
MPI Analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Performing a scaling analysis supported by ITAC

Simulation of run time using an ideal network

Splitting run time into components (compute, wait,…)

Analysis of message passing structure

Detailed Visualization of MPI programs

Analysis of program structure (non MPI) with
Intel® VTune™ Amplifier XE

Summary

2

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

First step may be to just run the program for various number of
processes [p] and record timings: T[p]

Speedup S is defined as: S[p] = T[1]/T[p]

Efficiency E is defined as: E[p] = S[p]/p

An ideal parallel program will show:
S[p] = p and E[p] = 1

3

Simple Scaling analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Intel® Xeon® E5-2697 v2 processors Ivy Bridge (IVB) with 12
cores. Frequency: 2.7 GHz

2 processors per node ( 24 cores per node)

Mellanox MT4099 QDR Infiniband

Operating system: RedHat EL 6.5

Intel® MPI 5.0.0.028

4

Benchmark Cluster

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

• Very simple implementation of Poisson solver: e.g. heat
equation

• We will investigate a square 3600x3600 computational grid. It
will be large enough to run into bandwidth limitations

• Grid points will be distributed to MPI ranks on a 2D process
grid: e.g. 9 ranks = 3 rows x 3 columns (see next slide). The
Cartesian Process grid is a feature of this Poisson solver. Other
programs can have different data distributions. This example
is discussed in the classical MPI book: Using MPI by
Gropp,Lusk and Skjellum in Chapter #4

5

Test Application: Poisson Solver

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Which choice of process grid is optimal? Total grid: 3600x3600

6

Choice of process grid

0 1 2

3 4 5

6 7 8

0 1 2 3 4 5 6 7 8

3600x400
grid points
per process

1200x1200
grid points
per process

3x3 2D process grid 1x9 1D process grid

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

7

Speedup for 2D and 1D process grids

Speedup for 2D and 1D process grids

Single Node

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

8

Measuring MPI times with ITAC

This Chart shows up
automatically after
clicking Continue
on the start screen:

right click ->

Ungroup MPI

shows all MPI
functions and the
Application time ==
non MPI run time.

Times are
accumulated over
all ranks

Two additonal columns showing timings
per process: right click 
Function Profile Settings

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Plain ITAC provides accumulated timings for all MPI routines
T_mpi,acc and the computation T_comp,acc (named: Group
Application). For the analysis we need average times:

T_comp[p] = T_comp,acc[p]/p

T_mpi[p] = T_mpi,acc[p]/p

The averages can be directly shown by ITAC using the Function
Profile Settings and checking TSelf/process

In the following all accumulated timings get the “acc” suffix. All
other timing are averages or single process timings!

9

Measuring MPI times with ITAC

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Using conventions from last slide we define the first step of
splitting the wall clock run time T[p]:

T[p] = T_comp[p] + T_mpi[p]

Speedup and Efficiency can now be calculated for the compute
time separately:

S_comp[p] = T_comp[1]/T_comp[p] = T[1]/T_comp[p]

10

Measuring MPI times with ITAC

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

11

Compute Efficiency vs. Total Efficiency
Poisson example

Single node

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Performing a scaling analysis supported by ITAC

Simulation of run time using an ideal network

Splitting run time into components (compute, wait,…)

Analysis of message passing structure

Detailed Visualization of MPI programs

Analysis of program structure (non MPI) with
Intel® VTune™ Amplifier XE

Summary

12

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

ITAC shows timing of all MPI routines used by a program

The timing of MPI routines may be due to network transfer times
caused by interconnect bandwidth limitations

The other possibility are waiting times caused by the algorithm:
load imbalance or dependencies

13

Algorithm and Network evaluation

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

The most simple network model defines :

Latency L = transfer time for 0 byte message
Bandwidth BW = transfer rate for (asymptotically) large

messages
Message Volume V = data amount sent

The transfer time is:

T_trans[V] = L + (1/BW)*V

14

A simple Network Model

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

It is extremely complicated to simulate a realistic network!

An extreme case – the ideal network – may be simulated by
setting all transfer times to 0. This would mean L = 0 and BW = ∞
for the simple model

ITAC offers an ideal network simulation with transfer times set to
zero. Compute times (non MPI) will stay the same

An existing real trace file is used as basis for the simulation

15

ITAC: Ideal Network Simulator

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

With a perfectly balanced algorithm the total MPI time will be
vanishing in the ideal case

In most real cases the MPI time will just shrink but not vanish

The remaining part is due to waiting time e.g. when the receiver is
starting to receive before the sender is ready to send

Start simulator with: AdvancedIdealization

16

ITAC: Ideal Network Simulator

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

17

Simulation details

Name for
idealized trace

file gets
additional

“ideal”

Press start to
continue

Test cases for simulation are the
16 nodes configurations:

24x16,1x384, 384x1

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

18

Waiting time due to dependencies

MPI _Recv is pure
waiting time inside
an ideal trace file

MPI_Send
time

shrinks to 0

MPI_Recv must wait
on MPI_Send call

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Performing a scaling analysis supported by ITAC

Simulation of run time using an ideal network

Splitting run time into components (compute, wait,…)

Analysis of message passing structure

Detailed Visualization of MPI programs

Analysis of program structure (non MPI) with
Intel® VTune™ Amplifier XE

Summary

19

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

The simulated MPI time for the ideal network may be regarded as
the waiting time T_wait due to imbalance and dependencies:

T_mpi = T_transfer + T_wait

After generation of an ideal trace file the result can be displayed
in the Imbalance Diagram:

Advanced  Application Imbalance Diagram

20

MPI time

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

21

Imbalance diagram – 16 Nodes 24x16

Interconnect time
(T_transfer,acc)

move mouse over bar:
3.89 [sec]

Imbalance (T_wait,acc):
0.714621 [sec]

Application(T_comp,acc):
7.5545 [sec]

contains some artificial
startup time

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

The imbalance diagram displays the relation of transfer to wait
time. Due to the result we can decide how to proceed with
tuning:

• Transfer time (Interconnect) dominates: the algorithm is
balanced but we have to improve the network performance by
e.g. different process placement or new network hardware

• Waiting time (Imbalance) dominates: the algorithm has to be
revisited e.g. better load balancing. New network hardware or
better process placement will not help!

22

Imbalance Diagram = Tuning Start Point

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

23

Imbalance diagram – 16 Compute Nodes

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Compute time almost equal for 2D 24x16 and 1D 384x1 process
grid. Row vectors are long enough. 3600/16 = 225 for 24x16
process grid and 3600 grid points for 384x1 process grid

Compute time for 1x384 is almost 3X longer probably because
of short vector length 3600/384 < 10

Imbalance time best for 2D because process grid fits perfectly:
local grid = (3600/24) x (3600/16) = 150 x 225 grid points

Imbalance time for 384x1 slightly worse because number of local
grid point rows will vary between 10 and 9 (3600/384 = 9.375).
See next slide(s) for a discussion about the measurement of
imperfect data distribution

Imbalance time for 1x384 is even larger because of longer
compute time. The imbalance stretches with compute time

24

Imbalance diagram – 16 Compute Nodes

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A portion of the waiting time is normally due to Global Load
Imbalance.

The Global Load Imbalance is measured by determining the
maximum per rank and average compute time over all processes:

T_load = T_compute_max - T_compute

= T_mpi - T_mpi_min

T_load is the time we may win by achieving a perfect load
balance. It should be lower than the previously calculated MPI
time for an ideal network (= T_wait = Imbalance/p)

25

Global Load Imbalance

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

26

Load Imbalance: MPI for 1D 384x1

Minimal MPI can be found by
clicking on TSelf (Column

header)  sort

Ranks 0-143: 10x3600 points
Ranks 144-383: 9x3600 points
(10*144+9*240) = 3600

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

We have now all components of our split of timings:

T = T_compute + T_mpi

= T_compute + T_trans + T_wait

= T_compute + T_trans + T_load + T_depend

The Imbalance diagram shows only the second line but we might
additionally compute T_load and T_depend for a deeper
analysis. T_depend is called Dependency time. This is just the
rest of the imbalance time T_wait that is not due to the Global
Load Imbalance.

27

Split of timings

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

28

Refined Imbalance Diagram

Global Load
Imbalance is

more severe for
1D. This is

consistent with
the different

local grid sizes!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Performing a scaling analysis supported by ITAC

Simulation of run time using an ideal network

Splitting run time into components (compute, wait,…)

Analysis of message passing structure

Detailed Visualization of MPI programs

Analysis of program structure (non MPI) with
Intel® VTune™ Amplifier XE

Summary

29

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Message passing profile displays various characteristics of
message passing in a sender/receiver Matrix

Charts  Message Profile

The Matrix element N,M corresponds to the message passing
characteristics from rank N to rank M. Change these attributes by:

Right Click  Attribute to show

Characteristics are: total message volume, message passing time,
max, min, average rate and count

30

Message Passing Profile

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

31

Message Passing Profile: 24x16 grid

0 1 2 … 14 15

16 17 18
…

30 31

…

Messages from P1 to P2

From P16 to P0

Use slider for changing
the size of cells or:
Message Profile

Settings  Automatic

Cell Size

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

For 16 nodes (384 ranks on IVB) the total Message Passing
profile is not very handy

We may fuse the communication to compute node level. In this
case 384 ranks are fused to 16 compute nodes:

Advanced  Process Aggregation

This will pop up a new window: check All_Nodes and apply

32

Message Passing Profile:16 Nodes

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

33

Total Volume: 2D vs. 1D distribution

Intra Node

2D Distribution
with alternating

Inter Node
Volume

1D Distribution
with high Intra
Node Volume

Only 8 of 16
nodes shown!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

34

Average Rate: 2D vs. 1D distribution

Much lower
rates

compared to
the 1D case

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

35

Number of mesg.: 2D vs. 1D distribution

Larger
volume per

message16X and 17X
more Inter Node

messages
compared to 1D

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Inter node communication has about the same volume in the 2D
case but 16x more messages are sent

There is just a single inter node message per boundary exchange
in the 1D case (3 exchanges per iteration times 100 iterations ==
300 messages)

Communication rate drops so much in the quadratic 2D case that
the total transfer time (Imbalance diagram) is almost equal for
both configurations

36

Message Profile: Observations

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A compromise between quadratic and 1D processor grid may be
more appropriate here like 48x8 or 96x4. This will reduce the
number of inter node messages and raise the bandwidth for each
message

The default rank to node mapping is just linear. This leads to
alternating communication patterns (see following slides)

A better mapping can be achieved by putting all ranks of a
rectangular sub process grid onto a single node. The following
slides explain the ranks to node mapping

37

Optimization ideas

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

0 1 2 … 7 8 … 14 15

16 17 18 … 23 24 … 30 31

32 33 34 … 39 40 … 46 47

48 49 50 … 55 56 … 62 63

64 65 66 … 71 72 … 78 79

80 81 82 … 87 88 … 94 95

96 ….

38

Default Mapping for 24x16 process grid

Node #0

Node #1

Node #2

Node #3

Additional horizontal
exchange. 16 or 17 boundary

lines between two nodes

Defining a 16x24
process grid may be

better – why?

24 ranks per
node! One

rank per core

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

0 … 3 4 … 7 8 … 11 12 … 15

16 … 19 20 … 23 24 … 27 28 … 31

32 … 35 36 … 39 40 … 43 44 47

48 … 51 52 … 55 56 … 59 60 48

64 … 67 68 … 71 72 … 75 76 79

80 … 83 84 … 87 88 … 91 92 95

96 …. 99 100 …

39

Optimized Mapping

Node #0

Node #1

Node #2

Node #3

This 6x4 pattern can
be repeated for all
nodes. The number

of processor
boundary lines

between nodes are:
4 (vertical) and 6

(horizontal)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

40

Impact of Optimized Mapping

2D with optimized
mapping shows by
far the best results!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Performing a scaling analysis supported by ITAC

Simulation of run time using an ideal network

Splitting run time into components (compute, wait,…)

Analysis of message passing structure

Detailed Visualization of MPI programs

Analysis of program structure (non MPI) with
Intel® VTune™ Amplifier XE

Summary

41

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

After some global evaluations we may dive now into the MPI
algorithm by showing the temporal evolution with ITAC

Most programs consist of recurring patterns like iterations or
different phases: initialization, computation and I/O

Quantitative timeline shows nicely coarse patterns:

Charts  Quantitative Timeline

42

Detailed Visualization of MPI programs

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

43

Quantitative Timeline for 16 nodes

Color menu was
used to color

MPI_Allreduce

3 Iterations. Each Iteration
does 3 boundary

exchanges and is finished
by an MPI_Allreduce

Height of blue columns is
proportional to # ranks

inside Application time at
the same time

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

After identification of basic patterns we may now change to the
more detailed Event Timeline

Event timeline is the most important Chart in ITAC

Temporal development reveals root causes of dependencies due
to suboptimal implementations

Charts  Event Timeline

44

Single iteration – Event Timeline

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

45

Single Iteration Poisson

Same configuration
as used before in

the mapping
section: 24x16

This is the default
mapping!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

MPI times in the ideal network case are due to global load
imbalances and dependencies

Dependencies are e.g. due to order of blocking sends and
receives

The current naive implementation of the boundary exchange
uses blocking sends and receives: MPI_Send, MPI_Recv

The Ideal network simulation helps to clearly identify
dependencies

46

Boundary Exchange in Ideal Network

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

47

Boundary Exchange in Ideal Network

This Send (P5 P6)
may be started long

before
An MPI_Isend

could have
started already

here!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Some of the dependencies may be resolved by using
MPI_Isend and MPI_Irecv with an MPI_Waitall()in the end

In a first step we may just exchange the blocking Sends/Recvs by
the immediate routines and place a MPI_Waitall() at the end.
Data copies of boundary arrays have to be done after the wait
routine

In a second step we may optimize the order of MPI routines and
data copies. Some requests may be ended by a separate
MPI_Wait()

48

Optimization idea

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Compare before and after optimization e.g. compare boundary
exchange with blocking Send/Receive to non blocking
Send/Receive

Further potential comparison scenarios:

Compare ideal to real trace

Compare different number of ranks

Compare different mappings

49

Comparing ITAC traces

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Open tab: View  Compare

50

Comparing ITAC traces - HowTo

Open another
file for a

comparison

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

51

Comparison: Boundary Exchange

Wait Time on P6 has
vanished!

MPI Wait Time for this
boundary exchange
shrunk by a factor

0.689

Trace A: Send/Recv
Trace B: Isend/Irecv/Waitall

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

So far, we only see MPI routines and Application time inside ITAC
traces

Navigation becomes far more easy when adding user functions

For evaluation of the impact of optimization we may want to see
the timing of the boundary exchange including all its MPI calls

52

Instrumentation of User Functions

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

All source files or just the files of interest may be compiled with
the

-tcollect

flag (Intel compiler only)
The executable has to be linked using this flag, as well

As an alternative (different compiler or code blocks that are not a
function) we might consider to use the ITAC API functions for
instrumentation. This is discussed in ITAC Advanced presentation

53

ITAC Compiler Instrumentation

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

54

Iteration with User Functions

Exchange routine is on
bottom of the list. But the

total time TTotal also
contains all MPI functions.

This time exceeds the
Allreduce time

Instrumented user functions
like exchange0 can improve

analysis of the MPI algorithm

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Performing a scaling analysis supported by ITAC

Simulation of run time using an ideal network

Splitting run time into components (compute, wait,…)

Analysis of message passing structure

Detailed Visualization of MPI programs

Analysis of program structure (non MPI) with
Intel® VTune™ Amplifier XE

Summary

55

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

We used ITAC for the analysis of the message passing algorithm

We already saw that computation performance saturated on a
single node

With this tool we may have a closer look to the processor
performance and program structure

VTune™ Amplifier XE based analysis can be started and
performed by its GUI. Together with MPI on a Cluster which
probably prefers batch usage, we will use the command line
interface

56

Intel® VTune™ Amplifier XE

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

This is the most basic analysis type to start an investigation

The analysis will present hotspots of the calculation for a chosen
MPI rank. Timings go down to source lines or assembly code

The Call Stack provides information about how the function is
called and how much time is due to this branch

57

Hot Spot Analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

This analysis may be conducted for each of all 384 ranks but
probably we may concentrate on a single rank first:

Hotspot analysis is performed on rank 0 and results are stored in
directory hotspots.0. All other ranks run poisson.x without
analysis

More complex selection of ranks are possible building groups of
ranks doing analysis or not

58

Vtune™ Amplifier XE on 16 nodes

mpirun –n 1 amplxe-cl –-result-dir hotspots \

–-collect hotspots –- poisson.x :\

-n 383 poisson.x

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

59

Hotspots Analysis: Summary

Ignore Thread count.
It is just a single MPI

process

Analysis only for
Iterations. Rest of app.

Is paused by using
API functions

memcpy is called by
copy routine

No Threading
present: single

thread
execution

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

60

Hotspots: Bottom-Up

Click on
function name

to reveal
source view

3 different
stacks for

MPI_Waitall.
Source line of

call to exchange
in poisson.c is

shown.
Exchange is

called 3 times!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

61

Hotspots Analysis: Source

Click on first
stack and

poisson.c line:
shows first call
to exchange at

line 209

Second call at
line 220 shows
up by selecting
another stack

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Hotspot identification using directly the Performance monitoring
Unit (PMU) . Needs special drivers realized by kernel modules
(root rights necessary for installation)

Exchange hotspots by advanced-hotspots in previous
command line

Instructions retired is the basic indicator for processor utilization.
Maximum is 4 simultaneous instructions per clock-tick.

The output shows CPI: clock-ticks per Instruction.
4 simultaneous instructions mean (CPI=0.25)

62

Advanced Hotspots

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

63

Advanced Hotspots: Summary

Instructions Retired: completed Instructions
CPI Rate: Clock Ticks per Instruction

CPU Frequency Ratio: >1 : Turbo boost!

Second routine comes from MPI – Progress
Engine

More MPI internal functions shown

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

64

Advanced Hotspots: Bottom-up

Order of Hotspot
functions changes

due to: 1. better
time resolution 2.

Internal MPI
functions are

displayed

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

65

Source and Assembly

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

The speedup curve for a single node shows saturation for more
than 12 ranks per node (24 cores per node in total)

Intel® VTune™ Amplifier XE provides a Bandwidth analysis for
proving this assumption

We concentrate on total bandwidth which can be related to the
bandwidth that is delivered by the STREAM benchmark (~
80GB/s on IVB dual Socket)

66

Bandwidth Analysis

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

67

Bandwidth: Bottom-Up – Sequential Run

Zoomed until
iterations are

visible

Only significant
read bandwidth

for residuum

Copy routine
generates read-

and write bw.

Iteration

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

68

Efficiency vs. Bandwidth on first node

Single Node

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Bandwidth can be reduced by combining copy and residuum
routine. This is possible because residuum is at the end and copy
at the beginning of a new iteration

Bandwidth reduction may only have and impact in the bandwidth
limited regime that we observe for this grid size only for less than
4 nodes

Prefetching of data may also improve performance in the copy
and reduction loop

A blocked loop structure for the iteration loop may also improve
data reuse

69

Optimization Ideas

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Two optimizations were successfully applied.

The first was the different Rank to Node mapping. This can be done by
a special machine file. No code changes are necessary. This
optimization will become more important for larger number of cores
per node

The second optimization was to use immediate Sends/Recvs instead
the blocking ones. The success can be evaluated with ITAC

Single process optimizations following the VTune™ Amplifier XE
analysis has not been tried, so far

Following slide shows the impact of optimization for the largest
available number of nodes (32)

70

Optimization Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

71

Performance Improvement for 32 nodes

All 2D 32x24
process grids

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Some methodologies were presented for performing a MPI
analysis

ITAC offers interesting new features like simulation of ideal
traces and the computation of transfer and waiting time

Intel® VTune™ Amplifier XE analyzes the compute part of the
application. Bandwidth analysis is useful for many HPC
applications

72

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

74

Backup – Optimized Mapping 24x16
Message Passing – total Volume

Optimized
Mapping

Original

