
Using Platform LSF® Make
November 2003
Platform Computing

Comments to: doc@platform.com
LSF Make is a load-sharing, parallel version of GNU Make. It uses the same 
makefiles as GNU Make and behaves similarly, except that additional 
command line options control parallel execution.

LSF Make allows you to use your Platform LSF cluster to run parts of your make 
in parallel. Tasks are started on multiple hosts simultaneously to reduce the 
execution time.

Platform LSF Make is only supported on UNIX.

Platform LSF is a prerequisite for LSF Make. The Platform LSF Make product is 
sold, licensed, distributed, and installed separately. For more information, 
contact Platform Computing.

The LSF Make executable, lsmake, is covered by the Free Software Foundation 
General Public License. Read the file LSF_MISC/lsmake/COPYING in the 
Platform LSF software distribution for details.

Contents ◆ “About Platform LSF Make” on page 16

◆ “How Platform LSF Make Works” on page 17

◆ “Performance Issues” on page 19

mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback


About Platform LSF Make

16
About Platform LSF Make
Tasks often consist of many subtasks, with some dependencies between the 
subtasks. For example, to compile a software package, you compile each file 
in the package, then link all the compiled files together.

In many cases, most of the subtasks do not depend on each other. For a 
software package, the individual files in the package can be compiled at the 
same time; only the linking step needs to wait for all the other tasks to 
complete.

LSF Make allows you to use your Platform LSF cluster to run parts of your make 
in parallel. Tasks are started on multiple hosts simultaneously to reduce the 
execution time.

LSF Make is a load-sharing, parallel version of GNU Make. It uses the same 
makefiles as GNU Make and behaves similarly, except that additional 
command line options control parallel execution.

GNU Make compatibility
LSF Make is based on GNU Make and supports all GNU Make features. GNU 
Make is upwardly compatible with the make programs supplied by most UNIX 
vendors. LSF Make is compatible with makefiles for most versions of GNU 
Make.

LSF Make is fully compatible with GNU Make version 3.77. There are some 
incompatibilities between GNU Make and some other versions of make; these 
are beyond the scope of this document.
Using Platform LSF Make



Using Platform LSF® Make
How Platform LSF Make Works
LSF Make is invoked using the lsmake command.

For command syntax and complete information about command line options 
that control load sharing, see the lsmake(1) man page.

lsmake command
The following examples show how to build your software in parallel and 
control the execution hosts used, the number of processors used, and the 
number of tasks run simultaneously on one processor.

% lsmake -f mymakefile

lsmake uses one processor on the submission host, and runs one task at a time 
(one task per processor). This is the default behavior.

% lsmake -R "swp > 50 && mem > 100" -f mymakefile

lsmake uses one processor, on the best available host that satisfies the 
specified resource requirements, and runs one task at a time. If there are no 
eligible hosts, the job fails.

By default, LSF Make selects the same host type as the submitting host. This is 
necessary for most compilation jobs; all components must be compiled on the 
same host type and operating system version to run correctly. If your make task 
requires other resources, override the default resource requirements with -R.

% lsmake -V -j 3 -f mymakefile

[hostA] [hostD] [hostK]
<< Execute on local host >>
cc -O -c arg.c -o arg.o
<< Execute on remote host hostA >>
cc -O -c dev.c -o dev.o
<< Execute on remote host hostK >>
cc -O -c main.c -o main.o
<< Execute on remote host hostD >>
cc -O arg.o dev.o main.o

lsmake uses 3 processors, on hosts that are the same host type as the 
submission host. Use -V to return output as shown, including the names of the 
execution hosts. Use -j to specify a maximum number of processors.

If 5 processors are eligible, LSF Make automatically selects the best 3.

If only 2 processors are eligible, LSF Make uses only 2 processors. At least one 
processor is always eligible because the submission host always meets the 
default requirement.

% lsmake -R "swp > 50 && mem > 100" -j 3 -c 2 -f mymakefile

lsmake uses up to 3 processors, on the best available hosts that satisfy the 
specified resource requirements, and starts 2 tasks on each processor. If there 
are no eligible hosts, the job fails.

Use -c to take advantage of parallelism between the CPU and I/O on a 
powerful host and specify the number of concurrent jobs for each processor.

% lsmake -m "hostA hostA hostB" -f mymakefile
Using Platform LSF Make 17



How Platform LSF Make Works

18
lsmake uses 2 processors on hostA and one processor on hostB, and runs one 
task per processor. Use -m to specify exactly which hosts to use.

Using GNU make options
LSF Make supports all the GNU Make command line options. See the 
gmake(1) man page.

Resetting environment variables
By default, LSF Make sets the environment variables on the execution hosts 
once, when you run lsmake. If your tasks overwrite files or environment 
variables during execution, use -E to automatically reset the environment 
variables for every task that executes on a remote host.

Running interactive tasks
When LSF Make is running processes on more than one host, it does not send 
standard input to the remote processes. Most makefiles do not require any user 
interaction through standard I/O. If you have makefile steps that require user 
interaction, put the commands that require interaction into your local task list. 
Commands in the local task list always run on the local host, where they can 
read from standard input and write to standard output.

Running lsmake under LSF
Make jobs often require a lot of resources, but no user interaction. Such jobs 
can be submitted to LSF so that they are processed when the needed resources 
are available. The command lsmake includes extensions to run as a parallel 
batch job under LSF:

% bsub -n 10 lsmake

This command queues an LSF Make job that needs 10 hosts. When all 10 hosts 
are available, LSF starts LSF Make on the first host, and passes the names of all 
hosts in an environment variable. LSF Make gets the host names from the 
environment variable and uses RES to run tasks.

You can also specify a minimum and maximum number of processors to 
dedicate to your make job:

% bsub -n 6,18 lsmake

Because LSF Make passes the suspend signal (SIGTSTP) to all its remote 
processes, the entire parallel make job can be suspended and resumed by the 
user or by LSF.
Using Platform LSF Make



Using Platform LSF® Make
Performance Issues
Ways to improve the performance of LSF Make:

◆ Tune your makefile and increase parallelism

◆ Process subdirectories in parallel

◆ Adjust the number of tasks run depending on the file server load

◆ Ensure tasks always run on the best processors available at the time

Reorganizing your makefile
You do not need to modify your makefile to use LSF Make, but reorganizing 
the contents of the makefile to increase the parallelism might reduce the 
running time.

The smallest unit that LSF Make runs in parallel is a single make rule. If your 
makefile has rules that include many steps, or rules that contain shell loops to 
build sub-parts of your project, LSF Make runs the steps serially.

Increase the parallelism in your makefile by breaking up complex rules into 
groups of simpler rules. Steps that must run in sequence can use make 
dependencies to enforce the order. LSF Make can then find more subtasks to 
run in parallel.

Building recursive makes
LSF Make includes control over parallelism for recursive makes, which are 
often used for source code trees that are organized into subdirectories.

If your make job is divided into subdirectories, -M allows you to process the 
subdirectories in parallel. The total number of parallel tasks is shared over all 
the subdirectories. Without -M , LSF Make processes subdirectories 
sequentially, although tasks within each subdirectory can be run in parallel.

To process subdirectories in parallel they must be built as separate targets in 
your makefile. You must specify the make command for each subdirectory with 
the built-in $(MAKE) macro so that LSF Make can substitute the correct lsmake 
command for the subdirectory.

Some makefiles may work correctly when run on a single machine, but may 
not work correctly when run in parallel through LSF Make.

Below is a makefile rule that uses a shell loop to process subdirectories.

DIRS = lib misc main
prog:

for subdir in $(DIRS) ; do \
cd $${subdir} ; $(MAKE) ; cd .. ; done

When this makefile is run on a single machine, the directories are processed 
sequentially; in other words, lib is built before misc and main. However, 
when run using lsmake -M, all directories can be built in parallel. Therefore, 
it is possible for the misc and main directories to be built before lib, which 
is not correct.
Using Platform LSF Make 19



Performance Issues

20
Below is a set of makefile rules to perform the same tasks and allows the 
subdirectories to be built in parallel in the correct order. An extra rule is added 
so that the lib and misc subdirectories are built before the main directory:

DIRS = lib misc main
prog: $(DIRS)
$(DIRS):

cd $@ ; $(MAKE)

Dynamic parallelism
LSF Make can significantly reduce the response time of your make; however, 
it may also overload your file server or network if the tasks you are running 
are I/O intensive.

Parallelism can be controlled by the load on the NFS file server, so that parallel 
makes do not overload the server and slow everyone else down.

You can specify a threshold load so that parallelism is automatically reduced, 
when the file server load is above a threshold, and expanded, when the file 
server load is below the threshold.

% lsmake -j 10 -F "r15s < 5 && pg < 20"

lsmake uses up to 10 processors, and reduces the parallelism if the file server 
CPU load r15s goes beyond 5, or if the file server paging rate goes beyond 20 
pages per second.

LSF Make automatically determines the file server for the current working 
directory.

Processor reselection
LSF Make selects the best available hosts to run tasks. Over time, the values of 
dynamic resources change, so the original best host does not neccessarily 
remain the best host for the entire duration of a long-running task.

To ensure that your tasks always run on the best available hosts, use -P to 
automatically reselect the execution hosts.

%lsmake -j 3 -P 90 -f mymakefile

lsmake uses 3 processors and then evaluates eligible hosts at regular 90-
minute intervals, until the make is finished. If a processor currently in use can 
be replaced with a better one, LSF Make stops using the original processor and 
starts using the better processor.
Using Platform LSF Make



Using Platform LSF® Make
Technical Support

Contacting Platform
Contact Platform Computing or your LSF Make vendor for technical support. 
Use one of the following to contact Platform support:

Email support@platform.com

World Wide Web www.platform.com

Phone ◆ North America: +1 905 948 4297

◆ Europe: +44 1256 370 530

◆ Asia: +86 10 6238 1125

Toll-free phone 1-877-444-4LSF (+1 877 444 4573)

Mail Platform Support
Platform Computing 
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7

When contacting Platform Computing, please include the full name of your 
company.

We’d like to hear from you
If you find an error in any Platform documentation, or you have a suggestion 
for improving it, please let us know:

Email doc@platform.com

Mail Information Development
Platform Computing 
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7

Be sure to tell us:

◆ The title of the manual you are commenting on

◆ The version of the product you are using

◆ The format of the manual (HTML or PDF)
Using Platform LSF Make 21

mailto:support@platform.com
http://www.platform.com
mailto:doc@platform.com


Copyright

22
Copyright
© 1994-2003 Platform Computing Corporation

All rights reserved.

Although the information in this document has been carefully reviewed, Platform Computing 
Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform 
reserves the right to make corrections, updates, revisions or changes to the information in this 
document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS 
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED 
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM 
COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR 
SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

Document
redistribution policy

This document is protected by copyright and you may not redistribute or translate it into 
another language, in part or in whole.

Internal redistribution You may only redistribute this document internally within your organization (for example, on 
an intranet) provided that you continue to check the Platform Web site for updates and update 
your version of the documentation. You may not make it available to your organization over 
the Internet.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and in 
other jurisdictions.

™ ACCELERATING INTELLIGENCE, THE BOTTOM LINE IN DISTRIBUTED COMPUTING, PLATFORM 
COMPUTING, CLUSTERWARE, PLATFORM ACTIVECLUSTER, IT INTELLIGENCE, SITEASSURE, 
PLATFORM SYMPHONY, PLATFORM JOBSCHEDULER, PLATFORM INTELLIGENCE, PLATFORM 
INFRASTRUCTURE INSIGHT, PLATFORM WORKLOAD INSIGHT, and the PLATFORM and LSF logos 
are trademarks of Platform Computing Corporation in the United States and in other 
jurisdictions.

UNIX is a registered trademark of The Open Group in the United States and in other 
jurisdictions.

Other products or services mentioned in this document are identified by the trademarks or 
service marks of their respective owners.

Last update November 13 2003

Latest version www.platform.com/services/support/docs_home.asp
Using Platform LSF Make

http://www.platform.com/services/support/docs_home.asp

	Using Platform LSF® Make
	About Platform LSF Make
	GNU Make compatibility

	How Platform LSF Make Works
	lsmake command
	Using GNU make options
	Resetting environment variables
	Running interactive tasks
	Running lsmake under LSF

	Performance Issues
	Reorganizing your makefile
	Building recursive makes
	Dynamic parallelism
	Processor reselection

	Technical Support
	Contacting Platform
	We’d like to hear from you

	Copyright


