
PGI Accelerator Compilers
OpenACC Getting Started Guide

Version 2014

PGI Compilers and Tools

PGI Accelerator Compilers OpenACC Getting Started Guide ii

TABLE OF CONTENTS

Chapter 1. Overview..1
1.1. Terms and Definitions..1
1.2. System Prerequisites...2
1.3. Prepare Your System.. 2
1.4. Supporting Documentation and Examples..4

Chapter 2. Using OpenACC with the PGI Compilers.. 5
2.1. C Examples... 6
2.2. Fortran Examples.. 9

2.2.1. Vector Addition on the GPU.. 10
2.2.2. Multi-Threaded Program Utilizing Multiple Devices...14

2.3. Troubleshooting Tips and Known Limitations..15
Chapter 3. Implemented Features... 16

3.1. In This Release... 16
3.2. Defaults..16
3.3. Environment Variables...17
3.4. OpenACC Fortran API Extensions..18

3.4.1. acc_malloc... 18
3.4.2. acc_free..18
3.4.3. acc_map_data..18
3.4.4. acc_unmap_data..19
3.4.5. acc_deviceptr... 19
3.4.6. acc_hostptr...19
3.4.7. acc_is_present... 20
3.4.8. acc_memcpy_to_device...20
3.4.9. acc_memcpy_from_device...20

3.5. Known Limitations..21
3.5.1. ACC routine directive Limitations.. 21
3.5.2. Clause Support Limitations..21
3.5.3. Known Limitations..22

3.6. Interactions with Optimizations..22
3.6.1. Interactions with Inlining.. 22

3.7. In Future Releases..22
Chapter 4. Contact Information... 23

PGI Accelerator Compilers OpenACC Getting Started Guide iii

LIST OF TABLES

Table 1 Supported Environment Variables ... 17

PGI Accelerator Compilers OpenACC Getting Started Guide iv

PGI Accelerator Compilers OpenACC Getting Started Guide 1

Chapter 1.
OVERVIEW

The OpenACC Application Program Interface is a collection of compiler directives and runtime
routines that allow you, the programmer, to specify loops and regions of code in standard C, C
++ and Fortran that you want offloaded from a host CPU to an attached accelerator, such as a
GPU. The OpenACC API was designed and is maintained by an industry consortium. See the
OpenACC website http://www.openacc.org for more information about the OpenACC API.

This Getting Started guide helps you prepare your system for using the PGI OpenACC
implementation, and provides examples of how to write, build and run programs using the
OpenACC directives. More information about the PGI OpenACC implementation is available at
http://www.pgroup.com/openacc.

1.1. Terms and Definitions
Throughout this document certain terms have very specific meaning:

‣ OpenACC is a parallel programming standard describing a set of compiler directives which
can be applied to standard C, C++, and Fortran to specify regions of code for offloading from
a host CPU to an attached accelerator.

‣ A directive is, in C, a #pragma, or, in Fortran, a specially formatted comment statement that
is interpreted by a compiler to augment information about or specify the behavior of the
program. This document uses the term directives for either Fortran directive comments or
C/C++ pragmas. Features specific to "Fortran directives" and "C pragmas" are called out as
such.

‣ PGCC, PGC++, and PGFORTRAN are the names of the PGI compiler products.
‣ pgcc and pgfortran are the names of the PGI compiler drivers. pgfortran may also be spelled

pgf90 and pgf95. The PGI C++ compilers are named pgcpp and pgc++. pgcpp is the driver
on Windows and OS X, and uses legacy name mangling on Linux. pgc++ is the driver on
Linux which uses GNU-compatible naming conventions.

‣ CUDA stands for Compute Unified Device Architecture; the CUDA environment from
NVIDIA is a C–like programming environment used to explicitly control and program an
NVIDIA GPU. OpenCL is the Open Compute Language, a standard C-like programming
environment similar to CUDA that enables portable low-level general-purpose programming
on GPUs and other accelerators. This programming language and model is supported by
AMD for their GPUs.

http://www.openacc.org
http://www.pgroup.com/openacc

Overview

PGI Accelerator Compilers OpenACC Getting Started Guide 2

‣ LLVM is a compiler infrastructure. Under certain circumstances, PGI compilers may
produce an intermediate representation of programs for use by LLVM compiler back-ends.

1.2. System Prerequisites
Using this release of PGI OpenACC API implementation requires the following:

‣ A 32-bit or 64-bit Intel or AMD x86 system running Linux, Microsoft Windows, or Apple
OS X. Information about the PGI-supported releases is available at http://www.pgroup.com/
support/install.htm.

‣ For targeting GPUs:

‣ NVIDIA: A CUDA-enabled NVIDIA GPU and an installed driver. For NVIDIA
CUDA, the driver should be version 5.5 or later. (http://www.nvidia.com/cuda).

‣ AMD: An OpenCL-enabled AMD GPU, and the AMD OpenCL drivers, version 13.30
or later(http://www.amd.com/drivers)

1.3. Prepare Your System
To enable OpenACC, follow these steps:

 1. Download the latest 14.7 packages from the Download page on the PGI website at http://
www.pgroup.com/support/downloads.php .

 2. Install the downloaded package.

 3. Put the installed bin directory on your path.

 4. Run pgaccelinfo to see that your GPU and drivers are properly installed and available.
For NVIDIA, you should see output that looks something like the following:

http://www.pgroup.com/support/install.htm
http://www.pgroup.com/support/install.htm
http://www.nvidia.com/cuda
http://www.amd.com/drivers
http://www.pgroup.com/support/downloads.php
http://www.pgroup.com/support/downloads.php

Overview

PGI Accelerator Compilers OpenACC Getting Started Guide 3

CUDA Driver Version: 6000
NVRM version: NVIDIA UNIX x86_64 Kernel Module 331.49 Wed Feb 12
20:42:50 PST 2014
CUDA Device Number: 0
Device Name: Tesla K20c
Device Revision Number: 3.5
Global Memory Size: 5032706048
Number of Multiprocessors: 13
Number of SP Cores: 2496
Number of DP Cores: 832
Concurrent Copy and Execution: Yes
Total Constant Memory: 65536
Total Shared Memory per Block: 49152
Registers per Block: 65536
Warp Size: 32
Maximum Threads per Block: 1024
Maximum Block Dimensions: 1024, 1024, 64
Maximum Grid Dimensions: 2147483647 x 65535 x 65535
Maximum Memory Pitch: 2147483647B
Texture Alignment: 512B
Clock Rate: 705 MHz
Execution Timeout: No
Integrated Device: No
Can Map Host Memory: Yes
Compute Mode: default
Concurrent Kernels: Yes
ECC Enabled: Yes
Memory Clock Rate: 2600 MHz
Memory Bus Width: 320 bits
L2 Cache Size: 1310720 bytes
Max Threads Per SMP: 2048
Async Engines: 2
Unified Addressing: Yes
Initialization time: 1487991 microseconds
Current free memory: 4952023040
Upload time (4MB): 942 microseconds (708 ms pinned)
Download time: 1060 microseconds (673 ms pinned)
Upload bandwidth: 4452 MB/sec (5924 MB/sec pinned)
Download bandwidth: 3956 MB/sec (6232 MB/sec pinned)
PGI Compiler Option: -ta=tesla:cc35

Overview

PGI Accelerator Compilers OpenACC Getting Started Guide 4

 5. For AMD, you should see output that looks something like the following:
OpenCL Platform: AMD Accelerated Parallel Processing
OpenCL Vendor: Advanced Micro Devices, Inc.

Device Number: 0
Device Name: Tahiti
Available: Yes
Compiler Available: Yes
Board Name: ATI FirePro V (FireGL V) Graphics Adapter
Device Version: OpenCL 1.2 AMD-APP (1359.4)
Global Memory Size: 3079667712
Maximum Object Size: 1073741824
Global Cache Size: 16384
Free Memory: 3007650000
Max Clock (MHz): 950
Compute Units: 28
SIMD Units: 4
SIMD Width: 16
GPU Cores: 1792
Wavefront Width: 64
Constant Memory Size: 65536
Local Memory Size: 32768
Workgroup Size: 256
Address Bits: 32
ECC Support: No
PGI Compiler Option: -ta=radeon:tahiti

This tells you the driver version, the name of the GPU (or GPUs, if you have more than one),
the available memory, the -ta command line flag to target this GPU, and so on.

1.4. Supporting Documentation and Examples
You may want to consult the latest OpenACC 2.0 specification, included with this release, for
additional information. It is also available at the OpenACC website. Simple examples appear in
Using OpenACC with the PGI Compilers.

Source code is included with this release as well in /opt/pgi/[os][-64]/2014/
examples/openacc/

http://www.openacc.org

PGI Accelerator Compilers OpenACC Getting Started Guide 5

Chapter 2.
USING OPENACC WITH THE PGI COMPILERS

The OpenACC directives are enabled by adding the –acc or the –ta=[target] flag to the
PGI compiler command line. This release targets OpenACC to NVIDIA GPUs. [–ta=tesla]
and Radeon discrete and integrated GPUs [–ta=radeon].

Refer to Implemented Features for a discussion about using OpenACC directives or the –acc
flag with object files compiled with previous PGI releases using the PGI Accelerator directives.

This release includes partial support for the OpenACC 2.0 specification. Refer to Implemented
Features for details about which features are supported in this release, and what features are
coming in updates over the next few months.

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 6

2.1. C Examples
The simplest C example of OpenACC is a vector addition on the GPU:
 #include <stdio.h>
 #include <stdlib.h>
 void vecaddgpu(float *restrict r, float *a, float *b, int n){
 #pragma acc kernels loop copyin(a[0:n],b[0:n]) copyout(r[0:n])
 for(int i = 0; i < n; ++i) r[i] = a[i] + b[i];
 }

 int main(int argc, char* argv[]){
 int n; /* vector length */
 float * a; /* input vector 1 */
 float * b; /* input vector 2 */
 float * r; /* output vector */
 float * e; /* expected output values */
 int i, errs;
 if(argc > 1) n = atoi(argv[1]);
 else n = 100000; /* default vector length */
 if(n <= 0) n = 100000;
 a = (float*)malloc(n*sizeof(float));
 b = (float*)malloc(n*sizeof(float));
 r = (float*)malloc(n*sizeof(float));
 e = (float*)malloc(n*sizeof(float));
 for(i = 0; i < n; ++i){
 a[i] = (float)(i+1);
 b[i] = (float)(1000*i);
 }
 /* compute on the GPU */
 vecaddgpu(r, a, b, n);
 /* compute on the host to compare */
 for(i = 0; i < n; ++i) e[i] = a[i] + b[i];
 /* compare results */
 errs = 0;
 for(i = 0; i < n; ++i){
 if(r[i] != e[i]){
 ++errs;
 }
 }
 printf(“%d errors found\n”, errs);
 return errs;
 }

The important part of this example is the routine vecaddgpu, which includes one OpenACC
directive for the loop. This (#pragma acc) directive tells the compiler to generate a kernel for
the following loop (kernels loop), to allocate and copy from the host memory into the GPU
memory n elements for the vectors a and b before executing on the GPU, starting at a[0] and b[0]
(copyin(a[0:n],b[0:n])), and to allocate n elements for the vector r before executing on
the GPU, and copy from the GPU memory out to the host memory those n elements, starting at
r[0] (copyout(r[0:n])).

If you type this example into a file a1.c, you can build it with this release using the command
pgcc -acc a1.c. The –acc flag enables recognition of the OpenACC pragmas and includes
the OpenACC runtime library. This command generates the usual a.out executable file, and
you run the program by running a.out as normal. You should see the output:
0 errors found

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 7

If instead you get the following output, then there is something wrong with your hardware
installation or your GPU driver.
libcuda.so not found, exiting
Please check that the CUDA driver is installed and the shared object
is in the install directory or on your LD_LIBRARY_PATH.

You can enable additional output by setting environment variables. If you set the environment
variable PGI_ACC_NOTIFY to 1, then the runtime prints a line of output each time you run a
kernel on the GPU. For this program, you might get output that looks like:
launch CUDA kernel file=/user/guest/a1.c function=vecaddgpu
line=6 device=0 grid=782 block=128
0 errors found

The extra output tells you that the program launched a kernel for the loop at line 6, with a
CUDA grid of size 391, and a thread block of size 256. If you set the environment variable
PGI_ACC_NOTIFY to 3, the output will include information about the data transfers as well:
upload CUDA data file=/user/guest/a1.c function=vecaddgpu
line=5 device=0 variable=b bytes=400000
upload CUDA data file=/user/guest/a1.c function=vecaddgpu
line=5 device=0 variable=a bytes=400000
launch CUDA kernel file=/user/guest/a1.c function=vecaddgpu
line=6 device=0 grid=782 block=128
download CUDA data file=/user/guest/a1.c function=vecaddgpu
line=7 device=0 variable=r bytes=400000
0 errors found

If you set the environment variable PGI_ACC_TIME to 1, the runtime summarizes the time
taken for data movement between the host and GPU, and computation on the GPU. On Linux,
you may need to set the LD_LIBRARY_PATH environment variable to include the /opt/pgi/
linux86[-64]/14.7/lib or /opt/pgi/linux86/14.7/lib directory, as appropriate.
This release dynamically loads a shared object to implement the profiling feature, and the path to
the library must be available.

For this program, you might get output similar to this:
0 errors found

Accelerator Kernel Timing data
/user/guest/a1.c
 vecaddgpu NVIDIA devicenum=0
 time(us): 598
 5: data copyin reached 2 times
 device time(us): total=315 max=161 min=154 avg=157
 6: kernel launched 1 times
 grid: [782] block: [128]
 device time(us): total=32 max=32 min=32 avg=32
 elapsed time(us): total=41 max=41 min=41 avg=41
 7: data copyout reached 1 times
 device time(us): total=251 max=251 min=251 avg=251

This tells you that the program entered one accelerator region and spent a total of about 598
microseconds in that region. It copied two arrays to the device, launched one kernel and brought
one array back to the host.

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 8

You might also find it useful to enable the compiler feedback when you are writing your own
OpenACC programs. This is enabled with the –Minfo flag. If you compile this program with the
command pgcc -acc -fast -Minfo a1.c, you get the output:
 vecaddgpu:
 5, Generating present_or_copyout(r[0:n])
 Generating present_or_copyin(b[0:n])
 Generating present_or_copyin(a[0:n])
 Generating Tesla code
 Generating compute capability 1.0 binary
 Generating compute capability 2.0 binary
 Generating compute capability 3.0 binary
 6, Loop is parallelizable
 Accelerator kernel generated
 6, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

This tells you that the compiler generated three versions of the code, one for NVIDIA devices
with compute capability 1.0 and higher (Tesla), and one for devices with compute capability 2.0
and higher (Fermi), and third for compute capability 3.0 and higher (Kepler). It also gives the
schedule used for the loop; in this case, the schedule is gang,vector(128). This means the
iterations of the loop are broken into vectors of 128, and the vectors executed in parallel by SMs
or compute units of the GPU.

This output is important because it tells you when you are going to get parallel execution
or sequential execution. If you remove the restrict keyword from the declaration of the
dummy argument r to the routine vecaddgpu, the –Minfo output tells you that there may be
dependences between the stores through the pointer r and the fetches through the pointers a and b:
 6, Complex loop carried dependence of '*(b)' prevents parallelization
 Complex loop carried dependence of '*(a)' prevents parallelization
 Loop carried dependence of '*(r)' prevents parallelization
 Loop carried backward dependence of '*(r)' prevents vectorization
 Accelerator scalar kernel generated

The compiler generated a scalar kernel, which runs on one thread of one thread block, and
which runs about 1000 times slower than the parallel kernel. For this simple program, the total
time is dominated by GPU initialization, so you might not notice the difference in times, but in
production mode you need parallel kernel execution to get acceptable performance.

For our second example, we modify the program slightly by replacing the data clauses on the
kernels pragma with a present clause, and add a data construct surrounding the call to the
vecaddgpu routine. The data construct moves the data across to the GPU in the main program.
The present clause in the vecaddgpu routine tells the compiler to use the GPU copy of
the data that has already been allocated on the GPU. If you run this program on the GPU with
PGI_ACC_TIME set, you see that the kernel region now has no data movement associated with
it. Instead, the data movement is all associated with the data construct in the main program.

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 9

 #include <stdio.h>
 #include <stdlib.h>

 void vecaddgpu(float *restrict r, float *a, float *b, int n){
 #pragma acc kernels loop present(r,a,b)
 for(int i = 0; i < n; ++i) r[i] = a[i] + b[i];
 }

 int main(int argc, char* argv[]){
 int n; /* vector length */
 float * a; /* input vector 1 */
 float * b; /* input vector 2 */
 float * r; /* output vector */
 float * e; /* expected output values */
 int i, errs;

 if(argc > 1) n = atoi(argv[1]);
 else n = 100000; /* default vector length */
 if(n <= 0) n = 100000;
 a = (float*)malloc(n*sizeof(float));
 b = (float*)malloc(n*sizeof(float));
 r = (float*)malloc(n*sizeof(float));
 e = (float*)malloc(n*sizeof(float));
 for(i = 0; i < n; ++i){
 a[i] = (float)(i+1);
 b[i] = (float)(1000*i);
 }
 /* compute on the GPU */
 #pragma acc data copyin(a[0:n],b[0:n]) copyout(r[0:n])
 {
 vecaddgpu(r, a, b, n);
 }
 /* compute on the host to compare */
 for(i = 0; i < n; ++i) e[i] = a[i] + b[i];
 /* compare results */
 errs = 0;
 for(i = 0; i < n; ++i){
 if(r[i] != e[i]){
 ++errs;
 }
 }
 printf(“%d errors found\n”, errs);
 return errs;
 }

2.2. Fortran Examples
The simplest Fortan example of OpenACC is a vector addition on the GPU.

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 10

2.2.1. Vector Addition on the GPU
The section contains two Fortan examples of vector addition on the GPU:
 module vecaddmod
 implicit none
 contains
 subroutine vecaddgpu(r, a, b, n)
 real, dimension(:) :: r, a, b
 integer :: n
 integer :: i
 !$acc kernels loop copyin(a(1:n),b(1:n)) copyout(r(1:n))
 do i = 1, n
 r(i) = a(i) + b(i)
 enddo
 end subroutine
 end module

 program main
 use vecaddmod
 implicit none
 integer :: n, i, errs, argcount
 real, dimension(:), allocatable :: a, b, r, e
 character*10 :: arg1
 argcount = command_argument_count()
 n = 1000000 ! default value
 if(argcount = 1)then
 call get_command_argument(1, arg1)
 read(arg1, '(i)') n
 if(n <= 0) n = 100000
 endif
 allocate(a(n), b(n), r(n), e(n))
 do i = 1, n
 a(i) = i
 b(i) = 1000*i
 enddo
 ! compute on the GPU
 call vecaddgpu(r, a, b, n)
 ! compute on the host to compare
 do i = 1, n
 e(i) = a(i) + b(i)
 enddo
 ! compare results
 errs = 0
 do i = 1, n
 if(r(i) /= e(i))then
 errs = errs + 1
 endif
 enddo
 print *, errs, ' errors found'
 if(errs) call exit(errs)
 end program

The important part of this example is the subroutine vecaddgpu, which includes one OpenACC
directive for the loop. This (!$acc) directive tells the compiler to generate a kernel for the
following loop (kernels loop), to allocate and copy from the host memory into the GPU
memory n elements for the vectors a and b before executing on the GPU, starting at a(1) and b(1)
(copyin(a(1:n),b(1:n)), and to allocate n elements for the vector r before executing on
the GPU, and copy from the GPU memory out to the host memory those n elements, starting at
r(1) (copyout(r(1:n)).

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 11

If you type this example into a file f1.f90, you can build it with this release using the
command pgfortran -acc f1.f90. The -acc flag enables recognition of the OpenACC
pragmas and includes the OpenACC runtime library. This command generates the usual a.out
executable file, and you run the program by running a.out as normal. You should see the
output:
0 errors found

If instead you get the following output, then there is something wrong with your hardware
installation or your CUDA driver.
libcuda.so not found, exiting
Please check that the CUDA driver is installed and the shared object
is in the install directory or on your LD_LIBRARY_PATH.

You can enable additional output by setting environment variables. If you set the environment
variable PGI_ACC_NOTIFY to 1, then the runtime prints a line of output each time you run a
kernel on the GPU. For this program, you might get output that looks like:
launch CUDA kernel file=/user/guest/f1.f90 function=vecaddgpu
line=9 device=0 grid=7813 block=128
0 errors found

The extra output tells you that the program launched a kernel for the loop at line 9, with a
CUDA grid of size 7813, and a thread block of size 128. If you set the environment variable
PGI_ACC_NOTIFY to 3, the output will include information about the data transfers as well:
 upload CUDA data file=/user/guest/f1.f90 function=vecaddgpu line=8 device=0
 variable=b bytes=4000000
 upload CUDA data file=/user/guest/f1.f90 function=vecaddgpu line=8 device=0
 variable=a bytes=4000000
 launch CUDA kernel file=/user/guest/f1.f90 function=vecaddgpu line=9 device=0
 grid=7813 block=128
 download CUDA data file=/user/guest/f1.f90 function=vecaddgpu line=12
 device=0 variable=r bytes=4000000
 0 errors found

If you set the environment variable PGI_ACC_TIME to 1, the runtime summarizes the time
taken for data movement between the host and GPU, and computation on the GPU. For this
program, you might get output similar to this:
0 errors found

Accelerator Kernel Timing data
/user/guest/f1.f90
 vecaddgpu NVIDIA devicenum=0
 time(us): 1,971
 8: data copyin reached 2 times
 device time(us): total=1,242 max=623 min=619 avg=621
 9: kernel launched 1 times
 grid: [7813] block: [128]
 device time(us): total=109 max=109 min=109 avg=109
 elapsed time(us): total=118 max=118 min=118 avg=118
 12: data copyout reached 1 times
 device time(us): total=620 max=620 min=620 avg=620

This tells you that the program entered one accelerator region and spent a total of about 2
milliseconds in that region. It copied two arrays to the device, launched one kernel and brought
one array back to the host.

You might also find it useful to enable the compiler feedback when you are writing your own
OpenACC programs. This is enabled with the -Minfo flag.

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 12

If you compile this program with the command pgfortran -acc -fast -Minfo
f1.f90, you get the output:
vecaddgpu:
 8, Generating present_or_copyout(r(:n))
 Generating present_or_copyin(b(:n))
 Generating present_or_copyin(a(:n))
 Generating Tesla code
 Generating compute capability 1.0 binary
 Generating compute capability 2.0 binary
 Generating compute capability 3.0 binary
 9, Loop is parallelizable
 Accelerator kernel generated
 9, !$acc loop gang, vector(128) ! blockidx%x threadidx%x

This tells you that the compiler generated three versions of the code, one for NVIDIA devices
with compute capability 1.0 and higher (Tesla), and one for devices with compute capability
2.0 and higher (Fermi), and one for devices with compute capability 3.0 and higher (Kepler). It
also gives the schedule used for the loop; in this case, the schedule is gang, vector(128).
This means the iterations of the loop are broken into vectors of 128, and the vectors executed in
parallel by SMPs of the GPU. This output is important because it tells you when you are going to
get parallel execution or sequential execution.

For our second example, we modify the program slightly by replacing the data clauses on the
kernels pragma with a present clause, and add a data construct surrounding the call to the
vecaddgpu subroutine. The data construct moves the data across to the GPU in the main
program. The present clause in the vecaddgpu subroutine tells the compiler to use the GPU
copy of the data that has already been allocated on the GPU. If you run this program on the GPU
with PGI_ACC_TIME set, you see that the kernel region now has no data movement associated
with it. Instead, the data movement is all associated with the data construct in the main program.

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 13

In Fortran programs, you don't have to specify the array bounds in data clauses if the compiler
can figure out the bounds from the declaration, or if the arrays are assumed-shape dummy
arguments or allocatable arrays.
module vecaddmod
 implicit none
contains
 subroutine vecaddgpu(r, a, b, n)
 real, dimension(:) :: r, a, b
 integer :: n
 integer :: i
!$acc kernels loop present(r,a,b)
 do i = 1, n
 r(i) = a(i) + b(i)
 enddo
 end subroutine
end module

program main
 use vecaddmod
 implicit none
 integer :: n, i, errs, argcount
 real, dimension(:), allocatable :: a, b, r, e
 character*10 :: arg1
 argcount = command_argument_count()
 n = 1000000 ! default value
 if(argcount >= 1)then
 call get_command_argument(1, arg1)
 read(arg1, '(i)') n
 if(n <= 0) n = 100000
 endif
 allocate(a(n), b(n), r(n), e(n))
 do i = 1, n
 a(i) = i
 b(i) = 1000*i
 enddo
 ! compute on the GPU
!$acc data copyin(a,b) copyout(r)
 call vecaddgpu(r, a, b, n)
!$acc end data
 ! compute on the host to compare
 do i = 1, n
 e(i) = a(i) + b(i)
 enddo
 ! compare results
 errs = 0
 do i = 1, n
 if(r(i) /= e(i))then
 errs = errs + 1
 endif
 enddo
 print *, errs, ' errors found'
 if(errs) call exit(errs)
end program

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 14

2.2.2. Multi-Threaded Program Utilizing Multiple Devices
This simple example shows how to run a multi-threaded host program that utilizes multiple
devices.
 program tdot
 ! Compile with "pgfortran -mp -acc tman.f90 -lacml
 ! Compile with "pgfortran -mp -acc tman.f90 -lblas,
 ! where acml is not available
 ! Set OMP_NUM_THREADS environment variable to run with
 ! up to 2 threads, currently.
 !
 use openacc
 use omp_lib
 !
 integer, parameter :: N = 10000
 real*8 x(N), y(N), z
 integer, allocatable :: offs(:)
 real*8, allocatable :: zs(:)
 real*8 ddot

 ! Max at 2 threads for now
 nthr = omp_get_max_threads()
 if (nthr .gt. 2) nthr = 2
 call omp_set_num_threads(nthr)

 ! Run on host
 call random_number(x)
 call random_number(y)
 z = ddot(N,x,1,y,1)
 print *,"Host Serial",z

 ! Attach each thread to a device
 !$omp PARALLEL private(i)
 i = omp_get_thread_num()
 call acc_set_device_num(i, acc_device_nvidia)
 !$omp end parallel

 ! Break up the array into sections
 nsec = N / nthr
 allocate(offs(nthr),zs(nthr))
 offs = (/ (i*nsec,i=0,nthr-1) /)
 zs = 0.0d0

 ! Decompose the problem across devices
 !$omp PARALLEL private(i,j,z)
 i = omp_get_thread_num() + 1
 z = 0.0d0
 !$acc kernels loop &
 copyin(x(offs(i)+1:offs(i)+nsec),y(offs(i)+1:offs(i)+nsec))
 do j = offs(i)+1, offs(i)+nsec
 z = z + x(j) * y(j)
 end do
 zs(i) = z
 !$omp end parallel
 z = sum(zs)
 print *,"Multi-Device Parallel",z
 end

The program starts by having each thread call acc_set_device_num so each thread will use
a different GPU. Within the computational OpenMP parallel region, each thread copies the data it
needs to its GPU and proceeds.

Using OpenACC with the PGI Compilers

PGI Accelerator Compilers OpenACC Getting Started Guide 15

2.3. Troubleshooting Tips and Known Limitations
This release of the PGI compilers does not implement the full OpenACC specification. For an
explanation of what features are not yet implemented, refer to Chapter 3, Implemented Features.

The Linux CUDA driver will power down an idle GPU. This means if you are using a GPU with
no attached display, or an NVIDIA Tesla compute-only GPU, and there are no open CUDA
contexts, the GPU will power down until it is needed. Since it may take up to a second to power
the GPU back up, you may experience noticeable delays when you start your program. When you
run your program with the environment variable PGI_ACC_TIME set to 1, this time will appear
as initialization time. If you have an NVIDIA S1070 or S2050 with four GPUs, this initialization
time may be up to 4 seconds. If you are running many tests, or want to isolate the actual time
from the initialization time, you can run the PGI utility pgcudainit in the background. This
utility opens a CUDA context and holds it open until you kill it or let it complete.

This release has support for the async clause and wait directive. When you use asynchronous
computation or data movement, you are responsible for ensuring that the program has enough
synchronization to resolve any data races between the host and the GPU. If your program uses
the async clause and wrong answers are occuring, you can test whether the async clause is
causing problems by setting the environment variable PGI_ACC_SYNCHRONOUS to 1 before
running your program. This action causes the OpenACC runtime to ignore the async clauses
and run the program in synchronous mode.

PGI Accelerator Compilers OpenACC Getting Started Guide 16

Chapter 3.
IMPLEMENTED FEATURES

This section lists the OpenACC features available in this release, and the features to be
implemented in upcoming PGI releases.

3.1. In This Release
This release includes full support for the OpenACC 1.0 specification except for the
firstprivate() clause for the Parallel construct. In addition, this release includes support
for the following OpenACC 2.0 features:

‣ Procedure calls (routine directive)
‣ Unstructured data lifetimes
‣ Create and device_resident clauses for the Declare directive
‣ Multidimensional dynamically allocated C/C++ arrays
‣ Ability to call CUDA Fortran atomic functions on NVIDIA
‣ Complete run-time API support

3.2. Defaults
In this release, the default ACC_DEVICE_TYPE is acc_device_nvidia, just as the -acc
compiler option targets -ta=tesla by default. The device types acc_device_default and
acc_device_not_host behave the same as acc_device_nvidia. The device type can
be changed using the environment variable or by a call to acc_set_device_type().

In this release, the default ACC_DEVICE_NUM is 0 for the acc_device_nvidia type,
which is consistent with the CUDA device numbering system. For more information, refer to the
pgaccelinfo output in Prepare Your System. The device number can be changed using the
environment variable or by a call to acc_set_device_num.

Implemented Features

PGI Accelerator Compilers OpenACC Getting Started Guide 17

3.3. Environment Variables
This section summarizes the environment variables that PGI OpenACC supports. These
environment variables are user-setable environment variables that control behavior of accelerator-
enabled programs at execution. These environment variables must comply with these rules:

‣ The names of the environment variables must be upper case.
‣ The values of environment variables are case insensitive and may have leading and trailing

white space.
‣ The behavior is implementation-defined if the values of the environment variables change

after the program has started, even if the program itself modifies the values.

The following table contains the environment variables that are currently supported and provides
a brief description of each.

Table 1 Supported Environment Variables

Use this environment
variable... To do this...

PGI_ACC_TIME Enables a lightweight profiler to measure data movement and accelerator kernel execution time
and print a summary at the end of program execution.

PGI_ACC_PROFILE Is used by pgcollect internally to enable the lightweight PGI timers and write the information out
for pgprof.

PGI_ACC_PROFLIB Enables 3rd party tools interface using the new profiler dynamic library interface.

PGI_ACC_NOTIFY Writes out a line for each kernel launch and/or data movement. When set to an integer value, the
value, is used as a bit mask to print information about kernel launches (value 1), data transfers
(value 2), region entry/exit (value 4), wait operations or synchronizations with the device (value
8), and device memory allocates and deallocates (value 16).

PGI_ACC_SYNCHRONOUS Disables asynchronous launches and data movement.

PGI_ACC_DEVICE_NUM

= = ACC_DEVICE_NUM

Sets the default device number to use. PGI_ACC_DEVICE_NUM overrides
ACC_DEVICE_NUM. Controls the default device number to use when executing accelerator
regions. The value of this environment variable must be a nonnegative integer between zero and
the number of devices attached to the host.

PGI_ACC_DEVICE_TYPE

= = ACC_DEVICE_TYPE

= = ACC_DEVICE

Sets the default device type to use. PGI_ACC_DEVICE_TYPE overrides ACC_DEVICE_TYPE.
Controls which accelerator device to use when executing accelerator regions, if the program
has been compiled to use more than one different type of device. The value of this environment
variable is implementation-defined, and currently may be the string NVIDIA, TESLA, RADEON,
or HOST

PGI_ACC_BUFFERSIZE For NVIDIA CUDA devices, this defines the size of the pinned buffer used to transfer data
between host and device.

PGI_ACC_CUDA_GANGLIMIT For NVIDIA CUDA devices, this defines the maximum number of gangs (CUDA thread blocks)
that will be launched by a kernel.

PGI_ACC_DEV_MEMORY For AMD GPUs, this sets the maximum buffer size ot allocate. The runtime will allocate buffers
of this size, then suballocate data within these buffers.

Implemented Features

PGI Accelerator Compilers OpenACC Getting Started Guide 18

3.4. OpenACC Fortran API Extensions
This section summarizes the OpenACC 2.0 Fortran API extensions that PGI supports.

3.4.1. acc_malloc
The acc_malloc function returns a device pointer, in a variable of type(c_devptr), to
newly allocated memory on the device. If the data can not be allocated, this function returns
C_NULL_DEVPTR.

There is one supported call format in PGI Fortran:
 type(c_devptr) function acc_malloc (bytes)

where bytes is an integer which specifies the number of bytes requested.

3.4.2. acc_free
The acc_free subroutine frees memory previously allocated by acc_malloc. It takes as
an argument either a device pointer contained in an instance of derived type(c_devptr), or for
convenience, a CUDA Fortran device array. In PGI Fortran, calling acc_free (or cudaFree)
with a CUDA Fortran device array that was allocated using the F90 allocate statement results in
undefined behavior.

There are two supported call formats in PGI Fortran:
subroutine acc_free (devptr)

where devptr is an instance of derived type(c_devptr)

subroutine acc_free (dev)

where dev is a CUDA Fortran device array

3.4.3. acc_map_data
The acc_map_data routine associates (maps) host data to device data. The first argument is
a host array, contiguous host array section, or address contained in a type(c_ptr). The second
argument must be a device address contained in a type(c_devptr), such as would be returned from
acc_malloc or acc_deviceptr, or a CUDA Fortran device array. There are 4 supported
call formats in PGI Fortran:

There are four supported call formats in PGI Fortran:
subroutine acc_map_data (host, dev, bytes)

where host is a host variable, array or starting array element
dev is a CUDA Fortran device variable, array, or starting array element
bytes is an integer which specifies the mapping length in bytes)

subroutine acc_map_data (host, dev)

where host is a host array or contiguous host array section

Implemented Features

PGI Accelerator Compilers OpenACC Getting Started Guide 19

dev is a CUDA Fortran device array or array section which conforms to host

subroutine acc_map_data (host, devptr, bytes)

where host is a host variable, array or starting array element
devptr is an instance of derived type(c_devptr)
bytes is an integer which specifies the mapping length in bytes)

subroutine acc_map_data (ptr, devptr, bytes)

where ptr is an instance of derived type(c_ptr)
devptr is an instance of derived type(c_devptr)
bytes is an integer which specifies the mapping length in bytes)

3.4.4. acc_unmap_data
The acc_unmap_data routine unmaps (or disassociates) the device data from the specified
host data.

There is one supported call format in PGI Fortran:
subroutine acc_unmap_data (host)

where host is a host variable that was mapped to device data in a previous call to
acc_map_data.

3.4.5. acc_deviceptr
The acc_deviceptr function returns the device pointer, in a variable of type(c_devptr),
mapped to a host address. The input argument is a host variable or array element that has
an active lifetime on the current device. If the data is not present, this function returns
C_NULL_DEVPTR.

There is one supported call format in PGI Fortran:
type(c_devptr) function acc_deviceptr (host)

where host is a host variable or array element of any type, kind and rank.

3.4.6. acc_hostptr
The acc_hostptr function returns the host pointer, in a variable of type(c_ptr), mapped
to a device address. The input argument is a device address, such as would be returned from
acc_malloc or acc_deviceptr, or a CUDA Fortran device array.

There are two supported call formats in PGI Fortran:
type(c_ptr) function acc_hostptr (dev)

where dev is a CUDA Fortran device array

type(c_ptr) function acc_hostptr (devptr)

where devptr is an instance of derived type(c_devptr)

Implemented Features

PGI Accelerator Compilers OpenACC Getting Started Guide 20

3.4.7. acc_is_present
The acc_is_present function returns .true. or .false. depending on whether a host variable or
array region is present on the device.

There are two supported call formats in PGI Fortran:
logical function acc_is_present (host)

where host is a host variable of any type, kind, and rank, or a contiguous array section of
intrinsic type.

logical function acc_is_present (host, bytes)

where host is a host variable of any type, kind, and rank.
bytes is an integer which specifies the length of the data to check.

3.4.8. acc_memcpy_to_device
The acc_memcpy_to_device routine copies data from local memory to device memory. The
source address is a host array, contiguous array section, or address contained in a type(c_ptr). The
destination address must be a device address, such as would be returned from acc_malloc or
acc_deviceptr, or a CUDA Fortran device array.

There are four supported call formats in PGI Fortran:
subroutine acc_memcpy_to_device (dev, src, bytes)

where dev is a CUDA Fortran device variable, array or starting array element.
src is a host variable, array, or starting array element.
bytes is an integer which specifies the length of the copy in bytes.

subroutine acc_memcpy_to_device (dev, src)

where dev is a CUDA Fortran device array or contiguous array section.
src is a host array or array section which conforms to dev.

subroutine acc_memcpy_to_device (devptr, src, bytes)

where devptr is an instance of derived type(c_devptr).
src is a host variable, array, or starting array element.
bytes is an integer which specifies the length of the copy in bytes.

subroutine acc_memcpy_to_device (devptr, ptr, bytes)

where devptr is an instance of derived type(c_devptr).
ptr is an instance of derived type(c_ptr).
bytes is an integer which specifies the length of the copy in bytes.

3.4.9. acc_memcpy_from_device
The acc_memcpy_from_device routine copies data from device memory to local memory.
The source address must be a device address, such as would be returned from acc_malloc,
acc_deviceptr, or a CUDA Fortran device array. The source address is a host array,
contiguous array section, or address contained in a type(c_ptr).

Implemented Features

PGI Accelerator Compilers OpenACC Getting Started Guide 21

There are four supported call formats in PGI Fortran:
subroutine acc_memcpy_from_device (dest, dev, bytes)

where dest is a host variable, array, or starting array element.
dev is a CUDA Fortran device variable, array or starting array element.
bytes is an integer which specifies the length of the copy in bytes)

subroutine acc_memcpy_from_device (dest, dev)

where dest is a host array or contiguous array section.
dev is a CUDA Fortran device array or array section which conforms to dest subroutine.

subroutine acc_memcpy_from_device (dest, devptr, bytes)

where dest is a host variable, array, or starting array element.
devptr is an instance of derived type(c_devptr).
bytes is an integer which specifies the length of the copy in bytes)

subroutine acc_memcpy_from_device (ptr, devptr, bytes)

where ptr is an instance of derived type(c_ptr).
devptr is an instance of derived type(c_devptr).
bytes is an integer which specifies the length of the copy in bytes)

3.5. Known Limitations
This section includes the known limitations to OpenACC directives. PGI plans to support these
features in a future release, though separate compilation and extern variables for Radeon will be
deferred until OpenCL 2.0 is released.

3.5.1. ACC routine directive Limitations
‣ The routine directive has limited support on AMD radeon. Separate compilation is not

supported on radeon, and selecting the option –ta=radeon disables the rdc suboption for
-ta=tesla.

‣ Extern variables may not be used with acc routine procedures.
‣ In Fortran, only functions that return integer or real values are supported with acc

routine.
‣ In C and C++, only int, float, double, or void functions are supported with acc routine.
‣ Reductions in procedures with acc routine are not supported.
‣ Fortran assumed-shape arguments are not yet supported.

3.5.2. Clause Support Limitations
‣ The wait clause on OpenACC directives is not supported.
‣ The async clause on the wait directive is not supported.
‣ The device_type clause is not supported on any directive.

Implemented Features

PGI Accelerator Compilers OpenACC Getting Started Guide 22

3.5.3. Known Limitations
‣ This release does not support targeting another accelerator device after acc_shutdown has

been called.

3.6. Interactions with Optimizations
This section discusses interactions with compiler optimizations that programmers should be
aware of.

3.6.1. Interactions with Inlining
Procedure inlining may be enabled in several ways. User-controlled inlining is enabled using
the -Minline flag, or with -Mextract=lib: and -Minline=lib: flags. For C and
C++, compiler-controlled inlining is enabled using the -Mautoinline or -fast flags.
Interprocedural analysis can also control inlining using the -Mipa=inline option. Inlining is
a performance optimization by removing the overhead of the procedure call, and by specializing
and optimizing the code of the inlined procedure at the point of the call site.

When a procedure containing a compute construct (acc parallel or acc kernels) is
inlined into an acc data construct, the compiler will use the data construct clauses to optimize
data movement between the host and device. In some cases, this can produce different answers,
when the host and device copies of some variable are different. For instance, the data construct
may specify a data clause for a scalar variable or a Fortran common block that contains a scalar
variable. The compute construct in the inlined procedure will now see that the scalar variable is
present on the device, and will use the device copy of that variable. Before inlining, the compute
construct may have used the default firstprivate behavior for that scalar variable, which
would use the host value for the variable.

‣ The wait clause on OpenACC directives is not supported.
‣ The async clause on the wait directive is not supported.
‣ The device_type clause is not supported on any directive.

3.7. In Future Releases
The following OpenACC features are not implemented in this release. They will be in future
releases.

‣ The deviceptr data clause for Fortran dummy arguments.
‣ The device_resident clause on the declare directive.
‣ The firstprivate() clause on parallel regions.

PGI Accelerator Compilers OpenACC Getting Started Guide 23

Chapter 4.
CONTACT INFORMATION

You can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGI engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
questions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/faq.htm

All technical support is by e-mail or submissions using an online form at:

http://www.pgroup.com/support

Phone support is not currently available.

PGI documentation is available at http://www.pgroup.com/resources/docs.htm or in your local
copy of the documentation in the release directory doc/index.htm.

mailto: sales@pgroup.com
mailto: trs@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
http://www.pgroup.com/support
http://www.pgroup.com/resources/docs.htm

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2014 NVIDIA Corporation. All rights reserved.

	Table of Contents
	List of Tables
	Overview
	1.1. Terms and Definitions
	1.2. System Prerequisites
	1.3. Prepare Your System
	1.4. Supporting Documentation and Examples

	Using OpenACC with the PGI Compilers
	2.1. C Examples
	2.2. Fortran Examples
	2.2.1. Vector Addition on the GPU
	2.2.2. Multi-Threaded Program Utilizing Multiple Devices

	2.3. Troubleshooting Tips and Known Limitations

	Implemented Features
	3.1. In This Release
	3.2. Defaults
	3.3. Environment Variables
	3.4. OpenACC Fortran API Extensions
	3.4.1. acc_malloc
	3.4.2. acc_free
	3.4.3. acc_map_data
	3.4.4. acc_unmap_data
	3.4.5. acc_deviceptr
	3.4.6. acc_hostptr
	3.4.7. acc_is_present
	3.4.8. acc_memcpy_to_device
	3.4.9. acc_memcpy_from_device

	3.5. Known Limitations
	3.5.1. ACC routine directive Limitations
	3.5.2. Clause Support Limitations
	3.5.3. Known Limitations

	3.6. Interactions with Optimizations
	3.6.1. Interactions with Inlining

	3.7. In Future Releases

	Contact Information

