
1

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• OpenMP* 4.0

• Summary

2

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Single Instruction Multiple Data (SIMD):

– Processing vector with a single operation

– Provides data level parallelism (DLP)

– Because of DLP more efficient than scalar processing

• Vector:

– Consists of more than one element

– Elements are of same scalar data types
(e.g. floats, integers, …)

• Vector length (VL): Elements of the vector

3

Vectorization

Scalar
Processing

Vector
Processing

A B

C

+

Ci

+

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

VL

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• SIMD instructions:

 One single machine instruction for vector processing

 Vector lengths are fixed (2, 4, 8, 16)

 Synchronous execution on elements of vector(s)
 Results are available at the same time

 Masking possible to omit operations on selected elements

• SIMD is key for data level parallelism for years:

 64 bit Multi-Media Extension (MMX™)

 128 bit Intel® Streaming SIMD Extensions (Intel® SSE, SSE2, SSE3, SSE4.1, SSE4.2)
and Supplemental Streaming SIMD Extensions (SSSE3)

 256 bit Intel® Advanced Vector Extensions (Intel® AVX)

 512 bit vector instruction set extension of Intel® Many Integrated Core
Architecture (Intel® MIC Architecture) and Intel® Advanced Vector Extensions 512
(Intel® AVX-512)

4

SIMD & Intel® Architecture

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Evolution of SIMD for Intel Processors

Time

Goal:
8x peak FLOPs (FMA) over 4 generations!

2nd Generation

Intel® Core™ Processors

Intel® AVX (256 bit):

• 2x FP Throughput

• 2x Load Throughput

P
e
rf

o
rm

a
n
c
e
/C

o
re

3rd Generation

Intel® Core™ Processors

• Half-float support

• Random Numbers

4th Generation

Intel® Core™ Processors

Intel® AVX2 (256 bit):

• 2x FMA peak

• Gather Instructions

Present & Future:

Intel® MIC Architecture,
Intel® AVX-512:

• 512 bit Vectors

• 2x FP/Load/FMA

Since 1999:

128 bit Vectors 2010 2012 2013
Now &
Future

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Illustrations: Xi, Yi & results 32 bit integer

6

SIMD Types for Intel® Architecture I

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

063

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

127 0

MMX™
Vector size: 64 bit
Data types:
• 8, 16 and 32 bit integer
VL: 2, 4, 8

SSE
Vector size: 128 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 2, 4, 8, 16

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Illustrations: Xi, Yi & results 32 bit integer

7

SIMD Types for Intel® Architecture II

AVX
Vector size: 256 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 4, 8, 16, 32

Intel® AVX-512 &
Intel® MIC Architecture
Vector size: 512 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 8, 16, 32, 64

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

255

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

X16

Y16

X16◦Y16

511

…

…

…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

…

8

AVX Features

• Wider Vectors

• Increased from 128 to 256 bit

• Two 128-bit load/store ports

KEY FEATURES BENEFITS

• Up to 2x peak FLOPs (floating point
operations per second) output with
good power efficiency

• Enhanced data rearrangement:
Use the new 256 bit primitives to
broadcast, mask loads and permute
data

• Organize, access and pull only
necessary data more quickly and
efficiently

• Three and four Operands:
Non-destructive syntax for both
VEX.128 and VEX.256

• Fewer register copies, better register use
for both vector and scalar code

• Flexible unaligned memory access
support

• More opportunities to fused load and
compute operations

• Extensible new opcode encoding
(VEX) • Code size reduction

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• A 256 bit vector extension to SSE:

 SSE uses dedicated 128 bit registers called XMM (8 for IA-32 & 16 for Intel® 64)

 Extends all XMM registers to 256 bit called YMM

 Lower 128 bit of YMM register are mapped/shared with XMM

• AVX works on either

 The whole 256 bit

 The lower 128 bit; zeros the higher 128 bit

 AVX counterparts for almost all existing SSE instructions:
For initial generation (Intel® AVX) full 256 bit vectors for FP only; integers will
follow!

9

AVX is SEE Extension

256 bits (2010)

YMM

XMM

128 bits (1999)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Amount of registers depends on architecture:

• 32 bit: 8 XMM/YMM registers

• 64 bit: 16 XMM/YMM registers

• Lower half of YMM register is shared with SSE registers (XMM)
 Penalty with context switch when mixing SSE & AVX instructions!

• No penalty with vzeroupper instruction when switching from AVX to SSE

10

AVX Registers

XMM0-15

128 bit

YMM0-15

256 bit

3
2

 b
it

6
4

 b
it

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Basically same as Intel® AVX with following additions:

 Doubles width of integer vector instructions to 256 bits

 Floating point fused multiply add (FMA)

 Bit Manipulation Instructions (BMI)

 Gather instructions (scatter for the future)

 Any-to-any permutes

 Vector-vector shifts

11

Intel® AVX2 I

Processor Family
Instruction

Set

Single Precision
FLOPs

Per Clock

Double Precision
FLOPs

Per Clock

Pre 2nd generation Intel® Core™ Processors SSE 4.2 8 4

2nd and 3rd generation
Intel® Core™ Processors

AVX 16 8

4th generation Intel® Core™ Processors AVX2 32 16

2x

4x

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• High level language complex types can also be used, compiler cares about
details (halves the potential vector length)

• Use 32 bit integers where possible, avoid 64 bit integers
(short & char types will be converted implicitly, though)

• Masking supported via dedicated registers (K0-7)
 No need for bit vectors or additional compute cycles

12

Intel® MIC Architecture Vector Types

16x single precision FP

16x 32 bit integer

8x double precision FP

F
ir

st

G
e

n
e

ra
ti

o
n

64 bit masks

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• First generation Intel® Xeon Phi™ coprocessor only

• Vector extensions not backward compatible to SSE/AVX

• Introduced 512 bit vectors:

 Single & double precision FP

 Little bit of integer (32 bit only)

• Introduced mask registers:

 Operation + masking in one instruction

 Does not require additional instruction to mask out elements in a vector

Will be merged into Intel® AVX-512 which is backward compatible

13

Intel® MIC Architecture Features

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Extends previous AVX and SSE registers to 512 bit

 32 bit: 8 ZMM registers (no real need for 32 bit)

 64 bit: 32 ZMM registers

• 8 mask registers (K0 is special)

• Not compatible to AVX or SSE – no YMM/XMM registers!

14

Intel® MIC Architecture Registers

ZMM0-31

512 bit

K0-7

64 bit

3
2

 b
it

6
4

 b
it

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Different versions of Intel® AVX-512:

• Intel® AVX-512 Foundation:

 Extension of AVX known instruction sets including mask registers

 Available in all products supporting Intel® AVX-512

15

Intel® AVX-512 Features I

Double/Quadword
Integer Arithmetic

Including
gather/scatter

with
double/quad-
word indices

Math Support

IEEE division
and square

root

DP FP
transcendental

primitives

New
transcendental

support
instructions

New Permutation
Primitives

Two source
shuffles

Compress &
expand

Bit Manipulation

Vector rotate

Universal
ternary logical

operation

New mask
instructions

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Intel® AVX-512 Vector Length Extension:

 Freely select the vector length (512 bit, 256 bit and 128 bit)

 Orthogonal extension but planned for future Intel® Xeon® processors only

• Intel® AVX-512 Byte/Word and Doubleword/Quadword:

 Two groups, planned for future Intel® Xeon® processors:

• 8 and 16 bit integers

• 32 and 64 bit integers & FP

• Intel® AVX-512 Conflict Detection:

 Check identical values inside a vector (for 32 or 64 bit integers)

 Used for finding colliding indexes (32 or 64 bit) before a gather-operation-scatter
sequence

 Likely to be available in future for both Intel® Xeon Phi™ coprocessors and
Intel® Xeon® processors

16

Intel® AVX-512 Features II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Intel® AVX-512 Exponential & Reciprocal Instructions:

 Higher accuracy (28 bit) with HW based sqrt, reciprocal and exp function

 Likely only for future Intel® Xeon Phi™ coprocessors

• Intel® AVX-512 Prefetch Instructions:

 Manage data streams for higher throughput (incl. gather & scatter)

 Likely only for future Intel® Xeon Phi™ coprocessors

• More here:
https://software.intel.com/en-us/blogs/additional-avx-512-instructions

17

Intel® AVX-512 Features III

https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Extended VEX encoding (EVEX) to introduce another prefix

• Extends previous AVX and SSE registers to 512 bit:

 32 bit: 8 ZMM registers (same as YMM/XMM)

 64 bit: 32 ZMM registers (2x of YMM/XMM)

• 8 mask registers (K0 is special)

 No penalty when switching between XMM, YMM and ZMM!

18

Intel® AVX-512 Registers

ZMM0-31

512 bit

K0-7

64 bit

XMM0-15

128 bit

YMM0-15

256 bit3
2

 b
it

6
4

 b
it

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 Available in all products supporting Intel® AVX-512

 Comprehensive vector extension for HPC and enterprise

 All the key Intel® AVX-512 features: masking, broadcast, …

 32-bit and 64-bit integer and floating-point instructions

 Promotion of many Intel® AVX and Intel® AVX2 instructions to Intel® AVX-512

 Many new instructions added to accelerate HPC workloads

512-bit Foundation instructions

 Allow vectorization of loops with possible address conflict

 Will show up on Intel® Xeon® processors

Conflict Detection Instructions

 Fast (28 bit) instructions for exponential and reciprocal and transcendentals
(as well as RSQRT)

 New prefetch instructions: gather/scatter prefetches and PREFETCHWT1

Exponential, Reciprocal and Prefetch Operations

AVX-512 F

AVX-512CD

AVX-512ER

AVX-512PR

19

Intel® AVX-512 Features – More Detail I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 All of (packed) 32bit/64 bit operations AVX-512F doesn’t provide

 Close 64bit gaps like VPMULLQ : packed 64x64  64

 Extend mask architecture to word and byte (to handle vectors)

 Packed/Scalar converts of signed/unsigned to SP/DP

Double and Quad Word Instructions

 Extent packed (vector) instructions to byte and word (16 and 8 bit) data type

MMX™/Intel® SSE2/Intel® AVX2 re-promoted to Intel® AVX512 semantics

 Mask operations extended to 32/64 bits to adapt to number of objects in
512bit

 Permute architecture extended to words (VPERMW, VPERMI2W, …)

Byte and Word Instructions

 Vector length orthogonality

 Support for 128 and 256 bits instead of full 512 bit

 Not a new instruction set but an attribute of existing 512bit instructions

Vector Length Extensions

AVX-512DQ

AVX-512BW

AVX-512VL

20

Intel® AVX-512 Features – More Detail II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Set of instructions to implement checking a pointer against its bounds

Pointer Checker support in HW (today a SW only solution of e.g. Intel
Compilers)

Debug and security features

Intel® Memory Protection Extension

 Fast implementation of cryptographic hashing algorithm as defined by NIST
FIPS PUB 180

Intel® Secure Hash Algorithm

 needed for future memory technologies

Single Instruction – Flush a cache line

MPX

SHA

CLFLUSHOPT

Save and Restore Extended Processor State XSAVE{S,C}

21

Other New Instructions Imminent

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• KNL and future Intel® Xeon® processors
share a large set of instructions

• But some sets are not identical

• Subsets are represented by individual
feature flags (CPUID)

Future Knight
(KNL)

SSE

AVX

AVX2

AVX-512F

Future Intel®
Xeon®

processor

SSE

AVX

AVX2

AVX-512F

SNB

SSE

AVX

HSW

SSE

AVX

AVX2

NHM

SSE

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR AVX-512BW

AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o
m
m
o
n
I
n
s
t
r
uc
ti
o
n
S
e
t

22

Intel® AVX-512 - Comparison

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• OpenMP* 4.0

• Summary

23

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Transform sequential code to exploit vector processing capabilities (SIMD)
of Intel processors

 Manually by explicit syntax

 Automatically by tools like a compiler

24

Vectorization of Code

for(i = 0; i <= MAX;i++)

c[i] = a[i] + b[i];

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• How to express vectorization?

 Fortran and C/C++ have limited ways to express it

 But, Intel compilers use heuristics to vectorize

 There are extensions that allow expression of vectorization explicitly

 There are other, less portable ways…

• Select SIMD type:

 A specific SSE/AVX version also includes all previous versions

 Prefer AVX to SSE if available and possible; AVX also includes SSE

 Avoid mixing SSE and AVX when using intrinsics or direct assembly

 If target platform is not fixed/known Intel compiler can help producing multiple
versions for different SIMD types:
 Runtime processor dispatching

25

Use Vectorization

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Many Ways to Vectorize

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* 4.0 and Intel® Cilk™ Plus

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• SSE or AVX VEX.128 intrinsics have _mm_ prefix, e.g.:

 _mm_exp2_ps(__m128)

 _mm_add_pd(__m128d, __m128d)

Depending on the selected SIMD feature (e.g. –xSSE4.2, –xAVX, …) the compiler
can create SSE or AVX VEX.128 encoded instructions!

• AVX VEX.256 intrinsics have _mm256_ prefix, e.g.:

 _mm256_exp2_ps(__m256)

 _mm256_add_pd(__m256d, __m256d)

• Intel® MIC Architecture/Intel® AVX-512 intrinsics with _mm512_ prefix, e.g.:

 _mm512_exp2_ps(__m512)

 _mm512_add_pd(__m512d, __m512d)

• Use of SSE and AVX intrinsics can be mixed but be aware of penalty in
changing architectural state (except for Intel® AVX-512)!

27

Intrinsics III

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Example using AVX intrinsics:

•

• Example using Intel® MIC Architecture/Intel® AVX-512 intrinsics:

28

Intrinsics IV

#include <immintrin.h>

double A[40], B[40], C[40];

for (int i = 0; i < 40; i += 4) {

__m256d a = _mm256_load_pd(&A[i]);

__m256d b = _mm256_load_pd(&B[i]);

__m256d c = _mm256_add_pd(a, b);

_mm256_store_pd(&C[i], c);

}

#include <immintrin.h>

double A[40], B[40], C[40];

for (int i = 0; i < 40; i += 8) {

__m512d a = _mm512_load_pd(&A[i]);

__m512d b = _mm512_load_pd(&B[i]);

__m512d c = _mm512_add_pd(a, b);

_mm512_store_pd(&C[i], c);

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel provides an interactive intrinsics guide:

• Lists all supported
intrinsics

• Sorted by SIMD feature
version and generation

• Quickly find the intrinsic
via instant search

• Rich documentation of
each intrinsic

• Filters for technologies,
types & categories

Access it here:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

29

Intel® Intrinsics Guide

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• OpenMP* 4.0

• Summary

30

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Many Ways to Vectorize

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* 4.0 and Intel® Cilk™ Plus

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Auto-vectorization of Intel Compilers

..B1.2:

vmovupd (%rsp,%rax,8), %ymm0

vmovupd 32(%rsp,%rax,8), %ymm2

vmovupd 64(%rsp,%rax,8), %ymm4

vmovupd 96(%rsp,%rax,8), %ymm6

vaddpd 8032(%rsp,%rax,8), %ymm2, %ymm3

vaddpd 8000(%rsp,%rax,8), %ymm0, %ymm1

vaddpd 8064(%rsp,%rax,8), %ymm4, %ymm5

vaddpd 8096(%rsp,%rax,8), %ymm6, %ymm7

vmovupd %ymm1, 16000(%rsp,%rax,8)

vmovupd %ymm3, 16032(%rsp,%rax,8)

vmovupd %ymm5, 16064(%rsp,%rax,8)

vmovupd %ymm7, 16096(%rsp,%rax,8)

addq $16, %rax

cmpq $992, %rax

jb ..B1.2

...

Intel® AVX
..B1.2:

movaps (%rsp,%rax,8), %xmm0

movaps 16(%rsp,%rax,8), %xmm1

movaps 32(%rsp,%rax,8), %xmm2

movaps 48(%rsp,%rax,8), %xmm3

addpd 8000(%rsp,%rax,8), %xmm0

addpd 8016(%rsp,%rax,8), %xmm1

addpd 8032(%rsp,%rax,8), %xmm2

addpd 8048(%rsp,%rax,8), %xmm3

movaps %xmm0, 16000(%rsp,%rax,8)

movaps %xmm1, 16016(%rsp,%rax,8)

movaps %xmm2, 16032(%rsp,%rax,8)

movaps %xmm3, 16048(%rsp,%rax,8)

addq $8, %rax

cmpq $1000, %rax

jb ..B1.2

...

Intel® SSE4.2

void add(A, B, C)

double A[1000]; double B[1000]; double C[1000];

{

int i;

for (i = 0; i < 1000; i++)

C[i] = A[i] + B[i];

}

subroutine add(A, B, C)

real*8 A(1000), B(1000), C(1000)

do i = 1, 1000

C(i) = A(i) + B(i)

end do

end

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Advanced Auto-vectorization Example

double A[1000], B[1000], C[1000], D[1000], E[1000];

for (int i = 0; i < 1000; i++)

E[i] = (A[i] < B[i]) ? C[i] : D[i];

D1 C0

or

E

C1 C0

0…00000000 C0

and

C D1 D0

D1 0…00000000

nand

D

-3.0 3.0

-5.0 5.0

0…00000000 1…11111111

cmplt

A

B

Intel® SSE2 example

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Same Example as before but implemented with vector intrinsics:

• Vector intrinsic (or SIMD intrinsic class) can be easier than assembler:

 Similar performance, very close to best manually written assembler code

 Hides many details like register allocation and scheduling

 Intrinsics more portable and supported by all popular compilers!

• Using intrinsics is not as portable compared to auto-vectorization!

34

Vectorization using Intrinsics

double A[1000], B[1000], C[1000], D[1000], E[1000];

for (int i = 0; i < 1000; i += 2) {

__m128d a = _mm_load_pd(&A[i]);

__m128d b = _mm_load_pd(&B[i]);

__m128d c = _mm_load_pd(&C[i]);

__m128d d = _mm_load_pd(&D[i]);

__m128d e;

__m128d mask = _mm_cmplt_pd(a, b);

e = _mm_or_pd(

_mm_and_pd (mask, c),

_mm_andnot_pd(mask, d));

_mm_store_pd(&E[i], e);

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Linux*, OS X*: -x<feature>, Windows*: /Qx<feature>

 Might enable Intel processor specific optimizations

 Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

• Linux*, OS X*: -ax<features>, Windows*: /Qax<features>

 Multiple code paths: baseline and optimized/processor-specific

 Optimized code paths for Intel processors defined by <features>

 Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

 Baseline code path defaults to –msse2 (/arch:sse2)

 The baseline code path can be modified by –m<feature> or –x<feature>
(/arch:<feature> or /Qx<feature>)

35

Basic Vectorization Switches I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Linux*, OS X*: -m<feature>, Windows*: /arch:<feature>

 Neither check nor specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD
feature

 Missing check can cause application to fail in case extension not available

• Default for Linux*: -msse2, Windows*: /arch:sse2:

 Activated implicitly

 Implies the need for a target processor with at least Intel® SSE2

• Default for OS X*: -msse3 (IA-32), -mssse3 (Intel® 64)

• For 32 bit compilation, –mia32 (/arch:ia32) can be used in case target
processor does not support Intel® SSE2 (e.g. Intel® Pentium® 3 or older)

36

Basic Vectorization Switches II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost

 Compiler checks SIMD features of current host processor (where built on) and
makes use of latest SIMD feature available

 Code only executes on processors with same SIMD feature or later as on build
host

 As for -x<feature> or /Qx<feature>, if “main” routine is built with
–xHost or /QxHost the final executable only runs on Intel processors

37

Basic Vectorization Switches III

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Disable vectorization:

 Globally via switch:
Linux*, OS X*: -no-vec, Windows*: /Qvec-

 For a single loop:
C/C++: #pragma novector, Fortran: !DIR$ NOVECTOR

 Compiler still can use some SIMD features

• Using vectorization:

 Globally via switch (default for optimization level 2 and higher):
Linux*, OS X*: -vec, Windows*: /Qvec

 Enforce for a single loop (override compiler efficiency heuristic) if semantically correct:
C/C++: #pragma vector always, Fortran: !DIR$ VECTOR ALWAYS

 Influence efficiency heuristics threshold:
Linux*, OS X*: -vec-threshold[n]
Windows*: /Qvec-threshold[[:]n]
n: 100 (default; only if profitable) … 0 (always)

38

Control Vectorization I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Verify vectorization:

 Globally:
Linux*, OS X*: -opt-repot, Windows*: /Qopt-report

 Abort compilation if loop cannot be vectorized:
C/C++: #pragma vector always assert
Fortran: !DIR$ VECTOR ALWAYS ASSERT

• Advanced:

 Ignore vector dependencies (IVDEP):
C/C++: #pragma ivdep
Fortran: !DIR$ IVDEP

 “Enforce” vectorization:
C/C++: #pragma simd or #pragma omp simd

Fortran: !DIR$ SIMD or !$OMP SIMD

When used, vectorization can only be turned off with:
Linux*, OS X*: -no-vec –no-simd –qno-openmp-simd

Windows*: /Qvec- /Qsimd- /Qopenmp-simd-

39

Control Vectorization II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• OpenMP* 4.0

• Summary

40

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Optimization report:

 Linux*, OS X*: -opt-report=<n>, Windows*: /Qopt-report:<n>
n: 0, …, 5 specifies level of detail; 2 is default (more later)

 Prints optimization report with vectorization analysis

 Also known as vectorization report for Intel® C++/Fortran Compiler before 15.0:
Linux*, OS X*: -vec-report=<n>, Windows*: /Qvec-report:<n>
Deprecated, don’t use anymore – use optimization report instead!

• Optimization report phase:

 Linux*, OS X*: -opt-report-phase=<p>,
Windows*: /Qopt-report-phase:<p>

 <p> is all by default; use vec for just the vectorization report

• Optimization report file:

 Linux*, OS X*: -opt-report-file=<f>, Windows*: /Qopt-report-file:<f>

 <f> can be stderr, stdout or a file (default: *.optrpt)
41

Validating Vectorization Success

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example novec.f90:

42

Optimization Report Example

1: subroutine fd(y)

2: integer :: i

3: real, dimension(10), intent(inout) :: y

4: do i=2,10

5: y(i) = y(i-1) + 1

6: end do

7: end subroutine fd

$ ifort novec.f90 –opt-report=5

ifort: remark #10397: optimization reports are generated in *.optrpt

files in the output location

$ cat novec.optrpt

…

LOOP BEGIN at novec.f90(4,5)

remark #15344: loop was not vectorized: vector dependence prevents

vectorization

remark #15346: vector dependence: assumed FLOW dependence between y

line 5 and y line 5

remark #25436: completely unrolled by 9

LOOP END

…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• See which levels are available for each phase:

 Linux*, OS X*: -qopt-report-help,
Windows*: /Qopt-report-help

• Select format:

 Linux*, OS X*: -qopt-report-format=[text|vs],
Windows*: /Qopt-report-format:[text|vs]

 text as textual and vs for Microsoft Visual Studio* IDE integration output

43

Optimization Report – Advanced I

$ icpc –qopt-report-help

…

vec: Vector optimizations

Level 1: Report the loops that were vectorized.

Level 2: Level 1 + report the loops that were not vectorized,

along with reason preventing vectorization.

Level 3: Level 2 + loop vectorization summary.

Level 4: Level 3 + report verbose details for reasons loop

was/wasn't vectorized.

Level 5: Level 4 + report information about variable/memory

dependencies preventing vectorization.

…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• For use with Intel® VTune™ Advisor XE and Intel® Amplifier XE:

 Embed optimization reports in the object/executable to visualize it with Intel®
VTune™ Advisor XE or Intel® Amplifier XE directly.

 Linux*, OS X*: -qopt-report-help,
Windows*: /Qopt-report-help

 Default already if optimization report are enabled and –g or /Zi are set!

• Select sections in the code:

 Limit optimization reports to code section(s)

 Linux*, OS X*: -qopt-report-filter=<string>,
Windows*: /Qopt-report-filter:<string>

44

Optimization Report – Advanced II

<string> Description

filename Source file

filename, routine Source file + routine name

filename, range [, range] … Source file + lines

filename, routine, range [, range] … Source file + routine name + lines

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Filter for specific routines:

 A substring can be specified to filter for routines

 Linux*, OS X*: -qopt-report-routine=<substring>,
Windows*: /Qopt-report-routine:<substring>

• Enable/disable C++ name mangling:

 C++ symbol names are mangled (encode function name, namespace(s),
parameter types, …)

 Linux*, OS X*: -qopt-report-names=[mangled|unmangled],
Windows*: /Qopt-report-names:[mangled|unmangled]

45

Optimization Report – Advanced III

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Vectorization of Special Program Constructs & Loops

• Intel® Cilk™ Plus

• OpenMP* 4.0

• Summary

46

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Most frequent reasons:

• Data dependence

• Alignment

• Unsupported loop structure

• Non-unit stride access

• Function calls/in-lining

• Non-vectorizable Mathematical functions

• Data types

• Control depencence

• Bit masking

All those are common and will be explained in detail next!

47

Reasons for Vectorization Fails I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Other reasons:

• Outer loop of loop nesting cannot be vectorized

• Loop body too complex (register pressure)

• Vectorization seems inefficient (low trip count)

• Many more

Those are less likely and are not described in the following!

48

Reasons for Vectorization Fails II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Dependencies in loops become more obvious by virtually unrolling the loop:

In case the dependency requires execution of any previous loop iteration, we

call it loop-carried dependence. Otherwise, loop-independent dependence.

E.g.:

S1 
F S2: Loop-independent dependence

S2 
F S2: Loop-carried dependence

49

Data Dependence in Loops

S1 A(2) = A(1) + B(1)

S1 A(3) = A(2) + B(2)

S1 A(4) = A(3) + B(3)

S1 A(5) = A(4) + B(4)

...

DO I = 1, N

S1 A(I+1) = A(I) + B(I)

ENDDO

S1 
F S1

DO I = 1, 10000

S1 A(I) = B(I) * 17

S2 X(I+1) = X(I) + A(I)

ENDDO

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Vectorization of a loop is similar to parallelization (loop iterations executed in
parallel), however not identical:

• Parallelization requires all iterations to be independent to be executed in
any order:
Loop-carried dependencies are not permitted; loop-independent
dependencies are OK

• Vectorization is applied to single operations of the loop body:
The same operations can be applied for multiple iterations at once if they
follow serial order; both loop-carried & loop-independent dependencies
need to be taken into account!

Example: Loop cannot be parallelized but vectorization possible:

50

Dependence and Vectorization

DO I = 1, N

A(I + 1) = B(I) + C

D(I) = A(I) + E

END DO

A(2:N + 1) = B(1:N) + C

D(1:N) = A(1:N) + E

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

A loop can be vectorized if and only if there is no cyclic dependency chain
between the statements of the loop body!

• For the formal proof we refer to the literature [3]

• The theorem takes into account that certain semantic-preserving
reordering transformations can be applied
(e.g. loop distribution, loop fusion, etc.)

• The theorem assumes an “unlimited” vector length (VL).
In cases where VL is limited, loop carried dependencies might be ignored if
more than “VL” iterations are required to exist.
Thus in some cases vectorization for SSE or AVX might be still valid,
opposed to the theorem!

Example:
Despite cyclic dependency, the loop can be
vectorized for SSE or AVX in case of VL being
max. 3 times the data type size of array A.

51

Key Theorem for Vectorization

DO I = 1, N

A(I + 3) = A(I) + C

END DO

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Many dependencies assumed by compiler are false dependencies caused by
unresolved memory disambiguation:

The compiler has to be conservative and has to assume the worst case
regarding “aliasing”!

Example:

Without additional information (like inter-procedural knowledge) the
compiler has to assume a and b to alias!

Use directives, switches and attributes to aid disambiguation!

• This is programming language and operating system specific

• Use with care as the compiler might generate incorrect code in case the
hints are not fulfilled!

52

Failing Disambiguation

void scale(int *a, int *b)

{

for (int i = 0; i < 10000; i++) b[i] = z * a[i];

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Disambiguating memory locations of pointers in C99:
Linux*, OS X*: –std=c99, Windows*: /Qstd=c99

• Intel® C++ Compiler also allows this for other modes
(e.g. -std=c89, -std=c++0x, …), too - not standardized, though:
Linux*, OS X*: -restrict, Windows*: /Qrestrict

• Declaring pointers with keyword restrict asserts compiler that they only
reference individually assigned, non-overlapping memory areas

• Also true for any result of pointer arithmetic (e.g. ptr + 1 or ptr[1])

Examples:

53

Disambiguation Hints I

void scale(int *a, int *restrict b)

{

for (int i = 0; i < 10000; i++) b[i] = z * a[i];

}

void mult(int a[][NUM], int b[restrict][NUM])

{ ... }

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Caveat with using unaligned memory access:

• Unaligned loads and stores can be very slow due to higher I/O because
two cache-lines need to be loaded/stored (not always, though)

• Compiler can mitigate expensive unaligned memory operations by using
two partial loads/stores – still slow
(e.g. two 64 bit loads instead of one 128 bit unaligned load)

• The compiler can use “versioning” in case alignment is unclear:
Run time checks for alignment to use fast aligned operations if possible,
the slower operations otherwise – better but limited

Best performance: User defined aligned memory

• 16 byte for SSE

• 32 byte for AVX

• 64 byte for Intel® MIC Architecture & Intel® AVX-512

54

Alignment

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiled both cases using –xAVX:

More efficient if aligned:

55

Alignment Impact: Example

void mult(double* a, double* b, double* c)

{

int i;

#pragma vector aligned

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

..B2.2:

vmovupd (%rdi,%rax,8), %ymm0

vmulpd (%rsi,%rax,8), %ymm0, %ymm1

vmovntpd %ymm1, (%rdx,%rax,8)

addq $4, %rax

cmpq $1000000, %rax

jb ..B2.2

void mult(double* a, double* b, double* c)

{

int i;

#pragma vector unaligned

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

..B2.2:

vmovupd (%rdi,%rax,8), %xmm0

vmovupd (%rsi,%rax,8), %xmm1

vinsertf128 $1, 16(%rsi,%rax,8), %ymm1, %ymm3

vinsertf128 $1, 16(%rdi,%rax,8), %ymm0, %ymm2

vmulpd %ymm3, %ymm2, %ymm4

vmovupd %xmm4, (%rdx,%rax,8)

vextractf128 $1, %ymm4, 16(%rdx,%rax,8)

addq $4, %rax

cmpq $1000000, %rax

jb ..B2.2

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Loops where compiler does not know the iteration count:

 Upper/lower bound of a loop are not loop-invariant

 Loop stride is not constant

 Early bail-out during iterations (e.g. break, exceptions, etc.)

 Too complex loop body conditions for which no SIMD feature instruction exists

 Loop dependent parameters are globally modifiable during iteration
(language standards require load and test for each iteration)

• Transform is possible, e.g.:

56

Unsupported Loop Structure

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

int local_ub = x->bound;

for(int i = 0; i < local_ub; i++)

a[i] = 0;

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Non-consecutive memory locations are being accessed in the loop

• Vectorization works best with contiguous memory accesses

• Vectorization still be possible for non-contiguous memory access, but…

 Data arrangement operations might be too expensive
(e.g. access pattern linear/regular)

 Vectorization report issued when too expensive:
Loop was not vectorized: vectorization possible but seems inefficient

• Examples:

57

Non-Unit Stride Access

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[i][j] += 1; // Unit stride

D[j][i] += 1; // Non-unit stride but linear

A[j * j] += 1; // Non-unit stride

A[B[j]] += 1; // Non-unit stride (scatter)

if(A[MAX - j]) == 1) last = j; // Non-unit stride

}

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Code transformations like loop interchange can avoid non-unit access
frequently in case access is linear

• Compiler can do this automatically via loop interchange in most cases, e.g.
matrix multiplication loop:

• But in other cases the exchange has to be done manually, e.g.:

58

Avoiding Non-Unit Stride Access

for(i = 0; i < N; i++)

for(j = 0; j < N; j++)

for(k = 0; k < N; k++)

c[i][j] = c[i][j] + a[i][k] * b[k][j];

// Non-unit stride

for (j = 0; j < N; j++)

for (i = 0; i < j; i++)

c[i][j] = a[i][j] + b[i][j];

// Unit stride

for (i = 0; i < N; i++)

for (j = i + 1; i < N; j++)

c[i][j] = a[i][j] + b[i][j];

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Function calls prevent vectorization in general

• Exceptions:

 Call of intrinsic routines such as mathematical functions:
Implementation is known to compiler

 Successful in-lining of called routine:
IPO enables in-lining of routines across source files

59

Function Calls/In-lining I

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp, yp);

}

// Defined in different compilation unit!

float func(float x, float y, float xp, float yp)

{

float denom;

denom = (x - xp) * (x - xp) + (y - yp) * (y - yp);

denom = 1. / sqrt(denom);

return denom;

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Calls to most mathematical functions in a loop body can be vectorized
using “Short Vector Math Library”:

 Short Vector Math Library (libsvml) provides vectorized implementations of
different mathematical functions

 Optimized for latency compared to the VML library component of Intel® MKL
which realizes same functionality but which is optimized for throughput

• Routines in libsvml can also be called explicitly, using intrinsics
(see manual)

• These mathematical functions are currently supported:

60

Vectorizable Mathematical Functions

acos acosh asin asinh atan atan2 atanh cbrt

ceil cos cosh erf erfc erfinv exp exp2

fabs floor fmax fmin log log10 log2 pow

round sin sinh sqrt tan tanh trunc

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Most frequent reason of failing vectorization is Dependence:
Minimize dependencies among iterations by design!

• Alignment: Align your arrays/data structures

• Function calls in loop body: Use aggressive in-lining (IPO)

• Complex control flow/conditional branches:
Avoid them in loops by creating multiple versions of loops

• Unsupported loop structure: Use loop invariant expressions

• Not inner loop:
Manual loop interchange possible? Intel Compilers 12.1 and higher can do
outer loop vectorization now as well!

• Mixed data types:
Avoid type conversions in rare cases Intel Compiler cannot do
automatically

61

How to Succeed in Vectorization?

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Non-unit stride between elements:
Possible to change algorithm to allow linear/consecutive access?

• Loop body too complex reports: Try splitting up the loops!

• Vectorization seems inefficient reports:
Enforce vectorization, benchmark and verify results!

62

How to Succeed in Vectorization? II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• OpenMP* 4.0

• Summary

63

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
64

Intel® Cilk™ Plus

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* 4.0 and Intel® Cilk™ Plus

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
65

Intel® Cilk™ Plus

Simple Keywords
Set of keywords, for expression of

task parallelism:

cilk_spawn

cilk_sync

cilk_for

Array Notation
Provide data parallelism for sections of arrays

or whole arrays

mask[:] = a[:] < b[:] ? -1 : 1;

SIMD-enabled Functions
Define actions that can be applied to

whole or parts of arrays or scalars

Execution Parameters
Runtime system APIs, Environment variables, pragmas

Task Level Parallelism

Data Level Parallelism

Reducers

(Hyper-objects)
Reliable access to nonlocal variables without

races

cilk::reducer_opadd<int> sum(3);

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

C/C++: #pragma simd [clause [,clause]…]

Fortran: !DIR$ SIMD [clause [,clause]…]

Without any clause, the directive “enforces” vectorization of the loop, ignoring all
dependencies (even if they are proved!)

Example:

Without SIMD directive, vectorization likely fails since there are too many pointer
references to do a run-time check for overlapping (compiler heuristic). The compiler
won’t create multiple versions here.

Using the directive asserts the compiler that none of the pointers are overlapping.

66

Intel® Cilk™ Plus Pragma/Directive I

void addfl(float *a, float *b, float *c, float *d, float *e, int n)

{

#pragma simd

for(int i = 0; i < n; i++)

a[i] = a[i] + b[i] + c[i] + d[i] + e[i];

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Windows*:
__declspec(vector([clause [,clause]…]))

function definition or declaration

Linux*/OS* X:
__attribute__((vector([clause [,clause]…])))

function definition or declaration

• C/C++ only

• Intent:
Express work as scalar operations (kernel) and let compiler create a vector
version of it. The size of vectors can be specified at compile time (SSE,
AVX, …) which makes it portable!

• Remember:
Both the function definition as well as the function declaration (header file)
need to be specified like this!

67

SIMD-Enabled Functions Syntax

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• processor(cpuid)

cpuid for which (Intel) processor to create a vector version

• vectorlength(len)

len must be power of 2: Allow as many elements per argument

• linear(v1:step1, v2:step2, …)

Defines v1, v2, … to be private to SIMD lane and to have linear (step1,
step2, …) relationship when used in context of a loop

• uniform(a1, a2, …)

Arguments a1, a2, … etc. are not treated as vectors (constant values across
SIMD lanes)

• [no]mask: SIMD-enabled function called only inside branches (masked) or
never (not masked)

Intrinsic also available: __intel_simd_lane():
Return the SIMD lane with range: [0:vector length – 1]

68

SIMD-Enabled Functions Clauses

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Write a function for one element and add __declspec(vector):

Call the scalar version:

Call scalar version via SIMD loop:

Call it with array notations:

69

SIMD-Enabled Functions

__declspec(vector)

float foo(float a, float b, float c, float d)

{

return a * b + c * d;

}

#pragma simd

for(i = 0; i < n; i++) {

A[i] = foo(B[i], C[i], D[i], E[i]);

}

A[:] = foo(B[:], C[:], D[:], E[:]);

e = foo(a, b, c, d);

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
70

SIMD-Enabled Functions: Invocation

Construct Example Semantics

Standard for
loop

for (j = 0; j < N; j++) {

a[j] = my_simdf(b[j]);

}

Single thread,
maybe auto-
vectorizable

#pragma simd #pragma simd

for (j = 0; j < N; j++) {

a[j] = my_simdf(b[j]);

}

Single thread,
vectorized; use the
appropriate vector
version

Array notation a[:] = my_simdf(b[:]); Single thread,
vectorized

OpenMP* 4.0 #pragma omp parallel for simd

for (j = 0; j < N; j++) {

a[j] = my_simdf(b[j]);

}

Multi-threaded,
vectorized

__declspec(vector)float my_simdf (float b) { … }

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
71

Intel® Cilk™ Plus

Simple Keywords
Set of keywords, for expression of

task parallelism:

cilk_spawn

cilk_sync

cilk_for

Array Notation
Provide data parallelism for sections of arrays

or whole arrays

mask[:] = a[:] < b[:] ? -1 : 1;

SIMD-enabled Functions
Define actions that can be applied to

whole or parts of arrays or scalars

Execution Parameters
Runtime system APIs, Environment variables, pragmas

Task Level Parallelism

Data Level Parallelism

Reducers

(Hyper-objects)
Reliable access to nonlocal variables without

races

cilk::reducer_opadd<int> sum(3);

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• An extension to C/C++ only

• Perform operations on sections of arrays in parallel

• Example:

• Well suited for code that:

 Performs per-element operations on arrays

 Without an implied order between them (aliasing is ignored)

 With an intent to execute in vector instructions

72

Array Notation Extension: Syntax I

for(i = 0; i < …; i++)

A[i] = B[i] + C[i];
A[:] = B[:] + C[:];

Not exactly the same: Aliasing is ignored by Array Notations!

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Syntax:

 Use a “:” for all elements (if size is known)

 “length” specifies number of elements of subset

 “stride”: distance between elements for subset

73

Array Notation Extension: Syntax II

A[:]

A[start_index : length]

A[start_index : length : stride]

A[0:N]

A[0] A[1] A[2] A[N-1]

Explicit Data Parallelism Based on C/C++ Arrays

…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Accessing a section of an array:

74

Array Notation Extension: Example I

float a[10], b[6];

…

// allocate *b

…

b[:] = a[2:6];

…

0 1 2 3 4 5 6 7 8 9a:

2 3 4 5 6 7b:

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Section of 2D array:

75

Array Notation Extension: Example II

a:

1

2

…

1 2 …b:

float a[10][10], *b;

…

// allocate *b

…

b[0:10] = a[:][5];

…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Strided section of an array:

76

Array Notation Extension: Example III

0 1 2 3 4 5 6 7 8 9a:

0 2 4b:

float a[10], *b;

…

// allocate *b

…

b[0:3] = a[0:3:2];

…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Most C/C++ operators are available for array sections:
+, -, *, /, %, <, ==, !=, >, |, &, ^, &&, ||, ! , - (unary), + (unary), ++,
--, +=, -=, *=, /=, * (pointer de-referencing)

Examples:

• Operators are implicitly mapped to all elements of the array section
operands.

• Operations on different elements can be executed in parallel without any
ordering constraints.

• Array operands must have the same rank and size.

• Scalar operands are automatically expanded.

77

Array Notation Extension: Operators

a[:] * b[:] // element-wise multiplication

a[3:2][3:2] + b[5:2][5:2] // matrix addition

a[0:4][1:2] + b[1:2][0:4] // error, different rank sizes

a[0:4][1:2] + c // adds scalar c to array section

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Combine array section elements using a predefined operator, or a user function:

Other reductions (list not exhaustive):

Much more! Take a look at the specification:
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus
_lang_spec_1.2.htm

78

Array Notation Extension: Reductions

int a[] = {1,2,3,4};

sum = __sec_reduce_add(a[:]); // sum is 10

res = __sec_reduce(0, a[:], func);

// apply function func to all

// elements in a[], initial value is 0

int func(int arg1, int arg2)

{

return arg1 + arg2;

}

__sec_reduce_mul, __sec_reduce_all_zero,

__sec_reduce_all_nonzero, __sec_reduce_any_nonzero,

__sec_reduce_max, __sec_reduce_min,

__sec_reduce_max_ind, __sec_reduce_min_ind

https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Serial version:

Array Notation version:

79

Array Notation Extension: Example I

float dot_product(unsigned int size, float A[size], float B[size])

{

int i;

float dp = 0.0f;

for (i=0; i<size; i++) {

dp += A[i] * B[i];

}

return dp;

}

float dot_product(unsigned int size, float A[size], float B[size])

{

// A[:] can also be written as A[0:size]

return __sec_reduce_add(A[:] * B[:]);

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ignore data dependencies, indirectly mitigate control flow dependence &
assert alignment:

80

Array Notation Extension: Example II

void vec3(float *a, float *b, int off, int len)

{

__assume_aligned(a, 64);

__assume_aligned(b, 64);

a[0:len] = (a[0:len] > 1.0) ?

a[0:len] * b[0:len] :

a[off:len] * b[0:len];

}

LOOP BEGIN at simd.cpp(5,9)

remark #15388: vectorization support: reference a has aligned access [simd.cpp(5,28)]

remark #15388: vectorization support: reference b has aligned access [simd.cpp(5,28)]

…

remark #15300: LOOP WAS VECTORIZED

…

LOOP END

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• OpenMP* 4.0

• Summary

81

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
82

Intel® Cilk™ Plus

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* 4.0 and Intel® Cilk™ Plus

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• OpenMP* 4.0 ratified July 2013

• Specifications:
http://openmp.org/wp/openmp-specifications/

• Well established in HPC – parallelism is critical there

• Extension to C/C++ & Fortran

• New features with 4.0:

– Target Constructs: Accelerator support

– Distribute Constructs/Teams: Better hierarchical assignment of workers

– SIMD (Data Level Parallelism!)

– Task Groups/Dependencies: Runtime task dependencies & synchronization

– Affinity: Pinning workers to cores/HW threads

– Cancelation Points/Cancel: Defined abort locations for workers

– User Defined Reductions: Create own reductions

83

OpenMP* 4.0

http://openmp.org/wp/openmp-specifications/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Pragma SIMD:
The simd construct can be applied to a loop to indicate that the loop can be
transformed into a SIMD loop (that is, multiple iterations of the loop can be
executed concurrently using SIMD instructions).
[OpenMP* 4.0 API: 2.8.1]

• Syntax:
#pragma omp simd [clause [,clause]…]

for-loop

• For-loop has to be in “canonical loop form” (see OpenMP 4.0 API:2.6)

 Random access iterators required for induction variable
(integer types or pointers for C++)

 Limited test and in-/decrement for induction variable

 Iteration count known before execution of loop

 …

84

Pragma SIMD

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• safelen(n1[,n2] …)

n1, n2, … must be power of 2: The compiler can assume a vectorization for a
vector length of n1, n2, … to be safe

• private(v1, v2, …): Variables private to each iteration

– lastprivate(…): last value is copied out from the last iteration instance

• linear(v1:step1, v2:step2, …)

For every iteration of original scalar loop v1 is incremented by step1, … etc.
Therefore it is incremented by step1 * vector length for the
vectorized loop.

• reduction(operator:v1, v2, …)

Variables v1, v2, … etc. are reduction variables for operation operator

• collapse(n): Combine nested loops – collapse them

• aligned(v1:base, v2:base, …): Tell variables v1, v2, … are aligned;
(default is architecture specific alignment)

85

Pragma SIMD Clauses

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ignore data dependencies, indirectly mitigate control flow dependence & assert
alignment:

86

Pragma SIMD Example

void vec1(float *a, float *b, int off, int len)

{

#pragma omp simd safelen(32) aligned(a:64, b:64)

for(int i = 0; i < len; i++)

{

a[i] = (a[i] > 1.0) ?

a[i] * b[i] :

a[i + off] * b[i];

}

}

LOOP BEGIN at simd.cpp(4,5)

remark #15388: vectorization support: reference a has aligned access [simd.cpp(6,9)]

remark #15388: vectorization support: reference b has aligned access [simd.cpp(6,9)]

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

LOOP END

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• SIMD-Enabled Function (aka. declare simd construct):
The declare simd construct can be applied to a function […] to enable the
creation of one or more versions that can process multiple arguments using
SIMD instructions from a single invocation from a SIMD loop.
[OpenMP* 4.0 API: 2.8.2]

• Syntax:
#pragma omp declare simd [clause [,clause]…]

function definition or declaration

• Intent:
Express work as scalar operations (kernel) and let compiler create a vector
version of it. The size of vectors can be specified at compile time (SSE,
AVX, …) which makes it portable!

• Remember:
Both the function definition as well as the function declaration (header file)
need to be specified like this!

87

SIMD-Enabled Functions

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• simdlen(len)

len must be power of 2: Allow as many elements per argument
(default is implementation specific)

• linear(v1:step1, v2:step2, …)

Defines v1, v2, … to be private to SIMD lane and to have linear (step1,
step2, …) relationship when used in context of a loop

• uniform(a1, a2, …)

Arguments a1, a2, … etc. are not treated as vectors (constant values across
SIMD lanes)

• inbranch, notinbranch: SIMD-enabled function called only inside
branches or never

• aligned(a1:base, a2:base, …): Tell arguments a1, a2, … are aligned;
(default is architecture specific alignment)

88

SIMD-Enabled Function Clauses

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Ignore data dependencies, indirectly mitigate control flow dependence & assert
alignment:

89

SIMD-Enabled Function Example

#pragma omp declare simd simdlen(16) notinbranch uniform(a, b, off)

float work(float *a, float *b, int i, int off)

{

return (a[i] > 1.0) ? a[i] * b[i] : a[i + off] * b[i];

}

void vec2(float *a, float *b, int off, int len)

{

#pragma omp simd safelen(64) aligned(a:64, b:64)

for(int i = 0; i < len; i++)

{

a[i] = work(a, b, i, off);

}

}

INLINE REPORT: (vec2(float *, float *, int, int)) [4/9=44.4%] simd.cpp(8,1)

-> INLINE: (12,16) work(float *, float *, int, int) (isz = 18) (sz = 31)

LOOP BEGIN at simd.cpp(10,5)

remark #15388: vectorization support: reference a has aligned access [simd.cpp(4,20)]

remark #15388: vectorization support: reference b has aligned access [simd.cpp(4,20)]

…

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

…

LOOP END

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Vectorization of Special Program Constructs & Loops

• Intel® Cilk™ Plus

• OpenMP* 4.0

• Summary

90

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Intel® C++ Compiler and Intel® Fortran Compiler provide sophisticated and
flexible support for vectorization

• They also provide a rich set of reporting features that help verifying
vectorization and optimization in general

• Directives and compiler switches permit fine-tuning for vectorization

• Vectorization can even be enforced for certain cases where language
standards are too restrictive

• Understanding of concepts like dependency and alignment is required to
take advantage from SIMD features

• Intel® C++/Fortran Compiler can create multi-version code to address a
broad range of processor generations, Intel and non-Intel processors and
individually exploiting their feature set

91

Summary

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Aart Bik: “The Software Vectorization Handbook”
http://www.intel.com/intelpress/sum_vmmx.htm

• Randy Allen, Ken Kennedy: “Optimizing Compilers for
Modern Architectures: A Dependence-based Approach”

• Steven S. Muchnik, “Advanced Compiler Design and
Implementation”

• Intel Software Forums, Knowledge Base, White Papers,
Tools Support (see http://software.intel.com)
Sample Articles:

 http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-
c-compilers/

 http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

 http://software.intel.com/en-us/articles/performance-tools-for-software-
developers-intel-compiler-options-for-sse-generation-and-processor-specific-
optimizations/

92

References

http://www.intel.com/intelpress/sum_vmmx.htm
http://software.intel.com/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

94

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

