	10.4. Creating and Using Dynamic Libraries on Mac OS X
	10.5. PGI Runtime Libraries on Windows
	10.6. Creating and Using Static Libraries on Windows
	10.6.1. ar command
	Syntax
	Options

	10.6.2. ranlib command
	Syntax
	Options

	10.7. Creating and Using Dynamic-Link Libraries on Windows
	10.7.1. Build a DLL: Fortran
	10.7.2. Build a DLL: C
	10.7.3. Build DLLs Containing Circular Mutual Imports: C
	10.7.4. Build DLLs Containing Mutual Imports: Fortran
	10.7.5. Import a Fortran module from a DLL

	10.8. Using LIB3F
	10.9. LAPACK, BLAS and FFTs
	10.10. Linking with ScaLAPACK
	10.11. The C++ Standard Template Library

	Using Environment Variables
	11.1. Setting Environment Variables
	11.1.1. Setting Environment Variables on Linux
	11.1.2. Setting Environment Variables on Windows
	11.1.3. Setting Environment Variables on Mac OSX

	11.2. PGI-Related Environment Variables
	11.3. PGI Environment Variables
	11.3.1. FLEXLM_BATCH
	11.3.2. FORTRANOPT
	11.3.3. GMON_OUT_PREFIX
	11.3.4. LD_LIBRARY_PATH
	11.3.5. LM_LICENSE_FILE
	11.3.6. MANPATH
	11.3.7. MPSTKZ
	11.3.8. MP_BIND
	11.3.9. MP_BLIST
	11.3.10. MP_SPIN
	11.3.11. MP_WARN
	11.3.12. NCPUS
	11.3.13. NCPUS_MAX
	11.3.14. NO_STOP_MESSAGE
	11.3.15. PATH
	11.3.16. PGI
	11.3.17. PGI_CONTINUE
	11.3.18. PGI_OBJSUFFIX
	11.3.19. PGI_STACK_USAGE
	11.3.20. PGI_TERM
	11.3.21. PGI_TERM_DEBUG
	11.3.22. PGROUPD_LICENSE_FILE
	11.3.23. PWD
	11.3.24. STATIC_RANDOM_SEED
	11.3.25. TMP
	11.3.26. TMPDIR

	11.4. Using Environment Modules on Linux
	11.5. Stack Traceback and JIT Debugging

	Distributing Files - Deployment
	12.1. Deploying Applications on Linux
	12.1.1. Runtime Library Considerations
	12.1.2. 64-bit Linux Considerations
	12.1.3. Linux Redistributable Files
	12.1.4. Restrictions on Linux Portability
	12.1.5. Licensing for Redistributable Files

	12.2. Deploying Applications on Windows
	12.2.1. PGI Redistributables
	12.2.2. Microsoft Redistributables

	12.3. Code Generation and Processor Architecture
	12.3.1. Generating Generic x86 Code
	12.3.2. Generating Code for a Specific Processor

	12.4. Generating One Executable for Multiple Types of Processors
	12.4.1. PGI Unified Binary Command-line Switches
	12.4.2. PGI Unified Binary Directives and Pragmas

	Inter-language Calling
	13.1. Overview of Calling Conventions
	13.2. Inter-language Calling Considerations
	13.3. Functions and Subroutines
	13.4. Upper and Lower Case Conventions, Underscores
	13.5. Compatible Data Types
	13.5.1. Fortran Named Common Blocks

	13.6. Argument Passing and Return Values
	13.6.1. Passing by Value (%VAL)
	13.6.2. Character Return Values
	13.6.3. Complex Return Values

	13.7. Array Indices
	13.8. Examples
	13.8.1. Example - Fortran Calling C
	13.8.2. Example - C Calling Fortran
	13.8.3. Example - C++ Calling C
	13.8.4. Example - C Calling C ++
	13.8.5. Example - Fortran Calling C++
	13.8.6. Example - C++ Calling Fortran

	13.9. Win32 Calling Conventions
	13.9.1. Win32 Fortran Calling Conventions
	13.9.2. Symbol Name Construction and Calling Example
	13.9.3. Using the Default Calling Convention
	13.9.4. Using the STDCALL Calling Convention
	13.9.5. Using the C Calling Convention
	13.9.6. Using the UNIX Calling Convention
	13.9.7. Using the CREF Calling Convention

	Programming Considerations for 64-Bit Environments
	14.1. Data Types in the 64-Bit Environment
	14.1.1. C/C++ Data Types
	14.1.2. Fortran Data Types

	14.2. Large Static Data in Linux
	14.3. Large Dynamically Allocated Data
	14.4. 64-Bit Array Indexing
	14.5. Compiler Options for 64-bit Programming
	14.6. Practical Limitations of Large Array Programming
	14.7. Medium Memory Model and Large Array in C
	14.8. Medium Memory Model and Large Array in Fortran
	14.9. Large Array and Small Memory Model in Fortran

	C/C++ Inline Assembly and Intrinsics
	15.1. Inline Assembly
	15.2. Extended Inline Assembly
	15.2.1. Output Operands
	15.2.2. Input Operands
	15.2.3. Clobber List
	15.2.4. Additional Constraints
	15.2.5. Simple Constraints
	15.2.6. Machine Constraints
	15.2.7. Multiple Alternative Constraints
	15.2.8. Constraint Modifiers

	15.3. Operand Aliases
	15.4. Assembly String Modifiers
	15.5. Extended Asm Macros
	15.6. Intrinsics

