

TABLE OF CONTENTS

o] 1 2T T viii
INTENAEA AUIEINCE. ... ettt bbb bbb bbb bbbttt viii
OFGANIZATION. ...ttt viii
CONVENTIONS. ..ottt viii
TEIMNINOIOGY ...t vrevreeesetties e85 [
Related PUDIICALIONS. ..ot ix

Chapter 1. INTrOAUCHION.........ccoicercc e e E e e e e e e e e e e e e nas 1

Chapter 2.Programming GUIGE..........ccvureenrrisenssneesss e 3
2.1. CUDA Fortran Host and DEVICE COUE........c.ururuririueiieririreieiri ettt sttt 3
2.2, CUDA FOIraN KEIMEIS.......cuiviieiriiesiiescieisiees sttt sttt s sttt sse sttt bttt s st snses 5
2.3, TRIEAA BIOCKS.cueeietieieiee ettt sttt bbb bbb b ettt 5
2.4, MEMOTY HIBFAICRY. .. oottt bbbttt 6
2.5. Subrouting / FUNCHON QUANIFIENS.........cvuiuieeiriiiricisiiee sttt 7

2.5, ATIDUIBS(NOSE). ... vttt 7
2.5.2. AHADUIES(GIODAI).......cecvieiieiice ettt b 7
2.5.3. AHIDUBS(ABVICE).....c..ceeeeceeiice et 7
2.5.4. RESHICHONS. ... cvvevceceees ettt s 7
2.6. Variable QUAIFIEES.c.iueeeireie e 8
2.6.1. AHHDUIES(BVICE).....cv vttt et bbb bbb a st 8
2.6.2. AHHIDUIES(MANAGEM)........cvueeeiciieiicit bbb 8
2.6.3. AHIDUES(CONSTANE). ..ot bbbttt 8
2.6.4. AHIDUIES(SNAEA)... .. cuevieiiieieiseie ettt ettt 8
2.6.5. AHHDUES(PINNEA)........cvieririereiie et bbbt 9
2.6.6. AIDUIBS(TEXIUIE)... ... evvteiceeiieiseie ettt ettt ettt ettt eb s 9
2.7. Datatypes in DEVICE SUDPIOGrAMS..........c.iieiiuriieieireiei ettt 9
2.8. Predefined Variables in DeVviCe SUDPrOGIamMS.........coueuiirireriiriieiienseessesssesssssssessssssesssssssesssssssesssssssesssssssessssssesaes 10
2.9, EXECULION CONfIGUIALION........cuuiiirieiieictsiei ettt bbbttt 10
2.10. Asynchronous CONCUITENT EXECULION........cceviiveiiiiieiictc ettt 11
2.10.1. Concurrent Host and DeVICE EXECULION. vttt enneeen 11
2.10.2. Concurrent Sre@m EXECULION.cvieieiereiiicireici e 11
R T T o] T 111 TP 11
2100, SYNEAX ettt 12
2.11.2. Restrictions on the CUF Kernel dir€CHVE...........cov ittt 13
2.11.3. SUMMALION EXBMPIE. ... vt s 14
2.12.USING FOMran MOGUIES........c.cueeieeeieieire ettt st 14
2.12.1. Accessing Data from Other MOGUIES..........couiu i 14
2.12.2. Call Routines from Other MOGUIES..........ciuriieiiiiieieiste ettt 15
2.12.3. Declaring Device Pointer and Target ArTAYS........coueeriereurirreiineieeeiseseeeiseseeeisess s ssesnees 16
2.12.4. DECIANNG TEXIUIES.cviviiiicietete ettt bbb bbbttt et es s et s s s b et bbb ses s e snnerenas 17
2.13. Building @ CUDA FOIran PrOGram..........coeeceurierereuriireeineieeeiseeseee s sesss ettt sttt ssesassesssans 19

CUDA Fortran Programming Guide and Reference i

B = TN (T g 1o T T 20

Chapter 3. REfEIENCE......cueccccc e eE e e AR e AR A e e e 21
3.1. New Subroutine and FUNCHON ATDULES..........ccocririiiriecee bbbt 21
3.1.1. Host Subroutines and FUNCHONS..........coiruririee et 21
3.1.2. GlODAl SUBTOULINES......cvuveieiiieieiiieisieies ettt ses s a sttt nnnns s 21
3.1.3. Device Subroutines and FUNCHONS.cviririuiriiiriecisissssie s 22
3.1.4. Restrictions 0N DEVICE SUDPIOGrAMS..........cuiureriurierireiieriseereeeeseeeeseseesesssseeesssseesess st ssesssssssenees 22
3.2, Variable ATFIDULES. ... bbb 22
T R T o= o - T 23
3.2.2. MANAGEA QaLA.......oieieiicicieteiee ettt e et b bbb n e 23
3.2.3. PINNEA @ITAYS. ...cuvrieeieirtieeettieeee ittt bbb 24
3.2.4, CONSIANT ATA..... oo 24
TS 1T o 0 - - TR 25
3.2.6. TEXIUIE GATA.....uvuieireecieie ittt 26
3.2.7. Value dUMMY GrGUMENES. ..o cueeiieeieerieteireeet sttt sttt es bbbt e st enns 27
3.3. Allocating Device Memory, Pinned Memory, and Managed MEMOTY..........cvrrrinirneinirreeneseeeseseeeesesseeenens 27
3.3.1. AllOCAtING DEVICE MEMOIY......c.iueiieeeiriicieireieiee ettt ses bbbttt 27
3.3.2. Allocating Device Memory Using Runtime ROULINES..........cocvieiiininnineceee e 28
3.3.3. Allocate PINNEA MEMOY........coiriiiieirieiere ettt 28
3.3.4. Allocating Managed MEMOTY.......c..ceuriuiurerierereeeereseeeeseseeeeses e es s ss s st s s 28
3.3.5. Allocating Managed Memory Using RUNtime ROULINES...........ccovriiirnieinnieseere e 29
3.4. Data transfer between host and dEVICE MEMOTY.........cviiuieriiiirerre e 29
3.4.1. Data Transfer Using Assignment StatemeNtS...........cccoieicriiiiniie et 29
3.4.2. Implicit Data Transfer in EXPrESSIONS........c.oiururiiceririeieeriecer st sess et sess et enss s enseseen 30
3.4.3. Data Transfer Using RUNIME ROULINES...........cccoviuiiiiiieiicissecesse et 30
3.5. INVOKING @ KEMEI SUDTOULINE.c..covrieiieictieieiette ettt bbb 31
3.6, DIBVICE COUE.......cuviecieiiiete ettt ettt ettt st s st e R bbbttt e 31
3.6.1. DAtAtYPES AOWEC.........ce ettt ee ettt s bbbt e e s et s s 32
3.6.2. BUII-IN VANADIES. ... vvveiiici ettt st b st nssnnnes 32
3.6.3. FOMTAN INHIINSICS. ... ettt bbbt 33
3.6.4. NeW INtTNSIC FUNCHONS.......coeviieeiriricieisieestes ettt s e 34
3.6.5. Warp-Vote OPEratiONS.........cccciueiiiicriiiicieiiie ettt e s e ssa bbb ssae bbb bbbt bbb snae b nas 36
3.6.6. ALOMIC FUNCHONS. ... ettt ettt st s et enna et enns 37
36,7, RESHICHONS. ...ttt sttt 39
3.6.8. PRINT and WRITE STAt@MENLS........cciirieriieeeiricie ettt nnen 39
3.6.9. SHUTTIE FUNCHONS.cuiiiiciiieiieec bbb bbb 40
T o 1o o PSP 42
371, SIZEOF INHINSIC. ... cvvvevcieeieiseieeiei ettt bbbt 42
3.8, FOMIAN MOTUIES. ..ottt ettt ettt 42
3.8.1. DEVICE MOUUIES......o.veevirieiiiieisieieise ettt ettt ea bbb s bttt nas 42
3.8.2. HOSE MOTUIES......ceeeee ettt st bbb ettt bbbt 44
Chapter 4. RUNLIME APIS........cccciineirriiisisssssssssss s s s ss s s s s s E g s s e s 46
AL INHIAIZATON. ...ttt 46

CUDA Fortran Programming Guide and Reference iii

4.2, DEVICE MANAGEMENL.........iieeeceeteteteisisese ettt ettt b b s s sttt e b s s e e e e s e s e s s bbb s s ee e sttt et s s e s 46

4.2.1. CUAACNO0OSEDEVICE.cveeeeiereertrireieese ettt s e es et see e E et e £ ee s s s ettt sne et en st enas 46
4.2.2. cudaDeviCEGEICAChECONIG.c.cvireiriieeisicieisi ettt bbbt s 46
4.2.3. CUAADEVICEGEILIMIL. ...ttt ettt 47
4.2.4. cudaDeviceGetSharedMEMOCONTIG. vttt 47
4.2.5. CUABDEVICERESEL. ...ttt st 47
4.2.6. cUdaDeVICeSEtCAChECONTIG.cuevueeereircercreet ettt bbbttt 47
4.2.7. CUAADEVICESEILIMILcv.iviieicieiieici ettt 47
4.2.8. cudaDeviceSetSharedMEMOCONTIG.c.vuririuiereeirerces bbb s 48
4.2.9. CUAADEVICESYNCNIONIZE.cvcveiieireietctet ettt ettt a bbbt bbbttt nb s 48
4.2.10. CUAQGEIDBVICE.coeieeeerereieireseie ittt st se et es et s e et s sttt sns e s e 48
4.2.11. CUAAGEIDEVICECOUNL........covrieieireiriieesees ittt s b es bbb bbbt 48
4.2.12. CUJAGEIDEVICEPTOPEITIES. ... eeeeceeececteeei ettt ettt et nese st ens et ne e sneen 48
4.2.13. CUABSEIDEVICE.ceuireiieriiie et s bbb 48
4.2.14. CUABSEIDEVICEFIAUS.cevreveeiereieiee ittt 49
4.2.15. CUAASEIVAlIADEVICES.cvveeiieiiieisicient ettt ss et ss bt es bttt s et st s et s anaes 49
4.3. Thread MaAnAGEMENT.........co ettt ettt bbb bRt b bbb bbb ennas 49
T T o = 1 (== To |0 TR 49
4.3.2. cUAATRrEAASYNCAIONIZE.ceeiieviieiieiiieie ettt bbbttt bbbt s 49
4.4, ETOF HANAING. ... ettt bbb 49
4.4.1. CUAAGEIEITOISHING.cvivei ittt b bbbt bbb st 49
4.4.2. CUABGEILASIEITON.ceee ettt ettt s e 50
4.4.3. CUABPEEKATLASIEITON. ... vt bbb 50
4.5, STrEaM MANAGEMENL.c.cieiitieieeiteieict ettt bbb bbb bbb bbb bbb bbb 50
4.5.1. CUAAGELSIEAMDETAUIL.........ceieeee s 50
4.5.2. cUdaSEtSIrEaMDETAULL..............ceeceee et 50
4.5.3. cudaStreamATAChMEMASYNC.cuiiriieiiirieireirte et 50
4.5.4. CUAASIIEAMOIEALE. ... cveeeeeeeecece ettt ee e st ettt n e 51
4.5.5. CUAASITEAMDESITOY. .. covuceiiicitiee ettt bbb bbb bbbt 51
4.5.6. CUABSITEAMQUETY......couceciriereieereie bbb bbb 51
4.5.7. CUAASIIEAMSYNCAIONIZE. ...t 51
4.5.8. CUAASITEAMWAITEVENL. ..o 51
4.6, EVENE MANAGEMENL......coiiiiieiiieie et s e 52
4.6.1. CUBAEVENTCTEATE.oviivceicicece et bbbttt 52
4.6.2. CUAEVENICIEAtEWITNFIAUS.o e 52
4.6.3. CUJAEVENIDESIIOYottt sttt e s b et bbb bbbttt s 52
4.6.4. CUAAEVENTEIAPSEATIME.ottt ena e senen 52
4.6.5. CUBAEVENTQUETY.......coiieiiiiciet bbb bbb bbbttt 52
4.6.6. CUAAEVENIRECON.........coceiceeee ettt ettt n e 52
4.6.7. CUAAEVENTSYNCIIONIZE.coiiieiii e bbbttt 53
4.7, EXECULON CONITOL....cuviivrieiseisiesiseiiesise ettt ss s st 53
4.7.1. CUAAFUNCGEIAIIDULES.cvevieceeiiercie ettt sttt nten 53
4.7.2. cUdAFUNCSEICACNECONTG. ... v.rvvieirieeiieicise ettt ettt bbbttt 53

CUDA Fortran Programming Guide and Reference iv

4.7.3. cudaFuncSetSharedMEMOCONTIG.c.cvcueiireieiiercirce ettt ettt b s 53
4.7.4. CUAASEIDOUDIEFOIDRVICE.ceeeeiceeececie ettt ettt seeen 54
4.7.5. CUdASEIDOUDIBFOIHOSE.........couiviircicie b 54
4.8. MemOry MaNAGEMENL........oi ettt et bbbt e sttt 54
R I o1 o - (T TP 54
4.8.2. CUABFTERAITAY.......cuceiieeeciet ettt Rttt 54
T T o o = o (=Y o) PSS 55
4.8.4. CUAAGEISYMDOIAGAIESS.coviiviieieieieiet ettt bbbttt 55
4.8.5. CUAAGEISYMDOISIZE.covrieireei bbb 55
4.8.6. CUABHOSIAIIOC.ceeceeectei e bbb bbb bbb 55
4.8.7. CUdAHOSIGEDEVICEPOINENc..cuiceieeete bbb 55
4.8.8. CUAAHOSIGEIFIAQS.cvcviviievicicetce ettt bbbttt s bt et nes 56
4.8.9. CUBAHOSIREGISIENt 56
4.8.10. CUJAHOSIUNIEGISTET.veiieiicteiiticie ettt sttt bbb eten 56
4.8.11. CUAAMAIIOC. ...t ettt e e ne et 56
4.8.12. CUAAMEIIOCAITAY.....coucevrieeieiciete ettt bbbttt 56
4.8.13. CUdAMAlIOCMANAGE........c.cveiereieeieeri ettt ettt s e 56
4.8.14. CUAAMAIIOCPIECN.ooceiece sttt ettt 57
4.8.15. CUAAMAIIOCID ..ottt ettt 57
4.8.16. CUAAMAIIOCIDAITAY.....cvuceeieireeeeieireeeese ettt ettt bbb bbbt 57
4817, CUTAMEIMICDY....cvvviiiiciceetete ettt ettt s bbb a st s et et et s s e e s s bbbt s st n e st et e bt st 57
4.8.18. CUAAMEMCPYAITAYTOAITAY.....cvueeeieireireieietetiee ettt bbbt 57
4.8.19. CUJAMEMCPYASYNC. .. cucvevivrietetsisiisstsssssesesesesesssssss e ssse s s esesss s s s e s ssesese s e bbb e s as e st bt et et et ns s s s e snsnsenetasaen 58
4.8.20. CUAAMEMCPYFIOMAITAY.......c.cviiiieireieiet ettt 58
4.8.21. cudaMemCPYFrOMSYMDOL........ciiiriiceiics ettt bbb bbb 58
4.8.22. cudaMemCpyFrOMSYMDOIASYNC.cc.euiiiirieriieeeiieeeeess et 58
4.8.23. CUAAMEIMCPYPEET........coiiirieiieietce ettt bbb bbbttt es 59
4.8.24. CUJAMEMCPYPEEIASYNC.ceieceeaeeeere ettt ettt s ettt ee e st s e bbb s bbbt esnntenns 59
4.8.25. CUAAMEMCPYTOAITAYcoieeiriecieieieiet ettt ettt 59
4.8.26. CUAMEMCPYTOSYMDO........cuivieirciiirireirissiseise ettt 59
4.8.27. cudaMemCPYTOSYMDOIASYNC........cvierreiriirieirtiet ettt ettt et 59
4.8.28. CUJAMEMCPYZD.........coieeececteieieteisiset ettt ettt et bbb e s bbb bbb s s e st ettt st 59
4.8.29. cUdAMEMCPY2DAITAYTOAITAY ... evrieereiiereseereeees ettt eeeesese bbb bbb bbb 60
4.8.30. CUJAMEMCPYZDASYNC.......cucueveiriiiiiiieietetete ettt ettt ss e se s bbb b s s ettt e bt s s s s s e s aseaet s bn s 60
4.8.31. cUAAMEMCPY2DFTOMAITAY.......cocvriuiieereiriteiseiree et eb st ss bbb bbb 60
4.8.32. CUAAMEMCPYZDTOAITAY......cvevririiiieieieeeietstet sttt ss st s et se bbb b s s e s s bt s st s e e e s s nsesen s e 60
4.8.33. CUABMEMCDY3D.......coieieiiiieieieiee ettt bbbt 61
4.8.34. CUAAMEMCPYBDASYNC.....cocveirieetiieietri ettt ettt b bbb b bbbt e st s bbb st 61
4.8.35. CUAAMEMGELINTO. ...ttt ettt ettt et 61
4.8.36. CUAAMEMSEL......coiveviiecieicieisicts sttt et s bbb s bbbttt 61
4.8.37. CUAAMEMSELZD.........oceeeeie ettt ettt 61
4.8.38. CUAAMEMSELID......covieeeriieieiictsise sttt ettt 61
4.9. Unified Addressing and Peer DeviCe MEMOTY ACCESS.........viuririuierireiieriseiiessseessssseessssssesssssssessssssesssessssnssessees 62

CUDA Fortran Programming Guide and Reference

4.9.1. CUJADEVICECANACCESSPEEN.........ceeetctceet ettt ettt sttt r ettt b ss et st st st et et e e e st st s b et et ess s st statatas 62

4.9.2. CUAADEVICEDISADIEPEEIACCESS. ... verceeeaceeireete ettt ettt ees bbbttt ens et enes 62
4.9.3. CUAADEVICEENADIEPEEIACCESS.cevveciireireie ettt s s ss e 62
4.9.4. CUAAPOINTErGEIAIIDULES. ... ettt 62
4.10. VErsion MAnAgEMENT..........ciuiiirieiririeireet ettt 62
4.10.1. CUADIVEIGEIVEISION........cuirieieirciiesiseesissiseisess sttt 62
4.10.2. CUJARUNIMEGEEVEISION.vuieeiicieisie ettt esnnes 63

L0 1T L T o 11 1T o 3PP 64
5.1. Matrix MUIIpliCation EXAMPIE. ..ot s 64
5.1.1. SOUICE COUE LISHNG......cviviiieeiictiiece ettt bbbttt aes 65
5.1.2. S0UICE COE DESCIIDHON. ...ttt ettt 66

5.2. Mapped MemOry EXAMPIE........ccocirrririiiieeee ettt ettt n ettt tneen 67
5.3, CUDIAS MOTUIE EXAMPIE.......c.ceeeieceereeeere ettt ettt ees et 69
5.4. CUDA Device Properties EXAMPIE........cccociiiiueiiiceiies sttt st st 71
5.5. CUDA Asynchronous Memory Transfer EXample...........coririercerce e 72
5.6. Managed Memory EXAMPIE.........c.oivirirecee ettt 74
Chapter 6.Contact INfOrMAtioN...........ccecececreieinnnrrr s r e p e s 75

CUDA Fortran Programming Guide and Reference vi

LIST OF TABLES

Table 1 ININSIC DAALYPESvuevrieireiiiei e sb s 9
Table 2 Device Code INtrNSIC DATALYPEScuvvreiiiriieireirieieire et 32
Table 3 Fortran Numeric and LOgiCal INTAINSICScoviiieeeniris et 33
Table 4 Fortran Mathematical INMMNSICScoeiiiieiciec e 33
Table 5 Fortran NUmeric INQUINY INTANSICScueviiiieiicircer e 33
Table 6 Fortran Bit Manipulation INTANSICScc.cviiiieieiciiicseeecce et 34
Table 7 Fortran REAUCHON INTHNSICSc.iuivriiiieieiiieieiie ettt 34
Table 8 Fortran Random NUMDET INEFNSICSc.vuiuieiiiiirieiriens s 34
Table 9 Arithmetic and Bitwise ATOMIC FUNCHONS ..o 38
Table 10 Counting ALOMIC FUNCHONScvvveuiiiieieiiciesice ettt bttt 38
Table 11 Compare and Swap AOMIC FUNCHONccccovieiicieics ettt 39
Table 12 CUDA BUIIt-N ROULINEScouieiiriiiieicieiciei st 42

CUDA Fortran Programming Guide and Reference vii

PREFACE

This document describes CUDA Fortran, asmall set of extensions to Fortran that supportsand is
built upon the CUDA computing architecture.

Intended Audience

This guide isintended for application programmers, scientists and engineers proficient in
programming with the Fortran, C, and/or C++ languages. The PGI tools are available on avariety
of operating systems for the X86, AMD64, and Intel 64 hardware platforms. This guide assumes
familiarity with basic operating system usage.

Organization

The organization of this document is as follows:

Introduction
contains agenera introduction
Programming Guide
serves as a programming guide for CUDA Fortran
Reference
describes the CUDA Fortran language reference
Runtime APIs
describes the interface between CUDA Fortran and the CUDA Runtime API
Examples
provides sample code and an explanation of the simple example.

Conventions

This guide uses the following conventions:

italic
isused for emphasis.

Constant Width
is used for filenames, directories, arguments, options, examples, and for language statements
in the text, including assembly language statements.

CUDA Fortran Programming Guide and Reference viii

Preface

Bold
is used for commands.
[item1]
in general, square brackets indicate optional items. In this caseiteml is optional. In the
context of p/t-sets, square brackets are required to specify a p/t-set.
{item2|item 3}
braces indicate that a selection is required. In this case, you must select either item?2 or item3.
filename....
élipsisindicate a repetition. Zero or more of the preceding item may occur. In this example,
multiple filenames are allowed.
FORTRAN
Fortran language statements are shown in the text of this guide using a reduced fixed point
size.
C/IC++
C/C++ language statements are shown in the test of this guide using a reduced fixed point
size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux,
MacOS, and Windows operating systems on a variety of x86-compatible processors. Therearea
wide variety of releases and distributions of each of these types of operating systems.

Terminology

If there are terms in this guide with which you are unfamiliar, PGI provides a glossary of terms
which you can access at www.pgroup.com/support/definitions.htm

Related Publications

The following documents contain additional information related to CUDA Fortran programming.

» ISO/EC 1539-1:1997, Information Technology — Programming Languages — FORTRAN,
Geneva, 1997 (Fortran 95).

» NVIDIA CUDA Programming Guide, NVIDIA, Version 3.1.1, 7/21/2010. Available online
a http://www.nvidia.com/cuda.

» NVIDIA CUDA Compute Unified Device Architecture Reference Manual, NVIDIA,
Version 3.1, June 2010. Available online at http://www.nvidia.com/cuda.

» PGl Compiler User”s Guide, The Portland Group, Release 2014. Available online at
www.pgroup.com/doc/pgiug.pdf.

CUDA Fortran Programming Guide and Reference ix

www.pgroup.com/support/definitions.htm
http://www.nvidia.com/cuda.
http://www.nvidia.com/cuda.

Preface

CUDA Fortran Programming Guide and Reference X

Chapter 1.
INTRODUCTION

Welcome to Release 2014 of PGI CUDA Fortran, asmall set of extensions to Fortran that
supports and is built upon the CUDA computing architecture.

Graphic processing units or GPUs have evolved into programmable, highly parallel
computational units with very high memory bandwidth, and tremendous potentia for many
applications. GPU designs are optimized for the computations found in graphics rendering, but
are general enough to be useful in many data-parallel, compute-intensive programs.

NVIDIA introduced CUDA™, ageneral purpose parallel programming architecture, with
compilers and libraries to support the programming of NVIDIA GPUs. CUDA comes with an
extended C compiler, here called CUDA C, allowing direct programming of the GPU from
ahigh level language. The programming model supports four key abstractions. cooperating
threads organized into thread groups, shared memory and barrier synchronization within thread
groups, and coordinated independent thread groups organized into agrid. A CUDA programmer
must partition the program into coarse grain blocks that can be executed in parallel. Each block
is partitioned into fine grain threads, which can cooperate using shared memory and barrier
synchronization. A properly designed CUDA program will run on any CUDA-enabled GPU,
regardless of the number of available processor cores.

CUDA Fortran includes a Fortran 2003 compiler and tool chain for programming NVIDIA
GPUs using Fortran. PGI 2014 includes support for CUDA Fortran on Linux, Apple OS X and
Windows. CUDA Fortran isan analog to NVIDIA's CUDA C compiler. Compared to the PGI
Accelerator and OpenACC directives-based model and compilers, CUDA Fortran is alower-
level explicit programming model with substantial runtime library components that give expert
programmers direct control of al aspects of GPGPU programming.

The CUDA Fortran extensions described in this document allow the following operationsin a
Fortran program:

Declaring variables that are alocated in the GPU device memory
Allocating dynamic memory in the GPU device memory

Copying data from the host memory to the GPU memory, and back
Writing subroutines and functions to execute on the GPU

Invoking GPU subroutines from the host

Allocating pinned memory on the host

Using asynchronous transfers between the host and GPU

vV Vv v v v v

CUDA Fortran Programming Guide and Reference

Introduction

» Using zero-copy and CUDA Unified Virtual Addressing features.
» Accessing read-only data through texture memory caches.
» Automatically generating GPU kernels using the kernel loop directive.

» Launching GPU kernels from other GPU subroutines running on the device using CUDA 5.0
and above dynamic parallelism features.

» Relocatable device code: Creating and linking device libraries such asthe cublas; and
calling functions defined in other modules and files.
» Interfacing to CUDA C.

CUDA Fortran Programming Guide and Reference 2

Chapter 2.
PROGRAMMING GUIDE

This section introduces the CUDA programming model through examples written in CUDA
Fortran. For areference for CUDA Fortran, refer to Reference.

2.1. CUDA Fortran Host and Device Code

All CUDA programs, and in general any program which uses a GPU for computation, must
perform the following steps:

1. Initialize and select the GPU to run on. Oftentimes thisisimplicit in the program and
defaultsto NVIDIA deviceO.

Allocate space for data on the GPU.

Move data from the host to the GPU, or in some cases, initialize the data on the GPU.
Launch kernels from the host to run on the GPU.

Gather results back from the GPU for further analysis our output from the host program.
Deallocate the data on the GPU alocated in step 2. This might be implicitly performed when
the host program exits.

o U~ wWDd

Hereisasimple CUDA Fortran example which performs the required steps:

Explicit Device Selection

Host code Device Code

program tl odule mytests

use cudafor contains

use mytests attributes (global) #
integer, parameter :: n = 100 subroutine testl(a)
integer, allocatable, device :: iarr(:) integer, device :: a(¥*)
integer h(n) i = threadIdx%x

istat = cudaSetDevice (0) a(i) = 1

allocate (iarr(n)) return

h = 0; iarr = h end subroutine testl
call testl<<<l,n>>> (iarr) end module mytests

h = iarr

print *,#

"Errors: ", count(h.ne.(/ (i,i=1,n) /))

deallocate (iarr)

end program tl

CUDA Fortran Programming Guide and Reference 3

Programming Guide

In the CUDA Fortran host code on the left, device selection is explicit, performed by an API call
online7. The provided cudafor module, used in line 2, contains interfaces to the full CUDA
host runtime library, and in this case exposes the interface to cudaSetDevice () and ensuresit
iscalled correctly. An array is allocated on the device at line 8. Line 9 of the host code initializes
the data on the host and the device, and, in line 10, adevice kernel islaunched. The interface to
the device kerndl is explicit, in the Fortran sense, because the module containing the kernel is
used inline 3. At line 11 of the host code, the results from the kernel execution are moved back to
ahost array. Deallocation of the GPU array occurs on line 14.

Implicit Device Selection

Hereisa CUDA Fortran example which is dightly more complicated than the preceding one.

Host code Device Code

program testramp module ramp
use cublas real, constant :: twopi
use ramp contains
integer, parameter :: N = 20000 attributes (global) #
real, device :: x(N) subroutine buildramp (x, n)
twopli = atan(1.0)*8 real, device :: x(n)
call buildramp<<<(N-1)/512+1,512p>>>(x, integer, value :: n
N) real, shared :: term
1Scuf kernel do if (threadidx%$x == 1) term = #
do i =1, N twopi / float (n)
x(1) = 2.0 * x(i) * x(1) call syncthreads ()
end do i = (blockidx%x-1)*blockdim%x #
print *,"float (N) = ",sasum(N,x,1) + threadidx%x
end program if (1 <= n) then
x (1) = cos(float(i-1)*term)
end if
return
end subroutine
end module

In this case, the device selection isimplicit, and defaults to NVIDIA device 0. The device array
allocation in the host code at line 5 looks static, but actually occurs at program init time. Larger
array sizes are handled, both in the kernel launch at line 7 in the host code, and in the device code
at line 10. The device code contains examples of constant and shared data, which are described in
Reference. There are actually two kernels launched from the host code: one explicitly provided
and called from line 10, and a second, generated using the CUDA Fortran kernel loop directive,
starting at line 11. Finally, this example demonstrates the use of the cublas module, used at line
2 inthe host code, and called at line 12.

As these two examples demonstrate, all the steps listed at the beginning of this section for using
a GPU are contained within the host code. It is possible to program GPUs without writing any
kernels and device code, through library calls and CUDA Fortran kernel loop directives as
shown, or by using higher-level directive-based models; however, programming in alower-level
model like CUDA provides the programmer control over device resource utilization and kernel
execution.

CUDA Fortran Programming Guide and Reference 4

Programming Guide

2.2. CUDA Fortran Kernels

CUDA Fortran alows the definition of Fortran subroutines that execute in parallel on the GPU
when called from the Fortran program which has been invoked and is running on the host or,
starting in CUDA 5.0, on the device. Such a subroutineis called a device kernel or kernel.

A call to akernel specifies how many parallel instances of the kernel must be executed; each
instance will be executed by a different CUDA thread. The CUDA threads are organized into
thread blocks, and each thread has a global thread block index, and alocal thread index within its
thread block.

A kernel isdefined usingthe attributes (global) specifier on the subroutine statement; a
kernel is called using special chevron syntax to specify the number of thread blocks and threads
within each thread block:

! Kernel definition
attributes (global) subroutine ksaxpy(n, a, x, V)

real, dimension(*) :: x,y

real, value :: a

integer, value :: n, i

i = (blockidx%x-1) * blockdim%x + threadidx%x
if(1 <=n) y(i) = a * x(i) + y(1i)

end subroutine

! Host subroutine
subroutine solve(n, a, x, y)
real, device, dimension(*) :: x, y
real :: a
integer :: n
! call the kernel
call ksaxpy<<<n/64, 64>>>(n, a, x, y)
end subroutine

In this case, the call to the kernel ksaxpy specifies n/ 64 thread blocks, each with 64 threads.
Each thread is assigned a thread block index accessed through the built-inb1ockidx variable,
and athread index accessed through threadidx. In this example, each thread performs one
iteration of the common SAXPY |oop operation.

2.3. Thread Blocks

Each thread is assigned a thread block index accessed through the built-in blockidx variable,
and athread index accessed through threadidx. The thread index may be aone-, two-, or
three-dimensional index. In CUDA Fortran, the thread index for each dimension starts at one.

Threads in the same thread block may cooperate by using shared memory, and by synchronizing
at abarrier using the SYNCTHREADS () intrinsic. Each thread in the block waits at the call to
SYNCTHREADS () until al threads have reached that call. The shared memory acts like alow-
latency, high bandwidth software managed cache memory. Currently, the maximum number of
threads in athread block is 1024.

A kernel may be invoked with many thread blocks, each with the same thread block size. The
thread blocks are organized into a one-, two-, or three-dimensional grid of blocks, so each thread

CUDA Fortran Programming Guide and Reference 5

Programming Guide

has a thread index within the block, and a block index within the grid. When invoking a kernel,
the first argument in the chevron <<<>>> syntax isthe grid size, and the second argument is the
thread block size. Thread blocks must be able to execute independently; two thread blocks may
be executed in parallel or one after the other, by the same core or by different cores.

The dim3 derived type, defined in the cudafor module, can be used to declare variablesin
host code which can conveniently hold the launch configuration valuesif they are not scalars; for
example:

type (dim3) :: blocks, threads

blocks = dim3 (n/256, n/l6, 1)
threads = dim3 (16, 16, 1)
call devkernel<<<blocks, threads>>>(...)

2.4. Memory Hierarchy

CUDA Fortran programs have access to several memory spaces. On the host side, the host
program can directly access data in the host main memory. It can also directly copy datato and
from the device global memory; such data copies require DMA access to the device, so are low
relative to the host memory. The host can also set the values in the device constant memory,
again implemented using DMA access.

On the device side, datain global device memory can be read or written by al threads. Datain
constant memory space isinitialized by the host program; all threads can read datain constant
memory. Accesses to constant memory are typically faster than accesses to global memory, but

it isread-only to the threads and limited in size. Threads in the same thread block can access and
share data in shared memory; datain shared memory has alifetime of the thread block. Each
thread can also have private local memory; datain thread local memory may be implemented as
processor registers or may be allocated in the global device memory; best performance will often
be obtained when thread local datais limited to a small number of scalars that can be allocated as
processor registers.

Through use of the CUDA API as exposed by the cuda for module, accessto CUDA features
such as mapped memory, peer-to-peer memory access, and the unified virtual address space

are supported. Users should check the relevant CUDA documentation for compute capability
restrictions for these features. For an example of device array mapping, refer to Mapped Memory
Example.

Starting with CUDA 6.0, managed or unified memory programming is available on certain
platforms. For a complete description of unified memory programming, see Appendix J. of the
CUDA C Programming Guide. Managed memory provides acommon address space, and
migrates data between the host and device asit is used by each set of processors. On the host side,
the datais resident in host main memory. On the device side, it is accessed as resident in global
device memory.

CUDA Fortran Programming Guide and Reference 6

Programming Guide

2.5. Subroutine / Function Qualifiers

A subroutine or function in CUDA Fortran has an additional attribute, designating whether itis
executed on the host or on the device, and if the latter, whether it is akernel, called from the host,
or called from another device subprogram.

» A subprogram declared with attributes (host), or with the host attribute by default, is
called a host subprogram.

» A subprogram declared with attributes (global) Or attributes (device) is
called a device subprogram.
» A subroutine declared with attributes (global) isalso called akerne subroutine.

2.5.1. Attributes(host)

The host attribute, specified on the subroutine or function statement, declares that the
subroutine or function is to be executed on the host. Such a subprogram can only be called from
another host subprogram. The defaultisattributes (host), if noneof thehost, global,
or device attributesis specified.

2.5.2. Attributes(global)

The global attribute may only be specified on a subroutine statement; it declares that the
subroutine is a kernel subroutine, to be executed on the device, and may only be called using a
kernel call containing the chevron syntax and runtime mapping parameters.

2.5.3. Attributes(device)

The device attribute, specified on the subroutine or function statement, declares that the
subprogram is to be executed on the device; such aroutine must be called from a subprogram
withthe global or device attribute.

2.5.4. Restrictions

The following restrictions apply to subprograms.

» A device subprogram must not contain variables with the SAVE attribute, or with data
initialization.

» A kernel subroutine may not also havethe device or host attribute.

» A device subprogram must not have optional arguments.

» Cadlsto akernd subroutine must specify the execution configuration, as described in
"Predefined Variables in Device Subprograms,” on page 9. Such acall is asynchronous, that
is, the calling routine making the call continues to execute before the device has completed
its execution of the kernel subroutine.

» Device subprograms may not be contained in a host subroutine or function, and may not
contain any subroutines or functions.

CUDA Fortran Programming Guide and Reference 7

Programming Guide

2.6. Variable Qualifiers

Variablesin CUDA Fortran have a new attribute that declares in which memory the datais
allocated. By default, variables declared in modules or host subprograms are allocated in the
host main memory. At most one of the device, managed, constant, shared, of pinned
attributes may be specified for avariable.

2.6.1. Attributes(device)

A variable with the device attributeis called a device variable, and is allocated in the device
globa memory.

» If declared in amodule, the variable may be accessed by any subprogram in that module and
by any subprogram that uses the module.

» If declared in ahost subprogram, the variable may be accessed by that subprogram or
subprograms contained in that subprogram.

A device array may be an explicit-shape array, an allocatable array, or an assumed-shape dummy
array. An allocatable device variable has a dynamic lifetime, from when it is allocated until it is
deallocated. Other device variables have alifetime of the entire application.

2.6.2. Attributes(managed)

Starting with CUDA 6.0, on certain platforms, a variable with themanaged attributeis called
amanaged variable. Managed variables may be used in both host and device code. Variables
with the managed attribute migrate between the host and device, depending on where the accesses
to the memory originate. Managed variables may be read and written by the host, but there are
access restrictions on the managed variablesif kernels are active on the device. On the device,
managed variables have characteristics similar to device variables, but managed variables cannot
be allocated from the device, as device variables can be, starting in CUDA 5.0 in support of
dynamic paralelism.

2.6.3. Attributes(constant)

A variable with the constant attribute is called a device constant variable. Device constant
variables are allocated in the device constant memory space. When declared in a module, the
variable may be accessed by any subprogram in that module and by any subprogram that uses the
module. Device constant data may not be assigned or modified in any device subprogram, but
may be modified in host subprograms. Device constant variables may not be allocatable, and have
alifetime of the entire application.

2.6.4. Attributes(shared)

A variable with the shared attribute is called adevice shared variable or ashared variable. A
shared variable may only be declared in a device subprogram, and may only be accessed within
that subprogram, or by other device subprograms to which it is passed as an argument. A shared
variable may not be datainitialized. A shared variable is alocated in the device shared memory
for athread block, and has alifetime of the thread block. It can be read or written by all threadsin

CUDA Fortran Programming Guide and Reference 8

Programming Guide

the block, though awrite in one thread is only guaranteed to be visible to other threads after the
next call tothe SYNCTHREADS () intrinsic.

2.6.5. Attributes(pinned)

A variable with the pinned attribute is called a pinned variable. A pinned variable must be an
allocatable array. When apinned variable is allocated, it will be alocated in host pagel ocked
memory. The advantage of using pinned variablesisthat copies from page-locked memory to
device memory are faster than copies from normal paged host memory. Some operating systems
or installations may restrict the use, availability, or size of page-locked memory; if the allocation
in page-locked memory fails, the variable will be alocated in the normal host paged memory and
required for asynchronous moves.

2.6.6. Attributes(texture)

A variablewith the texture attributeis called atexture variable. A texture variable must be an
F90 pointer, and can be of type real or integer. Texture variables may be accessed only in device
subprograms, and can only be read, not written. The advantage of using texture variablesis that
the accesses to texture data goes through a separate cache on the device, which may result in
improved performance for many codes. Texture variables are bound to underlying device arrays
in host code using FO0 pointer assignments.

2.7. Datatypes in Device Subprograms

The following intrinsic datatypes are allowed in device subprograms and device data:

Table 1 Intrinsic Datatypes

Type Type Kind

integer 12,48

logical 1,2,4,8

real 48

double precision equivalentto real (kind=8)
complex 48

character (len=1) 1

Derived types may contain members with these intrinsic datatypes or other allowed derived types.

CUDA Fortran Programming Guide and Reference 9

Programming Guide

2.8. Predefined Variables in Device Subprograms

Device subprograms have access to block and grid indices and dimensions through several built-
in read-only variables. These variables are of type dim3; the module cudafor definesthe
derived type dim3 asfollows:

type (dim3)
integer (kind=4) :: x,vy,z
end type

These predefined variables, except for warpsize, are not accessible in host subprograms.

» Thevariable threadidx containsthe thread index within its thread block; for one- or two-
dimensional thread blocks, the threadidx%y and/or threadidx%z components have the
value one.

» Thevariableblockdim containsthe dimensions of the thread block; bl ockdim hasthe
same value for all thread blocksin the same grid.

» Thevariable blockidx containsthe block index within the grid; as with threadidx, for one-
dimensional grids, blockidx%y and/or blockidx%z hasthe value one.

» Thevariable griddim contains the dimensions of the grid.

» Thevariablewarpsize isdeclared to be type integer. Threads are executed in groups of 32,
caled warps, warpsize contains the number of threadsin awarp.

2.9. Execution Configuration

A call to akernel subroutine must specify an execution configuration. The execution
configuration defines the dimensionality and extent of the grid and thread blocks that execute the
subroutine. It may also specify a dynamic shared memory extent, in bytes, and a stream identifier,
to support concurrent stream execution on the device.

A kernel subroutine call looks like this:
call kernel<<<grid,block[,bytes];,streamid[[>>>(argl,arg2,...)

where

» gridandblock areeither integer expressions (for one-dimensional grids and thread
blocks), or are t ype (dim3), for one- or two-dimensional grids and thread blocks.

» Ifgridistype (dim3), the value of each component must be equal to or greater than one,
and the product is usually limited by the compute capability of the device.

» Ifblockistype (dim3), thevaue of each component must be equal to or greater than
one, and the product of the component values must be less than or equal to 1024.

» Thevaueof bytes must be an integer; it specifies the number of bytes of shared memory
to be allocated for each thread block, in addition to the statically allocated shared memory.
This memory is used for the assumed-size shared variables in the thread block; refer to
Shared data for more information. If the value of bytes is not specified, its value is treated
as zero.

» Thevaueof streamid must be aninteger greater than or equal to zero; it specifiesthe
stream to which this call is associated.

CUDA Fortran Programming Guide and Reference 10

Programming Guide

2.10. Asynchronous Concurrent Execution

There are two components to asynchronous concurrent execution with CUDA Fortran.

2.10.1. Concurrent Host and Device Execution

When a host subprogram calls a kernel subroutine, the call actualy returns to the host
program before the kernel subroutine begins execution. The call can be treated as a kernel
launch operation, where the launch actually corresponds to placing the kernel on a queue

for execution by the device. In thisway, the host can continue executing, including calling

or queueing more kernels for execution on the device. By calling the runtime routine
cudaDeviceSynchronize, the host program can synchronize and wait for all previously
launched or queued kernels.

Programmers must be careful when using concurrent host and device execution; in cases where
the host program reads or modifies device or constant data, the host program should synchronize
with the device to avoid erroneous results.

2.10.2. Concurrent Stream Execution

Operations involving the device, including kernel execution and data copies to and from device
memory, are implemented using stream queues. An operation is placed at the end of the stream
gueue, and will only beinitiated when all previous operations on that queue have been completed.

An application can manage more concurrency by using multiple streams. Each user-created
stream manages its own queue; operations on different stream queues may execute out-of-order
with respect to when they were placed on the queues, and may execute concurrently with each
other.

The default stream, used when no stream identifier is specified, is stream zero; stream zero is
specid in that operations on the stream zero queue will begin only after all preceding operations
on al gqueues are complete, and no subsequent operations on any queue begin until the stream
zero operation is compl ete.

2.11. Kernel Loop Directive

CUDA Fortran alows automatic kernel generation and invocation from aregion of host code
containing one or more tightly nested loops. Launch configuration and mapping of the loop
iterations onto the hardware is controlled and specified as part of the directive body using the
familiar CUDA chevron syntax. Aswith any kernel, the launch is asynchronous. The program
can use cudaDeviceSynchronize() or CUDA Eventsto wait for the completion of the kernel.

The work in the loops specified by the directive is executed in parallel, across the thread blocks
and grid; it is the programmer's responsibility to ensure that parallel execution islegal and
produces the correct answer. The one exception to thisrule is a scalar reduction operation, such
as summing the values in avector or matrix. For these operations, the compiler handles the
generation of the final reduction kernel, inserting synchronization into the kernel as appropriate.

CUDA Fortran Programming Guide and Reference 1

Programming Guide

2.11.1. Syntax

The general form of the kernel directiveis:

!'Scuf kernel do[(n)] <<< grid, block [optional stream] >>>

The compiler maps the launch configuration specified by the grid and block values onto the
outermost n loops, starting at loop n and working out. The grid and block values can be an integer
scalar or a parenthesized list. Alternatively, using asterisks tells the compiler to choose a thread
block shape and/or compute the grid shape from the thread block shape and the loop limits. Loops
which are not mapped onto the grid and block values are run sequentially on each thread.

There are two ways to specify the optional stream argument:

!Scuf kernel do[(n)] <<< grid, block, 0, streamid >>>

Or

!'Scuf kernel do[(n)] <<< grid, block, stream=streamid >>>

Kernel Loop Directive Example 1

!Scuf kernel do(2) <<< (*,*), (32,4) >>>

=Db(i,J) + c(i,J)

In this example, the directive defines a two-dimensional thread block of size 32x4.
The body of the doubly-nested loop is turned into the kernel body:

» Threadldx%x runs from 1 to 32 and is mapped onto the inner i loop.
» Threadldx%y runsfrom 1 to 4 and is mapped onto the outer j loop.

The grid shape, specified as (*,*), is computed by the compiler and runtime by dividing the loop
trip counts n and m by the thread block size, so all iterations are computed.

Kernel Loop Directive Example 2

Without an explicit n on the do, the schedule applies just to the outermost |oop, that is, the default
valueis 1. Inthiscase, only the outer j loop isrun in parallel with athread block size of 256. The
inner i dimension is run sequentially on each thread.

CUDA Fortran Programming Guide and Reference 12

Programming Guide

Y ou might consider if the code in Kernel Loop Directive Example 2 would perform better if the
two loops were interchanged. Alternatively, you could specify a configuration like the following
in which the threads read and write the matrices in coalesced fashion.

IScuf kernel do(2) <<< *, (256,1) >>>
do j =1, m
do i =1, n
a(i,j) = b(i,J) + c(i,J)
end do
end do

Kernel Loop Directive Example 3

In Kernel Loop Directive Example 2, the 256 threads in each block each do one element of the
matrix addition. Further expansion of the work along thei direction and all work across the
dimension is handled by the mapping onto the grid dimensions.

To "unroll" more work into each thread, specify non-asterisk values for the grid, asillustrated
here:

!Scuf kernel do(2) <<< (1,%*), (256,1) >>>
do j =1, m
do i =1, n
a(i,j) = b(i,j) + c(i,j)
end do
end do
Now the threads in a thread block handle all valuesin thei direction, in concert, incrementing
by 256. One thread block is created for each j. Specifically, the j loop is mapped onto the grid x-
dimension, because the compiler skips over the constant 1 in thei loop grid size. In CUDA built-

in language, gridDim%x is equal to m.

2.11.2. Restrictions on the CUF kernel directive

The following restrictions apply to CUF kernel directives:

» If the directive specifies n dimensions, it must be followed by at least that many tightly-
nested DO loops.

» Thetightly-nested DO loops must have invariant loop limits: the lower limit, upper limit, and
increment must be invariant with respect to any other loop in the kernel do.

» There can beno GOTO or EXIT statements within or between any loops that have been
mapped onto the grid and block configuration values.

» Thebody of the loops may contain assignment statements, |F statements, loops, and GOTO
statements.

» Only CUDA Fortran data types are allowed within the loops.

» CUDA Fortran intrinsic functions are allowed, if they are allowed in device code, but the
device-specific intrinsics such as syncthreads, atomic functions, etc. are not.

» Subroutine and function callsto attributes(device) subprograms are allowed if they arein the
same module as the code containing the directive.

» Arraysused or assigned in the loop must have the device attribute.
» Implicit loops and F90 array syntax are not allowed within the directive loops.

» Scalars used or assigned in the loop must either have the device attribute, or the compiler
will make a device copy of that variable live for the duration of the loops, one for each

CUDA Fortran Programming Guide and Reference 13

Programming Guide

thread. Except in the case of reductions; when areduction has a scalar target, the compiler
generates a correct sequence of synchronized operations to produce one copy either in device
globa memory or on the host.

2.11.3. Summation Example

The ssimplest directive form for performing a dot product on two device arrays takes advantage of
the properties for scalar use outlined previously.

rsum = 0.0
!'Scuf kernel do <<< *, * >>>
do i =1, n

rsum = rsum + x(i)* y (i)
end do

For reductions, the compiler recognizes the use of the scalar and generates just one final result.

This CUF kernel can be followed by another CUF kernel in the same subprogram:

!Scuf kernel do <<< *, * >>>
doi=1, n
rsum= x (i) * y (i)
z (i) = rsum
end do
In this CUF kernel, the compiler recognizes rsum as a scalar temporary which should be allocated

locally on every thread. However, use of rsum on the host following this loop is undefined.

2.12. Using Fortran Modules

Modern Fortran uses modules to package global data, definitions, derived types, and interface
blocks. In CUDA Fortran these modules can be used to easily communicate data and definitions
between host and device code. This section includes afew examples of using Fortran Modules.

2.12.1. Accessing Data from Other Modules

in the following example, a set of modules are defined in one file which are accessed by another
module.

Accessing data from other modules.

In onefile, moda . cuf, you could define a set of modules:

module moda
real, device, allocatable :: a(:)
end module

module modb

real, device, allocatable :: b(:)
end module

CUDA Fortran Programming Guide and Reference 14

Programming Guide

In another module or file, modc . cuf, you could define another module which uses the two
modules moda and modb:

module modc

use moda

use modb

integer, parameter :: n = 100
real, device, allocatable :: c(:)
contains

subroutine vadd()
!Scuf kernel do <<<*,*>>>
do i =1, n
c(i) = a(i) + b(i)
end do
end subroutine
end module

In the host program, you use the top-level module, and get the definition of n and the interface
to vadd. You can aso rename the device arrays so they do not conflict with the host naming
conventions:

program t

use modc, a d => a, b d =>Db, c d=>c
real a,b,c(n)
allocate(a _d(n),b d(n),c _d(n))

ad=1.0

bd=2.0

call vadd{()

c=cd

print *,all(c.eq.3.0)
end

2.12.2. Call Routines from Other Modules

Starting with CUDA 5.0, in addition to being able to access data declared in another module, you
can aso call device functions which are contained in another module. In the following example,
thefile ££i11.cuf containsadevice function to fill an array:

Calling routines from other modules using relocatable device code.
module ffill

contains
attributes (device) subroutine fill (a)
integer, device :: a|(*)
i = (blockidx%$x-1)*blockdim%x + threadidx%x
a(i) = 1

end subroutine
end module

To generate rel ocatable device code, compile this file with the -M cuda=rdc flag:
% pgf90 -Mcuda=rdc -c ffill.cuf

Now write another module and test program that calls the subroutine in this module. Since you
are calling an attributes(device) subroutine, you do not use the chevron syntax. For convenience,

CUDA Fortran Programming Guide and Reference 15

Programming Guide

an overloaded Fortran sum function isincluded inthefile t£i111 . cuf which, in this case, takes
1-D integer device arrays.
module testfill

use ffill

contains

attributes (global) subroutine Kernel (arr)
integer, device :: arr(*)

call fill (arr)
end subroutine Kernel

integer function sum(arr)
integer, device :: arr(:)
sum = 0
!Scuf kernel do <<<*,*>>>
do i = 1, size(arr)

sum = sum + arr (i)

end do

end function sum

end module testfill

program tfill

use testfill

integer, device :: iarr(100)
iarr = 0

call Kernel<<<1l,100>>>(iarr)
print *,sum(iarr)==100*101/2
end program tfill

Thisfile also needs to be compiled with the -M cuda=rdc flag and then can be linked with the

previous object file:
% pgf90 -Mcuda=rdc tfill.cuf ffill.o

2.12.3. Declaring Device Pointer and Target Arrays

Recently, PGI added support for F90 pointers that point to device data. Currently, thisislimited
to pointersthat are declared at module scope. The pointers can be accessed through module
association, or can be passed in to global subroutines. The associated () functionisalso
supported in device code. The following code shows many examples of using FO0 pointers. These
pointers can also be used in CUF kernels.

Declaring device pointer and target arrays in CUDA Fortran modules

module devptr
! currently, pointer declarations must be in a module

real, device, pointer, dimension(:) :: mod dev ptr
real, device, pointer, dimension(:) :: arg dev ptr
real, device, target, dimension(4) :: mod dev arr
real, device, dimension(4) :: mod res arr
contains
attributes(global) subroutine test (arg ptr)
real, device, pointer, dimension(:) :: arg ptr

! copy 4 elements from one of two spots
if (associated(arg ptr)) then

mod res arr = arg ptr
else

mod res arr = mod dev ptr
end if

end subroutine test
end module devptr

CUDA Fortran Programming Guide and Reference 16

Programming Guide

program test

use devptr

real, device, target, dimension(4) :: a dev
real result(20)

a dev = (/ 1.0, 2.0, 3.0, 4.0 /)

! Pointer assignment to device array declared on host,
! passed as argument. First four result elements.

arg _dev ptr => a dev

call test<<<l,1>>>(arg dev ptr)

result(l:4) = mod res arr

!Scuf kernel do <<<*, *>>>
do i =1, 4

mod dev _arr (i) = arg dev ptr(i) + 4.0
a dev (i) = arg dev ptr(i) + 8.0
end do

! Pointer assignment to module array, argument nullified
! Second four result elements

mod dev ptr => mod dev arr

arg dev ptr => null ()

call test<<<l,1>>>(arg dev ptr)

result (5:8) = mod res arr

! Pointer assignment to updated device array, now associated
! Third four result elements

arg dev ptr => a dev

call test<<<l,1>>>(arg dev ptr)

result (9:12) = mod res arr

!Scuf kernel do <<<*, *>>>
do i =1, 4

mod dev_arr(i) = 25.0 - mod dev ptr (i)
a dev (i) = 25.0 - arg _dev ptr (i)
end do

! Non-contiguous pointer assignment to updated device array
! Fourth four element elements

arg dev ptr => a dev(4:1:-1)

call test<<<l,1>>>(arg dev ptr)

result (13:16) = mod res arr

! Non-contiguous pointer assignment to updated module array
! Last four elements of the result

nullify(arg dev ptr)

mod dev ptr => mod dev arr(4:1:-1)

call test<<<l,1>>>(arg dev ptr)

result (17:20) = mod res arr

print *,all (result==(/(real(i),i=1,20)/))
end

2.12.4. Declaring Textures

In 2012, PGI added support for CUDA texture memory fetches through a special texture attribute
ascribed to FO0 pointersthat point to device data with the target attribute. In CUDA Fortran,
textures are currently just for read-only data that travel through the texture cache. Since thereis
separate hardware to support this cache, in many cases using the texture attribute is a performance
boost, especially in cases where the accesses are irregular and noncontiguous amongst threads.
The following simple example demonstrates this capability:

CUDA Fortran Programming Guide and Reference 17

Declaring textures in CUDA Fortran modules

module memtests
real (8), texture, pointer :: t(:) !
contains
attributes (device) integer function
integer ix1, ix2, ix

ix = i

ixl = ishft(iand(ix,z'0Qaa'),-1)
ix2 = ishft(iand(ix,z'055"'), 1)
ix = ior(ixl,ix2)

ixl = ishft(iand(ix,z'0Occ'),-2)

ix2 = ishft(iand(ix,z'033"'), 2)

ix = ior(ixl,ix2)

ix1 ishft (ix, -4)

ix2 = ishft(ix, 4)

bitrev8 = iand(ior(ixl,ix2),z'0ff")
end function bitrev8

attributes (global) subroutine witho
real (8), device a(*), b(*)

i = blockDim%x* (blockIdx%x-1) + thr
j = bitrev8 (threadIdx%$x-1) + 1

b(i) = a(3j)

return

end subroutine

attributes (global) subroutine witht
real (8), device a(*), b(*)

i = blockDim%x* (blockIdx%x-1) + thr
j = bitrev8 (threadIdx%$x-1) + 1

b(i) = t(j) ! This subroutine accesses a through the texture

return
end subroutine
end module memtests

CUDA Fortran Programming Guide and Reference

declare the texture

bitrev8 (i)

ut(a, b)

eadIdx$%$x

ex(a, b))

eadIdx$%$x

Programming Guide

18

Programming Guide

program t

use cudafor

use memtests

real (8), device, target, allocatable :: da(:)
real (8), device, allocatable :: db(:)
integer, parameter :: n = 1024*1024

integer, parameter :: nthreads = 256

integer, parameter :: ntimes = 1000

type (cudaEvent) :: start, stop

real (8) b (n)

allocate (da (nthreads))
allocate (db(n))

istat = cudaEventCreate (start)
istat = cudaEventCreate (stop)

db = 100.0d0

da = (/ (dble(i),i=1,nthreads) /)
call without<<<n/nthreads, nthreads>>> (da, db)
istat = cudaEventRecord (start,0)
do j = 1, ntimes
call without<<<n/nthreads, nthreads>>> (da, db)
end do
istat = cudaEventRecord (stop,0)
istat = cudaDeviceSynchronize ()
istat = cudaEventElapsedTime (timel, start, stop)
timel = timel / (ntimes*1.0e3)
b = db
print *,sum(b)==(n* (nthreads+1)/2)

db = 100.0d0
t => da ! assign the texture to da using f90 pointer assignment

call withtex<<<n/nthreads, nthreads>>> (da, db)

istat = cudaEventRecord(start,0)
do j = 1, ntimes
call withtex<<<n/nthreads, nthreads>>> (da, db)
end do
istat = cudaEventRecord (stop,0)
istat = cudaDeviceSynchronize ()
istat = cudaEventElapsedTime (time2, start, stop)
time2 = time2 / (ntimes*1.0e3)
b = db
print *,sum(b)==(n* (nthreads+1)/2)
print *,"Time with textures", time?2

print *,"Time without textures",timel
print *,"Speedup with textures",timel / time?2

deallocate (da)
deallocate (db)
end

2.13. Building a CUDA Fortran Program

CUDA Fortran is supported by the PGI Fortran compilers when the filename uses a CUDA
Fortran extension. The . cuf extension specifies that the file is afree-format CUDA Fortran
program; the . CUF extension may also be used, in which case the program is processed by the
preprocessor before being compiled. To compile a fixed-format program, add the command line

CUDA Fortran Programming Guide and Reference 19

Programming Guide

option —Mfixed. CUDA Fortran extensions can be enabled in any Fortran source file by adding
the —-M cuda command line option.

To enable CUDA 6.0 features, use —-Mcuda=cudab.0. If the desired features are only supported on
Kepler hardware, include —M cuda=cuda6.0,cc30 or —-M cuda=cudab.0,cc35, as appropriate, on the
compile and link lines. Starting in PGI 14.1, -Mcuda=rdc is on by default to generate relocatable

device code. This flag implies compute capability 2.x and higher, and CUDA 5.0 and higher. You
can override this option by specifying —M cuda=nordc.

If you are using many instances of the CUDA kernel loop directives, that is, CUF kernels, you
may want to add the —-Minfo switch to verify that CUDA kernels are being generated where you
expect, and whether you have followed the restrictions outlined in the preceding sections.

Starting in PGI 14.1, a separate LLVM-based back-end is also supported. This back-end
isutilized when —g is specified as a compiler option as it enables the generation of debug
information. To always use the LLVM-based back-end, use the —\M cuda=Ilvm command line
option. To enable debugging on the host without using the LLVM-based back-end, specify —
M cuda=nodebug on the command line.

2.14. Emulation Mode

PGI Fortran compilers support an emulation mode for program devel opment on workstations or
systems without a CUDA-enabled GPU and for debugging. To build a program using emulation
mode, compile and link with the -M cuda=emu command line option. In emulation mode, the
device code is compiled for and runs on the host, allowing the programmer to use a host debugger
or full i/o capabilities.

It isimportant to note that the emulation is far from exact. In particular, emulation mode may
execute asingle thread block at atime. Thiswill not expose certain errors, such as memory races.
In emulation mode, the host floating point units and intrinsics are used, which may produce
dightly different answers than the device units and intrinsics.

CUDA Fortran Programming Guide and Reference 20

Chapter 3.
REFERENCE

This section is the CUDA Fortran Language Reference.

3.1. New Subroutine and Function Attributes

CUDA Fortran adds new attributes to subroutines and functions. This section describes how to
specify the new attributes, their meaning and restrictions.

A Subroutine may have the host, global, or device attribute, or may have both host and device
attribute. A Function may have the host or device attribute, or both. These attributes are specified
usingtheattributes (attr) prefix onthe Subroutine or Function statement; if thereis no
attributes prefix on the subprogram statement, then default rules are used, as described in the
following sections.

3.1.1. Host Subroutines and Functions

The host attribute may be explicitly specified on the Subroutine or Function statement as follows:

attributes (host) subroutine sub(...)
attributes (host) integer function func(...)
integer attributes (host) function func(...)

The host attributes prefix may be preceded or followed by any other allowable subroutine or
function prefix specifiers (recursive, pure, elemental, function return datatype). A subroutine
or function with the host attribute is called a host subroutine or function, or a host subprogram.
A host subprogram is compiled for execution on the host processor. A subprogram with no
attributes prefix has the host attribute by default.

3.1.2. Global Subroutines

The global attribute may be explicitly specified on the Subroutine statement as follows:
attributes (global) subroutine sub(...)

Functions may not have the global attribute. A subroutine with the global attribute is called a
kernel subroutine. A kernel subroutine may not be recursive, pure, or elemental, so no other
subroutine prefixes are allowed. A kernel subroutine is compiled as a kernel for execution

on the device, to be called from a host routine using an execution configuration. A kernel

CUDA Fortran Programming Guide and Reference 21

Reference

subroutine may not be contained in another subroutine or function, and may not contain any other
subprogram.

3.1.3. Device Subroutines and Functions

The device attribute may be explicitly specified on the Subroutine or Function statement as
follows:

attributes (device) subroutine sub(...)
attributes (device) datatype function func(...)
datatype attributes (device) function func(...)

A subroutine or function with the device attribute may not be recursive, pure, or elemental, so

no other subroutine or function prefixes are allowed, except for the function return datatype. A
subroutine or function with the device or kernel attribute is called a device subprogram. A device
subprogram is compiled for execution on the device. A subroutine or function with the device
attribute must appear within a Fortran module, and may only be called from device subprograms
in the same module.

3.1.4. Restrictions on Device Subprograms

A subroutine or function with the device or global attribute must satisfy the following
restrictions:

» It may not be recursive, nor have the recursive prefix on the subprogram statement.

» It may not be pure or elemental, nor have the pure or elemental prefix on the subprogram
Statement.

» It may not contain another subprogram.

» It may not be contained in another subroutine or function.

For more information, refer to Device Code.

3.2. Variable Attributes

CUDA Fortran adds new attributes for variables and arrays. This section describes how to specify
the new attributes and their meaning and restrictions.

Variables declared in a host subprogram may have one of three new attributes: they may be
declared to be in device global memory, in managed memory, or in pinned memory.

Variablesin modules may be declared to be in device global memory, in the managed memory
space, or in constant memory space. Additionally, the texture attribute can be added to read-only
data declared in modules which enables reading the data through the texture cache on the device.

Variables declared in a device program units may have one of three new attributes: they may be
declared to be in device global memory, in constant memory space, in the thread block shared
memory, or without any additional attribute they will be allocated in thread local memory.

For performance and useability reasons, the value attribute can also be used on scalar dummy
arguments so they are passed by value, rather than the Fortran default to pass arguments by
reference.

CUDA Fortran Programming Guide and Reference 22

Reference

3.2.1. Device data

A variable or array with the device attribute is defined to reside in the device global memory. The
device attribute can be specified withthe at t ributes statement, or as an attribute on the type
declaration statement. The following example declares two arrays, a and b, to be device arrays of
size 100.

real :: a(100)
attributes (device) :: a
real, device :: b (100)

These rules apply to device data:

» An alocatable device array dynamically allocates device global memory.

» Device variables and arrays may appear in modules, but may not be in a Common block or
an Equivalence statement.

» Members of aderived type may not have the device attribute unless they are alocatable.

» Device variables and arrays may be passed as actual arguments to host and device
subprograms; in that case, the subprogram interface must be explicit (in the Fortran sense),
and the matching dummy argument must also have the device attribute.

» Devicevariables and arrays declared in a host subprogram cannot have the Save attribute.

In host subprograms, device data may only be used in the following manner:

» Indeclaration statements

» In Allocate and Deallocate statements

» Asan argument to the Allocated intrinsic function

Asthe source or destination in a data transfer assignment statement
As an actual argument to a kernel subroutine

» Asan actual argument to another host subprogram or runtime API call
» Asadummy argument in a host subprogram

>
>

A device array may have the allocatabl e attribute, or may have adjustable extent.

3.2.2. Managed data

A variable or array with the managed attribute is managed by the unified memory system and
migrates between host main memory and device global memory. The managed attribute can be
specified withthe at tributes statement, or as an attribute on the type declaration statement.
Managed arrays can be automatic or allocatable. The following example declares two arrays, a
and b, to be managed arrays of size 100, and allocates athird array, c with size 200.

real :: a(100)

attributes (managed) :: a

real, managed :: b(100)

real, allocatable, managed :: c(:)

élioéate (c(200))
These rules apply to managed data on the host:

» Managed variables and arrays may appear in host subprograms and modules, but may not be
in a Common block or an Equivalence statement.
» Managed variables and arrays declared in a host subprogram cannot have the Save attribute.

CUDA Fortran Programming Guide and Reference 23

Reference

» Derived types may have the managed attribute.

» Members of aderived type may have the managed attribute.

» Managed derived types may also contain allocatable device arrays.

» Managed variables and arrays may be passed as actual arguments to other host subprograms,
if the subprogram interface is overloaded, the generic matching priority is match another
managed dummy argument first, match a dummy with the device attribute next, and match a
dummy with no (or host) attribute last.

» Passing a non-managed actual argument to a managed dummy argument will result in either
acompilation error if the interface is explicit, or unexpected behavior otherwise.

» Managed variables and arrays may be passed as actual arguments to global subroutines just
as device variables and arrays are.

» By default, managed datais allocated with global scope, i.e. the flag passed to
cudaMallocManaged is cudaMemAttachGlobal.

» The scope of amanaged variable can be changed with a call
tocudaStreamAttachMemAsync.

» Individual managed variables can be associated with a given stream by
calingcudaSetStreambDefault.

» All subsequently allocated managed variables can aso be associated with a given stream by
calingcudaSetStreamDefault.

» Accessing managed data on the host while arunning kernel is accessing managed data within
the same scope on the device will result in a segmentation fault.

These rules apply to managed data on the device:

» The managed attribute may be used on dummy arguments.
» Managed dataistreated asif it were device data.
» Thereisno support for allocating or deall ocating managed data on the device.

3.2.3. Pinned arrays

An allocatable array with the pinned attribute will be allocated in special page-locked host
memory, when such memory is available. The advantage of using pinned memory isthat transfers
between the device and pinned memory are faster and can be asynchronous. An array with the
pinned attribute may be declared in amodule or in a host subprogram. The pinned attribute can be
specified withthe at tributes statement, or as an attribute on the type declaration statement.
The following example declares two arrays, p and g, to be pinned allocatable arrays.

real :: p(:)

allocatable :: p

attributes (pinned) :: p

real, allocatable, pinned :: g(:)

Pinned arrays may be passed as arguments to host subprograms regardless of whether the
interface is explicit, or whether the dummy argument has the pinned and all ocatabl e attributes.
Where the array is deallocated, the declaration for the array must still have the pinned attribute, or
the deallocation may fail.

3.2.4. Constant data

A variable or array with the constant attribute is defined to reside in the device constant
memory space. The constant attribute can be specified withthe attributes statement, or asan

CUDA Fortran Programming Guide and Reference 24

Reference

attribute on the type declaration statement. The following example declares two arrays, ¢ and d,
to be constant arrays of size 100.

real :: c(100)
attributes (constant) :: ¢
real, constant :: d(100)

These rules apply to constant data:

» Constant variables and arrays can appear in modules, but may not be in a Common block or

an Equivalence statement. Constant variables appearing in modules may be accessed via

the use statement in both host and device subprograms.

Constant data may not have the Pointer, Target, or Allocatable attributes.

Members of a derived type may not have the constant attribute.

Arrayswith the constant attribute must have fixed size.

Constant variables and arrays may be passed as actual arguments to host and device

subprograms, as long as the subprogram interface is explicit, and the matching dummy

argument also hasthe constant attribute. Constant variables cannot be passed as actual

arguments between a host subprogram and a device globa subprogram.

» Within device subprograms, variables and arrays with the constant attribute may not be
assigned or modified.

» Within host subprograms, variables and arrays with the constant attribute may be read
and written.

v

v v VY

In host subprograms, data with the constant attribute may only be used in the following
manner:

» Asanamed entity within a USE statement.

» Asthe source or destination in a data transfer assignment statement
» Asan actual argument to another host subprogram

» Asadummy argument in a host subprogram

3.2.5. Shared data

A variable or array with the shared attribute is defined to reside in the shared memory space

of athread block. A shared variable or array may only be declared and used inside a device
subprogram. The shared attribute can be specified withthe at tributes statement, or asan
attribute on the type declaration statement. The following example declares two arrays, s and t,
to be shared arrays of size 100.

real :: c(100)
attributes (shared) :: c
real, shared :: d(100)

These rules apply to shared data:

Shared data may not have the Pointer, Target, or Allocatable attributes.
Shared variables may not be in a Common block or Equivalence statement.
Members of aderived type may not have the shared attribute.

Shared variables and arrays may be passed as actual arguments to from a device subprogram
to another device subprogram, aslong as the interface is explicit and the matching dummy
argument has the shared attribute.

v v VY

v

CUDA Fortran Programming Guide and Reference 25

Reference

Shared arrays that are not dummy arguments may be declared as assumed-size arrays, that is, the
last dimension of a shared array may have an asterisk asits upper bound:

real, shared :: x(%*)

Such an array has special significance. Its size is determined at run time by the call to the kernel.
When the kernel is called, the value of the bytes argument in the execution configuration is
used to specify the number of bytes of shared memory that is dynamically allocated for each
thread block. This memory is used for the assumed-size shared memory arraysin that thread
block; if there is more than one assumed-size shared memory array, they are all implicitly
equivalenced, starting at the same shared memory address. Programmers must take thisinto
account when coding.

Shared arrays may be declared as Fortran automatic arrays. For automatic arrays, the bounds

are declared as an expression containing constants, parameters, blockdim variables, and integer
arguments passed in by value. The allocation of automatic arrays also comes from the dynamic
area specified viathe chevron launch configuration. If more than one automatic array is declared,
the compiler and runtime manage the offsets into the dynamic area. Programmers must provide a
sufficient number of bytesin the chevron launch configuration shared memory valueto cover al
automatic arrays declared in the global subroutine.

attributes (global) subroutine sub (A, n,

integer, value :: n, nb

real, shared :: s (nb*blockdim%x,nb)

If ashared array is not adummy argument and not assumed-size or automatic, it must be fixed
size. In this case, the alocation for the shared array does not come from the dynamically allocated
shared memory area specified in the launch configuration, but rather it is declared statically
within the function. If the global routine uses only fixed size shared arrays, or none at al, no
shared memory amount needs to be specified at the launch.

3.2.6. Texture data

Read-only real and integer device data can be accessed in device subprograms through the texture
memory by assigning an F90 pointer variable to the underlying device array. To use texture
memory in this manner, follow these steps:

1. Add adeclaration to a module declaration section that is used in both the host and device

code:
real, texture, pointer :: t(:)
2. Inyour host code, add the target attribute to the device data that you wish to accessvia
texture memory:
Change: real, device :: a(n)
To: real, target, device :: a(n)

The target attribute is standard FO0/F2003 syntax to denote an array or other data structure
that may be "pointed to" by another entity.

3. Tiethetexture declaration to the device array by using the F90 pointer assignment operator
in your host code. A simple expression like the following one performs all the underlying
CUDA texture binding operations.

t => a

CUDA Fortran Programming Guide and Reference 26

Reference

The CUDA Fortran device code that can refer to t through use or host association can now
access the elements of t without any change in syntax.

In the following example, accesses of t, targeting a, go through the texture cache.

! Vector add, s through device memory, t is through texture memory
i = threadIdx%$x + (blockIdx%x-1)*blockDim%$x
s(i) = s(i) + t(i)

3.2.7. Value dummy arguments

In device subprograms, following the rules of Fortran, dummy arguments are passed by default
by reference. This means the actual argument must be stored in device global memory, and the
address of the argument is passed to the subprogram. Scalar arguments can be passed by value, as
isdonein C, by adding the value attribute to the variable declaration.
attributes (global) subroutine madd(a, b, n)

real, dimension(n,n) :: a, b

integer, value :: n
In this case, the value of n can be passed from the host without needing to reside in device
memory. The variable arrays corresponding to the dummy arguments aand b must be set up
before the call to reside on the device.

3.3. Allocating Device Memory, Pinned Memory, and Managed
Memory

This section describes extensions to the Allocate statement, specifically for dynamically
alocating device arrays, host pinned arrays, managed arrays, and other supported methods for
alocating memory specific to CUDA Fortran.

3.3.1. Allocating Device Memory

Device arrays can have the allocatabl e attribute. These arrays are dynamically allocated in host
subprograms using the Allocate statement, and dynamically deallocated using the Deallocate
statement. If a device array declared in a host subprogram does not have the Save attribute, it will
be automatically deallocated when the subprogram returns.

real, allocatable, device :: b(:)
allocate (b (5024),stat=istat)

if (allocated (b)) deallocate (b)

Scalar variables can be allocated on the device using the Fortran 2003 all ocatable scalar feature.
To use these, declare and initialize the scalar on the host as:

integer, allocatable, device :: ndev
allocate (ndev)
ndev = 100

CUDA Fortran Programming Guide and Reference 27

Reference

The language also supports the ability to create the equivalent of automatic and local device
arrays without using the alocate statement. These arrays will also have alifetime of the
subprogram asis usual with the Fortran language:

subroutine vfunc(a,c,n)

real, device :: adev(n)
real, device :: atmp(4)
end subroutine vfunc ! adev and atmp are deallocated

3.3.2. Allocating Device Memory Using Runtime Routines

For programmers comfortable with the CUDA C programming environment, Fortran interfaces to
the CUDA memory management runtime routines are provided. These functions return memory
which will bypass certain Fortran allocatable properties such as automatic deall ocation, and thus
the arrays are treated more like C malloc’ ed areas. Mixing standard Fortran all ocate/deall ocate
with the runtime Malloc/Free for a given array is not supported.

The cudaMalloc function can be used to allocate single-dimensional arrays of the supported
intrinsic data-types, and cudaFree can be used to freeit:

real, allocatable, device :: v (:)
istat = cudaMalloc (v, 100)

istat = cudaFree (V)

For acomplete list of the memory management runtime routines, refer to Memory Management.

3.3.3. Allocate Pinned Memory

Allocatable arrays with the pinned attribute are dynamically alocated using the Allocate
statement. The compiler will generate code to allocate the array in host page-locked memory, if
available. If no such memory spaceis available, or if it is exhausted, the compiler alocates the
array in normal paged host memory. Otherwise, pinned allocatable arrays work and act like any
other allocatable array on the host.

real, allocatable, pinned :: p(:)
allocate (p(5000),stat=istat)

if (allocated(p)) deallocate (p)

To determine whether or not the allocation from page-locked memory was successful, an
additional PINNED keyword is added to the allocate statement. It returns alogical success value.

logical plog
allocate (p(5000), stat=istat, pinned=plog)
if (.not. plog) then

3.3.4. Allocating Managed Memory

Managed arrays may or may not have the allocatabl e attribute. These arrays are all dynamically
alocated just as device arrays are.

real, allocatable, managed :: b (:)
allocate (b(5024),stat=istat)

if (allocated (b)) deallocate (b)

CUDA Fortran Programming Guide and Reference 28

Reference

CUDA Fortran supports the ability to create the equivalent of automatic and local managed arrays
without using the allocate statement. These arrays will also have alifetime of the subprogram as
isusua with the Fortran language:

subroutine vfunc(a,c,n)

real, managed :: aman(n)
real, managed :: atmp (4)
end subroutine vfunc ! aman and atmp are deallocated

3.3.5. Allocating Managed Memory Using Runtime Routines

The cudaMallocManaged function can be used to allocate single-dimensional managed arrays of
the supported intrinsic data-types, and cudaFree can be used to free it:

use cudafor
real, allocatable, managed :: v (:)
istat = cudaMallocManaged(v, 100, cudaMemAttachHost)

istat = cudaFree (v)

For acomplete list of the memory management runtime routines, refer to Memory Management.

3.4. Data transfer between host and device memory

This section provides methods to transfer data between the host and device memory.

3.4.1. Data Transfer Using Assignment Statements

Y ou can copy variables and arrays from the host memory to the device memory by using smple
assignment statementsin host subprograms. By default, using assignment statements to read or
write device, managed, or constant dataimplicitly uses CUDA stream zero. This means such
data copies are synchronous, and the data copy waits until all previous kernels and data copies
complete. Starting with PGI 14.7, you can use the cudaSetStreamDefault cal to associate
one or more device and managed variables to a particular stream. After this call has occurred,
assignment statements on those variables will run asynchronously on the specified stream.

Specific information on assignment statements:

» An assignment statement where the left hand side is adevice variable or device array or array
section, and the right hand side is a host variable or host array or array section, copies data
from the host memory to the device global memory.

» Anassignment statement where the left hand side is a host variable or host array or array
section, and the right hand side is a device variable or device array or array section, copies
data from the device global memory to the host memory.

» Anassignment statement with a device variable or device array or array section on both sides
of the assignment statement copies data between two device variables or arrays.

Similarly, you can use simple assignment statements to copy or assign variables or arrays with
the constant attribute.

Specific information on assignment statements and managed data:

» Anassignment statement where the left hand side is a managed variable or managed array,
and the right hand side is a conforming scalar constant, host variable, host array or array

CUDA Fortran Programming Guide and Reference 29

Reference

section, copies data from the host memory to the device global memory using cudaMemcpy,
memset, or asimilar operation.

» Anassignment statement where the left hand side is a managed array section and the right
hand side is any host variable copies data using generated host code.

» Anassignment statement where the left hand side is a managed variable, managed array or
array section, and the right hand side is a device variable or device array or array section,
copies data from the device global memory to the host memory using cudaMemcpy or a
similar operation.

» An assignment statement where the right hand side is a managed variable or managed array,
and the left hand side is a host variable, host array or array section, copies data from the
device global memory to the host memory using cudaMemcpy or a similar operation.

» Anassignment statement where the right hand side is a managed array section and the left
hand side is any host or managed variable copies data using generated host code.

» Anassignment statement where the right hand side is a managed variable, managed array
or array section, and the |eft hand side is a device variable or device array or array section,
copies data using cudaMemcpy and accesses the data from the device.

More information on Memcpy and Memset behavior with managed memory can be found in
Appendix J. of the CUDA C Programming Guide.

3.4.2. Implicit Data Transfer in Expressions

Some limited data transfer can be enclosed within expressions. In general, the rule of thumb is all
arithmetic or operations must occur on the host, which normally only allows one device array to
appear on the right-hand-side of an expression. Temporary arrays are generated to accommodate
the host copies of device data as needed. For instance, if a, b, and c are conforming host arrays,
and adev, bdev, and cdev are conforming device arrays, the following expressions are legal:

a = adev
adev = a
b = a + adev

c =x * adev + b

The following expressions are not legal asthey either promote a false impression of where the
actual computation occurs, or would be more efficient written in another way, or both:

c = adev + bdev
adev = adev + a
b = sqgrt (adev)

Elemental transfers are supported by the language but perform poorly. Array dlices are a'so
supported, and their performance is dependent on the size of the dlice, the amount of contiguous
data in the slices, and the implementation.

3.4.3. Data Transfer Using Runtime Routines

For programmers comfortable with the CUDA C programming environment, Fortran interfacesto
the CUDA memory management runtime routines are provided. These functions can transfer data
either from the host to device, device to host, or from one device array to another.

CUDA Fortran Programming Guide and Reference 30

Reference

The cudaMemcpy function can be used to copy data between the host and the GPU:

real, device :: wrk(1024)
real cur(512)
istat = cudaMemcpy (wrk, cur, 512)

For those familiar with the CUDA C routines, the kind parameter to the Memcpy routinesis
optional in Fortran because the attributes of the arrays are explicitly declared. Counts expressed
in arguments to the Fortran runtime routines are expressed in terms of data type elements, not
bytes.

For acomplete list of memory management runtime routines, refer to Memory Management.

3.5. Invoking a kernel subroutine

A call to akernel subroutine must give the execution configuration for the call. The execution
configuration gives the size and shape of the grid and thread blocks that execute the function
aswell as the amount of shared memory to use for assumed-size shared memory arrays and the
associated stream.

The execution configuration is specified after the subroutine name in the call statement; it hasthe
form:

<<< grid, block, bytes, stream >>>>

» gridisaninteger, or of type (dim3).Ifitistype (dim3), thevaueof grid%z must
be one. The product grid%x*grid%y givesthe number of thread blocksto launch. If grid
isaninteger, itisconvertedto dim3 (grid, 1, 1). bl

» blockisaninteger, or of type (dim3).If itistype (dim3), the number of threads per
thread block isblock%x*block%y*block%z, which must be less than the maximum
supported by the device. If block isan integer, it is converted to dim3 (block,1,1).

» bytes isoptiond; if present, it must be ascalar integer, and specifies the number of bytes
of shared memory to be allocated for each thread block to use for assumed-size shared
memory arrays. For more information, refer to Shared Data. If not specified, the value zero is
used.

» stream isoptional; if present, it must be an integer, and have avalue of zero, or avalue
returned by a call to cudaStreamCreate. See Section 4.5 on page 41. It specifies the stream to
which this call is enqueued.

For instance, a kernel subroutine

attributes (global) subroutine sub(a)

can be called like:

call sub <<< DG, DB, bytes >>> (A)

The function call failsif the grid or block arguments are greater than the maximum sizes
alowed, or if bytes isgreater than the shared memory available. Shared memory may also be
consumed by fixed-sized shared memory declarations in the kernel and for other dedicated uses,
such as function arguments and execution configuration arguments.

3.6. Device code

CUDA Fortran Programming Guide and Reference 31

Reference

3.6.1. Datatypes Allowed

Variables and arrays with the device, constant, or shared attributes, or declared in device
subprograms, are limited to the types described in this section. They may have any of theintrinsic
datatypesin the following table.

Table 2 Device Code Intrinsic Datatypes

Type Type Kind

integer 1,2,4(default),8

logical 1,2,4(default),8

real 4(default),8

double precision equivalentto real (kind=8)
complex 4(default),8

character (len=1) 1 (default)

Additionally, they may be of derived type, where the members of the derived type have one of the
alowed intrinsic datatypes, or another allowed derived type.

The system module cuda for includes definitions of the derived type dim3, defined as

type (dim3)
integer (kind=4) :: x,vy,z
end type

3.6.2. Built-in variables

The system module cuda for declares several predefined variables. These variables are read-

only. They are declared asfollows:

type (dim3) :: threadidx, blockdim, blockidx, griddim

integer (4) :: warpsize

» Thevariable threadidx contains the thread index within its thread block; for one- or two-
dimensional thread blocks, the threadidx%y and/or threadidx%z components have the
value one.

» Thevariable blockdim containsthe dimensions of the thread block; blockdim hasthe
same value for al threads in the same grid; for one- or two-dimensional thread blocks, the
blockdim%y and/or blockdim%z components have the value one.

» Thevariableblockidx containsthe block index within the grid; aswith threadidx,
for one-dimensional grids, blockidx%y hasthevalueone. Thevalueof blockidx%z is
awaysone. Thevaue of blockidx isthe samefor al threads in the same thread block.

» Thevariable griddim contains the dimensions of the grid; thevalue of griddim%z is
awaysone. Thevaue of griddim isthe samefor al threadsin the same grid; the value of
griddim%z isaways one; thevalue of griddim%y isone for one-dimensiona grids.

» Thevariablesthreadidx,blockdim, blockidx, and griddim are available only in
device subprograms.

» Thevariable warpsize containsthe number of threadsin awarp. It has constant value,
currently defined to be 32.

CUDA Fortran Programming Guide and Reference 32

3.6.3. Fortran Intrinsics

This section lists the Fortran intrinsic functions alowed in device subprograms.

Table 3 Fortran Numeric and Logical Intrinsics

Reference

Name Argument Datatypes Name Argument Datatypes
abs integer, real, complex int integer, real, complex
aimag complex logical logical
aint real max integer, real
anint real min integer, real
ceiling real mod integer, real
cmplx real or (real,real) modulo integer, real
conjg complex nint real
dim integer, real real integer, real, complex
floor real sign integer, real

Table 4 Fortran Mathematical Intrinsics
Name Argument Datatypes Name Argument Datatypes
acos real log real, complex
asin real logl0 real
atan real sin real, complex
atan? (real,real) sinh real
cos real, complex sqgrt real, complex
cosh real tan real
exp real, complex tanh real

Table 5 Fortran Numeric Inquiry Intrinsics
Name Argument Datatypes Name Argument Datatypes
bit size integer precision real, complex
digits integer, real radix integer, real
epsilon real range integer, real, complex
huge integer, real selected int kind integer
maxexponent | real selected real kindintegerinteger)
minexponent | real tiny real

CUDA Fortran Programming Guide and Reference

33

Table 6 Fortran Bit Manipulation Intrinsics

Reference

Name Argument Datatypes Name Argument Datatypes
btest integer ishft integer

iand integer ishftc integer

ibclr integer leadz integer

ibits integer mvbits integer

ibset integer not integer

ieor integer popcnt integer

ior integer poppar integer

Table 7 Fortran Reduction Intrinsics

Name Argument Datatypes Name Argument Datatypes
all logical minloc integer, real

any logical minval integer, real
count logical product integer, real, complex
maxloc integer, real sum integer, real, complex
maxval integer, real

Table 8 Fortran Random Number Intrinsics

Name Argument Datatypes

random number

real

random_ seed

integer

3.6.4. New Intrinsic Functions

This section describes the new intrinsic functions and subroutines supported in device

subprograms.

Synchronization Functions

The synchronization functions control the synchronization of various threads during execution of

thread blocks.

syncthreads

syncthreads count

syncthreads and

syncthread or

threadfence
threadfence block

threadfence system

For detailed information on these functions, refer to Thread M anagement.

CUDA Fortran Programming Guide and Reference

34

Reference

SYNCTHREADS

The syncthreads intrinsic subroutine acts as a barrier synchronization for all threadsin a
single thread block; it has no arguments:

void syncthreads ()

Sometimes threads within a block access the same addresses in shared or global memory, thus
creating potential read-after-write, write-after-read, or write-after-write hazards for some of
these memory accesses. To avoid these potential issues, use syncthreads () to specify
synchronization pointsin the kernel. Thisintrinsic acts as a barrier at which all threadsin the
block must wait before any thread is allowed to proceed. Threads within a block cooperate and
share data by synchronizing their execution to coordinate memory accesses.

Each thread in athread block pauses at the syncthreads cal until al threads have reached
that call. If any thread in athread block issuesacall to syncthreads, al threads must also
reach and execute the same call statement, or the kernel fails to complete correctly.

SYNCTHREADS_AND

integer syncthreads and(int value)

syncthreads and.likesyncthreads, actsasabarrier at which al threads in the block
must wait before any thread is allowed to proceed. In addition, syncthreads and evaluates
the integer argument int_value for al threads of the block and returns non-zero if and only if
int_value evaluates to non-zero for all of them.

SYNCTHREADS_COUNT

integer syncthreads count (int value)

syncthreads count, like syncthreads, actsasabarrier at which all threadsin the
block must wait before any thread is allowed to proceed. In addition, syncthreads count
evaluates the integer argument int_value for all threads of the block and returns the number of
threads for which int_value evaluates to non-zero.

SYNCTHREADS_OR

integer syncthreads or(int value)

syncthreads or.likesyncthreads, actsasabarrier at which all threads in the block
must wait before any thread is allowed to proceed. In addition, syncthreads or evaluates
the integer argument int_value for all threads of the block and returns non-zero if and only if
int_value evaluates to non-zero for any of them.

Memory Fences

In general, when athread issues a series of writesto memory in a particular order, other threads
may see the effects of these memory writesin adifferent order. You can use threadfence (),
threadfence block(),and threadfence system() to create amemory fenceto
enforce ordering.

CUDA Fortran Programming Guide and Reference 35

Reference

For example, suppose you use akernel to compute the sum of an array of N numbersin one
call. Each block first sums a subset of the array and stores the result in global memory. When
all blocks are done, the last block done reads each of these partial sums from global memory
and sums them to obtain the final result. To determine which block is finished last, each block
atomically increments a counter to signal that it is done with computing and storing its partial
sum. If no fence is placed between storing the partial sum and incrementing the counter, the
counter might increment before the partial sum is stored.

THREADFENCE

void threadfence ()

threadfence actsasamemory fence, creating await. Typically, when athread issues a series
of writes to memory in a particular order, other threads may see the effects of these memory
writesin adifferent order. threadfence () isone method to enforce a specific order. All
global and shared memory accesses made by the calling thread prior to threadfence () are
visibleto:

» All threads in the thread block for shared memory accesses
» All threads in the device for global memory accesses

THREADFENCE_BLOCK

void threadfence block()

threadfence block actsasamemory fence, creating await until al global and shared
memory accesses made by the calling thread prior to threadfence block () arevisibleto
all threads in the thread block for all accesses.

THREADFENCE_SYSTEM

void threadfence system()

threadfence system actsasamemory fence, creating await until all global and shared
memory accesses made by the calling thread prior to threadfence system () arevisibleto:

» All threads in the thread block for shared memory accesses
» All threads in the device for global memory accesses
» Host threads for page-locked host memory accesses

threadfence system() isonly supported by devices of compute capability 2.0 or higher.

3.6.5. Warp-Vote Operations

Warp-vote operations are only supported by devices with compute capability 1.2 and higher.
Each of these functions has a single argument.

ALLTHREADS

Theallthreads functionisawarp-vote operation with asingle scalar logical argument:
if(allthreads(a(i)<0.0)) allneg = .true.

CUDA Fortran Programming Guide and Reference 36

Reference

Thefunction allthreads evaluatesits argument for all threadsin the current warp. The value
of thefunctionis . true. only if the value of the argument is . t rue. for al threadsin the
warp.

ANYTHREAD

The anythread function is awarp-vote operation with asingle scalar logical argument:
if (anythread(a(i)<0.0)) allneg = .true.

The function anythread evaluatesits argument for all threads in the current warp. The value
of thefunctionis . false. only if the value of theargument is . false. for al threadsin the
warp.

BALLOT

Theballot functionisawarp-vote operation with a single integer argument:

unsigned integer ballot (int value)

Thefunctionballot evaluatestheargument int value for al threads of the warp and
returns an integer whose Nth bit isset if and only if int value evaluatesto non-zero for the
Nth thread of the warp.

Thisfunction is only supported by devices of compute capability 2.0.

Example:
if (ballot (int value)) allneg = .true.

3.6.6. Atomic Functions

The atomic functions read and write the value of their first operand, which must be avariable
or array element in shared memory (with the shared attribute) or in device global memory (with
the device attribute). Atomic functions are only supported by devices with compute capability
1.1 and higher. Compute capability 1.2 or higher isrequired if the first argument has the shared
attribute.

The atomic functions return correct values even if multiple threads in the same or different thread
blocks try to read and update the same location without any synchronization.

Arithmetic and Bitwise Atomic Functions

These atomic functions read and return the value of the first argument. They also combine that
value with the value of the second argument, depending on the function, and store the combined
value back to the first argument location. Both arguments must be of type integer(kind=4).

n The return value for each of these functions is the first argument, mem.

These functions are:

CUDA Fortran Programming Guide and Reference 37

Reference

Table 9 Arithmetic and Bitwise Atomic Functions

Function Additional Atomic Update
atomicadd (mem, value) mem = mem + value
atomicsub (mem, wvalue) mem = mem — value
atomicmax (mem, value) mem = max (mem,value)
atomicmin (mem, value) mem = min (mem,value)
atomicand (mem, value) mem = iand (mem,value)
atomicor (mem, wvalue) mem = ior (mem,value)
atomicxor (mem, value) mem = ieor (mem,value)
atomicexch(mem, value) mem = value

Counting Atomic Functions

These atomic functions read and return the value of the first argument. They also compare the
first argument with the second argument, and stores a new value back to the first argument
location, depending on the result of the comparison. These functions are intended to implement
circular counters, counting up to or down from a maximum value specified in the second
argument. Both arguments must be of type integer(kind=4).

n The return value for each of these functions is the first argument, mem.

These functions are:

Table 10 Counting Atomic Functions

Function Additional Atomic Update
atomicinc (mem, imax) if (mem<imax) then
mem = mem+1
else
mem = 0
endif
atomicdec (mem, imax) if (mem<imax .and. mem>0) then
mem = mem-1
else
mem = imax
endif

Compare and Swap Atomic Function

This atomic function reads and returns the value of the first argument. It also compares the
first argument with the second argument, and atomically stores a new value back to the first

CUDA Fortran Programming Guide and Reference 38

Reference

argument location if the first and second argument are equal. All three arguments must be of type
integer(kind=4).

n The return value for this function is the first argument, mem.

The function is;

Table 11 Compare and Swap Atomic Function

Function Additional Atomic Update
atomiccas (mem, comp, val) if (mem == comp) then
mem = val
endif

3.6.7. Restrictions

This section lists restrictions on statements and features that can appear in device subprograms.

Objects with the Pointer and Allocatabl e attribute are not allowed.

Automatic arrays must be fixed size.

Optional arguments are not allowed.

Objects with character type must have LEN=1; character substrings are not supported.
Recursive subroutines and functions are not allowed.

STOP and PAUSE statements are not allowed.

Most Input/Output statements are not allowed at al: READ, FORMAT, NAMELIST, OPEN,
CLOSE, BACKSPACE, REWIND, ENDFILE, INQUIRE.

List-directed PRINT and WRITE statements to the default unit may be used when compiling
for compute capability 2.0 and higher; all other uses of PRINT and WRITE are disallowed.

Alternate return specifications are not allowed.

ENTRY statements are not allowed.

Floating point exception handling is not supported.

Fortran intrinsic functions not listed in Section 3.6.3 are not supported.
Subroutine and function calls are supported only if they can be inlined.
» Cray pointers are not supported.

3.6.8. PRINT and WRITE Statements

When targeting Compute Capability 2.0 and higher, list-directed PRINT or WRITE statements to
the default output unit (PRINT * or WRITE(*,*)) may be used. Because of the way Fortran input/
output is implemented, the output for PRINT or WRITE statements may be interleaved between
different threads for each item on the PRINT or WRITE statement. That is, if adevice routine
contains a PRINT statement, such as this one:

print *, 'index = ', blockidx%x, threadidx%$x

v v VY v vV Vv v v v Y

v

v

then two different threads, in the same thread block or in different thread blocks, may print out
thefirst item, the character string 'index ="', one after the other, then the second item, the value of
blockidx%ox, then the third item, threadidx%ox, and finally the end-of-line.

CUDA Fortran Programming Guide and Reference 39

Reference

Unlike the CUDA C printf implementation, which prints out awhole line for each thread, thereis
no indication of which thread prints out which item in which order.

Tip
Use conditionals around PRINT statements to circumvent this current behavior.

Print and Write statements in device code are not supported when used with the -mp compiler
option.

3.6.9. Shuffle Functions

PGI 14.1 enables CUDA Fortran device code to access compute capability 3.x shuffle functions.
These functions enable access to variables between threads within awarp, referred to aslanes. In
CUDA Fortran, lanes use Fortran's 1-based numbering scheme.

__shfl()

__shfl () returnsthevalue of var held by the thread whose ID isgiven by srcLane. If the
srcLane isoutside therange of 1 :width, then the thread's own value of var isreturned. The
width argument isoptional in all shuffle functions and has a default value of 32, the current
warp size.

integer (4) function _ shfl(var, srcLane, width)
integer (4) var, srclane
integer (4), optional :: width

real (4) function shfl(var, srclLane, width)
real(4) :: var
integer (4) :: srclane
integer (4), optional :: width

real (8) function shfl(var, srclLane, width)
real(8) :: var
integer (4) :: srclane
integer (4), optional :: width

__shfl_up()

__shfl up() calculatesasourcelane ID by subtracting delta from the caller's thread ID. The
value of var held by the resulting thread I1D is returned; in effect, var is shifted up the warp by
delta lanes.

CUDA Fortran Programming Guide and Reference 40

Reference

The source lane index will not wrap around the value of width, sothelower delta lanesare

unchanged.

integer (4) function shfl up(var, delta, width)
integer (4) var, delta

integer (4), optional :: width

real (4) function _ shfl up(var, delta, width)
real (4) :: var
integer(4) :: delta
integer (4), optional :: width

real (8) function _ shfl up(var, delta, width)
real(8) :: var
integer (4) :: delta
integer (4), optional :: width

__shfl_down()

__shfl down () calculatesasourcelane|D by adding delta tothecaller'sthread ID. The
value of var held by the resulting thread ID is returned: this has the effect of shifting var down
thewarp by delta lanes. The ID number of the source lane will not wrap around the value of
width, so the upper de1ta lanes remain unchanged.

integer (4) function shfl down(var, delta, width)
integer (4) var, delta
integer (4), optional :: width

real (4) function shfl down(var, delta, width)
real(4) :: var
integer (4) :: delta
integer (4), optional :: width

real (8) function shfl down(var, delta, width)
real(8) :: var
integer (4) :: delta
integer (4), optional :: width

__shfl_xor()

__shfl xor () usesID-1to calculate the source lane ID by performing a bitwise XOR of the
caller'slane ID with the 1aneMask. Thevalue of var held by the resulting lane ID is returned.
If the resulting lane ID falls outside the range permitted by width, the thread's own value of
var isreturned. This mode implements a butterfly addressing pattern such asis used in tree

reduction and broadcast.

integer (4) function shfl xor(var, laneMask, width)
integer (4) var, laneMask
integer (4), optional :: width

real (4) function shfl xor(var, laneMask, width)
real (4) :: var
integer (4) :: laneMask
integer (4), optional :: width

real (8) function shfl xor(var, laneMask, width)
real(8) :: var
integer (4) :: laneMask
integer (4), optional :: width

CUDA Fortran Programming Guide and Reference

Reference

Hereisan exampleusing shfl xor () to compute the sum of each thread's variable
contribution within awarp:

j= . . .

k = _shfl_xor(j,l) J=3 + k
k = shfl xor(j,2); J =3 + k
k = shfl xor(j,4); J =3 + k
k = _shfl_xor(j,B), 3 =3+ k
k = shfl xor(j,16); j =3 + k

3.7. Host code

Host subprograms may use intrinsic functions, such asthe new sizeof intrinsic function.

3.7.1. SIZEOF Intrinsic

Acdl tosizeof (n),where A is avariable or expression, returns the number of bytes
required to hold the value of A.

integer (kind=4) :: i, j
j = sizeof (1) ! this assigns the value 4 to j

3.8. Fortran Modules

CUDA Fortran Modules are available to help programmers access features of the CUDA runtime
environment, which might otherwise not be accessible from Fortran without significant effort
from the programmer. These modules might be either device modules or host modules.

3.8.1. Device Modules

PGI provides a device module which allows access and interfaces to many of the CUDA device
built-in routines.

To access this module, do one of the following:

» Addthislineto your Fortran program:
use cudadevice
» Addthislineto your C program:

#include <cudadevice.h>

Y ou can use these routinesin CUDA Fortran global and device subprograms, in CUF kernels,
and in PGI Accelerator compute regions in Fortran aswell asin C. Further, the PGI compilers
come with implementations of these routines for host code, though these implementations are not
specifically optimized for the host.

CUDA Built-in Routines lists the CUDA built-in routines that are available;

Table 12 CUDA Built-in Routines

_brev _brevll clock clock64

_clz _clzll _cosf _dadd_rd

CUDA Fortran Programming Guide and Reference 42

Reference

_dadd_rn _dadd_ru _dadd_rz _ddiv_rd
_ddiv_m _ddiv_ru _ddiv_rz _dmul_rd
_dmul_n _dmul_ru _dmul_rz _double2float_rd

_double2float_rn

_double2float_ru

_double2float_rz

_double2hiint

_double2int_rd

_double2int_rn

_double2int_ru

_double2int_rz

_double2Il_rd

_double2Il_rn

_double2Il_ru

_double2ll_rz

_double2uint_rd

_double2uint_rn

_double2uint_ru

_double2uint_rz

_double2ull_rd _double2ull_n _double2ull_ru _double2ull_rz
_double_as_long_long _drep_rd _drcp_rn _drep_ru
_drep_rz _dsqrt_rd _dsqrt_m _dsqrt_ru
_dsqrt_rz _exp10f _expf _fadd_rd
_fadd_m _fadd_ru _fadd_rz _fdiv_rd
_fdiv_rn _fdiv_ru _fdiv_rz fdivide

fdividef _fdividef _ffs _ffsll
_float2half_rn _float2int_rd _float2int_rn _float2int_ru
_float2int_rz _float2ll_rd _float2ll_rn _float2ll_ru
_float2ll_rz _float_as_int _fma_rd _fma_m
_fma_ru _fma_rz _fmaf_rd _fmaf_m
_fmaf_ru _fmaf_rz _fmul_rd _fmul_rn
_fmul_ru _fmul_rz _frep_rd _frep_m
_frep_ru _frep_rz _fsqrt_rd _fsqrt_rn
_fsqrt_ru _fsqrt_rz _half2float_rn _hiloint2double

_int2double_rd

_int2double_rn

_int2double_ru

_int2double_rz

_int2float_rd _int2float_m _int2float_ru _int2float_rz
_int_as_float _lI2double_rd _lI2double_rn _ll2double_ru
_ll2double_rz _lI2float_rd _lI2float_rn _lI2float_ru
_li2float_rz _log10f _log2f _logf
_longlong_as_double _mul24 _mulhi _popc

_popcll _powf _sad _saturatef

_sinf _tanf _uint2double_rd _uint2double_rn

_uint2double_ru

_uint2double_rz

_uint2float_rd

_uint2float_rn

_uint2float_ru _uint2float_rz _ull2double_rd _ull2double_rn
_ull2double_ru _ull2double_rz _ull2float_rd _ull2float_rn
_uli2float_ru _uli2float_rz _umul24 _umulhi

_usad

CUDA Fortran Programming Guide and Reference

43

Reference

3.8.2. Host Modules

PGI provides a module which defines interfaces to the CUBLAS Library from PGI CUDA
Fortran. These interfaces are made accessible by placing the following statement in the CUDA
Fortran host-code program unit.

use cublas
The interfaces are currently in three forms:
» Overloaded traditional BLAS interfaces which take device arrays as arguments rather than
host arrays, i.e.
call saxpy(n, a, x, incx, y, incy)

where the arguments x and y have the device attribute.
» Portable legacy CUBLAS interfaces which interface directly with CUBLAS versions < 4.0,
i.e
call cublasSaxpy(n, a, x, incx, y, incy)
where the arguments x and y must have the device attribute.
» New CUBLAS 4.0+ interfaces with access to all features of the new library.

These interfaces are al in the form of function calls, take a handle as the first argument, and
pass many scalar arguments and results by reference, i.e.

istat = cublasSaxpy v2(h, n, a, x, incx, y, incy)

In the case of saxpy, users now have the option of having "a" reside either on the host

or device. Functions which traditionally return ascalar, such as sdot () and isamax (),
now take an extra argument for returning the result. Functions which traditionally take a
character*1 argument, such as't' or 'n' to control transposing, now take an integer value
defined in the cublas module.

To support the third form, aderived type named cublasHand1e isdefined in the cublas
module. Y ou can define a variable of thistype using
type (cublasHandle) :: h

Initialize it by passing it to the cublasCreate function.

When using CUBLAS 4.0 and higher, the cublas module properly generates handles for the first
two forms from serial and OpenMP parallel regions.

Intermixing the three forms is permitted. To access the handles used internally in the cublas
module use:

h = cublasGetHandle ()

The following form "istat = cublasGetHandle(h)" is also supported.
istat = cublasGetHandle (h)

Assignment and tests for equality and inequality are supported for the cublasHandle type.

CUDA Fortran Programming Guide and Reference 44

CUDA 3.2 helper functions defined in the cublas module:

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

stream)

integer

stream)

function
function
function
function
function
function
function
function
function
function
function
function
function

function

Reference

cublasInit ()

cublasShutdown ()

cublasGetError ()

cublasAlloc(n, elemsize, devptr)

cublasFree (devptr)

cublasSetVector (n, elemsize, x, incx, y, incy)
cublasGetVector (n, elemsize, x, incx, y, incy)
cublasSetMatrix (rows, cols, elemsize, a, lda, b, 1ldb)
cublasGetMatrix (rows, cols, elemsize, a, lda, b, 1ldb)
cublasSetKernelStream(stream)

cublasSetVectorAsync (n, elemsize, x, incx, y, incy, stream)
cublasGetVectorAsync(n, elemsize, x, incx, y, incy, stream)
cublasSetMatrixAsync (rows, cols, elemsize, a, lda, b, 1ldb,
cublasGetMatrixAsync (rows, cols, elemsize, a, lda, b, 1ldb,

Additional CUDA 4.0 helper functions defined in the cublas module:

integer
integer
integer
integer
integer
integer
integer

function
function
function
function
function
function
function

cublasCreate (handle)
cublasDestroy (handle)
cublasGetVersion (handle,
cublasSetStream (handle, stream)
cublasGetStream (handle, stream)
cublasGetPointerMode (handle, mode)
cublasSetPointerMode (handle, mode)

version)

Refer to Cublas Module Example for an example that demonstrates the use of the cublas
module, the cublasHandle type, and the three forms of calls.

CUDA Fortran Programming Guide and Reference

45

Chapter 4.
RUNTIME APIS

The system module cuda for defines the interfaces to the Runtime API routines.

Most of the runtime API routines are integer functions that return an error code; they return a
value of zero if the call was successful, and a nonzero value if there was an error. To interpret the
error codes, refer to Error Handling.

Unless a specific kind is provided, the plain integer type impliesinteger(4) and the plain real type
implies rea (4).

4.1. Initialization

No explicit initialization is required; the runtime initializes and connects to the device the first
time aruntime routine is called or adevice array is allocated.

Tip

When doing timing runs, be aware that initialization can add some overhead.

4.2. Device Management

Use the functions in this section for device management.

4.2.1. cudaChooseDevice

integer function cudaChooseDevice (devnum, prop)
integer, intent (out) :: devnum
type (cudadeviceprop), intent(in) :: prop

cudaChooseDevice assigns the device number that best matches the propertiesgivenin
prop toitsfirst argument.

4.2.2. cudaDeviceGetCacheConfig

integer function cudaDeviceGetCacheConfig (cacheconfig)
integer, intent (out) :: cacheconfig

CUDA Fortran Programming Guide and Reference 46

Runtime APIs

cudaDeviceGetCacheConfig returnsthe preferred cache configuration
for the current device. Current possible cache configurations are defined to be
cudaFuncCachePreferNone, cudaFuncCachePreferShared, and
cudaFuncCachePreferLl.

cudaDeviceGetCacheConfig isavailablein device code starting in CUDA 5.0.

4.2.3. cudaDeviceGetLimit

integer function cudaDeviceGetLimit(val, limit)
integer (kind=cuda count kind) :: val
integer :: limit

cudaGetDeviceGetLimit returnsinval the current size of limit. Current possible
limit arguments are cudaLimitStackSize, cudaLimitPrintfSize, and
cudalimitMallocHeapSize.

cudaGetDeviceGetLimit isavailablein device code starting in CUDA 5.0.

4.2.4. cudaDeviceGetSharedMemConfig

integer function cudaDeviceGetSharedMemConfig (config)
integer, intent (out) :: config

cudaDeviceGetSharedMemConfig returnsthe current size of the shared memory

banks on the current device. Thisroutineis for use with devices with configurable

shared memory banks, and is supported starting with CUDA 4.2. Current possible shared
memory configurations are defined to be cudasharedMemBankSizeDefault,
cudaSharedMemBankSizeFourByte, and cudaSharedMemBankSizeEightByte.

4.2.5. cudaDeviceReset

integer function cudaDeviceReset ()

cudaDeviceReset resetsthe current device attached to the current process.

4.2.6. cudaDeviceSetCacheConfig

integer function cudaDeviceSetCacheConfig (cacheconfig)
integer, intent (in) :: cacheconfig

cudaDeviceSetCacheConfig setsthe current device preferred cache configuration.
Current possible cache configurations are defined to be cudaFuncCachePreferNone,
cudaFuncCachePreferShared, and cudaFuncCachePreferll.

4.2.7. cudaDeviceSetLimit

integer function cudaDeviceSetLimit(limit, wval)
integer :: limit

integer (kind=cuda count kind) :: val

cudaGetDeviceSetLimit setsthelimit of the current device to val. Current possible
limit arguments are cudaLimitStackSize, cudaLimitPrintfSize, and
cudalimitMallocHeapSize.

CUDA Fortran Programming Guide and Reference

47

Runtime APIs

4.2.8. cudaDeviceSetSharedMemConfig

integer function cudaDeviceSetSharedMemConfig (config)
integer, intent(in) :: config

cudaDeviceSetSharedMemConfig setsthe size of the shared memory banks on the current
device. Thisroutineis for use with devices with configurable shared memory banks, and is
supported starting with CUDA 4.2. Current possible shared memory configurations are defined
tobe cudaSharedMemBankSizeDefault, cudaSharedMemBankSizeFourByte, and
cudaSharedMemBankSizeEightByte.

4.2.9. cudaDeviceSynchronize

integer function cudaDeviceSynchronize ()

cudaDeviceSynchronize blocksthe current device until al preceding requested tasks have
completed.

cudaDeviceSynchronize isavailablein device code starting in CUDA 5.0.

4.2.10. cudaGetDevice

integer function cudaGetDevice (devnum)
integer, intent (out) :: devnum

cudaGetDevice assigns the device number associated with this host thread to its first
argument.

cudaGetDevice isavailablein device code starting in CUDA 5.0.

4.2.11. cudaGetDeviceCount

integer function cudaGetDeviceCount (numdev)
integer, intent (out) :: numdev

cudaGetDeviceCount assignsthe number of available devicesto itsfirst argument.

cudaGetDeviceCount isavailablein device code starting in CUDA 5.0.

4.2.12. cudaGetDeviceProperties

integer function cudaGetDeviceProperties(prop, devnum)
type (cudadeviceprop), intent (out) :: prop
integer, intent (in) :: devnum

cudaGetDeviceProperties returnsthe properties of agiven device.

cudaGetDeviceProperties isavailablein device code starting in CUDA 5.0.

4.2.13. cudaSetDevice

integer function cudaSetDevice(devnum)
integer, intent (in) :: devnum

cudaSetDevice selectsthe device to associate with this host thread.

CUDA Fortran Programming Guide and Reference 48

Runtime APIs

4.2.14. cudaSetDeviceFlags

integer function cudaSetDevice(flags)
integer, intent(in) :: flags

cudaSetDeviceFlags records how the CUDA runtime interacts with this host thread.

4.2.15. cudaSetValidDevices

integer function cudaSetValidDevices (devices, numdev)
integer :: numdev, devices (numdev)

cudaSetValidDevices setsalist of valid devicesfor CUDA execution in priority order as
specified in the devices array.

4.3. Thread Management

Sometimes threads within a block access the same addresses in shared or global memory, thus
creating potential read-after-write, write-after-read, or write-after-write hazards for some of these
memory accesses. To avoid these potential issues, use the functionsin this section for thread
management. These functions have been deprecated beginning in CUDA 4.0.

4.3.1. cudaThreadExit

integer function cudaThreadExit ()

cudaThreadExit explicitly cleansup al runtime-related CUDA resources associated with the
host thread. Any subsequent CUDA calls or operations will reinitialize the runtime.

Calling cudaThreadExit is optional; it isimplicitly called when the host thread exits.

4.3.2. cudaThreadSynchronize

integer function cudaThreadSynchronize ()

cudaThreadSynchronize blocks execution of the host subprogram until all preceding
kernels and operations are complete. It may return an error condition if one of the preceding
operations fails.

This function is deprecated because its name does not reflect its behavior. Its functionality is identical to the
non-deprecated function cudaDeviceSynchronize (), which you should use instead.

4.4. Error Handling

Use the functions in this section for error handling.

4.4.1. cudaGetErrorString

function cudaGetErrorString(errcode)
integer, intent (in) :: errcode
character* (*) :: cudaGetErrorString

CUDA Fortran Programming Guide and Reference 49

Runtime APIs

cudaGetErrorString returns the message string associated with the given error code.

4.4.2. cudaGetLastError

integer function cudaGetLastError ()

cudaGetLastError returnsthe error code that was most recently returned from any runtime
call in this host thread.

4 .4.3. cudaPeekAtLastError

integer function cudaPeekAtLastError ()

cudaPeekAtLastError returnsthe last error code that has been produced by the CUDA
runtime without resetting the error code to cudaSuccess like cudaGetLastError.

4.5. Stream Management

Use the functions in this section for stream management.

4.5.1. cudaGetStreamDefault

integer (kind=cuda_ stream kind) function cudaGetStreamDefault (devptr)

cudaGetStreambDefault returnsthe default stream which has been associated with athread,
managed variable, or device variableviaacal to cudaSetStreamDefault. devptr may
be any managed or device scalar or array of a supported type specified in Device Code Intrinsic
Datatypes. The devptr argument is optional; if it is not specified, the function returns the
stream tied to the thread, or zero (the default stream).

cudaGetStreamDefault isavailable starting in CUDA 6.0.

4.5.2. cudaSetStreamDefault

integer function cudaSetStreamDefault (devptr, stream)

integer (kind=cuda_ stream kind), intent(in) :: stream
cudaSetStreamDefault setsthe default stream for all subsequent high-level CUDA Fortran
operations on managed or device data initiated by that CPU thread. Currently, the specific
operations affected with managed data are allocatation via the Fortran allocate statement, and
assignment (both memset and memcpy types). For device data, only assignment is currently
affected by this call. devptr may be any managed or device scalar or array of a supported type
specified in Device Code Intrinsic Datatypes. The devptr argument is optional; if it is not
specified, the function ties the specified stream to all subsequent, allowable, high-level operations
executing on that thread.

cudaSetStreamDefault isavailable starting in CUDA 6.0.

4.5.3. cudaStreamAttachMemAsync

integer function cudaStreamAttachMemAsync(stream, devptr, length, flags)

integer (kind=cuda stream kind), intent(in) :: stream
integer (kind=cuda count kind), optional, intent(in) :: length
integer, optional, intent(in) :: flags

CUDA Fortran Programming Guide and Reference 50

Runtime APIs

cudaStreamAttachMemAsync initiates a stream operation to attach the managed allocation
starting at address devptr to the specified stream. devptr may be any managed scalar or
array of a supported type specified in Device Code Intrinsic Datatypes. The argument len is
optional, but currently must be zero. The flags argument must be cudaMemAttachGlobal,
cudMemAttachHost, Or cudMemAttachSingle.

cudaStreamAttachMemAsync isavailable starting in CUDA 6.0.

4.5.4. cudaStreamCreate

integer function cudaStreamCreate(stream)
integer (kind=cuda stream kind), intent(out) :: stream

cudaStreamCreate createsan asynchronous stream and assignsitsidentifier to itsfirst
argument.

4.5.5. cudaStreamDestroy

integer function cudaStreamDestroy(stream)
integer (kind=cuda stream kind), intent(in) :: stream

cudaStreamDestroy releases any resources associated with the given st ream.

cudaStreamDestroy iSavalablein device code starting in CUDA 5.0.

4.5.6. cudaStreamQuery

integer function cudaStreamQuery(stream)
integer (kind=cuda stream kind), intent(in) :: stream

cudaStreamQuery tests whether al operations enqueued to the selected st ream

are complete; it returns zero (success) if al operations are complete, and the value
cudaErrorNotReady if not. It may a so return another error condition if some asynchronous
operations failed.

4.5.7. cudaStreamSynchronize

integer function cudaStreamSynchronize(stream)
integer (kind=cuda stream kind), intent(in) :: stream

cudaStreamSynchronize blocks execution of the host subprogram until all preceding
kernels and operations associated with the given st ream are complete. It may return error codes
from previous, asynchronous operations.

4.5.8. cudaStreamWaitEvent

integer function cudaStreamWaitEvent (stream, event, flags)

integer (kind=cuda stream kind) :: stream
type (cudaEvent), intent (in) :: event
integer :: flags

cudaStreamWaitEvent blocks execution on all work submitted on the st ream until the
event reports completion.

cudaStreamWaitEvent isavailablein device code starting in CUDA 5.0.

CUDA Fortran Programming Guide and Reference 51

Runtime APIs

4.6. Event Management

Use the functions in this section to manage events.

4.6.1. cudaEventCreate

integer function cudaEventCreate(event)
type (cudaEvent), intent (out) :: event

cudaEventCreate creates an event object and assigns the event identifier to its first argument

4.6.2. cudaEventCreateWithFlags

integer function cudaEventCreateWithFlags(event, flags)
type (cudaEvent), intent (out) :: event
integer :: flags

cudaEventCreateWithFlags creates an event object with the specified flags.
Current flags supported are cudaEventDefault, cudaEventBlockingSync, and
cudaEventDisableTiming.

cudaEventCreateWithFlags isavalablein device code starting in CUDA 5.0.

4.6.3. cudaEventDestroy

integer function cudaEventDestroy(event)
type (cudaEvent), intent (in) :: event

cudaEventDestroy destroys the resources associated with an event object.

cudaEventDestroy isavailablein device code starting in CUDA 5.0.

4.6.4. cudakventElapsedTime

integer function cudaEventElapsedTime(time, start, end)

real :: time

type (cudaEvent), intent() :: start, end
cudaEventElapsedTime computes the elapsed time between two events (in milliseconds). It
returns cudaErrorInvalidValue if either event has not yet been recorded. Thisfunctionis
only valid with events recorded on stream zero.

4.6.5. cudaEventQuery

integer function cudaEventQuery(event)
type (cudaEvent), intent(in) :: event

cudaEventQuery testswhether an event has been recorded. It returns success (zero)
if the event has been recorded, and cudaErrorNotReady if it has not. It returns
cudaErrorInvalidvalue if cudaEventRecord hasnot been called for this event.

4.6.6. cudaEventRecord

integer function cudaEventRecord(event, stream)
type (cudaEvent), intent(in) :: event
integer, intent (in) :: stream

CUDA Fortran Programming Guide and Reference 52

Runtime APIs

cudaEventRecord issues an operation to the given st ream to record an event. The event
isrecorded after all preceding operationsin the stream are complete. If st ream is zero, the event
isrecorded after al preceding operationsin all streams are complete.

cudaEventRecord isavailablein device code starting in CUDA 5.0.

4.6.7. cudaEventSynchronize

integer function cudaEventSynchronize(event)

type (cudaEvent), intent(in) :: event

cudaEventSynchronize blocksuntil the event has been recorded. It returns a value of
cudaErrorInvalidvValue if cudaEventRecord hasnot been called for this event.

4.7. Execution Control

CUDA Fortran does not support all API routines which duplicate the functionality of the chevron
syntax. Additional functionality which has been provided with later versions of CUDA is
available.

4.7.1. cudaFuncGetAttributes

integer function cudaFuncGetAttributes(attr, func)
type (cudaFuncAttributes), intent (out) :: attr
character* (*) :: func

cudaFuncGetAttributes getsthe attributes for the function named by the func argument,
which must be aglobal function.

cudaFuncGetAttributes isavailablein device code starting in CUDA 5.0.

4.7.2. cudaFuncSetCacheConfig

integer function cudaFuncSetCacheConfig(func, cacheconfig)
character* (*) :: func
integer :: cacheconfig

cudaFuncSetCacheConfig setsthe preferred cache configuration for the function named
by the func argument, which must be a global function. Current possible cache configurations
are defined to be cudaFuncCachePreferNone, cudaFuncCachePreferShared, and
cudaFuncCachePreferLl.

4.7.3. cudaFuncSetSharedMemConfig

integer function cudaFuncSetSharedMemConfig(func, cacheconfig)
character* (*) :: func
integer :: cacheconfig

cudaFuncSetSharedMemConfig setsthe size of the shared memory banks for the
function named by the func argument, which must be aglobal function. Thisroutineis
for use with devices with configurable shared memory banks, and is supported starting
with CUDA 4.2. Current possible shared memory configurations are defined to be
cudaSharedMemBankSizeDefault, cudaSharedMemBankSizeFourByte, and
cudaSharedMemBankSizeEightByte

CUDA Fortran Programming Guide and Reference 53

Runtime APIs

4.7.4. cudaSetDoubleForDevice

integer function cudaSetDoubleForDevice(d)

real(8) :: d
cudaSetDoubleForDevice Setsthe argument d to an internal representation suitable for
devices which do not support double precision arithmetic.

4.7.5. cudaSetDoubleForHost

integer function cudaSetDoubleForHost(d)

real(8) :: d
cudaSetDoubleForHost setsthe argument d from aninternal representation on devices
which do not support double precision arithmetic to the normal host representation.

4.8. Memory Management

Many of the memory management routines can take device arrays as arguments. Some can also
take C types, provided through the Fortran 2003 iso ¢ binding module, asargumentsto
simplify interfacing to existing CUDA C code.

CUDA Fortran has extended the F2003 derived type TYPE (C_PTR) by providingaC

device pointer, defined in the cudafor module, as TYPE (C_DEVPTR) . Consistent use of
TYPE (C_PTR) and TYPE (C_DEVPTR), aswell as consistency checks between Fortran device
arrays and host arrays, should be of benefit.

Currently, it is possible to construct a Fortran device array out of aTYPE (C_DEVPTR) by

using an extension of the iso ¢ binding subroutine c_f_pointer. Under CUDA Fortran,
c_f_pointer will takea TYPE (C_DEVPTR) asthefirst argument, an allocatable device array

as the second argument, a shape as the third argument, and in effect transfer the allocation to

the Fortran array. Similarly, thereisaso afunction C_ DEVLOC () defined which will creste a
TYPE (C_DEVPTR) that holds the C address of the Fortran device array argument. Both of these
features are subject to change when, in the future, proper Fortran pointers for device dataare
supported.

Use the functions in this section for memory management.

4.8.1. cudaFree

integer function cudaFree (devptr)

cudaFree deallocates data on the device. devptr may be any alocatable device array
of a supported type specified in Device Code Intrinsic Datatypes. Or, devptr may be of
TYPE(C_DEVPTR).

cudaFree isavailablein device code starting in CUDA 5.0.

4.8.2. cudaFreeArray

integer function cudaFreeArray (carray)
type (cudaArrayPtr) :: carray

CUDA Fortran Programming Guide and Reference 54

Runtime APIs

cudaFreeArray freesan array that was allocated on the device.

4.8.3. cudaFreeHost

integer function cudaFreeHost (hostptr)
type (C_PTR) :: hostptr

cudaFreeHost deallocates pinned memory on the host allocated with cudaMalloHost.

4.8.4. cudaGetSymbolAddress

integer function cudaGetSymbolAddress (devptr, symbol)
type (C_DEVPTR) :: devptr
type (c_ptr) :: symbol

cudaGetSymbolAddress returnsin the devptr argument the address of symbol on the
device. A symbol can be set to an external device name viaa character string.

The following code sequence initializes a global device array ‘vx’ from a CUDA C kernel:

type (c_ptr) :: csvx

type (c_devptr) :: cdvx

real, allocatable, device :: vx(:)
csvx = ‘vx’

Istat = cudaGetSymbolAddress (cdvx, cCsvx)
Call c_f pointer(cdvx, vx, 100)
Vx = 0.0

4.8.5. cudaGetSymbolSize

integer function cudaGetSymbolSize (size, symbol)

integer :: size

type (c_ptr) :: symbol
cudaGetSymbolSize setsthevariable size to the size of adevice areain global or constant
memory space referenced by the symbol.

4.8.6. cudaHostAlloc

integer function cudaHostAlloc (hostptr, size, flags)

type (C_PTR) :: hostptr

integer :: size, flags
cudaHostAlloc alocates pinned memory on the host. It returnsin hostptr the address of
the page-locked allocation, or returns an error if the memory isunavailable. Size isin bytes. The
flags argument enables different options to be specified that affect the allocation. The normal
iso_c_hinding subroutine c_f_pointer can be used to move the type(c_ptr) to a Fortran pointer.

4.8.7. cudaHostGetDevicePointer

integer function cudaHostGetDevicePointer (devptr, hostptr, flags)

type (C_DEVPTR) :: devptr
type (C_PTR) :: hostptr
integer :: flags

cudaHostGetDevicePointer returnsapointer to adevice memory address corresponding
to the pinned memory on the host. hostptr isapinned memory buffer that was allocated
viacudaHostAlloc (). Itreturnsin devptr an address that can be passed to, and read

and written by, a kernel which runs on the device. The £1ags argument is provided for

CUDA Fortran Programming Guide and Reference 55

Runtime APIs

future releases. The normal iso_c_binding subroutine ¢_f_pointer can be used to move the
type(c_devptr)to adevice array.

4.8.8. cudaHostGetFlags

integer function cudaHostGetFlags(flags, hostptr)
integer :: flags
type (C_PTR) :: hostptr

cudaHostGetFlags returnsthe flags associated with a host pointer.

4.8.9. cudaHostRegister

integer function cudaHostRegister (hostptr, count, flags)
integer :: flags
type (C_PTR) :: hostptr

cudaHostRegister page-locks the memory associated with the host pointer and of size
provided by the count argument, according to the £1ags argument.

4.8.10. cudaHostUnregister

integer function cudaHostRegister (hostptr)
type (C_PTR) :: hostptr

cudaHostUnregister unmaps the memory associated with the host pointer and
makes it page-able again. The argument hostptr must be the same as was used with
cudaHostRegister.

4.8.11. cudaMalloc

integer function cudaMalloc (devptr, count)

cudaMalloc alocates dataon the device. devptr may be any allocatable, one-dimensional
device array of a supported type specified in Device Code Intrinsic Datatypes. The count isin
terms of elements. Or, devptr may be of TYPE(C_DEVPTR), in which casethe count isin
bytes.

cudaMalloc isavailablein device code starting in CUDA 5.0.

4.8.12. cudaMallocArray

integer function cudaMallocArray (carray, cdesc, width, height)
type (cudaArrayPtr) :: carray
type (cudaChannelFormatDesc) :: cdesc
integer :: width, height

cudaMallocArray alocates adataarray on the device.

4.8.13. cudaMallocManaged

integer function cudaMallocManaged (devptr, count, flags)

cudaMallocManaged allocates datathat will be managed by the unified memory system.
devptr may be any allocatable, one-dimensional managed array of a supported type specified
in Device Code Intrinsic Datatypes. The count isin terms of elements. Or, devptr may be

CUDA Fortran Programming Guide and Reference 56

Runtime APIs

of TYPE(C_DEVPTR), in which case the count isin bytes. The flags argument must be either
cudaMemAttachGlobal or cudaMemAttachHost.

cudaMallocManaged isavailable starting in CUDA 6.0.

4.8.14. cudaMallocPitch

integer function cudaMallocPitch (devptr, pitch, width, height)

cudaMallocPitch alocates data on the device. devptr may be any alocatable, two-
dimensional device array of a supported type specified in Device Code Intrinsic Datatypes. The
width isintermsof humber of elements. The height isan integer.

cudaMallocPitch may pad the data, and the padded width isreturned in the variable pitch.
devptr may aso be of TYPE(C_DEVPTR), in which case the integer values are expressed in
bytes.

4.8.15. cudaMalloc3D

integer function cudaMalloc3D (pitchptr, cext)
type (cudaPitchedPtr), intent (out) :: pitchptr
type (cudaExtent), intent(in) :: cext

cudaMalloc3D alocates data on the device. pitchptr isaderived type defined in the
cudafor module. cext isaso aderived type which holds the extents of the allocated array.
Alternatively, pitchptr may be any alocatable, three-dimensional device array of a supported
type specified in Datatypes Allowed.

4.8.16. cudaMalloc3DArray

integer function cudaMalloc3DArray (carray, cdesc, cext)

type (cudaArrayPtr) :: carray
type (cudaChannelFormatDesc) :: cdesc
type (cudaExtent) :: cext

cudaMalloc3DArray alocates array dataon the device.

4.8.17. cudaMemcpy

integer function cudaMemcpy (dst, src, count, kdir)

cudaMemcpy copies datafrom one location to another. dst and src may be any device

or host, scalar or array, of a supported type specified in Device Code Intrinsic Datatypes.

The count isinterms of elements. kdir may be optional; for more information, refer

to Data Transfer Using Runtime Routines. If kdir is specified, it must be one of the

defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, O
cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR)
or TYPE(C_PTR), in which casethe count isin term of bytes.

cudaMemcpy isavailablein device code starting in CUDA 5.0.

4.8.18. cudaMemcpyArrayToArray

integer function cudaMemcpyArrayToArray(dsta, dstx, dsty,
srca, srcx, srcy, count, kdir)
type (cudaArrayPtr) :: dsta, srca
integer :: dstx, dsty, srcx, srcy, count, kdir

CUDA Fortran Programming Guide and Reference 57

Runtime APIs

cudaMemcpyArrayToArray copiesarray datato and from the device.

4.8.19. cudaMemcpyAsync

integer function cudaMemcpyAsync (dst, src, count, kdir, stream)

cudaMemcpyAsync copies datafrom one location to another. dst and src may be

any device or host, scalar or array, of a supported type specified in Device Code Intrinsic
Datatypes. The count isin terms of elements. kdir may be optional; for more information,
refer to Data Transfer Using Runtime Routines. If kdi r is specified, it must be one of

the defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, Of
cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR)
or TYPE(C_PTR), in which casethe count isin term of bytes.

This function operates on page-locked host memory only. The copy can be associated with a
stream by passing a non-zero stream argument; otherwise the st ream argument is optional and
defaults to zero.

cudaMemcpyAsync isavailable in device code starting in CUDA 5.0.

4.8.20. cudaMemcpyFromArray

integer function cudaMemcpyFromArray(dst, srca, srcx, srcy, count, kdir)
type (cudaArrayPtr) :: srca
integer :: dstx, dsty, count, kdir

cudaMemcpyFromArray copies array datato and from the device.

4.8.21. cudaMemcpyFromSymbol

integer function cudaMemcpyFromSymbol (dst, symbol, count, offset, kdir, stream)

type (c_ptr) :: symbol
integer :: count, offset, kdir
integer, optional :: stream

cudaMemcpyFromSymbol copiesdatafrom adevice areain global or constant memory space
referenced by a symbo1 to adestination on the host. dst may be any host scalar or array of a
supported type specified in Datatypes Allowed. The count isin terms of elements.

4.8.22. cudaMemcpyFromSymbolAsync

integer function cudaMemcpyFromSymbolAsync (dst, symbol, count, offset, kdir,
stream)

type(c ptr) :: symbol
integer :: count, offset, kdir
integer, optional :: stream

cudaMemcpyFromSymbolASYNC copies datafrom adevice areain global or constant
memory space referenced by a symbo1 to a destination on the host. dst may be any host scalar
or array of asupported type specified in Datatypes Allowed. The count isin terms of elements.

cudaMemcpyFromSymbolASYNCIis asynchronous with respect to the host, This function
operates on page-locked host memory only. The copy can be associated with a stream by passing
anon-zero stream argument.

CUDA Fortran Programming Guide and Reference 58

Runtime APIs

4.8.23. cudaMemcpyPeer

integer function cudaMemcpyPeer (dst, dstdev, src, srcdev, count)

cudaMemcpyPeer copies datafrom one device to another. dst and src may be any device
scalar or array, of a supported type specified in Device Code Intrinsic Datatypes. The count is
in terms of elements. Alternatively, dst and src may be of TYPE(C_DEVPTR), in which case
the count isin term of bytes.

4.8.24. cudaMemcpyPeerAsync

integer function cudaMemcpyPeerAsync (dst, dstdev, src, srcdev, count, stream)

cudaMemcpyPeerAsync copies datafrom one device to another. dst and src may be any
device scalar or array, of a supported type specified in Device Code Intrinsic Datatypes. The
count isinterms of elements. Alternatively, dst and src may be of TYPE(C DEVPTR), in
which casethe count isinterm of bytes. The copy can be associated with a stream by passing a
non-zero stream argument.

4.8.25. cudaMemcpyToArray

integer function cudaMemcpyToArray (dsta, dstx, dsty, src, count, kdir)
type (cudaArrayPtr) :: dsta
integer :: dstx, dsty, count, kdir

cudaMemcpyToArray copies array datato and from the device.

4.8.26. cudaMemcpyToSymbol

integer function cudaMemcpyToSymbol (symbol, src, count, offset, kdir)

type (c_ptr) :: symbol

integer :: count, offset, kdir
cudaMemcpyToSymbol copies datafrom the source to a device areain global or constant
memory space referenced by a symbol. src may be any host scalar or array of a supported type
as specified in Device Code Intrinsic Datatypes. The count isin terms of elements.

4.8.27. cudaMemcpyToSymbolAsync

integer function cudaMemcpyToSymbolAsync (symbol, src, count, offset, kdir,
stream)

type(c ptr) :: symbol
integer :: count, offset, kdir
integer, optional :: stream

cudaMemcpyToSymbolAsync copies datafrom the source to adevice areain globa or
constant memory space referenced by a symbol. src may be any host scalar or array of a
supported type specified in Datatypes Allowed. The count isin terms of elements.

This function operates on page-locked host memory only. The copy can be associated with a
stream by passing a non-zero stream argument.

4.8.28. cudaMemcpy2D

integer function cudaMemcpy2D(dst, dpitch, src, spitch, width, height, kdir)

CUDA Fortran Programming Guide and Reference 59

Runtime APIs

cudaMemcpy?2D copies data from one location to another. dst and src may be any

device or host array, of a supported type specified in Device Code Intrinsic Datatypes. The
width and height areintermsof elements. kdir may be optional; for more information,
refer to Data Transfer Using Runtime Routines. If kdi r is specified, it must be one of

the defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, Of
cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR)
or TYPE(C_PTR), inwhich casethewidth and height areinterm of bytes.

cudaMemcpy2D isavailablein device code starting in CUDA 5.0.

4.8.29. cudaMemcpy2DArrayToArray

integer function cudaMemcpy2DArrayToArray (dsta, dstx, dsty,
srca, srcx, srcy, width, height, kdir)

type (cudaArrayPtr) :: dsta, srca
integer :: dstx, dsty, srcx, srcy, width, height, kdir

cudaMemcpy2DArrayToArray copiesarray datato and from the device.

4.8.30. cudaMemcpy2DAsync

integer function cudaMemcpy2DAsync (dst, dpitch, src, spitch, width,
height, kdir, stream)

cudaMemcpy?2D copies data from one location to another. dst and src may be any

device or host array, of a supported type specified in Device Code Intrinsic Datatypes. The
width and height areintermsof elements. kdir may be optional; for more information,
refer to Data Transfer Using Runtime Routines. If kdi r is specified, it must be one of

the defined enums cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, Of
cudaMemcpyDeviceToDevice. Alternatively, dst and src may be of TYPE(C_DEVPTR)
or TYPE(C_PTR), inwhich casethewidth and height areinterm of bytes.

This function operates on page-locked host memory only. The copy can be associated with a
stream by passing a non-zero st ream argument, otherwise the st ream argument is optional
and defaults to zero.

cudaMemcpy2DAsync isavailable in device code starting in CUDA 5.0.

4.8.31. cudaMemcpy2DFromArray

integer function cudaMemcpy2DFromArray (dst, dpitch, srca, srcx, srcy,
width, height, kdir)
type (cudaArrayPtr) :: srca
integer :: dpitch, srcx, srcy, width, height, kdir

cudaMemcpy2DFromArray copies array datato and from the device.

4.8.32. cudaMemcpy2DToArray

integer function cudaMemcpy2DToArray (dsta, dstx, dsty, src,
spitch, width, height, kdir)
type (cudaArrayPtr) :: dsta
integer :: dstx, dsty, spitch, width, height, kdir

cudaMemcpy2DToArray copies array datato and from the device.

CUDA Fortran Programming Guide and Reference 60

Runtime APIs

4.8.33. cudaMemcpy3D

integer function cudaMemcpy3D (p)
type (cudaMemcpy3DParms) :: p

cudaMemcpy3D copies elements from one 3D array to another as specified by the dataheld in
the derived type p.

4.8.34. cudaMemcpy3DAsync

integer function cudaMemcpy3D(p, stream)
type (cudaMemcpy3DParms) :: p
integer :: stream

cudaMemcpy3DAsync copies el ements from one 3D array to another as specified by the data
held in the derived type p.

This function operates on page-locked host memory only. The copy can be associated with a
stream by passing a non-zero stream argument.

4.8.35. cudaMemGetinfo

integer function cudaMemGetInfo(free, total)

integer (kind=cuda count kind) :: free, total
cudaMemGet Info returnsthe amount of free and total memory available for allocation on the
device. The returned values units are in bytes.

4.8.36. cudaMemset

integer function cudaMemset (devptr, value, count)

cudaMemset setsalocation or array to the specified value. devptr may be any device

scalar or array of a supported type specified in Device Code Intrinsic Datatypes. The value
must match in type and kind. The count isin terms of elements. Or, devptr may be of
TYPE(C_DEVPTR), in which casethe count isin term of bytes, and the lowest byte of value
isused.

4.8.37. cudaMemset2D

integer function cudaMemset2D (devptr, pitch, value, width, height)

cudaMemset2D setsan array to the specified value. devptr may be any device array of a
supported type specified in Device Code Intrinsic Datatypes. The value must match in type
and kind. Thepitch, width, and height areinterms of elements. Or, devptr may be of
TYPE(C_DEVPTR), inwhich casethepitch, width, and height areinterms of bytes, and
the lowest byte of value isused.

4.8.38. cudaMemset3D

integer function cudaMemset3D (pitchptr, value, cext)
type (cudaPitchedPtr) :: pitchptr
integer :: value
type (cudaExtent) :: cext

CUDA Fortran Programming Guide and Reference 61

Runtime APIs

cudaMemset 3D sets elements of an array, the extents in each dimension specified by cext,
which was allocated with cudaMal1oc3D to a specified value.

4.9. Unified Addressing and Peer Device Memory Access

Use the functions in this section for managing multiple devices from the same process and
threads.

4.9.1. cudaDeviceCanAccessPeer

integer function cudaDeviceCanAccessPeer (canAccessPeer, device, peerDevice)
integer :: canAccessPeer, device, peerDevice

cudaDeviceCanAccessPeer refurnsin canAccessPeer thevaue lif thedevice
argument can access memory in the device specified by the peerDevice argument.

4.9.2. cudaDeviceDisablePeerAccess

integer function cudaDeviceDisablePeerAccess (peerDevice)
integer :: peerDevice

cudaDeviceDisablePeerAccess disablesthe ability to access memory on the device
specified by the peerDevice argument by the current device.

4.9.3. cudaDeviceEnablePeerAccess

integer function cudaDeviceEnablePeerAccess (peerDevice, flags)
integer :: peerDevice, flags

cudaDeviceEnablePeerAccess enablesthe ability to access memory on the device
specified by the peerDevice argument by the current device. Currently, flags must be zero.

4.9.4. cudaPointerGetAttributes

integer function cudaPointerGetAttributes(attr, ptr)
type (cudaPointerAttributes), intent (out) :: ptr

cudaPointerGetAttributes returnsthe attributes of adevice or host pointer in the
attributes type. ptr may be any host or device scalar or array of a supported type specified in
Datatypes Allowed. It may also be of type C_ PTR or C DEVPTR.

4.10. Version Management

Use the functions in this section for version management.

4.10.1. cudaDriverGet\Version

integer function cudaDriverGetVersion (iversion)
integer :: iversion

cudaDriverGetVersion returnsthe version number of theinstalled CUDA driver as
iversion. If nodriverisinstalled, thenit returnsOasiversion.

CUDA Fortran Programming Guide and Reference

62

Runtime APIs

This function automatically returns cudaErrorInvalidValue if the iversion argumentis
NULL.

4.10.2. cudaRuntimeGetVersion

integer function cudaRuntimeGetVersion (iversion)
integer :: iversion

cudaRuntimeGetVersion returns the version number of the installed CUDA Runtime as
iversion.

This function automatically returns cudaErrorInvalidValue if the iversion argumentis
NULL.

CUDA Fortran Programming Guide and Reference 63

Chapter 5.
EXAMPLES

This section contains examples with source code.

5.1. Matrix Multiplication Example

This example shows a program to compute the product C of two matrices A and B, asfollows:

» Each thread block computes one 16x16 submatrix of C;
» Each thread within the block computes one element of the submatrix.

The submatrix size is chosen so the number of threads in a block is a multiple of the warp size
(32) and is less than the maximum number of threads per thread block (512).

Each element of the result is the product of one row of A by one column of B. The program
computes the products by accumulating submatrix products; it reads a block submatrix of A and a
block submatrix of B, accumulates the submatrix product, then moves to the next submatrix of A
rowwise and of B columnwise. The program caches the submatrices of A and B in the fast shared
memory.

For simplicity, the program assumes the matrix sizes are amultiple of 16, and has not been highly
optimized for execution time.

CUDA Fortran Programming Guide and Reference 64

5.1.1. Source Code Listing

Matrix Multiplication

start the module containing the matmul kernel

module mmul mod

use cudafor

contains

attributes (global)

! mmul kernel computes A*B into C where
' A is NxM, B is MxL, C is then NxL

real :: A(N,M), B(M,L), C(N,L)
integer, value :: N, M, L
integer :: i, j, kb, k, tx, ty

! submatrices stored in shared memory
real, shared :: Asub(16,16), Bsub(16,16)
! the value of C(i,j) being computed
real :: Cij

! Get the thread indices

tx = threadidx%x

ty = threadidx%y

! This thread computes C(i,3j) = sum(A(i,:) * B(:,3))

i = (blockidx%x-1) * 16 + tx
J = (blockidx%y-1) * 16 + ty
Cij = 0.0

! Do the k loop in chunks of 16, the block size
do kb =1, M, 16
! Fill the submatrices
! Each of the 16x16 threads in the thread block
! loads one element of Asub and Bsub
Asub (tx,ty) = A(i,kb+ty-1)
Bsub (tx, ty) = B(kb+tx-1,7)
! Wait until all elements are filled
call syncthreads ()
! Multiply the two submatrices
! Each of the 16x16 threads accumulates the
! dot product for its element of C(i,])
do k = 1,16
Cij = Cij + Asub(tx,k) * Bsub(k,ty)
enddo
! Synchronize to make sure all threads are done
! reading the submatrices before overwriting them
! in the next iteration of the kb loop
call syncthreads ()
enddo
! Each of the 16x16 threads stores its element
! to the global C array
C(i,J) = Cij
end subroutine mmul kernel

The host routine to drive the matrix multiplication
subroutine mmul (A, B, C)

real, dimension(:,:) :: A, B, C

! allocatable device arrays

real, device, allocatable, dimension(:,:) :: Adev,Bdev,Cdev
! dim3 variables to define the grid and block shapes

type (dim3) :: dimGrid, dimBlock

! Get the array sizes

N = size(A, 1)

M = size(A, 2)

L = size(B, 2)

|

! Allocate the device arrays
allocate(Adev (N,M), Bdev(M,L), Cdev(N,L))

CUDA Fortran Programming Guide and Reference

subroutine mmul kernel(A, B, C, N, M, L)

Examples

65

Examples

! Copy A and B to the device
Adev = A(1:N,1:M)
Bdev(:,:) = B(1:M,1:L)

! Create the grid and block dimensions

dimGrid = dim3(N/16, L/16, 1)

dimBlock = dim3(16, 16, 1)

call mmul kernel<<<dimGrid,dimBlock>>>(Adev, Bdev, Cdev, N, M, L)
! Copy the results back and free up memory

C(l:N,1:L) = Cdev

deallocate (Adev, Bdev, Cdev)

end subroutine mmul
end module mmul mod

5.1.2. Source Code Description

This source code module mmul mod has two subroutines. The host subroutinemmul isa
wrapper for the kernel routinemmul kernel.

MMUL

This host subroutine has two input arrays, A and B, and one output array, C, passed as assumed-
shape arrays. The routine performs the following operations:

» |t determines the size of the matricesin N, M, and L.

» It alocates device memory arrays Adev, Bdev, and Cdev .

» It copiesthe arrays A and B to Adev and Bdev using array assignments.
» ItfillsdimGrid and dimBlock to hold the grid and thread block sizes.
» Itcalsmmul kernel tocompute Cdev on the device.

» It copies Ccdev back from device memory to C.

» It freesthe device memory arrays.

Because the data copy operations are synchronous, no extra synchronization is needed between
the copy operations and the kernel launch.

MMUL_KERNEL

This kernel subroutine has two device memory input arrays, 2 and B, one device memory
output array, C, and three scalars giving the array sizes. The thread executing thisroutineis
one of 16x16 threads cooperating in athread block. This routine computes the dot product of
A(i, :)*B(:,7) foraparticular value of i and j, depending on the block and thread index.

It performs the following operations:

» It determines the thread indices for this thread.

» It determinesthei and | indices, for which element of C (i, j) itiscomputing.
» Itinitializes ascalar in which it will accumulate the dot product.

» It steps through the arrays 2 and B in blocks of size 16.

» For each block, it does the following steps:

» It loads one element of the submatrices of A and B into shared memory.

CUDA Fortran Programming Guide and Reference 66

Examples

» It synchronizes to make sure both submatrices are loaded by all threads in the block.
» It accumulates the dot product of its row and column of the submatrices.
» It synchronizes again to make sure all threads are done reading the submatrices before
starting the next block.
» Finally, it stores the computed value into the correct element of C.

5.2. Mapped Memory Example

This example demonstrates the use of CUDA API supported in the cuda for module for
mapping page-locked host memory into the address space of the device. It makes use of the
iso ¢ binding c_ptrtypeandthecudafor c devptr typestointerfacetothe C
routines, then the Fortran ¢ £ pointer call to map the typesto Fortran arrays.

CUDA Fortran Programming Guide and Reference

67

Examples

Mapped Memory

module atest
contains
attributes (global) subroutine matrixinc(a,n)
real, device :: a(n,n)
integer, value :: n
i = (blockidx%x-1)*10 + threadidx%x
j= (blockidx%y-1) *10 + threadidx%y
if ((i .le. n) .and. (j .le. n)) then
a(i,j) = a(i,j) + 1.0
endif
return
end subroutine
end module

program test

use cudafor

use atest

use, intrinsic :: iso c _binding

type(c ptr) :: a

type (c_devptr) :: a d

real, dimension(:,:), pointer :: fa

real, dimension(:,:), allocatable, device :: fa d

type (dim3) :: blcks, thrds -
istat= cudaSetDeviceFlags (cudadevicemaphost)
istat = cudaHostAlloc(a,100*100*sizeof (1.0),cudaHostAllocMapped)

! can move the c ptr to an £90 pointer
call c_f pointer(a, fa, (/ 100, 100 /))

! update the data on the host
do j =1, 100
do i =1, 100
fa(i,j)= real (i) + j*;100.0
end do
end do

! get a device pointer to the same array
istat= cudaHostGetDevicePointer(a d, a, 0)

! can move the c devptr to an device allocatable array
call c_f pointer(a d, fa d, (/ 100, 100 /))

|
blcks = dim3(10,10,1)

thrds = dim3(10,10,1)

|

call matrixinc <<<blcks, thrds>>>(fa d, 100)

! need to synchronize

istat = cudaDeviceSynchronize ()
i
do j =1, 100
do i =1, 100
if (fa(i,j) .ne. (real(i) + j*100.0 + 1.0)) print *,"failure",i,J
end do
end do
|
istat = cudaFreeHost (a)
end

CUDA Fortran Programming Guide and Reference 68

5.3. Cublas Module Example

Examples

This example demonstrates the use of the cublas module, the cublasHandle type, the three
forms of cublas calls, and the use of mapped pinned memory, all within the framework of an

multi-threaded OpenM P program.
Cublas Module

program tdot
! Compile with "pgfortran -mp tdot.cuf -lcublas -lacml
! Compile with "pgfortran -mp tdot.cuf -lcublas -1lblas,

! where acml is not available! Set OMP NUM THREADS environment variable to run

with

! up to 2 threads, currently.

|

use cublas

use cudafor

use omp lib

|

integer, parameter :: N = 10000
real*8 x(N), y(N), =z

real*8, device, allocatable :: xdO(:)
real*8, device, allocatable :: xdl(:)
real*8, allocatable :: zh(:)

real*8, allocatable, device :: zd(:)
integer, allocatable :: istats(:), offs(:)
real*8 reslt (3)

type (C_DEVPTR) :: zdptr

type (cublasHandle) :: h

do (
dl

r Y 3)
;o ydl(:)

! Max at 2 threads for now
nthr = omp get max threads|()
if (nthr .gt. 2) nthr = 2
call omp set num threads (nthr)
! Run on host

call random number (x)

call random number (y)

z = ddot (N,x,1,vy,1)

print *,"HostSerial",z

! Create a pinned memory spot
!'Somp PARALLEL private (i, istat)
i = omp _get thread num()
istat = cudaSetDeviceFlags (cudaDeviceMapHost)
istat = cudaSetDevice (1)
!Somp end parallel
allocate(zh(512),align=4096)
zh = 0.0d0
istat = cudaHostRegister (C LOC(zh (1)), 4096, cudaHostRegisterMapped)
istat = cudaHostGetDevicePointer (zdptr, C LOC(zh (1)), O0)
call ¢ f pointer(zdptr, zd, 512)

! CUDA data allocation, run on one card, blas interface
allocate (xd0 (N), ydO (N))

xd0 = x

yd0 =y

z = ddot (N,xd0,1,yd0,1)
ii = 1

reslt (ii) z

deallocate (xd0)

ii = ii + 1
(
deallocate (ydO0)

CUDA Fortran Programming Guide and Reference

69

! Break up the array into sections
nsec = N / nthr

allocate (istats (nthr),offs (nthr))
offs = (/ (i*nsec,i=0,nthr-1) /)

! Allocate and initialize the arrays
!'Somp PARALLEL private (i,istat)
i = omp_get thread num() + 1
if (i .eqg. 1) then
allocate (xd0 (nsec), ydO(nsec))
xd0 = x(offs(i)+1l:0ffs (i) +nsec)
yd0 = y(offs(i)+l:0ffs(i)+nsec)
else
allocate (xdl (nsec), ydl (nsec))
xdl = x(offs(i)+1l:0ffs (i) +nsec)
ydl = y(offs(i)+l:0ffs (i) +nsec)
endif
!Somp end parallel

! Run the blas kernel using cublas name
!'Somp PARALLEL private(i,istat, z)
i = omp get thread num() + 1
if (i .eqg. 1) then
z = cublasDdot (nsec,xd0,1,yd0,1)

else

z = cublasDdot (nsec,xdl,1,ydl,1)
endif
zh (1) = z

!'Somp end parallel

z = zh (1) + zh(2)
reslt (ii) = z

ii = ii + 1

zh = 0.0d0

! Now write to our pinned area with the v2 blas
!'Somp PARALLEL private(h,i,istat)

i = omp_get thread num() + 1

h = cublasGetHandle ()

istat = cublasSetPointerMode (h, CUBLAS POINTER MODE DEVICE)

if (i .eqg. 1) then

istats (i) = cublasbDdot v2(h, nsec, xd0,
else

istats (i) = cublasDdot v2(h, nsec, xdl,
endif

1,

1,

ydo,

ydl,

1,

1,

zd (1))

zd (2))

istat = cublasSetPointerMode (h, CUBLAS POINTER MODE HOST)

istat = cudaDeviceSynchronize ()
!Somp end parallel

z = zh (1) + zh(2)
reslt(ii) = z

print *,"Device, 3 ways:",reslt

! Deallocate the arrays
!'Somp PARALLEL private (i)
i = omp get thread num() + 1
if (i .eqg. 1) then
deallocate (xd0, ydO)
else
deallocate (xdl,ydl)
endif
!'Somp end parallel
deallocate (istats,offs)

end

CUDA Fortran Programming Guide and Reference

Examples

70

5.4. CUDA Device Properties Example

This example demonstrates how to access the device properties from CUDA Fortran.
CUDA Device Properties

pgfortran cufinfo.cuf

program cufinfo

use cudafor

integer istat, num, numdevices

An example of getting device properties in CUDA Fortran
Build with

num)

type (cudadeviceprop) :: prop

istat = cudaGetDeviceCount (numdevices)

do num = 0, numdevices-1
istat = cudaGetDeviceProperties (prop, num)
call printDeviceProperties (prop,

end do

end

subroutine printDeviceProperties (prop, num)

use cudafor

type (cudadeviceprop) :: prop

integer num

ilen = verify(prop%name, ' ', .true.)
write (*,900) "Device Number: "
write (*,901) "Device Name: "

write (*,903) "Total Global Memory: "
write (*,902) "sharedMemPerBlock: "
write (*,900) "regsPerBlock: "

write (*,900) "warpSize: "

write (*,900) "maxThreadsPerBlock: "
write (*,904) "maxThreadsDim: "
write (*,904) "maxGridSize: "

write (*,903) "ClockRate: "

write (*,902) "Total Const Memory: "
write (*,905)

write (*,902) "TextureAlignment: "
write (*,906) "deviceOverlap: "
write (*,900) "multiProcessorCount: "
write (*,906) "integrated: "

write (*,906) "canMapHostMemory: "
write (*,906) "ECCEnabled: "

write (*,906) "UnifiedAddressing: "
write (*,900) "L2 Cache Size: "
write (*,900) "maxThreadsPerSMP: "
900 format (a,i0)

901 format (a,a)

902 format (a,i0,a)

903 format (a,f5.3,a)

904 format (a,2(i0,1x,'x',1x),10)
905 format (a,i0,'."',1i0)

906 format (a,l10)

return

end

CUDA Fortran Programming Guide and Reference

, num
,prop%name (1l:ilen)

Examples

,real (prop%totalGlobalMem) /1e9," Gbytes"

,prop%sharedMemPerBlock," bytes"
,propsregsPerBlock
,prop%warpSize
,prop$maxThreadsPerBlock
,propsmaxThreadsDim
,prop%maxGridSize

,real (prop%clockRate) /1le6," GHz"
,prop%totalConstMem, " bytes"

"Compute Capability Revision: ",prop%major,propsminor

,prop%textureAlignment, " bytes"
,prop%deviceOverlap
,propSmultiProcessorCount
,prop%integrated
,prop%canMapHostMemory
,Prop%ECCEnabled
,propSunifiedAddressing
,prop%l2CacheSize
,prop%maxThreadsPerMultiProcessor

71

Examples

5.5. CUDA Asynchronous Memory Transfer Example

This example demonstrates how to perform asynchronous copies to and from the device using the
CUDA API from CUDA Fortran.

CUDA Asynchronous Memory Transfer

! This code demonstrates strategies hiding data transfers via
! asynchronous data copies in multiple streams

module kernels m
contains
attributes (global) subroutine kernel (a, offset)
implicit none
real :: a(*)
integer, value :: offset
integer :: i
real :: ¢, s, X
i = offset + threadIdx%x + (blockIdx%x-1)*blockDim%x

x = threadIdx%$x + (blockIdx%x-1)*blockDim%x
s = sin(x); c = cos(x)
a(i) = a(i) + sgrt(s**2+c**2)

end subroutine kernel
end module kernels m

program testAsync
use cudafor
use kernels m
implicit none

integer, parameter :: blockSize = 256, nStreams = 8
integer, parameter :: n = 16*1024*blockSize*nStreams
real, pinned, allocatable :: a(:)

real, device :: a d(n)

integer (kind=cuda Stream Kind) :: stream(nStreams)
type (cudaEvent) :: startEvent, stopEvent, dummyEvent
real :: time

integer :: i, istat, offset, streamSize = n/nStreams
logical :: pinnedFlag

type (cudaDeviceProp) :: prop

istat = cudaGetDeviceProperties (prop, 0)
write(*," (' Device: ', a,/)") trim(prop%name)

! allocate pinned host memory
allocate(a(n), STAT=istat, PINNED=pinnedFlag)
if (istat /= 0) then

write(*,*) 'Allocation of a failed'

stop

else
if (.not. pinnedFlag) write(*,*) 'Pinned allocation failed'
end if

! create events and streams

istat = cudaEventCreate (startEvent)
istat = cudaEventCreate (stopEvent)
istat = cudaEventCreate (dummyEvent)
do i = 1, nStreams

istat = cudaStreamCreate (stream(i))
enddo

CUDA Fortran Programming Guide and Reference 72

! baseline case - sequential transfer and execute
a =20

istat = cudaEventRecord (startEvent,0)

ad=a

call kernel<<<n/blockSize, blockSize>>>(a _d, 0)
a =ad

Examples

istat = cudaEventRecord (stopEvent, 0)
istat = cudaEventSynchronize (stopEvent)
istat = cudaEventElapsedTime (time, startEvent, stopEvent)
write(*,*) 'Time for sequential transfer and execute (ms): ', time
write(*,*) ' max error: ', maxval (abs(a-1.0))
! asynchronous version 1: loop over {copy, kernel, copy}
a =20
istat = cudaEventRecord(startEvent,0)
do 1 = 1, nStreams
offset = (i-1)*streamSize
istat = cudaMemcpyAsync (a d(offset+l),a(offset+l),streamSize,stream(i))
call kernel<<<streamSize/blockSize, blockSize, &
0, stream(i)>>>(a_d,offset)
istat = cudaMemcpyAsync (a(offset+l),a d(offset+l),streamSize,stream(i))
enddo
istat = cudaEventRecord (stopEvent, 0)
istat = cudaEventSynchronize (stopEvent)
istat = cudaEventElapsedTime (time, startEvent, stopEvent)
write(*,*) 'Time for asynchronous V1 transfer and execute (ms): ', time
write(*,*) ' max error: ', maxval (abs(a-1.0))
! asynchronous version 2:
! loop over copy, loop over kernel, loop over copy
a =20
istat = cudaEventRecord (startEvent,0)
do i = 1, nStreams
offset = (i-1)*streamSize
istat = cudaMemcpyAsync (a d(offset+l),a(offset+l),streamSize,stream(i))
enddo
do i = 1, nStreams
offset = (i-1)*streamSize
call kernel<<<streamSize/blockSize, blockSize, &
0, stream(i)>>>(a_d,offset)
enddo
do i = 1, nStreams
offset = (i-1)*streamSize
istat = cudaMemcpyAsync (a(offset+l),a d(offset+l),streamSize,stream(i))
enddo
istat = cudaEventRecord (stopEvent, 0)
istat = cudaEventSynchronize (stopEvent)
istat = cudaEventElapsedTime (time, startEvent, stopEvent)
write(*,*) 'Time for asynchronous V2 transfer and execute (ms): ', time
write(*,*) ' max error: ', maxval (abs(a-1.0))
! cleanup
istat = cudaEventDestroy (startEvent)
istat = cudaEventDestroy (stopEvent)
istat = cudaEventDestroy (dummyEvent)
do i = 1, nStreams
istat = cudaStreamDestroy(stream(i))
enddo

deallocate (a)

end program testAsync

CUDA Fortran Programming Guide and Reference

73

Examples

5.6. Managed Memory Example

This example demonstrates the use of CUDA managed memory in an OpenMP program. In the
main program, one stream is created for each OpenM P thread. A call to cudaSetStreamDefault

is made to set that as the default stream for all subsequent high-level language constructs. The
default stream is used explicitly in the launch configuration of the CUF kernel, and also as the
thread's input argument for synchronization. Once the cudaStreamSynchronize has occurred, this
thread can safely access the managed data on the host, in this case in the any() function, even
while other threads may be in the middle of their kernel launch.

Managed Memory and OpenMP in CUDA Fortran

program ompcuf

use cudafor

use omp lib

integer (kind=cuda stream kind) :: mystream

!'Somp parallel private (istat,mystream)
istat = cudaStreamCreate (mystream)
istat = cudaSetStreamDefault (mystream)
call ompworker ()

!Somp end parallel

end

subroutine ompworker ()
use cudafor

use omp lib

real, managed :: a(10000)
j = omp get thread num()
a = real(3)

!Scuf kernel do <<< *, *, stream=cudaGetStreamDefault () >>>

do i =1, 10000
a(i) = a(i) + 1.0
end do
istat = cudaStreamSynchronize (cudaGetStreamDefault ())
if (any(a.ne.real(j+1))) then
print *,"Found error on ",j
else
print *,"Looks good on ",Jj
endif
end

CUDA Fortran Programming Guide and Reference 74

Chapter 6.
CONTACT INFORMATION

Y ou can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637

Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGl engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
guestions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/fag.htm

All technical support is by e-mail or submissions using an online form at:
http://www.pgroup.com/support

Phone support is not currently available.

PGI documentation is available at http://www.pgroup.com/resources/docs.htm or in your local
copy of the documentation in the release directory doc/index.htm.

CUDA Fortran Programming Guide and Reference 75

mailto: sales@pgroup.com
mailto: trs@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
http://www.pgroup.com/support
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGl Workstation, PGI Server, PGl Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGl Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2014 NVIDIA Corporation. All rights reserved.

PGI

	Table of Contents
	List of Tables
	Preface
	Intended Audience
	Organization
	Conventions
	Terminology
	Related Publications

	Introduction
	Programming Guide
	2.1. CUDA Fortran Host and Device Code
	2.2. CUDA Fortran Kernels
	2.3. Thread Blocks
	2.4. Memory Hierarchy
	2.5. Subroutine / Function Qualifiers
	2.5.1. Attributes(host)
	2.5.2. Attributes(global)
	2.5.3. Attributes(device)
	2.5.4. Restrictions

	2.6. Variable Qualifiers
	2.6.1. Attributes(device)
	2.6.2. Attributes(managed)
	2.6.3. Attributes(constant)
	2.6.4. Attributes(shared)
	2.6.5. Attributes(pinned)
	2.6.6. Attributes(texture)

	2.7. Datatypes in Device Subprograms
	2.8. Predefined Variables in Device Subprograms
	2.9. Execution Configuration
	2.10. Asynchronous Concurrent Execution
	2.10.1. Concurrent Host and Device Execution
	2.10.2. Concurrent Stream Execution

	2.11. Kernel Loop Directive
	2.11.1. Syntax
	2.11.2. Restrictions on the CUF kernel directive
	2.11.3. Summation Example

	2.12. Using Fortran Modules
	2.12.1. Accessing Data from Other Modules
	2.12.2. Call Routines from Other Modules
	2.12.3. Declaring Device Pointer and Target Arrays
	2.12.4. Declaring Textures

	2.13. Building a CUDA Fortran Program
	2.14. Emulation Mode

	Reference
	3.1. New Subroutine and Function Attributes
	3.1.1. Host Subroutines and Functions
	3.1.2. Global Subroutines
	3.1.3. Device Subroutines and Functions
	3.1.4. Restrictions on Device Subprograms

	3.2. Variable Attributes
	3.2.1. Device data
	3.2.2. Managed data
	3.2.3. Pinned arrays
	3.2.4. Constant data
	3.2.5. Shared data
	3.2.6. Texture data
	3.2.7. Value dummy arguments

	3.3. Allocating Device Memory, Pinned Memory, and Managed Memory
	3.3.1. Allocating Device Memory
	3.3.2. Allocating Device Memory Using Runtime Routines
	3.3.3. Allocate Pinned Memory
	3.3.4. Allocating Managed Memory
	3.3.5. Allocating Managed Memory Using Runtime Routines

	3.4. Data transfer between host and device memory
	3.4.1. Data Transfer Using Assignment Statements
	3.4.2. Implicit Data Transfer in Expressions
	3.4.3. Data Transfer Using Runtime Routines

	3.5. Invoking a kernel subroutine
	3.6. Device code
	3.6.1. Datatypes Allowed
	3.6.2. Built-in variables
	3.6.3. Fortran Intrinsics
	3.6.4. New Intrinsic Functions
	3.6.5. Warp-Vote Operations
	3.6.6. Atomic Functions
	3.6.7. Restrictions
	3.6.8. PRINT and WRITE Statements
	3.6.9. Shuffle Functions

	3.7. Host code
	3.7.1. SIZEOF Intrinsic

	3.8. Fortran Modules
	3.8.1. Device Modules
	3.8.2. Host Modules

	Runtime APIs
	4.1. Initialization
	4.2. Device Management
	4.2.1. cudaChooseDevice
	4.2.2. cudaDeviceGetCacheConfig
	4.2.3. cudaDeviceGetLimit
	4.2.4. cudaDeviceGetSharedMemConfig
	4.2.5. cudaDeviceReset
	4.2.6. cudaDeviceSetCacheConfig
	4.2.7. cudaDeviceSetLimit
	4.2.8. cudaDeviceSetSharedMemConfig
	4.2.9. cudaDeviceSynchronize
	4.2.10. cudaGetDevice
	4.2.11. cudaGetDeviceCount
	4.2.12. cudaGetDeviceProperties
	4.2.13. cudaSetDevice
	4.2.14. cudaSetDeviceFlags
	4.2.15. cudaSetValidDevices

	4.3. Thread Management
	4.3.1. cudaThreadExit
	4.3.2. cudaThreadSynchronize

	4.4. Error Handling
	4.4.1. cudaGetErrorString
	4.4.2. cudaGetLastError
	4.4.3. cudaPeekAtLastError

	4.5. Stream Management
	4.5.1. cudaGetStreamDefault
	4.5.2. cudaSetStreamDefault
	4.5.3. cudaStreamAttachMemAsync
	4.5.4. cudaStreamCreate
	4.5.5. cudaStreamDestroy
	4.5.6. cudaStreamQuery
	4.5.7. cudaStreamSynchronize
	4.5.8. cudaStreamWaitEvent

	4.6. Event Management
	4.6.1. cudaEventCreate
	4.6.2. cudaEventCreateWithFlags
	4.6.3. cudaEventDestroy
	4.6.4. cudaEventElapsedTime
	4.6.5. cudaEventQuery
	4.6.6. cudaEventRecord
	4.6.7. cudaEventSynchronize

	4.7. Execution Control
	4.7.1. cudaFuncGetAttributes
	4.7.2. cudaFuncSetCacheConfig
	4.7.3. cudaFuncSetSharedMemConfig
	4.7.4. cudaSetDoubleForDevice
	4.7.5. cudaSetDoubleForHost

	4.8. Memory Management
	4.8.1. cudaFree
	4.8.2. cudaFreeArray
	4.8.3. cudaFreeHost
	4.8.4. cudaGetSymbolAddress
	4.8.5. cudaGetSymbolSize
	4.8.6. cudaHostAlloc
	4.8.7. cudaHostGetDevicePointer
	4.8.8. cudaHostGetFlags
	4.8.9. cudaHostRegister
	4.8.10. cudaHostUnregister
	4.8.11. cudaMalloc
	4.8.12. cudaMallocArray
	4.8.13. cudaMallocManaged
	4.8.14. cudaMallocPitch
	4.8.15. cudaMalloc3D
	4.8.16. cudaMalloc3DArray
	4.8.17. cudaMemcpy
	4.8.18. cudaMemcpyArrayToArray
	4.8.19. cudaMemcpyAsync
	4.8.20. cudaMemcpyFromArray
	4.8.21. cudaMemcpyFromSymbol
	4.8.22. cudaMemcpyFromSymbolAsync
	4.8.23. cudaMemcpyPeer
	4.8.24. cudaMemcpyPeerAsync
	4.8.25. cudaMemcpyToArray
	4.8.26. cudaMemcpyToSymbol
	4.8.27. cudaMemcpyToSymbolAsync
	4.8.28. cudaMemcpy2D
	4.8.29. cudaMemcpy2DArrayToArray
	4.8.30. cudaMemcpy2DAsync
	4.8.31. cudaMemcpy2DFromArray
	4.8.32. cudaMemcpy2DToArray
	4.8.33. cudaMemcpy3D
	4.8.34. cudaMemcpy3DAsync
	4.8.35. cudaMemGetInfo
	4.8.36. cudaMemset
	4.8.37. cudaMemset2D
	4.8.38. cudaMemset3D

	4.9. Unified Addressing and Peer Device Memory Access
	4.9.1. cudaDeviceCanAccessPeer
	4.9.2. cudaDeviceDisablePeerAccess
	4.9.3. cudaDeviceEnablePeerAccess
	4.9.4. cudaPointerGetAttributes

	4.10. Version Management
	4.10.1. cudaDriverGetVersion
	4.10.2. cudaRuntimeGetVersion

	Examples
	5.1. Matrix Multiplication Example
	5.1.1. Source Code Listing
	5.1.2. Source Code Description

	5.2. Mapped Memory Example
	5.3. Cublas Module Example
	5.4. CUDA Device Properties Example
	5.5. CUDA Asynchronous Memory Transfer Example
	5.6. Managed Memory Example

	Contact Information

