
PGI Release Notes

Version 2014

PGI Compilers and Tools



PGI Release Notes  ii

TABLE OF CONTENTS

Chapter 1. Release Overview............................................................................................................................................... 1
1.1. Product Overview........................................................................................................................................................ 1

1.1.1. Licensing Terminology......................................................................................................................................... 1
1.1.2. Licensing Options................................................................................................................................................ 2
1.1.3. PGI Workstation and PGI Server Comparison....................................................................................................2
1.1.4. PGI CDK Cluster Development Kit......................................................................................................................2

1.2. Release Components.................................................................................................................................................. 2
1.2.1. Additional Components for PGI CDK.................................................................................................................. 3
1.2.2. MPI Support.........................................................................................................................................................3

1.3. Terms and Definitions..................................................................................................................................................3
1.4. Supported Platforms....................................................................................................................................................4
1.5. Supported Operating System Updates....................................................................................................................... 4

1.5.1. Linux.....................................................................................................................................................................4
1.5.2. OS X.................................................................................................................................................................... 4
1.5.3. Windows...............................................................................................................................................................5

1.6. Getting Started............................................................................................................................................................ 5
Chapter 2. New and Modified Features.............................................................................................................................. 7

2.1. What's New in Release 2014......................................................................................................................................7
2.2. New and Modified Compiler Options........................................................................................................................ 11

2.2.1. Required Suboption........................................................................................................................................... 11
2.2.2. Accelerator Options........................................................................................................................................... 11
2.2.3. Relocatable Device Code.................................................................................................................................. 14
2.2.4. LLVM/SPIR and Native GPU Code Generation................................................................................................ 14
2.2.5. DWARF Debugging Formats............................................................................................................................. 14
2.2.6. –tp Modifications................................................................................................................................................ 15

2.3. New and Modified Fortran Functionality................................................................................................................... 15
2.3.1. Contiguous Pointers...........................................................................................................................................15

2.4. New and Modified Tools Functionality.......................................................................................................................15
2.5. Using MPI.................................................................................................................................................................. 16
2.6. PGI Accelerator Enhancements................................................................................................................................ 17

2.6.1. OpenACC Directive Summary........................................................................................................................... 17
2.6.2. CUDA Toolkit Version........................................................................................................................................ 19
2.6.3. C Structs in OpenACC...................................................................................................................................... 19
2.6.4. C++ Classes in OpenACC.................................................................................................................................21
2.6.5. Fortran Derived Types in OpenACC................................................................................................................. 25
2.6.6. OpenACC Atomic Support.................................................................................................................................27
2.6.7. OpenACC declare data directive for global and Fortran module variables....................................................... 28

2.7. C++ Compiler............................................................................................................................................................ 30
2.7.1. C++ and OpenACC........................................................................................................................................... 30
2.7.2. C++ Compatibility...............................................................................................................................................31



PGI Release Notes  iii

2.8. New and Modified Runtime Library Routines........................................................................................................... 31
2.9. Library Interfaces.......................................................................................................................................................31
2.10. Environment Modules.............................................................................................................................................. 31

Chapter 3. Distribution and Deployment.......................................................................................................................... 32
3.1. Application Deployment and Redistributables...........................................................................................................32

3.1.1. PGI Redistributables.......................................................................................................................................... 32
3.1.2. Linux Redistributables........................................................................................................................................32
3.1.3. Microsoft Redistributables..................................................................................................................................33

Chapter 4. Troubleshooting Tips and Known Limitations.............................................................................................. 34
4.1. General Issues.......................................................................................................................................................... 34
4.2. Platform-specific Issues.............................................................................................................................................34

4.2.1. Linux...................................................................................................................................................................35
4.2.2. Apple OS X........................................................................................................................................................35
4.2.3. Microsoft Windows.............................................................................................................................................35

4.3. PGDBG-related Issues.............................................................................................................................................. 36
4.4. PGPROF-related Issues............................................................................................................................................ 36
4.5. CUDA Toolkit Issues..................................................................................................................................................36
4.6. OpenACC Issues.......................................................................................................................................................37
4.7. Corrections.................................................................................................................................................................37

Chapter 5. Contact Information......................................................................................................................................... 38



PGI Release Notes  iv

LIST OF TABLES

Table 1 Typical –fast and –fastsse Options ......................................................................................................................... 5

Table 2 Additional –fast and –fastsse Options .....................................................................................................................6

Table 3 –ta=tesla Suboptions ............................................................................................................................................. 12

Table 4 –ta=radeon Suboptions ..........................................................................................................................................13

Table 5 MPI Distribution Options ........................................................................................................................................16



PGI Release Notes  1

Chapter 1.
RELEASE OVERVIEW

Welcome to Release 2014 of PGI Workstation™, PGI Server™, and the PGI CDK® Cluster
Development Kit, a set of compilers and development tools for 32-bit and 64-bit x86-compatible
processor-based workstations, servers, and clusters running versions of the Linux operating
system. PGI Workstation and PGI Server are also available for the Apple OS X and Microsoft
Windows operating systems.

This document describes changes between previous versions of the PGI 2014 release as well as
late-breaking information not included in the current printing of the PGI Compiler User's Guide.

1.1. Product Overview
PGI Workstation, PGI Server, and the PGI CDK include exactly the same PGI compiler and tools
software. The difference is the manner in which the license keys enable the software.

1.1.1. Licensing Terminology
The PGI compilers and tools are license-managed. Before discussing licensing, it is useful to have
common terminology.

‣ License - a legal agreement between NVIDIA and PGI end-users, to which users assent upon
installation of any PGI product. The terms of the License are kept up-to-date in documents
on pgroup.com and in the $PGI/<platform>/<rel_number> directory of every PGI software
installation.

‣ License keys - ASCII text strings that enable use of the PGI software and are intended
to enforce the terms of the License. License keys are generated by each PGI end-user on
pgroup.com using a unique hostid and are typically stored in a file called license.dat
that is accessible to the systems for which the PGI software is licensed.

‣ PIN - Personal Identification Number, a unique 6-digit number associated with a license.
This PIN is included in your PGI order confirmation. The PIN can also be found in your PGI
license file after VENDOR_STRING=.

‣ License PIN code - A unique 16-digit number associated with each PIN that enables users
to "tie" that PIN to their pgroup.com user account. This code is provided by PIN owners to
others whom they wish tied to their PIN(s).



Release Overview

PGI Release Notes  2

1.1.2. Licensing Options
PGI offers licenses for either x64+accelerator or x64 only platforms. PGI Accelerator™ products,
the x64+accelerator platform products, include support for the directive-based OpenACC
programming model, CUDA Fortran and PGI CUDA-x86. PGI Accelerator compilers are
supported on all Intel and AMD x64 processor-based systems with either CUDA-enabled
NVIDIA GPUs or select AMD GPUs and APUs, running Linux, OS X, or Windows. OS X
accelerator support is available only on NVIDIA GPUs.

1.1.3. PGI Workstation and PGI Server Comparison
‣ All PGI Workstation products include a node-locked single-user license, meaning one user at

a time can compile on the one system on which the PGI Workstation compilers and tools are
installed. The product and license server are on the same local machine.

‣ PGI Server products are offered in configurations identical to PGI Workstation, but include
network-floating multi-user licenses. This means that two or more users can use the PGI
compilers and tools concurrently on any compatible system networked to the license server,
that is, the system on which the PGI Server license keys are installed. There can be multiple
installations of the PGI Server compilers and tools on machines connected to the license
server; and the users can use the product concurrently, provided they are issued a license key
by the license server.

1.1.4. PGI CDK Cluster Development Kit
A cluster is a collection of compatible computers connected by a network. The PGI CDK
supports parallel computation on clusters of 64-bit x86-compatible AMD and Intel processor-
based Linux workstations or servers with or without accelerators and interconnected by a TCP/IP-
based network, such as Ethernet.

Support for cluster programming does not extend to clusters combining 64-bit processor-based
systems with 32-bit processor-based systems.

1.2. Release Components
Release 2014 includes the following components:

‣ PGFORTRAN™ native OpenMP and auto-parallelizing Fortran 2003 compiler.
‣ PGCC® native OpenMP and auto-parallelizing ANSI C99 and K&R C compiler.
‣ PGC++® native OpenMP and auto-parallelizing ANSI C++ compiler.
‣ PGPROF® MPI, OpenMP, and multi-thread graphical profiler.
‣ PGDBG® MPI, OpenMP, and multi-thread graphical debugger.
‣ MPICH MPI libraries, version 3.0.4, for 64-bit development environments (Linux and OS X

only).

64-bit linux86-64 MPI messages are limited to <2GB size each.



Release Overview

PGI Release Notes  3

‣ Microsoft HPC Pack 2012 MS-MPI Redistributable Pack (version 4.1) for 64-bit and 32-bit
development environments (Windows only).

‣ LAPACK linear algebra math library for shared-memory vector and parallel processors,
version 3.4.2, supporting Level 3 BLACS (Basic Linear Algebra Communication
Subroutines) for use with PGI compilers. This library is provided in both 64-bit and 32-bit
versions for AMD64 or Intel 64 CPU-based installations running Linux, OS X, or Windows.

‣ ScaLAPACK 2.0.2 linear algebra math library for distributed-memory systems for use
with MPICH, Open MPI, MVAPICH, and the PGI compilers on 64-bit Linux and OS X for
AMD64 or Intel 64 CPU-based installations.

‣ A UNIX-like shell environment for 32-bit and 64-bit Windows platforms.
‣ FlexNet license utilities.
‣ Documentation in PDF and man page formats.

1.2.1. Additional Components for PGI CDK
The PGI CDK for Linux includes additional components available for download from the PGI
website, but not contained in the installation package:

‣ MVAPICH2 MPI libraries, version 1.9 available for 64-bit development environments.
‣ Open MPI libraries, version 1.7.3 for 64-bit development environments.

1.2.2. MPI Support
You can use PGI products to develop, debug, and profile MPI applications. The PGPROF®

MPI profiler and PGDBG® debugger included with PGI Workstation are limited to eight local
processes. The versions included with PGI Server are limited to 16 local processes. The MPI
profiler and debugger included with PGI CDK supports up to 64 or 256 remote processes,
depending on the purchased capabilities.

1.3. Terms and Definitions
This document contains a number of terms and definitions with which you may or may not be
familiar. If you encounter an unfamiliar term in these notes, please refer to the online glossary at
http://www.pgroup.com/support/definitions.htm

These two terms are used throughout the documentation to reflect groups of processors:

AMD64

A 64-bit processor from AMD™ designed to be binary compatible with 32-bit x86 processors,
and incorporating new features such as additional registers and 64-bit addressing support
for improved performance and greatly increased memory range. This term includes the
AMD Athlon64™, AMD Opteron™, AMD Turion™, AMD Barcelona, AMD Shanghai, AMD
Istanbul, AMD Bulldozer, and AMD Piledriver processors.

Intel 64

A 64-bit IA32 processor with Extended Memory 64-bit Technology extensions designed to be
binary compatible with AMD64 processors. This includes Intel Pentium 4, Intel Xeon, Intel

http://www.pgroup.com/support/definitions.htm


Release Overview

PGI Release Notes  4

Core 2, Intel Core 2 Duo (Penryn), Intel Core (i3, i5, i7), both first generation (Nehalem) and
second generation (Sandy Bridge) processors, as well as Ivy Bridge and Haswell processors.

1.4. Supported Platforms
There are six platforms supported by the PGI Workstation and PGI Server compilers and tools.
Currently, PGI CDK supports only 64-bit Linux clusters.

‣ 32-bit Linux — includes all features and capabilities of the 32-bit Linux operating systems
running on an x64 compatible processor. 64-bit Linux compilers will not run on these
systems.

‣ 64-bit Linux — includes all features and capabilities of the 64-bit Linux operating systems
running on an x64 compatible processor. Both 64-bit and 32-bit Linux compilers run on
these systems.

‣ 32-bit Windows — includes all features of the 32-bit Windows operating systems running
on either a 32-bit x86 compatible or an x64 compatible processor. 64-bit Windows compilers
will not run on these systems.

‣ 64-bit Windows — includes all features and capabilities of the 64-bit Windows version
running on an x64 compatible processor. Both 64-bit and 32-bit Windows compilers run on
these systems.

‣ 32-bit OS X supported on 32-bit Apple operating systems running on either a 32-bit or 64-
bit Intel-based Mac system. 64-bit OS X compilers will not run on these systems.

‣ 64-bit OS X — supported on 64-bit Apple operating systems running on a 64-bit Intel-based
Mac system. Both 64-bit and 32-bit OS X compilers run on these systems.

1.5. Supported Operating System Updates
This section describes updates and changes to PGI 2014 that are specific to Linux, OS X, and
Windows.

1.5.1. Linux
Linux download packages are reorganized in PGI 2014. You can download a 64-bit Linux
compiler package for installation on 64-bit Linux machines, and/or you can download a 32-bit
package that installs on 32-bit and 64-bit Linux systems.

‣ RHEL 4.8+, including RHEL 6.5
‣ Fedora 4+, including Fedora 20
‣ SuSE 9.3+, including SuSE 13.1
‣ SLES 10+, including SLES 11 SP 3
‣ Ubuntu 8.04+, including Ubuntu 13.10

1.5.2. OS X
PGI 2014 for OS X supports most of the features of the 32-bit and 64-bit versions for linux86 and
linux86-64 environments. Except where noted in these release notes or the user manuals, the PGI
compilers and tools on OS X function identically to their Linux counterparts.



Release Overview

PGI Release Notes  5

‣ Supported versions are OS X versions 10.6 (Snow Leopard) and newer, including 10.9
(Mavericks).

1.5.3. Windows
PGI 2014 for Windows supports most of the features of the 32-bit and 64-bit versions for linux86
and linux86-64 environments.

Starting January 2015, PGI releases will no longer include support for Windows XP, Windows Server 2003,
or Windows Server 2008.

These releases are supported in PGI 2014, and require that the Microsoft Windows 8.1 Software
Development Kit (SDK) be installed prior to installing the compilers.

‣ Windows Server 2008 R2
‣ Windows 7
‣ Windows 8
‣ Windows 8.1
‣ Windows Server 2012

PGI products on all Windows systems include Microsoft Open Tools. On the systems being
deprecated in 2015, it contains all the tools needed for building executables. On newer Windows
systems, Open Tools also needs the SDK to build executables.

PGI 2014 requires the 8.1 SDK, even on Windows 7 and Windows 8. The Windows 8 SDK requires the
PGI 2013 release.

1.6. Getting Started
By default, the PGI 2014 compilers generate code that is optimized for the type of processor
on which compilation is performed, the compilation host. If you are unfamiliar with the PGI
compilers and tools, a good option to use by default is –fast or –fastsse.

These aggregate options incorporate a generally optimal set of flags for targets that support SSE
capability. These options incorporate optimization options to enable use of vector streaming
SIMD instructions for 64-bit targets. They enable vectorization with SSE instructions, cache
alignment, and flushz.

The contents of the –fast or –fastsse options are host-dependent.

The following table shows the typical –fast and –fastsse options.

Table 1 Typical –fast and –fastsse Options

Use this option... To do this...

–O2 Specifies a code optimization level of 2.



Release Overview

PGI Release Notes  6

Use this option... To do this...

–Munroll=c:1 Unrolls loops, executing multiple instances of the original loop during each iteration.

–Mnoframe Indicates to not generate code to set up a stack frame.
 
Note With this option, a stack trace does not work.

–Mlre Indicates loop-carried redundancy elimination.

–Mpre Indicates partial redundancy elimination

–fast for 64-bit targets and –fastsse for both 32– and 64–bit targets also typically include
the options shown in the following table:

Table 2 Additional –fast and –fastsse Options

Use this option... To do this...

–Mvect=sse Generates SSE instructions.

–Mscalarsse Generates scalar SSE code with xmm registers; implies –Mflushz.

–Mcache_align Aligns long objects on cache-line boundaries.
 
Note On 32-bit systems, if one file is compiled with the –Mcache_align option, then all
files should be compiled with it. This is not necessary on 64-bit systems.

–Mflushz Sets SSE to flush-to-zero mode.

–M[no]vect Controls automatic vector pipelining.

For best performance on processors that support SSE instructions, use the PGFORTRAN compiler, even
for FORTRAN 77 code, and the –fastsse option.

In addition to –fast and –fastsse, the –Mipa=fast option for interprocedural analysis
and optimization can improve performance. You may also be able to obtain further performance
improvements by experimenting with the individual –Mpgflag options that are described in
the PGI Compiler Reference Manual, such as –Mvect, –Munroll, –Minline, –Mconcur,
–Mpfi, –Mpfo, and so on. However, increased speeds using these options are typically
application and system dependent. It is important to time your application carefully when using
these options to ensure no performance degradations occur.



PGI Release Notes  7

Chapter 2.
NEW AND MODIFIED FEATURES

This section provides information about the new or modified features of Release 2014 of the PGI
compilers and tools.

2.1. What's New in Release 2014
14.10 Updates and Additions

‣ A number of problems are corrected in this release. Refer to http://www.pgroup.com/support/
release_tprs.htm for a complete and up-to-date table of technical problem reports fixed in
recent releases of PGI compilers and tools. This table contains a summary description of
each problem as well as the version in which it was fixed.

14.9 Updates and Additions

‣ PGI Accelerator Features and Enhancements:

‣ Integrated CUDA 6.5 Toolkit for Linux, Windows (Server 2008 R2 and later) and 64-bit
OS X. Refer to CUDA Fortran Toolkit Issues for more details.

‣ An acc routine directive with no parallelism clause (gang, worker or vector)
will be treated as if the seq clause were present.

‣ When compiling for NVIDIA Tesla targets (using -ta=tesla or -acc without the
-ta flag) with the -Mcuda flag on the link line, the program will use the default CUDA
stream zero for synchronous OpenACC data transfers and kernel launches. This allows
OpenACC synchronous data transfers and kernels to interact properly with CUDA
synchronous operations. Without the -Mcuda option, the program will create a CUDA
stream even for synchronous operations, avoiding the serialization associated with
CUDA stream zero.

‣ A number of problems are corrected in this release. Refer to http://www.pgroup.com/support/
release_tprs.htm for a complete and up-to-date table of technical problem reports fixed in
recent releases of PGI compilers and tools. This table contains a summary description of
each problem as well as the version in which it was fixed.

http://www.pgroup.com/support/release_tprs.htm
http://www.pgroup.com/support/release_tprs.htm
http://www.pgroup.com/support/release_tprs.htm
http://www.pgroup.com/support/release_tprs.htm


New and Modified Features

PGI Release Notes  8

14.7 Updates and Additions

‣ PGI Accelerator Features and Enhancements:

‣ Support for CUDA managed data in CUDA Fortran; refer to the CUDA Fortran
Programming Guide and Reference for details.

‣ Expanded OpenACC C++ Support

‣ Expanded OpenACC 2.0 Features

‣ C global (extern) variables in OpenACC declare directives

‣ Fortran module variables in OpenACC declare directives

‣ Full support for the atomic directive

‣ The wait clause on OpenACC directives is now supported.

‣ The async clause on the wait directive is now supported.

‣ When specifying a particular CUDA toolkit version on the command line, if that
version is not available in the compiler installation, the compiler will now fail with
an error message instead of giving a warning and compiling only for the host.

‣ Improved accelerator code generation for nested loops

‣ Support for debugging module scope variable in CUDA Fortran

‣ New Language Features:

‣ First version to include support for g++ 4.8 compatibility. No versions of PGI prior to
14.7 support GCC 4.8.

‣ New g++ compatibility features in pgc++ including

‣ __attribute__((used))

‣ __attribute__((weak))

‣ __attribute__((__constructor__(101)))

‣ definition of __LP64__ for 64-bit Linux

‣ definition of __gnu_linux__

‣ New F90 pointer optimizations

‣ Other Features and Enhancements:

‣ CPU code vectorization enhancements

‣ Support for environment modules in OS X

‣ New Silent Installation option

14.6 Updates and Additions

‣ A number of problems are corrected in this release. Refer to http://www.pgroup.com/support/
release_tprs.htm for a complete and up-to-date table of technical problem reports fixed in
recent releases of PGI compilers and tools. This table contains a summary description of
each problem as well as the version in which it was fixed.

http://www.pgroup.com/support/release_tprs.htm
http://www.pgroup.com/support/release_tprs.htm


New and Modified Features

PGI Release Notes  9

14.4 Updates and Additions

‣ PGI Accelerator Features and Enhancements:

‣ Expanded OpenACC C++ Support

‣ C++ this pointer support

‣ C++ member functions

‣ C++ support for the Routine directive

‣ C++ class member arrays in data clauses

‣ Expanded OpenACC 2.0 Features

‣ Loop directive collapse clause on deeply nested loops

‣ Parallel directive firstprivate clause

‣ C structs/Fortran derived type member arrays in data clauses

‣ Partial support for Fortran and C/C++ atomic directives

‣ Calling C/C++ CUDA-style atomics from OpenACC

‣ Fortran common block names in OpenACC data clauses

‣ GPU-side debugging in OpenACC with Allinea DDT

‣ CUDA Fortran support for CUDA 5.5 batched cuBLAS routines

‣ Integrated CUDA 6.0 Toolkit

‣ New OpenACC tutorial and expanded set of examples

‣ PGI Multi-core Features and Enhancements:

‣ Support for new AVX2 instructions available on the latest Haswell CPUs from Intel

‣ Updated Windows assembler

‣ New EDG C++ front-end with C++11 support

‣ Other Features and Enhancements

‣ Comprehensive support for environment modules

‣ Prebuilt versions of NetCDF and HDF5

14.2 and 14.3 Updates and Additions

‣ A number of problems are corrected in these releases. Refer to http://www.pgroup.com/
support/release_tprs.htm for a complete and up-to-date table of technical problem reports
fixed in recent releases of PGI compilers and tools. This table contains a summary
description of each problem as well as the version in which it was fixed.

14.1 Updates and Additions

‣ Updates to PGI OpenACC Fortran/C/C++ compilers, include:

‣ Support for CUDA 5.5 and NVIDIA Kepler K40 GPUs

‣ Support for AMD Radeon GPUs and APUs

‣ Native compilation for NVIDIA and AMD GPUs

http://www.pgroup.com/support/release_tprs.htm
http://www.pgroup.com/support/release_tprs.htm


New and Modified Features

PGI Release Notes  10

‣ Ability within CUDA Fortran to generate dwarf information and debug on the host,
device, or both

‣ Additional OpenACC 2.0 features supported, including procedure calls (routine
directive), unstructured data lifetimes; create and device_resident clauses for the Declare
directive; multidimensional dynamically allocated C/C++ arrays; ability to call CUDA
Fortran atomic functions on NVIDIA; and complete run-time API support.

‣ PGI Unified Binary for OpenACC programs across NVIDIA and AMD GPUs

For more information, refer to PGI Accelerator Enhancements.

‣ Full Fortran 2003 and incremental Fortran 2008 features including long integers, recursive I/
O, type statement for intrinsic types, ISO_FORTRAN_ENV and ISO_C_BINDING module
updates as well as support for F2008 contiguous attribute and keyword.

For more information, refer to New or Modified Fortran Functionality.

‣ Extensive updates to libraries:

‣ Updated versions of MPICH, OpenMPI, and MVAPICH pre-built and validated with
PGI compilers. For more information, refer to Using MPI.

‣ Pre-packaged open source libraries downloadable from the PGI website including
NetCDF and HDF5.

‣ Updated BLAS and LAPACK pre-compiled libraries based on LAPACK 3.4.2.

‣ LAPACK linear algebra math library for shared-memory vector and parallel
processors, version 3.4.2, supporting Level 3 BLACS (Basic Linear Algebra
Communication Subroutines) for use with PGI compilers. This library is provided
in both 64-bit and 32-bit versions for AMD64 or Intel 64 CPU–based installations
running Linux, OS X, or Windows.

‣ ScaLAPACK 2.0.2 linear algebra math library for distributed-memory systems for
use with MPICH, Open MPI, MVAPICH, and PGI compilers on 64-bit AMD64 or
Intel 64 CPU-based installations running Linux and OS X.

‣ Support for the latest Operating Systems including Ubuntu 13.04, Ubuntu 13.10, Fedora 18,
Fedora 19, Fedora 20, CentOS 6.4, RHEL 5, RHEL 6, Windows 7, Windows 8, Windows
8.1, OS X Mountain Lion and OSX Mavericks.

‣ GNU compatible C++ improved inlining, Boost and Trilinos correctness as well as
OpenACC robustness; full C++11 coming in PGI 14.4.

‣ The –ta and –acc flags include additional options and functionality. The –tp flag
functionality is now primarily for processor selection.

For more information, refer to New or Modified Compiler Options.

‣ A comprehensive suite of new and updated code examples and tutorials covering Fortran
2003, CUDA Fortran, CUDA-x86, OpenACC, OpenMP parallelization, auto-parallelization,
and MPI.

‣ These Windows releases are supported in PGI 2014, but will be deprecated in PGI 2015.

‣ Windows XP



New and Modified Features

PGI Release Notes  11

‣ Windows Server 2003

‣ Windows Server 2008

2.2. New and Modified Compiler Options
Release 2014 supports a number of new command line options as well as new keyword
suboptions for existing command line options.

2.2.1. Required Suboption
The default behavior of the OpenACC compilers has changed in 14.1 from previous releases. The
OpenACC compilers now issue a compile-time error if accelerator code generation fails. You can
control this behavior with the required suboption.

In previous releases, the compiler would issue a warning when accelerator code generation
failed. Then it would generate code to run the compute kernel on the host. This previous behavior
generates incorrect results if the compute kernels are inside a data region and the host and device
memory values are inconsistent.

–acc=required, –ta=tesla:required, and –ta=radeon:required are the
defaults.

You can enable the old behavior by using the norequired suboption with either of the –ta or
–acc flags.

2.2.2. Accelerator Options

The –ta=nvidia option is deprecated in PGI 2014. Users are urged to change their build commands
and makefiles to use –ta=tesla in place of –ta=nvidia.

The –acc option enables the recognition of OpenACC directives. In the absence of any explicit
–ta option, –acc implies –ta=tesla,host.

–ta Option

The –ta option defines the target accelerator and the type of code to generate. This flag is valid
for Fortran, C, and C++ on supported platforms.

Syntax
–ta=tesla(:tesla_suboptions),radeon(:radeon_suboptions),host

There are three major suboptions:

tesla(:tesla_suboptions)

radeon(:radeon_suboptions)

host

Default



New and Modified Features

PGI Release Notes  12

The default is –ta=tesla,host.

Select Tesla Accelerator Target

Use the tesla(:tesla_suboptions) option to select the Tesla accelerator target and,
optionally, to define the type of code to generate.

In the following example, Tesla is the accelerator target architecture and the accelerator generates
code for compute capability 3.0:
$ pgfortran –ta=tesla:cc30

The following table lists and briefly defines the suboptions for the –ta=tesla flag.

Table 3 –ta=tesla Suboptions

Use this suboption... To indicate this...

cc10 Generate code for compute capability 1.0.

cc11 Generate code for compute capability 1.1.

cc12 Generate code for compute capability 1.2.

cc13 Generate code for compute capability 1.3.

cc1x Generate code for the lowest 1.x compute capability possible.

cc1+ Is equivalent to cc1x, cc2x, cc3x.

cc20 Generate code for compute capability 2.0.

cc2x Generate code for the lowest 2.x compute capability possible.

cc2+ Is equivalent to cc2x, cc3x.

cc30 Generate code for compute capability 3.0.

cc35 Generate code for compute capability 3.5.

cc3x Generate code for the lowest 3.x compute capability possible.

cc3+ Is equivalent to cc3x.

[no]debug Enable[disable] debug information generation in device code.

[no]lineinfo Enable[disable] line information generation in device code.

fastmath Use routines from the fast math library.

fermi Is equivalent to cc2x.

fermi+ Is equivalent to cc2+.

[no]flushz Enable[disable] flush-to-zero mode for floating point computations in the GPU code.

keep Keep the kernel files.



New and Modified Features

PGI Release Notes  13

Use this suboption... To indicate this...

kepler Is equivalent to cc3x.

kepler+ Is equivalent to cc3+.

llvm Generate code using the llvm-based back-end.

maxregcount:n Specify the maximum number of registers to use on the GPU.

nofma Do not generate fused multiply-add instructions.

noL1 Prevent the use of L1 hardware data cache to cache global variables.

pin Set default to pin host memory.

[no]rdc Generate [do not generate] relocatable device code.

[no]required Generate [do not generate] a compiler error if accelerator device code cannot be generated.

Select Radeon Accelerator Target

Use the radeon(:radeon_suboptions) option to select the Radeon accelerator target and,
optionally, to define the type of code to generate.

In the following example, Radeon is the accelerator target architecture and the accelerator
generates code for Radeon Cape Verde architecture:
$ pgfortran -ta=radeon:capeverde

The following table lists and briefly defines the suboptions for the –ta=radeon flag.

Table 4 –ta=radeon Suboptions

Use this suboption... To indicate this...

buffercount:n Set the maximum number of OpenCL buffers in which to allocate data.

capeverde Generate code for Radeon Cape Verde architecture.

keep Keep the kernel files.

llvm Generate code using the llvm-based back-end.

[no]required Generate [do not generate] a compiler error if accelerator device code cannot be generated.

spectre Generate code for Radeon Spectre architecture.

tahiti Generate code for Radeon Tahiti architecture.

Host Option

Use the host option to generate code to execute OpenACC regions on the host.

The –ta=host flag has no suboptions.



New and Modified Features

PGI Release Notes  14

Multiple Targets

Specifying more than one target, such as –ta=tesla,radeon generates code for multiple
targets. When host is one of the multiple targets, such as –ta=tesla,host, the result is
generated code that can be run with or without an attached accelerator.

2.2.3. Relocatable Device Code
An rdc option is available for the –ta=tesla and –Mcuda flags that specifies to generate
relocatable device code. Starting in PGI 14.1 on Linux and in PGI 14.2 on Windows, the default
code generation and linking mode for Tesla-target OpenACC and CUDA Fortran is rdc,
relocatable device code.

You can disable the default and enable the old behavior and non-relocatable code by specifying
any of the following: –ta=tesla:nordc, –Mcuda=nordc, or by specifying any 1.x compute
capability or any Radeon target.

2.2.4. LLVM/SPIR and Native GPU Code Generation
For accelerator code generation, PGI 2014 has two options:

‣ In legacy mode, which continues to be the default, PGI generates low–level CUDA C or
OpenCL code.

‣ Beginning in PGI 14.1, PGI can generate an LLVM-based intermediate representation. To
enable this code generation, use –ta=tesla:llvm on NVIDIA Tesla hardware or –
ta=radeon:llvm on AMD Radeon hardware. –ta=tesla:llvm implies and requires
CUDA 5.5 or higher.

PGI's debugging capability for Tesla uses the LLVM back-end.

2.2.5. DWARF Debugging Formats
PGI 14.4 introduced support for generating dwarf information in GPU code. To enable dwarf
generation, just as in host code, you use the –g option.

Dwarf generation requires use of the LLVM code generation capabilities. Further, it is possible
to generate dwarf information and debug on the host, device, or both. Further, for NVIDIA, the
LLVM code generation requires CUDA 5.5.

If you don't want –g to apply to both targets, PGI supports the debug and nodebug suboptions.
For example:

‣ –acc –g implies –ta=tesla,host -O0 -g on the host and –g llvm on the device
with cuda5.5.

‣ –acc –ta=tesla:debug implies debug on the device; use llvm and cuda5.5.
‣ –acc –g –ta=tesla:nodebug implies debug on the host and no llvm code

generation.



New and Modified Features

PGI Release Notes  15

2.2.6. –tp Modifications
The –tp switch now truly indicates the target processor. In prior releases a user could use
the –tp flag to also indicate use of 32-bit or 64-bit code generation. For example, the –tp
shanghai–32 flag was equivalent to the two flags: –tp shanghai and –m32.

The –tp flag interacts with the –m32 and –m64 flags to select a target processor and 32-bit or
64-bit code generation. For example, specifying –tp shanghai –m32 compiles 32-bit code
that is optimized for the AMD Shanghai processor, while specifying –tp shanghai –m64
compiles 64-bit code.

Specifying –tp shanghai without a –m32 or –m64 flag compiles for a 32-bit target if the
PGI 32-bit compilers are on your path, and for a 64-bit target if the PGI 64-bit compilers are on
your path.

2.3. New and Modified Fortran Functionality
PVF 2014 contains additional Fortran functionality such as full Fortran 2003 and incremental
Fortran 2008 features including long integers, recursive I/O, type statement for intrinsic types,
as well as ISO_FORTRAN_ENV and ISO_C_BINDING module updates and support for F2008
contiguous attribute and keyword.

2.3.1. Contiguous Pointers
PGI 2014 supports the contiguous attribute as well as the is_contiguous intrinsic inquiry
function.

contiguous Attribute

Here is an example of a declaration using the contiguous keyword:
    real*4, contiguous, pointer, dimension(:,:) :: arr1_ptr, arr2_ptr, arr3_ptr
    

It is the responsibility of the programmer to assure proper assignment and use of contiguous
pointers. Contiguous pointers can result in improved performance, such as this example of using
contiguous pointers as the arguments to the matmul intrinsic function.
    arr3_ptr = matmul(arr1_ptr,arr2_ptr)    

is_contiguous Intrinsic Inquiry Function

The is_contiguous() intrinsic function takes a pointer argument and returns a value of type
logical. It returns true if the pointer is associated with a contiguous array section, false otherwise.

2.4. New and Modified Tools Functionality
This section provides information about the debugger, PGDBG, and the profiler, PGPROF.



New and Modified Features

PGI Release Notes  16

Debug and Profile SGI MPI Programs

In PGI 2014 PGDBG and PGPROF support debugging and profiling of MPI programs built with
SGI MPI. To debug an SGI MPI program, use the PGDBG –sgimpi option, which has the same
syntax as the –mpi option.

To profile an SGI MPI program, build it with ̴Mprof=func,sgimpi,–
Mprof=lines,sgimpi, or with–Mprof=time,sgimpi. You must specify sgimpi even if
you use mpicc or mpif90 to build your program.

Local and Remote Debugging

PGDBG is licensed software available from The Portland Group. PGDBG supports debugging
programs running on local and remote systems. The PGI license keys that enable PGDBG to
debug must be located on the same system where the program you want to debug is running.

‣ Local debugging — If you want to debug a program running on the system where you have
launched PGDBG, you are doing local debugging and you need license keys on that local
system.

‣ Remote debugging — If you want to debug a program running on a system other than the
one on which PGDBG is launched, then you are doing remote debugging and you need
license keys on the remote system. The remote system also needs an installed copy of PGI
Workstation, PGI Server, or PGI CDK.

2.5. Using MPI
The PGI compilers provide an option, –Mmpi, to make building MPI applications with some MPI
distributions more convenient by adding the MPI include and library directories to the compiler's
include and library search paths. The compiler determines the location of these directories using
various mechanisms.

The following table lists the suboptions supported by –Mmpi and briefly describes the required
compiling and linking options.

Table 5 MPI Distribution Options

This MPI
implementation... Requires compiling and linking with this option...

MPICH1 Deprecated. –Mmpi=mpich1

MPICH2 Deprecated. –Mmpi=mpich2

MPICH v3 –Mmpi=mpich

MS-MPI –Mmpi=msmpi

MVAPICH1 Deprecated. –Mmpi=mvapich1

MVAPICH2 Use MVAPICH2 compiler wrappers.

Open MPI Use Open MPI compiler wrappers.



New and Modified Features

PGI Release Notes  17

This MPI
implementation... Requires compiling and linking with this option...

SGI MPI –Mmpi=sgimpi

For more information on using each of these MPI implementations, refer to Using MPI in the PGI
Compiler User's Guide.

For distribution of MPI that are not supported by the –Mmpi compiler option, use the MPI-
distribution-supplied compiler wrappers mpicc, mpic++, mpif77, or mpif90 to compile and link.

2.6. PGI Accelerator Enhancements

2.6.1. OpenACC Directive Summary
PGI now supports the following OpenACC directives:

Parallel Construct

Defines the region of the program that should be compiled for parallel execution on the
accelerator device.

Kernels Construct

Defines the region of the program that should be compiled into a sequence of kernels for
execution on the accelerator device.

Data Directive

Defines data, typically arrays, that should be allocated in the device memory for the duration of
the data region, whether data should be copied from the host to the device memory upon region
entry, and copied from the device to host memory upon region exit.

Enter Data and Exit Data Directives

The Enter Data directive defines data, typically arrays, that should be allocated in the device
memory for the duration of the program or until an exit data directive that deallocates the data,
and whether data should be copied from the host to the device memory at the enter data directive.

The Exit Data directive defines data, typically arrays, that should be deallocated in the device
memory, and whether data should be copied from the device to the host memory.

Host_Data Construct

Makes the address of device data available on the host.



New and Modified Features

PGI Release Notes  18

Loop Directive

Describes what type of parallelism to use to execute the loop and declare loop-private variables
and arrays and reduction operations. Applies to a loop which must appear on the following line.

Combined Parallel and Loop Directive

Is a shortcut for specifying a loop directive nested immediately inside an accelerator parallel
directive. The meaning is identical to explicitly specifying a parallel construct containing a loop
directive.

Combined Kernels and Loop Directive

Is a shortcut for specifying a loop directive nested immediately inside an accelerator kernels
directive. The meaning is identical to explicitly specifying a kernels construct containing a loop
directive.

Cache Directive

Specifies array elements or subarrays that should be fetched into the highest level of the cache for
the body of a loop. Must appear at the top of (inside of) the loop.

Declare Directive

Specifies that an array or arrays are to be allocated in the device memory for the duration of the
implicit data region of a function, subroutine, or program.

Specifies whether the data values are to be transferred from the host to the device memory upon
entry to the implicit data region, and from the device to the host memory upon exit from the
implicit data region.

Creates a visible device copy of the variable or array.

Update Directive

Used during the lifetime of accelerator data to update all or part of a host memory array with
values from the corresponding array in device memory, or to update all or part of a device
memory array with values from the corresponding array in host memory.

Routine Directive

Used to tell the compiler to compile a given procedure for an accelerator as well as the host. In a
file or routine with a procedure call, the routine directive tells the implementation the attributes of
the procedure when called on the accelerator.

As of PGI 14.9, an acc routine directive with no parallelism clause (gang, worker or
vector) will be treated as if the seq clause were present.



New and Modified Features

PGI Release Notes  19

Wait Directive

Specifies to wait until all operations on a specific device async queue or all async queues are
complete.

For more information on each of these directives and which clauses they accept, refer to the
Using an Accelerator section in the PGI Compiler User's Guide.

2.6.2. CUDA Toolkit Version
The PGI Accelerator x64+accelerator compilers with OpenACC and CUDA Fortran compilers
support the CUDA 6.0 toolkit as the default. The compilers and tools also support the CUDA 6.5
Toolkit.

To specify the version of the CUDA Toolkit that is targeted by the compilers, use one of the
following properties:

In OpenACC directives

For CUDA Toolkit 6.0: –ta=tesla:cuda6.0

For CUDA Toolkit 6.5: –ta=tesla:cuda6.5

For CUDA Fortran Construct

For CUDA Toolkit 6.0: –Mcuda=cuda6.0

For CUDA Toolkit 6.5: –Mcuda=cuda6.5

You may also specify a default version by adding a line to the siterc file in the installation
bin/ directory or to a file named .mypgirc in your home directory. For example, to specify
CUDA Toolkit 6.5, add the following line to one of these files:
    set DEFCUDAVERSION=6.5;    

Support for CUDA Toolkit versions 4.2 and earlier has been removed.

2.6.3. C Structs in OpenACC
Static arrays of struct and pointers to dynamic arrays of struct have long been supported with the
PGI Accelerator compilers.
typedef struct{
    float x, y, z;
 }point;

extern point base[1000];

void vecaddgpu( point *restrict r, int n ){
    #pragma acc parallel loop present(base) copyout(r[0:n])
    for( int i = 0; i < n; ++i ){
 r[i].x = base[i].x;
 r[i].y = sqrtf( base[i].y*base[i].y + base[i].z*base[i].z );
 r[i].z = 0;
    }
} 

A pointer to a scalar struct is treated as a one-element array, and should be shaped as r[0:1].



New and Modified Features

PGI Release Notes  20

PGI 14.4 and later releases include support for static arrays and pointers to dynamic arrays within
a struct. In either case, the entire struct must be placed in device memory, by putting the struct
itself in an appropriate data clause.
typedef struct{
    base[1000];
    int n;
    float *x, *y, *z;
 }point;

extern point A;

void vecaddgpu(){
    #pragma acc parallel loop copyin(A) \
 copyout(A.x[0:A.n], A.y[0:A.n], A.z[0:A.n])
    for( int i = 0; i < A.n; ++i ){
 A.x[i] = A.base[i];
 A.y[i] = sqrtf( A.base[i] );
 A.z[i] = 0;
    }
} 

In this example, the struct A is copied to the device, which copies the static array member
A.base and the scalar A.n. The dynamic members A.x, A.y and A.z are then copied to the
device. The struct A should be copied before its dynamic members, either by placing the struct
in an earlier data clause, or by copying or creating it on the device in an enclosing data region or
dynamic data lifetime. If the struct is not present on the device when the dynamic members are
copied, the accesses to the dynamic members, such as A.x[i], on the device will be invalid,
because the pointer A.x will not get updated.

A pointer to a struct is treated as a single element array. If the struct also contains pointer
members, you should copy the struct to the device, then create or copy the pointer members:
typedef struct{
    int n;
    float *x, *y, *z;
 }point;

void vecaddgpu( point *A, float* base ){
    #pragma acc parallel loop copyin(A[0:1]) \
 copyout(A->x[0:A->n], A->y[0:A->n], A->z[0:A->n]) \
 present(base[0:A->n])
    for( int i = 0; i < A->n; ++i ){
 A->x[i] = base[i];
 A->y[i] = sqrtf( base[i] );
 A->z[i] = 0;
    }
} 

Be careful when copying structs containing pointers back to the host. On the device, the pointer
members will get updated with device pointers. If these pointers get copied back to the host
struct, the pointers will be invalid on the host.

When creating or copying a struct on the device, the whole struct is allocated. There is no support
for allocating a subset of a struct, or only allocating space for a single member.



New and Modified Features

PGI Release Notes  21

Structs and pointer members can be managed using dynamic data directives as well:
typedef struct{
    int n;
    float *x, *y, *z;
 }point;

void move_to_device( point *A ){
    #pragma acc enter data copyin(A[0:1])
    #pragma acc enter data create(A->x[0:A->n], A->y[0:A->n], A->z[0:A->n])
}

void move_from_device( point* A ){
    #pragma acc enter data copyout(A->x[0:A->n], A->y[0:A->n], A->z[0:A->n])
    #pragma acc enter data delete(A[0:1])
}

void vecaddgpu( point *A, float* base ){
    #pragma acc parallel loop present(A[0:1]) \
 present(A->x[0:A->n], A->y[0:A->n], A->z[0:A->n]) \
 present(base[0:A->n])
    for( int i = 0; i < A->n; ++i ){
 A->x[i] = base[i];
 A->y[i] = sqrtf( base[i] );
 A->z[i] = 0;
    }
} 

2.6.4. C++ Classes in OpenACC
PGI 14.4 and later releases include support for C++ classes, including static array class members,
member pointers to dynamic arrays, and member functions and operators. Usually, the class itself
must be copied to device memory as well, by putting the class variable in a data clause outside
the class, or the appropriately shaped this[0:1] reference in a data clause within the class. The
entire class will be allocated in device memory.
// my managed vector datatype
template<typename elemtype> class myvector{
    elemtype* data;
    size_t size;
public:
    myvector( size_t size_ ){ // constructor
        size = size_;
        data = new elemtype[size];
    }
    todev(){ // move to device
        #pragma acc enter data copyin(this[0:1], data[0:size])
    }
    fromdev(){ // remove from device
        #pragma acc exit data delete( data[0:size], this[0:1])
    }
    void updatehost(){ // update host copy of data
        #pragma acc update self( data[0:size] )
    }
    void updatedev(){ // update device copy of data
        #pragma acc update device( data[0:size] )
    }
    ~myvector(){ // destructor from host
        delete[] data;
    }
    inline elemtype & operator[] (int i) const { return data[i]; }
    // other member functions
}; 



New and Modified Features

PGI Release Notes  22

In this class, this is copied to the device before data, so the pointer to data on the device will
get updated. This is called an "attach" operation; the class myvector pointer data is attached
to the device copy of the data vector.

Another class always creates device data along with host data:
// my managed host+device vector datatype
template<typename elemtype> class hdvector{
    elemtype* data;
    size_t size;
public:
    hdvector( size_t size_ ){ // constructor
        size = size_;
        data = new elemtype[size];
        #pragma acc enter data copyin(this[0:1]) create(data[0:size])
    }
    void updatehost(){ // update host copy of data
        #pragma acc update self( data[0:size] )
    }
    void updatedev(){ // update device copy of data
        #pragma acc update device( data[0:size] )
    }
    ~hdvector(){ // destructor from host
        #pragma acc exit data delete( data[0:size], this[0:1] )
        delete[] data;
    }
    inline elemtype & operator[] (int i) const { return data[i]; }
    // other member functions
}; 

The constructor copies the class in, so the size value will get copied, and creates (allocates) the
data vector.



New and Modified Features

PGI Release Notes  23

A slightly more complex class includes a copy constructor that makes a copy of the data pointer
instead of a copy of the data:
#include <openacc.h>
// my managed vector datatype
template<typename elemtype> class dupvector{
    elemtype* data;
    size_t size;
    bool iscopy;
public:
    dupvector( size_t size_ ){ // constructor
        size = size_;
        data = new elemtype[size];
        iscopy = false;
        #pragma acc enter data copyin(this[0:1]) create(data[0:size])
    }
    dupvector( const dupvector &copyof ){ // copy constructor
        size = copyof.size;
        data = copyof.data;
        iscopy = true;
        #pragma acc enter data copyin(this[0:1])
        acc_attach( (void**)&data );
    }
    void updatehost(){ // update host copy of data
        #pragma acc update self( data[0:size] )
    }
    void updatedev(){ // update device copy of data
        #pragma acc update device( data[0:size] )
    }
    ~dupvector(){ // destructor from host
        if( !iscopy ){
            #pragma acc exit data delete( data[0:size] )
            delete[] data;
        }
        #pragma acc exit data delete( this[0:1] )
    }
    inline elemtype & operator[] (int i) const { return data[i]; }
    // other member functions
}; 

We added a call to the PGI OpenACC runtime routine, acc_attach, in the copy constructor.
This routine is a PGI addition to the OpenACC API; it takes the address of a pointer, translates
the address of that pointer as well as the contents of the pointer, and stores the translated contents
into the translated address on the device. In this case, it attaches the data pointer copied from the
original class on the device to the copy of this class on the device.

In code outside the class, data can be referenced in compute clauses as normal:

dupvector<float> v = new dupvector<float>(n);
dupvector<float> x = new dupvector<float>(n);
...
#pragma acc parallel loop present(v,x)
 for( int i = 0; i < n; ++i ) v[i] += x[i]; 

This example shows references to the v and x classes in the parallel loop construct. The
operator[] will normally be inlined. If it is not inlined or inlining is disabled, the compiler
will note that the operator is invoked from within an OpenACC compute region and compile
a device version of that operator. This is effectively the same as implying a #pragma acc
routine seq above the operator. The same is true for any function in C++, be it a class
member function or standalone function: if the function is called from within a compute region,
or called from a function which is called within a compute region, and there is no #pragma acc



New and Modified Features

PGI Release Notes  24

routine, the compiler will treat it as if it was prefixed by #pragma acc routine seq.
When you compile the file and enable -Minfo=accel, you will see this with the message:

T1 &dupvector<T1>::operator [](int) const [with T1=float]:
          35, Generating implicit acc routine seq 

In the above example, the loop upper bound is the simple variable n, not the more natural class
member v.size. In this PGI release, the loop upper bound for a parallel loop or kernels loop
must be a simple variable, not a class member. This limitation will be fixed in a future release.

The class variables appear in a present clause for the parallel construct. The normal
default for a compute construct would be for the compiler to treat the reference to the class as
present_or_copy. However, if the class instance were not present, copying just the class
itself would not copy the dynamic data members, so would not provide the necessary behavior.
Therefore, when refering to class objects in a compute construct, you should put the class in a
present clause.

Class member functions may be explicitly invoked in a parallel loop:

template<typename elemtype> class dupvector{
    ...
    void inc1( int i, elemtype y ){
        data[i] += y;
    }
}
...
#pragma acc parallel loop present(v,x)
    for( int i = 0; i < n; ++i ) v.inc1( i, x[i] ); 

As discussed above, the compiler will normally inline inc1, when optimization is enabled, but
will also compile a device version of the function since it is invoked from within a compute
region.

A compute construct may contain compute constructs itself:

template<typename elemtype> class dupvector{
    ...
    void inc2( dupvector<elemtype> &y ){
        int n = size;
        #pragma acc parallel loop gang vector present(this,y)
        for( int i = 0; i < n; ++i ) data[i] += y[i];
    }
}
...
    v.inc2( x ); 

Note again the loop upper bound of n, and the this and y classes in the present clause.
A third example puts the parallel construct around the routine, but the loop itself within the



New and Modified Features

PGI Release Notes  25

routine. Doing this properly requires you to put an appropriate acc routine before the routine
definition to call the routine at the right level of parallelism.

template<typename elemtype> class dupvector{
    ...
    #pragma acc routine gang
    void inc3( dupvector<elemtype> &y ){
        int n = size;
        #pragma acc loop gang vector 
        for( int i = 0; i < n; ++i ) data[i] += y[i];
    }
}
...
    #pragma acc parallel
        v.inc3( x ); 

When the inc3 is invoked from host code, it will run on the host incrementing host values. When
invoked from within an OpenACC parallel construct, it will increment device values.

2.6.5. Fortran Derived Types in OpenACC
Static and allocatable arrays of derived type have long been supported with the PGI Accelerator
compilers.
module mpoint
type point
    real :: x, y, z
end type
type(point) :: base(1000)
end module

subroutine vecaddgpu( r, n )
 use mpoint
 type(point) :: r(:)
 integer :: n
 !$acc parallel loop present(base) copyout(r(:))
 do i = 1, n
  r(i)%x = base(i)%x
  r(i)%y = sqrt( base(i)%y*base(i)%y + base(i)%z*base(i)%z )
  r(i)%z = 0
 enddo
end subroutine

PGI 14.4 and later releases include support for array members of derived types, including static
arrays and allocatable arrays within a derived type. In either case, the entire derived type must be
placed in device memory, by putting the derived type itself in an appropriate data clause. For this



New and Modified Features

PGI Release Notes  26

release, the derived type variable itself must appear in a data clause, at least a present clause,
for any compute construct that directly uses the derived type variable.
module mpoint
type point
    real :: base(1000)
    integer :: n
    real, allocatable, dimension(:) :: x, y, z
end type

type(point) :: A
end module

subroutine vecaddgpu()
 integer :: i
 !$acc parallel loop copyin(A) copyout(A%x,A%y,A%z)
 do i = 1, n
  A%x(i) = A%base(i)
  A%y(i) = sqrt( A%base(i) )
  A%z(i) = 0
 enddo
end subroutine

In this example, the derived type A is copied to the device, which copies the static array member
A%base and the scalar A%n. The allocatable array members A%x, A%y and A%z are then copied
to the device. The derived type variable A should be copied before its allocatable array members,
either by placing the derived type in an earlier data clause, or by copying or creating it on the
device in an enclosing data region or dynamic data lifetime. If the derived type is not present
on the device when the allocatable array members are copied, the accesses to the allocatable
members, such as A%x(i), on the device will be invalid, because the hidden pointer and
descriptor values in the derived type variable will not get updated.

Be careful when copying derived types containing allocatable members back to the host. On the
device, the allocatable members will get updated to point to device memory. If the whole derived
type gets copied back to the host, the allocatable members will be invalid on the host.

When creating or copying a derived type on the device, the whole derived type is allocated.
There is no support for allocating a subset of a derived type, or only allocating space for a single
member.



New and Modified Features

PGI Release Notes  27

Derived types and allocatable members can be managed using dynamic data directives as well:
module mpoint
 type point
    integer :: n
    real, dimension(:), allocatable :: x, y, z
 end type
contains
 subroutine move_to_device( A )
  type(point) :: A
  !$acc enter data copyin(A)
  !$acc enter data create(A%x, A%y, A%z)
 end subroutine

 subroutine move_off_device( A )
  type(point) :: A
  !$acc exit data copyout(A%x, A%y, A%z)
  !$acc exit data delete(A)
 end subroutine
end module

subroutine vecaddgpu( A, base )
 use mpoint
 type(point) :: A
 real :: base(:)
 integer :: i
 !$acc parallel loop present(A,base)
 do i = 1, n
  A%x(i) = base(i)
  A%y(i) = sqrt( base(i) )
  A%z(i) = 0
 enddo
end subroutine

Arrays of derived type, where the derived type contains allocatable members, have not been
tested and should not be considered supported for this release. That important feature will be
included in an upcoming release.

2.6.6. OpenACC Atomic Support
Release 14.7 provides full support for atomics in accordance with the 2.0 spec. For example:

double *a, *b, *c;
. . .
#pragma acc loop vector
    for (int k = 0; k < n; ++k)
    {
        #pragma acc atomic
        c[i*n+j] += a[i*n+k]*b[k*n+j];
    }

PGI 14.4 and later releases include support for CUDA-style atomic operations. The CUDA
atomic names can be used in accelerator regions from Fortran, C, and C++. For example:

. . .
#pragma acc loop gang
    for (j = 0; j < n1 * n2; j += n2) {
        k = 0;
        #pragma acc loop vector reduction(+:k)
            for (i = 0; i < n2; i++)
                k = k + a[j + i];
            atomicAdd(x, k);
    }



New and Modified Features

PGI Release Notes  28

2.6.7. OpenACC declare data directive for global and Fortran module
variables
The 14.7 release supports the OpenACC declare directive with the copyin, create and
device_resident clauses for C global variables and Fortran module variables, for Tesla-
target GPUs. This is primarily for use with the OpenACC routine directive and separate
compilation. The data in the declare clauses are statically allocated on the device when the
program attaches to the device. Data in a copyin clause will be initialized from the host data at
that time. A program attaches to the device when it reaches its first data or compute construct, or
when it calls the OpenACC acc_init routine.

In C, the example below uses a global struct and a global array pointer:

struct{
    float a, b;
}coef;
float* x;
#pragma acc declare create(coef,x)
. . .
#pragma acc routine seq
void modxi( int i ){
    x[i] *= coef.a;
}
. . .
void initcoef( float a, float b ){
    coef.a = a;
    coef.b = b;
    #pragma acc update device(coef)
}
. . .
void allocx( int n ){
    x = (float*)malloc( sizeof(float)*n );
    #pragma acc enter data create(x[0:n])
}
. . .
void modx( int s, int e ){
    #pragma acc parallel loop
    for( int i = s; i < e; ++i ) modxi(i);
}

The declare create(coef,x) will statically allocate a copy of the struct coef and the
pointer x on the device. In initcoef routine, the coefficients are assigned on the host, and the
update directive copies those values to the device. The allocx routine allocates space for the
x vector on the host, then uses an unstructured data directive to allocate that space on the device
as well; because the x pointer is already statically present on the device, the device copy of x
will be updated with the pointer to the device data as well. Finally, the parallel loop calls the
routine modxi, which refers to the global x pointer and coef struct. When called on the host,
this routine will access the global x and coef on the host, and when called on the device, such as
in this parallel loop, this routine will access the global x pointer and coef struct on the device.

If the modxi routine were in a separate file, the declarations of coef and x would have the
extern attribute, but otherwise the code would be the same, as shown below. Note that the acc



New and Modified Features

PGI Release Notes  29

declare create directive is still required in this file even though the variables are declared
extern, to tell the compiler that these variables are available as externals on the device.

extern struct{
    float a, b;
}coef;
extern float* x;
#pragma acc declare create(coef,x)
. . .
#pragma acc routine seq
void modxi( int i ){
    x[i] *= coef.a;
}

Because the global variable is present in device memory, it is also in the OpenACC runtime
present table, which keeps track of the correspondence between host and device objects. This
means that a pointer to the global variable can be passed as an argument to a routine in another
file, which uses that pointer in a present clause. In the following example, the calling routine
uses a small, statically-sized global coefficient array:

float xcoef[11] = { 1.0, 2.0, 1.5, 3.5, ... 9.0 };
#pragma acc declare copyin(xcoef)
. . .
extern void test( float*, float*, float*, n );
. . .
void caller( float* x, float* y, int n ){
    #pragma acc data copy( x[0:n], y[0:n] )
    {
        . . .
        test( x, y, xcoef, n );
        . . .
    }
}

The declare copyin directive tells the compiler to generate code to initialize the device array
from the host array when the program attaches to the device. In another file, the procedure test
is defined, and all of its array arguments will be already present on the device; x and y because of
the data construct, and xcoef because it is statically present on the device.

void test( float* xx, float* yy, float* cc, int n ){
    #pragma acc data present( xx[0:n], y[00:n], cc[0:11] )
    {
        . . .
        #pragma acc parallel loop
        for( int i = 5; i < n-5; ++i ){
            float t = 0.0;
            for( int j = -5; j <= 5; ++j ){
                t += cc[j+5]*yy[i+j];
            }
            xx[i] /= t;
        }
        . . .
    }
}

In Fortran, module fixed-size variables and arrays, and module allocatable arrays which appear in
declare directives at module scope will be available globally on the CPU as well as in device
code. Module allocatable arrays that appear in a declare create, declare copyin or
declare device_resident will be allocated in host memory as well as in device memory
when they appear in an allocate statement. The compiler manages the actual pointer to the data



New and Modified Features

PGI Release Notes  30

and a descriptor that contains array lower and upper bounds for each dimension, and the device
copy of the pointer will be set to point to the array in device memory.

The following example module contains one fixed size array and an allocatable array, both
appearing in a declare create clause. The static array xstat will be available at any time
inside accelerator compute regions or routines.

module staticmod
 integer, parameter :: maxl = 100000
 real, dimension(maxl) :: xstat
 real, dimension(:), allocatable :: yalloc
 !$acc declare create(xstat,yalloc)
end module

This module may be used in another file that allocates the yalloc array. When the allocatable
array yalloc is allocated, it will be allocated both in host and device memory, and will then be
available at any time in accelerator compute regions or routines.

subroutine allocit(n)
 use staticmod
 integer :: n
 allocate( yalloc(n) )
end subroutine

In another module, these arrays may be used in a compute region or in an accelerator routine:

module useit
 use staticmod
contains
 subroutine computer( n )
  integer :: n
  integer :: i
  !$acc parallel loop
   do i = 1, n
    yalloc(i) = iprocess( i )
   enddo
 end subroutine
 real function iprocess( i )
  !$acc routine seq
  integer :: i
  iprocess = yalloc(i) + 2*xstat(i)
 end function
end module

2.7. C++ Compiler

2.7.1. C++ and OpenACC
This release includes the OpenACC directives for the C++ compilers, (Linux only) pgc++ and
cpp. There are limitations to the data that can appear in data constructs and compute regions:

‣ Variable–length arrays are not supported in OpenACC data clauses; VLAs are not part of the
C++ standard.

‣ Variables of class type that require constructors and destructors do not behave properly when
they appear in data clauses.

‣ Exceptions are not handled in compute regions.



New and Modified Features

PGI Release Notes  31

‣ Any function call in a compute region must be inlined. This includes implicit functions such
as for I/O operators, operators on class type, user-defined operators, STL functions, lambda
operators, and so on.

2.7.2. C++ Compatibility
PGI 2014 C++ object code is incompatible with prior releases.

All C++ source files and libraries that were built with prior releases must be recompiled to link
with PGI 2014 or higher object files.

2.8. New and Modified Runtime Library Routines
PGI 2014 supports new runtime library routines associated with the PGI Accelerator compilers.

For more information, refer to Using an Accelerator in the User's Guide.

2.9. Library Interfaces
PGI provides access to a number of libraries that export C interfaces by using Fortran modules.
These libraries and functions are described in Chapter 8 of the PGI Compiler Users Guide.

2.10. Environment Modules
On Linux, if you use the Environment Modules package (e.g., the module load command), then
PGI 2014 includes a script to set up the appropriate module files.



PGI Release Notes  32

Chapter 3.
DISTRIBUTION AND DEPLOYMENT

Once you have successfully built, debugged and tuned your application, you may want to
distribute it to users who need to run it on a variety of systems. This section addresses how to
effectively distribute applications built using PGI compilers and tools.

3.1. Application Deployment and Redistributables
Programs built with PGI compilers may depend on runtime library files. These library files must
be distributed with such programs to enable them to execute on systems where the PGI compilers
are not installed. There are PGI redistributable files for all platforms. On Windows, PGI also
supplies Microsoft redistributable files.

3.1.1. PGI Redistributables
The PGI 2014 release includes these directories:

$PGI/linux86/14.10/REDIST
$PGI/linux86-64/14.10/REDIST
$PGI/win32/14.10/REDIST
$PGI/win64/14.10/REDIST

These directories contain all of the PGI Linux runtime library shared object files, OS X dynamic
libraries, or Windows dynamically linked libraries that can be re-distributed by PGI 2014
licensees under the terms of the PGI End-user License Agreement (EULA). For reference, a text-
form copy of the PGI EULA is included in the 2014 directory.

3.1.2. Linux Redistributables
The Linux REDIST directories contain the PGI runtime library shared objects for all supported
targets. This enables users of the PGI compilers to create packages of executables and PGI
runtime libraries that will execute successfully on almost any PGI-supported target system,
subject to these requirements:

‣ End-users of the executable have properly initialized their environment.
‣ Users have set LD_LIBRARY_PATH to use the relevant version of the PGI shared objects.



Distribution and Deployment

PGI Release Notes  33

3.1.3. Microsoft Redistributables
The PGI products on Windows include Microsoft Open Tools. The Microsoft Open Tools
directory contains a subdirectory named redist. PGI 2014 licensees may redistribute the files
contained in this directory in accordance with the terms of the PGI End-User License Agreement.

Microsoft supplies installation packages, vcredist_x86.exe and vcredist_x64.exe,
containing these runtime files. These files are available in the redist directory.



PGI Release Notes  34

Chapter 4.
TROUBLESHOOTING TIPS AND KNOWN
LIMITATIONS

This section contains information about known limitations, documentation errors, and
corrections. Wherever possible, a work-around is provided.

For up-to-date information about the state of the current release, visit the frequently asked
questions (FAQ) section on pgroup.com at www.pgroup.com/support/faq.htm

4.1. General Issues
Most issues in this section are related to specific uses of compiler options and suboptions.

‣ Object files created with prior releases of PGI compiler are incompatible with object files
from PGI 2014 and should be recompiled.

‣ Using –g option to generate debug information for CUDA Fortran has these limitations:

– Only linux 64-bit platform supports this feature
– No debug information is generated for boundaries for Fortran automatic arrays,
adjustable dummy arrays, or assumed-shape dummy arrays.
– No debug information is generated for GPU code after a !CUF directive.

‣ The –i8 option can make programs incompatible with the ACML libraries; use of any
INTEGER*8 array size argument can cause failures. Visit developer.amd.com to check for
compatible libraries.

‣ Using –Mipa=vestigial in combination with –Mipa=libopt with PGCC, you may
encounter unresolved references at link time. This problem is due to the erroneous removal
of functions by the vestigial sub-option to –Mipa. You can work around this problem by
listing specific sub-options to –Mipa, not including vestigial.

‣ OpenMP programs compiled using –mp and run on multiple processors of a SuSE 9.0 system
can run very slowly. These same executables deliver the expected performance and speed-up
on similar hardware running SuSE 9.1 and above.

4.2. Platform-specific Issues

www.pgroup.com/support/faq.htm


Troubleshooting Tips and Known Limitations

PGI Release Notes  35

4.2.1. Linux
The following are known issues on Linux:

‣ Programs that incorporate object files compiled using –mcmodel=medium cannot be
statically linked. This is a limitation of the linux86-64 environment, not a limitation of the
PGI compilers and tools.

4.2.2. Apple OS X
The following are known issues on Apple OS X:

‣ The PGI 2014 compilers do not support static linking of binaries. For compatibility with
future Apple updates, the compilers only support dynamic linking of binaries.

‣ Using –Mprof=func or –Mprof=lines is not supported.

4.2.3. Microsoft Windows
The following are known issues on Windows:

‣ Starting January 2015, PGI will no longer include support for Windows XP, Windows Server 2003, or
Windows Server 2008.

‣ For the Cygwin emacs editor to function properly, you must set the environment variable
CYGWIN to the value "tty" before invoking the shell in which emacs will run. However,
this setting is incompatible with the PGBDG command line interface (–text), so you are
not able to use pgdbg –text in shells using this setting.

The Cygwin team is working to resolve this issue.
‣ On Windows, the version of vi included in Cygwin can have problems when the SHELL

variable is defined to something it does not expect. In this case, the following messages
appear when vi is invoked:
E79: Cannot expand wildcards Hit ENTER or type command to continue

To workaround this problem, set SHELL to refer to a shell in the cygwin bin directory, e.g. /
bin/bash.

‣ C++ programs on Win64 that are compiled with the option –tp x64 fail when using PGI
Unified Binaries. The –tp x64 switch is not yet supported on the Windows platform for C
++.

‣ On Windows, runtime libraries built for debugging (e.g. msvcrtd and libcmtd) are
not included with PGI Workstation. When a program is linked with –g, for debugging, the
standard non-debug versions of both the PGI runtime libraries and the Microsoft runtime
libraries are always used. This limitation does not affect debugging of application code.

The following are known issues on Windows and PGDBG:

‣ In PGDBG on the Windows platform, Windows times out stepi/nexti operations when
single stepping over blocked system calls. For more information on the workaround for this
issue, refer to the online FAQs at http://www.pgroup.com/support/tools.htm.

The following are known issues on Windows and PGPROF:

http://www.pgroup.com/support/tools.htm


Troubleshooting Tips and Known Limitations

PGI Release Notes  36

‣ Do not use –Mprof with PGI runtime library DLLs. To build an executable for profiling,
use the static libraries. When the compiler option –Bdynamic is not used, the static libraries
are the default.

4.3. PGDBG-related Issues
The following are known issues on PGDBG:

‣ Before PGDBG can set a breakpoint in code contained in a shared library, .so or .dll, the
shared library must be loaded.

‣ Breakpoints in processes other than the process with rank 0 may be ignored when debugging
MPICH-1 applications when the loading of shared libraries to randomized addresses is
enabled.

‣ Debugging of PGI Unified Binaries, that is, 64-bit programs built with more than one –tp
option, is not fully supported. The names of some subprograms are modified in the creation,
and PGDBG does not translate these names back to the names used in the application
source code. For detailed information on how to debug a PGI Unified Binary, refer to http://
www.pgroup.com/support/tools.htm.

4.4. PGPROF-related Issues
The following are known issues on PGPROF:

‣ Accelerator profiling via pgcollect is disabled in PGI 2014. PGI Accelerator and
OpenACC programs profiled using pgcollect do not generate any performance data
related to the GPU. This capability is expected to be restored in a future release.

Workaround: Set the environment variable PGI_ACC_TIME to '1' for the program when it
runs (not when compiling). This setting causes the program to print some performance data
to stdout on exit.

CUDA Fortran profiling is still available for CUDA Fortran programs.
‣ Programs compiled and linked for gprof-style performance profiling using –pg can result

in segmentation faults on systems running version 2.6.4 Linux kernels.
‣ Times reported for multi-threaded sample-based profiles, that is, profiling invoked with

options –pg or –Mprof=time, are for the master thread only. To obtain profile data on
individual threads, PGI-style instrumentation profiling with –Mprof={lines | func}
or pgcollect must be used.

4.5. CUDA Toolkit Issues
Targeting a CUDA Toolkit Version

‣ The CUDA 6.0 Toolkit is set as the default in PGI 14.10. To use the CUDA 6.0 Toolkit, first
download the CUDA 6.0 driver from NVIDIA at www.nvidia.com/cuda.

http://www.pgroup.com/support/tools.htm
http://www.pgroup.com/support/tools.htm
http://www.nvidia.com/cuda


Troubleshooting Tips and Known Limitations

PGI Release Notes  37

‣ You can compile with the CUDA 6.5 Toolkit either by adding the option
-ta=tesla:cuda6.5 to the command line or by adding set CUDAVERSION=6.5 to
the siterc file.

‣ pgaccelinfo prints the driver version as the first line of output. For a 6.5 driver, it prints:
 CUDA Driver Version 6050 

CUDA 6.5 Toolkit Limitations

‣ Scientific computing libraries including cuBLAS, cuSPARSE, cuFFT and cuRAND are not
available for Linux 32-bit.

‣ PGI installation packages for the Windows 7/8/2012 operating systems contain both the
CUDA 6.0 and 6.5 Toolkits but the packages for the Windows XP/2003/2008 operating
systems contain CUDA 6.0 only.

‣ The CUDA 6.5 Toolkit is not supported on Windows Server 2012 although it is supported on
Windows Server 2012 R2.

‣ The CUDA 6.5 Toolkit is not supported on Windows Vista.

‣ The CUDA 6.5 Toolkit is not available for OS X 32-bit.

4.6. OpenACC Issues
This section includes known limitations in PGI's support for OpenACC directives.

PGI plans to support these features in a future release, though separate compilation and extern
variables for Radeon will be deferred until OpenCL 2.0 is released.

ACC routine directive limitations

‣ The routine directive has limited support on AMD Radeon. Separate compilation is not
supported on Radeon, and selecting –ta=radeon disables rdc for –ta=tesla.

‣ The bind clause on the routine directive is not supported.

‣ The nohost clause on the routine directive is not supported.

‣ Reductions in procedures with acc routine are not fully supported.

‣ Fortran assumed-shape arguments are not yet supported.

Clause Support Limitations

‣ The device_type clause is not supported on any directive.

4.7. Corrections
A number of problems are corrected in this release. Refer to www.pgroup.com/support/
release_tprs.htm for a complete and up-to-date table of technical problem reports, TPRs, fixed in
recent releases of the PGI compilers and tools. This table contains a summary description of each
problem as well as the version in which it was fixed.

http://www.pgroup.com/support/release_tprs.htm
http://www.pgroup.com/support/release_tprs.htm


PGI Release Notes  38

Chapter 5.
CONTACT INFORMATION

You can contact PGI at:

20400 NW Amberwood Drive Suite 100
Beaverton, OR 97006

Or electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

The PGI User Forum is monitored by members of the PGI engineering and support teams as
well as other PGI customers. The forum newsgroups may contain answers to commonly asked
questions. Log in to the PGI website to access the forum:

http://www.pgroup.com/userforum/index.php

Many questions and problems can be resolved by following instructions and the information
available at our frequently asked questions (FAQ) site:

http://www.pgroup.com/support/faq.htm

All technical support is by e-mail or submissions using an online form at:

http://www.pgroup.com/support

Phone support is not currently available.

PGI documentation is available at http://www.pgroup.com/resources/docs.htm or in your local
copy of the documentation in the release directory doc/index.htm.

mailto: sales@pgroup.com
mailto: trs@pgroup.com
http://www.pgroup.com
http://www.pgroup.com/userforum/index.php
http://www.pgroup.com/support/faq.htm
http://www.pgroup.com/support
http://www.pgroup.com/resources/docs.htm


Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS,
AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents
or other rights of third parties that may result from its use. No license is granted by implication of
otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication
are subject to change without notice. This publication supersedes and replaces all other information
previously supplied. NVIDIA Corporation products are not authorized as critical components in life
support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

PGI Workstation, PGI Server, PGI Accelerator, PGF95, PGF90, PGFORTRAN, and PGI Unified
Binary are trademarks; and PGI, PGHPF, PGF77, PGCC, PGC++, PGI Visual Fortran, PVF, PGI CDK,
Cluster Development Kit, PGPROF, PGDBG, and The Portland Group are registered trademarks of
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2013-2014 NVIDIA Corporation. All rights reserved.


	Table of Contents
	List of Tables
	Release Overview
	1.1. Product Overview
	1.1.1. Licensing Terminology
	1.1.2. Licensing Options
	1.1.3. PGI Workstation and PGI Server Comparison
	1.1.4. PGI CDK Cluster Development Kit

	1.2. Release Components
	1.2.1. Additional Components for PGI CDK
	1.2.2. MPI Support

	1.3. Terms and Definitions
	1.4. Supported Platforms
	1.5. Supported Operating System Updates
	1.5.1. Linux
	1.5.2. OS X
	1.5.3. Windows

	1.6. Getting Started

	New and Modified Features
	2.1. What's New in Release 2014
	2.2. New and Modified Compiler Options
	2.2.1. Required Suboption
	2.2.2. Accelerator Options
	2.2.3. Relocatable Device Code
	2.2.4. LLVM/SPIR and Native GPU Code Generation
	2.2.5. DWARF Debugging Formats
	2.2.6. –tp Modifications

	2.3. New and Modified Fortran Functionality
	2.3.1. Contiguous Pointers

	2.4. New and Modified Tools Functionality
	2.5. Using MPI
	2.6. PGI Accelerator Enhancements
	2.6.1. OpenACC Directive Summary
	2.6.2. CUDA Toolkit Version
	2.6.3. C Structs in OpenACC
	2.6.4. C++ Classes in OpenACC
	2.6.5. Fortran Derived Types in OpenACC
	2.6.6. OpenACC Atomic Support
	2.6.7. OpenACC declare data directive for global and Fortran module variables

	2.7. C++ Compiler
	2.7.1. C++ and OpenACC
	2.7.2. C++ Compatibility

	2.8. New and Modified Runtime Library Routines
	2.9. Library Interfaces
	2.10. Environment Modules

	Distribution and Deployment
	3.1. Application Deployment and Redistributables
	3.1.1. PGI Redistributables
	3.1.2. Linux Redistributables
	3.1.3. Microsoft Redistributables


	Troubleshooting Tips and Known Limitations
	4.1. General Issues
	4.2. Platform-specific Issues
	4.2.1. Linux
	4.2.2. Apple OS X
	4.2.3. Microsoft Windows

	4.3. PGDBG-related Issues
	4.4. PGPROF-related Issues
	4.5. CUDA Toolkit Issues
	4.6. OpenACC Issues
	4.7. Corrections

	Contact Information

